1
|
Guzman A, Sanchez CL, Ivantsova E, Watkins J, Sutton S, Souders CL, Martyniuk CJ. Sub-network transcriptome dataset for diseases associated with exposure to bisphenol F and bisphenol S in human SH-SY5Y neuroblastoma cells. Data Brief 2025; 59:111313. [PMID: 39968403 PMCID: PMC11833777 DOI: 10.1016/j.dib.2025.111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Bisphenol A replacement chemicals can result in toxicity to neuronal cells, however, the underlying mechanisms are not well characterized. Transcriptome analysis was conducted in the neuronal SH-SY5Y human cell line following exposure of cells to either bisphenol F (BPF) or bisphenol S (BPS) at a concentration of 0.1 nM. Transcriptome data were used to predict which diseases were associated with bisphenol exposure using sub-network enrichment analysis. There were 305 subnetworks perturbed by BPF and 279 subnetworks perturbed by BPS. Top gene sets altered by BPF included urticaria, gastric lesion, attention deficit disorder, familial Mediterranean fever, malocclusion, and lupus erythematosus while for BPS, top gene sets included chronic urticaria, polymyositis, genital herpes, and hypergammaglobulinemia. There were 164 common diseases identified between BPF and BPS datasets. These included protein regulators of androgen deficiency, cerebral toxoplasmosis, metabolic alkalosis, panic attack, T-helper lymphocyte infiltration and vitiligo. Data can be re-used in regulatory toxicology to characterize biomarkers of exposure and elucidate common molecular responses to bisphenol replacements.
Collapse
Affiliation(s)
| | | | - Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Jacqueline Watkins
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Sara Sutton
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L. Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J. Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Chakraborty S, Anand S, Numan M, Bhandari RK. Ancestral bisphenol A exposure led to non-alcoholic fatty liver disease and sex-specific alterations in proline and bile metabolism pathways in the liver. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:958-972. [PMID: 39953842 PMCID: PMC11933882 DOI: 10.1093/etojnl/vgae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 02/17/2025]
Abstract
Endocrine-disrupting chemicals can induce metabolic alterations, resulting in diseases such as obesity, diabetes, and fatty liver disease, which can be inherited by offspring inhabiting uncontaminated environments. Bisphenol A (BPA), a well-known endocrine disruptor, can induce endocrine disruption, leading to metabolic disorders in subsequent generations without further exposure to BPA via nongenetic transgenerational inheritance. Using medaka as an animal model, we reported that ancestral BPA exposure leads to transgenerational nonalcoholic fatty liver disease (NAFLD) in grandchildren four generations after the initial exposure. It is unclear if transgenerational NAFLD developed because ancestral BPA exposure differs from that developed due to direct and continuous BPA exposure because the transgenerational disease develops in the absence of the stressor. We induced transgenerational NAFLD in medaka with ancestral BPA exposure (10 µg/L) at the F0 generation and examined transcriptional and metabolomic alterations in the liver of the F4 generation fish that continued to develop NAFLD. To understand the etiology of NAFLD in unexposed generations, we performed nontargeted liquid chromatography-mass spectrometry-based metabolomic analysis in combination with bulk RNA sequencing and determined biomarkers, co-expressed gene networks, and sex-specific pathways triggered in the liver. An integrated analysis of metabolomic and transcriptional alterations revealed a positive association with the severity of the NAFLD disease phenotype. Females showed increased NAFLD severity and had metabolic disruption involving proline metabolism, tryptophan metabolism, and bile metabolism pathways. The present results provide the transcriptional and metabolomic underpinning of metabolic disruption caused by ancestral BPA exposure, providing avenues for further research to understand the development and progression of transgenerational NAFLD caused by ancestral bisphenol A exposure.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Santosh Anand
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Muhammad Numan
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, United States
| | - Ramji Kumar Bhandari
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
3
|
Johnston W, Adil S, Cao C, Nipu N, Mennigen JA. Fish models to explore epigenetic determinants of hypoxia-tolerance. Comp Biochem Physiol A Mol Integr Physiol 2025; 302:111811. [PMID: 39778711 DOI: 10.1016/j.cbpa.2025.111811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/03/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
The occurrence of environmental hypoxia in freshwater and marine aquatic systems has increased over the last century and is predicted to further increase with climate change. As members of the largest extant vertebrate group, freshwater fishes, and to a much lesser extent marine fishes, are vulnerable to increased occurrence of hypoxia. This is important as fishes render important ecosystem services and have important cultural and economic roles. Evolutionarily successful, fishes have adapted to diverse aquatic freshwater and marine habitats with different oxygen conditions. While some fishes exhibit genetic adaptions to tolerate hypoxia and even anoxia, others are limited to oxygen-rich habitats. Recent advances in molecular epigenetics have shown that some epigenetic machinery, especially histone- and DNA demethylases, is directly dependent on oxygen and modulates important transcription-regulating epigenetic marks in the process. At the post-transcriptional level, hypoxia has been shown to affect non-coding microRNA abundance. Together, this evidence adds a new molecular epigenetic basis to study hypoxia tolerance in fishes. Here, we review the documented and predicted changes in environmental hypoxia in aquatic systems and discuss the diversity and comparative physiology of hypoxia tolerance in fishes, including molecular and physiological adaptations. We then discuss how recent mechanistic advances in environmental epigenetics can inform future work probing the role of oxygen-dependent epigenetic marks in shaping organismal hypoxia-tolerance in fishes with a focus on within- and between-species variation, acclimation, inter- and multigenerational plasticity, and multiple climate-change stressors. We conclude by describing the translational potential of this approach for conservation physiology, ecotoxicology, and aquaculture.
Collapse
Affiliation(s)
- William Johnston
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Sally Adil
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Catherine Cao
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Niepukolie Nipu
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Porcar-Santos O, Sanz C, Cruz-Alcalde A, Lima T, Gual M, Navarro-Martín L, Sans C. Assessment of toxicity and endocrine-disrupting activity of bisphenol analogues during ozone and UV treatments in zebrafish eleutheroembryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177591. [PMID: 39551201 DOI: 10.1016/j.scitotenv.2024.177591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/17/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
In recent decades, increased regulations on the use of bisphenol A (BPA) have prompted a surge in the use of BPA alternatives. Consequently, a widespread occurrence of BPA substitutes in aquatic environments is currently being detected. While some evidence exists about the degradation of these compounds through various water treatment technologies, the evolution of the resulting toxicity and endocrine-disrupting activity during these processes remains scarcely evaluated. In this study, the acute toxicity and transcriptomic responses in zebrafish eleutheroembryos exposed to selected bisphenols (BPA, bisphenol AF (BPAF) and bisphenol CCl (BPC-Cl)) were assessed during their oxidation by ozone. In addition, the response of zebrafish eleutheroembryos exposed to BPC-Cl treated with UV radiation was also investigated. Results showed that both ozonation and UV treatment effectively reduced the intrinsic toxicity of the studied bisphenols. This was observed with the increase of the survival and swim bladder inflation rates of zebrafish eleutheroembryos, reaching control levels. In concordance with these results, the initially altered mRNA levels in genes related to xenobiotic stimulus (cyp2k18); lipid homeostasis and transport (apoa1a); retinoid metabolism (aldh1a2); neutrophil differentiation (alas1); and oxygen transport (hbae3) in zebrafish eleutheroembryos were generally mitigated during the ozonation and UV treatment of bisphenols. Similarly, the high estrogenicity of these bisphenols, observed by elevated mRNA levels of cyp19a1b, decreased significantly during the ozonation treatment, reaching control levels. On the contrary, an increase in mRNA levels of fads2 and cyp19a1b was observed in animals exposed to BPC-Cl treated with UV radiation. These results suggest that the photolysis products of BPC-Cl may induce disruption of the lipid biosynthesis and estrogenicity. This was further confirmed with RNA-sequencing analysis, which revealed that embryos exposed to BPC-Cl treated with UV radiation presented alterations in mRNA levels of genes specifically related to estrogenic stimulus.
Collapse
Affiliation(s)
- Oriol Porcar-Santos
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona, Spain.
| | - Claudia Sanz
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/Jordi Girona 18, Barcelona, 08034, Spain
| | - Alberto Cruz-Alcalde
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona, Spain
| | - Tugstenio Lima
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/Jordi Girona 18, Barcelona, 08034, Spain
| | - Marta Gual
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/Jordi Girona 18, Barcelona, 08034, Spain
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/Jordi Girona 18, Barcelona, 08034, Spain
| | - Carmen Sans
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Mirmajidi H, Lee H, Nipu N, Thomas J, Gajdosechova Z, Kennedy D, Mennigen JA, Hemmer E. Nano-bio interactions of Gum Arabic-stabilized lanthanide-based upconverting nanoparticles: in vitro and in vivo study. J Mater Chem B 2024; 13:160-176. [PMID: 39539248 DOI: 10.1039/d4tb01579g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Lanthanide-based nanoparticles (Ln-NPs) are highly valued for their unique optical and magnetic properties, making them useful in various scientific fields, including materials science and biomedicine. This study investigated the use of Gum Arabic (GA), a natural, non-toxic biopolymer, as capping agent for Ln-NPs to enhance their biocompatibility and chemical and colloidal stability. Specifically, Er3+/Yb3+ co-doped NaGdF4 Ln-NPs were modified with GA, followed by their characterization with respect to upconversion properties and in vitro as well as in vivo toxicity. Herein, widely used ligand-free and polyacrylic acid (PAA)-capped Ln-NPs were used as reference materials. Importantly, the GA-modified Ln-NPs exhibited superior stability in aqueous and biologically relevant media, as well as relatively lower cytotoxicity across multiple cell lines, including U-87 MG, HEPG2, and J774A.1. In vivo studies using zebrafish embryos confirmed the minimal toxicity of GA-capped Ln-NPs. Despite overall low non-specific cellular uptake, hyperspectral imaging and inductively coupled plasma mass spectrometry confirmed the colocalization of the Ln-NPs as a function of their surface chemistry in both cell models and zebrafish. The results suggest GA as an effective surface-stabilizing agent for Ln-NPs, paving the way for future functionalization with targeting agents.
Collapse
Affiliation(s)
- Hana Mirmajidi
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Private, Ottawa (ON) K1N 6N5, Canada.
| | - Hyojin Lee
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa (ON) K1N 6N5, Canada.
| | - Niepukolie Nipu
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa (ON) K1N 6N5, Canada.
| | - Jith Thomas
- Bureau of Chemical Safety, Food and Nutrition Directorate, Health Products and Food Branch, Health Canada, 251 Sir Frederick Banting Driveway, Tunney's Pasture, Ottawa (ON) K1A 0K9, Canada
| | - Zuzana Gajdosechova
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa (ON) K1A 0R6, Canada
| | - David Kennedy
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa (ON) K1A 0R6, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa (ON) K1N 6N5, Canada.
| | - Eva Hemmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Private, Ottawa (ON) K1N 6N5, Canada.
| |
Collapse
|
6
|
Senarath Pathirajage K, Rajapaksa G. Long-term exposure to environmentally relevant Bisphenol-A levels affects growth, swimming, condition factor, sex ratio and histology of juvenile zebrafish. Sci Rep 2024; 14:24503. [PMID: 39424622 PMCID: PMC11489671 DOI: 10.1038/s41598-024-73538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/18/2024] [Indexed: 10/21/2024] Open
Abstract
Bisphenol A (BPA) is an environmental estrogen which perturbs hormone signaling pathways adversely affecting aquatic organisms. To evaluate the impact of developmental exposure to long term yet environmentally relevant low doses of BPA, wild-type juvenile zebrafish of 35 days post fertilization were treated with BPA (1 and 10 µg/L), treatment control (0.5% v/v methanol) and control for 60 days. Both BPA treatments led to significantly increased morality overtime. Length increment and specific growth rates became significantly high in BPA exposed zebrafish overtime. Obesogenic property of BPA was not evident with longexposure to low BPA doses. A significantly high and BPA dose-dependent female-biased sex ratios were observed following the juvenile exposure. Significantly low swimming speed was recorded in the fish of both BPA-treated tanks than that of control. Condition factor was significantly low in BPA exposed fish indicating the poor-wellness. There were numerous histopathological alterations of gonads, liver and kidney indicating impacts of juvenile exposure in zebrafish. Altered growth, swimming, mortality, feminization and histopathological changes in zebrafish induced by BPA indicate the risks associated with developmental exposures. The findings call for more comprehensive studies to comprehend the ecological risks imposed by low concentrations of environmental estrogens in urban aquatic ecosystems.
Collapse
Affiliation(s)
| | - Gayani Rajapaksa
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka.
| |
Collapse
|
7
|
van den Boom R, Vergauwen L, Knapen D. Effects of Metabolic Disruption on Lipid Metabolism and Yolk Retention in Zebrafish Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1880-1893. [PMID: 38860666 DOI: 10.1002/etc.5930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 06/12/2024]
Abstract
A subgroup of endocrine-disrupting chemicals have the ability to disrupt metabolism. These metabolism-disrupting chemicals (MDCs) can end up in aquatic environments and lead to adverse outcomes in fish. Although molecular and physiological effects of MDCs have been studied in adult fish, few studies have investigated the consequences of metabolic disruption in fish during the earliest life stages. To investigate the processes affected by metabolic disruption, zebrafish embryos were exposed to peroxisome proliferator-activated receptor gamma (PPARγ) agonist rosiglitazone, the PPARγ antagonist T0070907, and the well-known environmentally relevant MDC bisphenol A. Decreased apolipoprotein Ea transcript levels indicated disrupted lipid transport, which was likely related to the observed dose-dependent increases in yolk size across all compounds. Increased yolk size and decreased swimming activity indicate decreased energy usage, which could lead to adverse outcomes because the availability of energy reserves is essential for embryo survival and growth. Exposure to T0070907 resulted in a darkened yolk. This was likely related to reduced transcript levels of genes involved in lipid transport and fatty acid oxidation, a combination of responses that was specific to exposure to this compound, possibly leading to lipid accumulation and cell death in the yolk. Paraoxonase 1 (Pon1) transcript levels were increased by rosiglitazone and T0070907, but this was not reflected in PON1 enzyme activities. The present study shows how exposure to MDCs can influence biochemical and molecular processes involved in early lipid metabolism and may lead to adverse outcomes in the earliest life stages of fish. Environ Toxicol Chem 2024;43:1880-1893. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Rik van den Boom
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
8
|
van den Boom R, Vergauwen L, Koedijk N, da Silva KM, Covaci A, Knapen D. Combined western diet and bisphenol A exposure induces an oxidative stress-based paraoxonase 1 response in larval zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 274:109758. [PMID: 37757927 DOI: 10.1016/j.cbpc.2023.109758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/05/2023] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
Paraoxonase 1 (PON1) is an antioxidant enzyme linked to metabolic disorders by genome-wide association studies in humans. Exposure to metabolic disrupting chemicals (MDCs) such as bisphenol A (BPA), together with genetic and dietary factors, can increase the risk of metabolic disorders. The objective of this study was to investigate how PON1 responds to the metabolic changes and oxidative stress caused by a western diet, and whether exposure to BPA alters the metabolic and PON1 responses. Zebrafish larvae at 14 days post fertilization were fed a custom-made western diet with and without aquatic exposure to two concentrations of BPA for 5 days. A combination of western diet and 150 μg/L BPA exposure resulted in a stepwise increase in weight, length and oxidative stress, suggesting that BPA amplifies the western diet-induced metabolic shift. PON1 arylesterase activity was increased in all western diet and BPA exposure groups and PON1 lactonase activity was increased when western diet was combined with exposure to 1800 μg/L BPA. Both PON1 activities were positively correlated to oxidative stress. Based on our observations we hypothesize that a western diet caused a shift towards fatty acid-based metabolism, which was increased by BPA exposure. This shift resulted in increased oxidative stress, which in turn was associated with a PON1 activity increase as an antioxidant response. This is the first exploration of PON1 responses to metabolic challenges in zebrafish, and the first study of PON1 in the context of MDC exposure in vertebrates.
Collapse
Affiliation(s)
- Rik van den Boom
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Noortje Koedijk
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Katyeny Manuela da Silva
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium.
| |
Collapse
|
9
|
Habib MR, Mohamed AH, Nassar AHA, Sheir SK. Bisphenol A effects on the host Biomphalaria alexandrina and its parasite Schistosoma mansoni. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97824-97841. [PMID: 37597145 DOI: 10.1007/s11356-023-29167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/31/2023] [Indexed: 08/21/2023]
Abstract
Bisphenol A (BPA) is one of the most potent endocrine-disrupting chemicals (EDCs) that adversely affect aquatic organisms. The present investigation explored the effects of exposure to BPA at 0.1 and 1 mgL-1 concentrations on the fecundity of Biomphalaria alexandrina, snail's infection with Schistosoma mansoni, and histology of the ovotestis and topographical structure of S. mansoni cercariae emerged from exposed snails. The 24 h LC50 and LC90 values of BPA against B. alexandrina were 8.31 and 10.88 mgL-1 BPA, respectively. The exposure of snails to 0.1 or 1 mgL-1 BPA did not affect the snail's survival. However, these concentrations caused an increase in the reproductive rate (Ro) of infected snails. A slight decrease in egg production was observed in snails exposed to 0.1 mgL-1 BPA after being infected (infected then exposed). However, a significant increase in egg production was noted in snails exposed to 1 mgL-1 BPA after infection with S. mansoni. Histopathological investigations indicated a clear alteration in the ovotestis tissue structure of exposed and infected-exposed groups compared to the control snails. Chronic exposure to BPA caused pathological alterations in the gametogenic cells. SEM preparations of S. mansoni cercariae emerged from infected-exposed snails showed obvious body malformations. From a public health perspective, BPA pollution may negatively impact schistosomiasis transmission, as indicated by the disturbance in cercarial production and morphology. However, it has adverse effects on the reproduction and architecture of reproductive organs of exposed snails, indicating that B. alexandrina snails are sensitive to sublethal BPA exposure.
Collapse
Affiliation(s)
- Mohamed R Habib
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, 12411, Egypt.
| | - Azza H Mohamed
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | | | - Sherin K Sheir
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
10
|
Braeuning A, Balaguer P, Bourguet W, Carreras-Puigvert J, Feiertag K, Kamstra JH, Knapen D, Lichtenstein D, Marx-Stoelting P, Rietdijk J, Schubert K, Spjuth O, Stinckens E, Thedieck K, van den Boom R, Vergauwen L, von Bergen M, Wewer N, Zalko D. Development of new approach methods for the identification and characterization of endocrine metabolic disruptors-a PARC project. FRONTIERS IN TOXICOLOGY 2023; 5:1212509. [PMID: 37456981 PMCID: PMC10349382 DOI: 10.3389/ftox.2023.1212509] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
In past times, the analysis of endocrine disrupting properties of chemicals has mainly been focused on (anti-)estrogenic or (anti-)androgenic properties, as well as on aspects of steroidogenesis and the modulation of thyroid signaling. More recently, disruption of energy metabolism and related signaling pathways by exogenous substances, so-called metabolism-disrupting chemicals (MDCs) have come into focus. While general effects such as body and organ weight changes are routinely monitored in animal studies, there is a clear lack of mechanistic test systems to determine and characterize the metabolism-disrupting potential of chemicals. In order to contribute to filling this gap, one of the project within EU-funded Partnership for the Assessment of Risks of Chemicals (PARC) aims at developing novel in vitro methods for the detection of endocrine metabolic disruptors. Efforts will comprise projects related to specific signaling pathways, for example, involving mTOR or xenobiotic-sensing nuclear receptors, studies on hepatocytes, adipocytes and pancreatic beta cells covering metabolic and morphological endpoints, as well as metabolism-related zebrafish-based tests as an alternative to classic rodent bioassays. This paper provides an overview of the approaches and methods of these PARC projects and how this will contribute to the improvement of the toxicological toolbox to identify substances with endocrine disrupting properties and to decipher their mechanisms of action.
Collapse
Affiliation(s)
- Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Patrick Balaguer
- IRCM (Institut de Recherche en Cancérologie de Montpellier), Inserm U1194, Université de Montpellier, ICM, Montpellier, France
| | - William Bourguet
- CBS Centre de Biologie Structurale, Université de Montpellier, CNRS, Inserm, Montpellier, France
| | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Katreece Feiertag
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jorke H Kamstra
- Department of Population Health Sciences, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Dajana Lichtenstein
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Philip Marx-Stoelting
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jonne Rietdijk
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Rik van den Boom
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Neele Wewer
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Daniel Zalko
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, Institut National de Recherche Pour L'Agriculture, L'Alimentation et L'Environnement (INARE), Ecole Nationale Vétérinaire de Toulouse (ENVT), INP-Purpan, Université Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
11
|
Kalyn M, Lee H, Curry J, Tu W, Ekker M, Mennigen JA. Effects of PFOS, F-53B and OBS on locomotor behaviour, the dopaminergic system and mitochondrial function in developing zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121479. [PMID: 36958660 DOI: 10.1016/j.envpol.2023.121479] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) has widely been reported to persist in the environment and to elicit neurotoxicological effects in wildlife and humans. Following the restriction of PFOS use, 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) have emerged as novel PFOS alternatives and have been detected in the environment. However, knowledge on the toxicological effects of these alternatives remains scarce. Using developing transgenic Tg(dat:eGFP) zebrafish, we evaluated the consequences of exposure to 0, 0.1 and 1 mg/l PFOS, F-53B and OBS on the dopaminergic system, locomotor behaviour and mitochondrial function. All compounds generally reduced locomotor activity under light conditions irrespective of exposure concentration. Exposure to OBS (at all concentrations), as well as PFOS and F-53B (at 1 mg/l), significantly reduced subpallial dopaminergic neuron abundance. PFOS also significantly reduced dat and pink1 expression irrespective of exposure concentration, while F-53B and OBS tended to reduce mitochondrial pink1 and fis1 expression across concentrations without reaching statistical significance. Mitochondrial function, in the form of reduced oxygen consumption rate and marginally inhibited ATP-linked oxygen consumption rate, was affected only in response to 1 mg/l PFOS. Together, PFOS and the emerging contaminants F-53B and OBS inhibit locomotion at similar concentrations, a finding correlated with decreased dopaminergic neuron numbers in the subpallium and decreased expression of pink1. These findings are relevant to wildlife and human health, as they suggest that PFOS as well as replacement compounds affect locomotion likely in part by negatively impacting the dopamine system.
Collapse
Affiliation(s)
- Michael Kalyn
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, K1N6N5, Ottawa, ON, Canada
| | - Hyojin Lee
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, K1N6N5, Ottawa, ON, Canada.
| | - Jory Curry
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, K1N6N5, Ottawa, ON, Canada
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Marc Ekker
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, K1N6N5, Ottawa, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, K1N6N5, Ottawa, ON, Canada
| |
Collapse
|
12
|
Soloperto S, Olivier S, Poret A, Minier C, Halm-Lemeille MP, Jozet-Alves C, Aroua S. Effects of 17α-ethinylestradiol on the neuroendocrine gonadotropic system and behavior of European sea bass larvae ( Dicentrarchus labrax). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:198-215. [PMID: 36803253 DOI: 10.1080/15287394.2023.2177781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The widespread use of 17α-ethinylestradiol (EE2), and other estrogenic endocrine disruptors, results in a continuous release of estrogenic compounds into aquatic environments. Xenoestrogens may interfere with the neuroendocrine system of aquatic organisms and may produce various adverse effects. The aim of the present study was to expose European sea bass larvae (Dicentrarchus labrax) to EE2 (0.5 and 50 nM) for 8 d and determine the expression levels of brain aromatase (cyp19a1b), gonadotropin-releasing hormones (gnrh1, gnrh2, gnrh3), kisspeptins (kiss1, kiss2) and estrogen receptors (esr1, esr2a, esr2b, gpera, gperb). Growth and behavior of larvae as evidenced by locomotor activity and anxiety-like behaviors were measured 8 d after EE2 treatment and a depuration period of 20 d. Exposure to 0.5 nM EE2 induced a significant increase in cyp19a1b expression levels, while upregulation of gnrh2, kiss1, and cyp19a1b expression was noted after 8 d at 50 nM EE2. Standard length at the end of the exposure phase was significantly lower in larvae exposed to 50 nM EE2 than in control; however, this effect was no longer observed after the depuration phase. The upregulation of gnrh2, kiss1, and cyp19a1b expression levels was found in conjunction with elevation in locomotor activity and anxiety-like behaviors in larvae. Behavioral alterations were still detected at the end of the depuration phase. Evidence indicates that the long-lasting effects of EE2 on behavior might impact normal development and subsequent fitness of exposed fish.
Collapse
Affiliation(s)
- S Soloperto
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| | - S Olivier
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| | - A Poret
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| | - C Minier
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| | - M P Halm-Lemeille
- Ifremer Port-en-Bessin, LaboratoireEnvironnement Ressources de Normandie, Port-en-Bessin, France
| | - C Jozet-Alves
- Normandie Univ, Unicaen, CNRS, Caen, France
- Univ Rennes, CNRS, Rennes, France
| | - S Aroua
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| |
Collapse
|
13
|
Wang Y, Gao Z, Liu C, Mao L, Liu X, Ren J, Lu Z, Yao J, Liu X. Mixture toxicity of pyraclostrobine and metiram to the zebrafish (Danio rerio) and its potential mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44400-44414. [PMID: 36692725 DOI: 10.1007/s11356-023-25518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
The interplay between pesticides plays a critical role in ecotoxicology since these chemicals rarely emerge as single substances but rather in mixtures with other chemicals. In the present work, we purposed to clarify the combined toxic impacts of pyraclostrobine (PYR) and metiram (MET) on the zebrafish by using numerous indicators. Results exhibited that the 4-day LC50 value of MET to fish embryos was 0.0025 mg a.i. L-1, which was lower compared with PYR (0.019 mg a.i. L-1). Combinations of PYR and MET presented a synergetic impact on fish embryos. Contents of POD, CYP450, and VTG were drastically increased in the plurality of the single and joint treatments relative to the baseline value. Three genes, including vtg1, crh, and il-8, related to the endocrine and immune systems, were also surprisingly up-regulated when fish were challenged by the individual and mixture pesticides compared with the baseline value. These results afforded valuable information on the latent toxicity mechanisms of co-exposure for PYR and MET in the early growth stage of fish. Moreover, our data also revealed that frequent application of these two pesticides might exert a potentially ecotoxicological hazard on aquatic ecosystems. Collectively, the present study provided valuable guidance for the risk evaluation of chemical combinations.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, HangzhouZhejiang, 310021, China
| | - Zhongwen Gao
- College of Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuande Liu
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, HangzhouZhejiang, 310021, China
| | - Jindong Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, HangzhouZhejiang, 310021, China
| | - Zeqi Lu
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Jie Yao
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Xuan Liu
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China.
| |
Collapse
|
14
|
Wang H, Qi S, Mu X, Yuan L, Li Y, Qiu J. Bisphenol F induces liver-gut alteration in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157974. [PMID: 35963407 DOI: 10.1016/j.scitotenv.2022.157974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The unease of consumers with bisphenol A has led to the increased industrial usage of bisphenol F (BPF), which is a new hazard to environmental health. Here, zebrafish were exposed to three BPF concentrations (0.5, 5, and 50 μg/L) from the embryonic stage for 180 days. Results showed that zebrafish body length and weight decreased and hepatosomatic index values increased, even at environmentally relevant concentration. Histological analysis identified the occurrence of hepatic fibrosis and steatosis in 5 and 50 μg/L groups, which indicated the liver injury caused by BPF. Based on the untargeted metabolomics results, a dose-dependent variation in the effects of BPF on liver metabolism was found, and amino acids, purines and one carbon metabolism were the main affected processes in the 0.5, 5, and 50 μg/L treatments, respectively. At the same time, BPF induced a shift in intestinal microbiome composition, including decreased abundance of Erysipelotrichaceae, Rhodobacteraceae and Gemmobacter. In addition, the correlation analysis suggested an association between gut microbiome changes and affected hepatic metabolites after BPF exposure. These findings indicate that a liver-gut alteration is induced by long-term BPF exposure.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China; Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, China
| | - Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China; Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, China.
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
15
|
Hu G, Wang H, Shi H, Wan Y, Zhu J, Li X, Wang Q, Wang Y. Mixture toxicity of cadmium and acetamiprid to the early life stages of zebrafish (Danio rerio). Chem Biol Interact 2022; 366:110150. [PMID: 36084721 DOI: 10.1016/j.cbi.2022.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
Aquatic organisms are often exposed to contaminants that occur in the natural environment. Nevertheless, the toxic effects of chemical combinations on aquatic animals and their underlying toxic mechanisms for dealing with such exposures are still not fully understood. In this study, we investigated the combined effects of cadmium (Cd) and acetamiprid (ACE) on zebrafish (Danio rerio) using various endpoints. Cd exhibited a 96-h LC50 value of 4.77 mg a.i. L-1 against zebrafish embryos, which was lower than that of ACE (152.6 mg a.i. L-1). In contrast, the 96-h LC50 value of the mixture of Cd and ACE was 157.4 mg a.i. L-1. The mixture of Cd and ACE had a synergetic effect on the organisms. The activities of T-SOD, POD, and CarE were significantly changed in most exposures compared with the control group. In addition, five genes (TRα, crh, Tnf, IL, and P53) involved in oxidative stress, cellular apoptosis, the immune system, and the endocrine system exhibited more remarkable changes when exposed to chemical mixtures relative to their individual counterparts, demonstrating variations in the cellular and mRNA expression levels induced by the mixture exposure of ACE and Cd during the embryonic development of zebrafish. Therefore, these results indicated that the combined pollution of ACE and Cd could be a potentially hazardous factor, and further investigation is necessary for the safety evaluation and application of ACE. Moreover, further investigation on the combined toxicities of various chemicals must be performed to determine the chemical mixtures with synergistic responses.
Collapse
Affiliation(s)
- Guixian Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Hao Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, Jiangsu, China
| | - Yujie Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jiahong Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xue Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
16
|
Dos Santos B, Ivantsova E, Guzman AP, Martyniuk CJ. Critical review of the toxicity mechanisms of bisphenol F in zebrafish (Danio rerio): Knowledge gaps and future directions. CHEMOSPHERE 2022; 297:134132. [PMID: 35240145 DOI: 10.1016/j.chemosphere.2022.134132] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Replacement chemicals for bisphenol A, such as bisphenol F (BPF), are detected in aquatic environments worldwide and can potentially exert negative effects on aquatic organisms. We synthesized peer-reviewed literature reporting molecular and physiological responses in zebrafish following exposure to BPF, as BPF is closely related to BPA structure and is a dominant replacement chemical in the marketplace. Global concentrations of BPF in aquatic environments were compiled and compared to physiological and behavioral impacts reported in zebrafish (e.g., developmental abnormalities, oxidative stress, immunotoxicity, endocrine disruption, and neurotoxicity). Using computational approaches, we elucidate BPF-mediated molecular networks and reveal novel biomarkers associated with BPF exposure. Functional classes of proteins including inflammatory cytokines, ATPases, peroxidases, and aromatic l-amino decarboxylases represent novel, underexplored targets of toxicity. Most revealing of this critical review is that few studies report biological responses to BPF at levels present in aquatic environments. Recommendations for future investigations based on knowledge gaps include: (1) Mechanistic studies in the central nervous system of zebrafish to address neurotoxicity; (2) Behavioral assays in zebrafish that assess the effects of BPF on anxiolytic, social, and fear-related behaviors; (3) Studies that broaden understanding of potential endocrine disrupting effects of BPF, for example insulin signaling is predicted to be sensitive to BPF exposure; (4) Studies into metabolic disruption with a focus on glutathione and aromatic amino acids, based upon pathway analysis data; (5) Studies utilizing mixture exposures with other BPA analogs to reflect environmental conditions more accurately.
Collapse
Affiliation(s)
- Bruna Dos Santos
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170, Porto Alegre, RS, Brazil
| | - Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Andrea P Guzman
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
17
|
Kassotis CD, Vom Saal FS, Babin PJ, Lagadic-Gossmann D, Le Mentec H, Blumberg B, Mohajer N, Legrand A, Munic Kos V, Martin-Chouly C, Podechard N, Langouët S, Touma C, Barouki R, Kim MJ, Audouze K, Choudhury M, Shree N, Bansal A, Howard S, Heindel JJ. Obesity III: Obesogen assays: Limitations, strengths, and new directions. Biochem Pharmacol 2022; 199:115014. [PMID: 35393121 PMCID: PMC9050906 DOI: 10.1016/j.bcp.2022.115014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022]
Abstract
There is increasing evidence of a role for environmental contaminants in disrupting metabolic health in both humans and animals. Despite a growing need for well-understood models for evaluating adipogenic and potential obesogenic contaminants, there has been a reliance on decades-old in vitro models that have not been appropriately managed by cell line providers. There has been a quick rise in available in vitro models in the last ten years, including commercial availability of human mesenchymal stem cell and preadipocyte models; these models require more comprehensive validation but demonstrate real promise in improved translation to human metabolic health. There is also progress in developing three-dimensional and co-culture techniques that allow for the interrogation of a more physiologically relevant state. While diverse rodent models exist for evaluating putative obesogenic and/or adipogenic chemicals in a physiologically relevant context, increasing capabilities have been identified for alternative model organisms such as Drosophila, C. elegans, zebrafish, and medaka in metabolic health testing. These models have several appreciable advantages, including most notably their size, rapid development, large brood sizes, and ease of high-resolution lipid accumulation imaging throughout the organisms. They are anticipated to expand the capabilities of metabolic health research, particularly when coupled with emerging obesogen evaluation techniques as described herein.
Collapse
Affiliation(s)
- Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States.
| | - Frederick S Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, United States
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Helene Le Mentec
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, The University of California, Irvine, Irvine CA 92697, United States
| | - Nicole Mohajer
- Department of Developmental and Cell Biology, The University of California, Irvine, Irvine CA 92697, United States
| | - Antoine Legrand
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Corinne Martin-Chouly
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Sophie Langouët
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Charbel Touma
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, Paris, France
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Texas A & M University, College Station, TX 77843, United States
| | - Nitya Shree
- Department of Pharmaceutical Sciences, Texas A & M University, College Station, TX 77843, United States
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, ACT, 2611, Australia
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| |
Collapse
|
18
|
Chackal R, Eng T, Rodrigues EM, Matthews S, Pagé-Lariviére F, Avery-Gomm S, Xu EG, Tufenkji N, Hemmer E, Mennigen JA. Metabolic Consequences of Developmental Exposure to Polystyrene Nanoplastics, the Flame Retardant BDE-47 and Their Combination in Zebrafish. Front Pharmacol 2022; 13:822111. [PMID: 35250570 PMCID: PMC8888882 DOI: 10.3389/fphar.2022.822111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Single-use plastic production is higher now than ever before. Much of this plastic is released into aquatic environments, where it is eventually weathered into smaller nanoscale plastics. In addition to potential direct biological effects, nanoplastics may also modulate the biological effects of hydrophobic persistent organic legacy contaminants (POPs) that absorb to their surfaces. In this study, we test the hypothesis that developmental exposure (0–7 dpf) of zebrafish to the emerging contaminant polystyrene (PS) nanoplastics (⌀100 nm; 2.5 or 25 ppb), or to environmental levels of the legacy contaminant and flame retardant 2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47; 10 ppt), disrupt organismal energy metabolism. We also test the hypothesis that co-exposure leads to increased metabolic disruption. The uptake of nanoplastics in developing zebrafish was validated using fluorescence microscopy. To address metabolic consequences at the organismal and molecular level, metabolic phenotyping assays and metabolic gene expression analysis were used. Both PS and BDE-47 affected organismal metabolism alone and in combination. Individually, PS and BDE-47 exposure increased feeding and oxygen consumption rates. PS exposure also elicited complex effects on locomotor behaviour with increased long-distance and decreased short-distance movements. Co-exposure of PS and BDE-47 significantly increased feeding and oxygen consumption rates compared to control and individual compounds alone, suggesting additive or synergistic effects on energy balance, which was further supported by reduced neutral lipid reserves. Conversely, molecular gene expression data pointed to a negative interaction, as co-exposure of high PS generally abolished the induction of gene expression in response to BDE-47. Our results demonstrate that co-exposure to emerging nanoplastic contaminants and legacy contaminants results in cumulative metabolic disruption in early development in a fish model relevant to eco- and human toxicology.
Collapse
Affiliation(s)
- Raphaël Chackal
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Tyler Eng
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Emille M Rodrigues
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Sara Matthews
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
| | - Florence Pagé-Lariviére
- National Wildlife Research Center, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Stephanie Avery-Gomm
- National Wildlife Research Center, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
| | - Eva Hemmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
19
|
Martyniuk CJ, Martínez R, Navarro-Martín L, Kamstra JH, Schwendt A, Reynaud S, Chalifour L. Emerging concepts and opportunities for endocrine disruptor screening of the non-EATS modalities. ENVIRONMENTAL RESEARCH 2022; 204:111904. [PMID: 34418449 PMCID: PMC8669078 DOI: 10.1016/j.envres.2021.111904] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 05/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are ubiquitous in the environment and involve diverse chemical-receptor interactions that can perturb hormone signaling. The Organization for Economic Co-operation and Development has validated several EDC-receptor bioassays to detect endocrine active chemicals and has established guidelines for regulatory testing of EDCs. Focus on testing over the past decade has been initially directed to EATS modalities (estrogen, androgen, thyroid, and steroidogenesis) and validated tests for chemicals that exert effects through non-EATS modalities are less established. Due to recognition that EDCs are vast in their mechanisms of action, novel bioassays are needed to capture the full scope of activity. Here, we highlight the need for validated assays that detect non-EATS modalities and discuss major international efforts underway to develop such tools for regulatory purposes, focusing on non-EATS modalities of high concern (i.e., retinoic acid, aryl hydrocarbon receptor, peroxisome proliferator-activated receptor, and glucocorticoid signaling). Two case studies are presented with strong evidence amongst animals and human studies for non-EATS disruption and associations with wildlife and human disease. This includes metabolic syndrome and insulin signaling (case study 1) and chemicals that impact the cardiovascular system (case study 2). This is relevant as obesity and cardiovascular disease represent two of the most significant health-related crises of our time. Lastly, emerging topics related to EDCs are discussed, including recognition of crosstalk between the EATS and non-EATS axis, complex mixtures containing a variety of EDCs, adverse outcome pathways for chemicals acting through non-EATS mechanisms, and novel models for testing chemicals. Recommendations and considerations for evaluating non-EATS modalities are proposed. Moving forward, improved understanding of the non-EATS modalities will lead to integrated testing strategies that can be used in regulatory bodies to protect environmental, animal, and human health from harmful environmental chemicals.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| | - Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Adam Schwendt
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Lorraine Chalifour
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| |
Collapse
|
20
|
Chen P, Yang J, Wang R, Xiao B, Liu Q, Sun B, Wang X, Zhu L. Graphene oxide enhanced the endocrine disrupting effects of bisphenol A in adult male zebrafish: Integrated deep learning and metabolomics studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151103. [PMID: 34743883 DOI: 10.1016/j.scitotenv.2021.151103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
In our previous studies, it was found that graphene oxide (GO) reduced the endocrine disruption of bisphenol A (BPA) in zebrafish embryo and larvae, but through different mechanisms. In this study, adult male zebrafish were selected to further understand the interactions between GO and BPA considering that adult zebrafish have different uptake pathways and metabolism from embryo and larvae. BPA was predicted to bind with the estrogen receptor α (ERα) with a probability of 98.1% by training a directed-message passing deep neural network model, and was confirmed by molecular docking analysis. The results were in accordance with the significantly increased vitellogenin (VTG) and estradiol (E2) levels, while decreased testosterone (T) and follicle-stimulating hormone (FSH) levels in the adult male zebrafish after 7 d exposure to 500 μg/L BPA. Compared to BPA single exposure group, the presence of GO led to significantly lower T and FSH levels and fewer spermatozoa, indicating that GO enhanced the endocrine disruption effects of BPA in the adult zebrafish. Metabolomics analysis revealed that 5 μg/L BPA could elicit changes in the metabolome, and the responses were correlated with BPA concentrations. Metabolic pathway analysis revealed more disturbance was caused by the mixture of GO and BPA compared to BPA alone, including three additional pathways and stronger perturbations on carbohydrate, lipid, and amino acid metabolism, fortifying that GO exaggerated the toxic effects of BPA. This was opposite to the depression effect observed in zebrafish embryo and larvae, magnifying that the joint effects of exposure to nanomaterials and endocrine disrupting chemicals are relevant to the life stages of organisms.
Collapse
Affiliation(s)
- Pengyu Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China; College of Oceanography, Hohai University, Nanjing 210098, China
| | - Jing Yang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Ruihan Wang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Bowen Xiao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Qing Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Binbin Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Xiaolei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China.
| |
Collapse
|
21
|
Jędruchniewicz K, Ok YS, Oleszczuk P. COVID-19 discarded disposable gloves as a source and a vector of pollutants in the environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125938. [PMID: 34010776 PMCID: PMC8076738 DOI: 10.1016/j.jhazmat.2021.125938] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 05/05/2023]
Abstract
The appearance of the virus SARS-CoV-2 at the end of 2019 and its spreading all over the world has caused global panic and increase of personal protection equipment usage to protect people against infection. Increased usage of disposable protective gloves, their discarding to random spots and getting to landfills may result in significant environmental pollution. The knowledge concerning possible influence of gloves and potential of gloves debris on the environment (water, soil, etc.), wildlife and humans is crucial to predict future consequences of disposable gloves usage caused by the pandemic. This review focuses on the possibility of chemical release (heavy metals and organic pollutants) from gloves and gloves materials, their adsorptive properties in terms of contaminants accumulation and effects of gloves degradation under environmental conditions.
Collapse
Affiliation(s)
- Katarzyna Jędruchniewicz
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland.
| |
Collapse
|
22
|
Liu H, Cui H, Huang Y, Gao S, Tao S, Hu J, Wan Y. Xenobiotics Targeting Cardiolipin Metabolism to Promote Thrombosis in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3855-3866. [PMID: 33629855 DOI: 10.1021/acs.est.0c08068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exposure to environmental pollutants is an important factor contributing to the development and severity of thrombosis. However, the important physiological molecules in the thrombotic processes affected by environmental exposures remain unknown. In this study, we show that exposure to environmental chemicals disrupts the equilibrium of cardiolipins (CLs), and directing CL synthesis promotes thrombosis. Using an untargeted metabolomics approach, approximately 3030 molecules were detected in zebrafish embryos exposed to 11 environmental chemicals and automatically clustered into a network. Interconnectivity among CLs and linoleates or isoxanthopterin was discovered through the highly consistent variations in the coregulated metabolites in the network. The chemical exposure resulted in significant upregulation of CLs through influencing the enzymatic activities of phospholipase A2, cardiolipin synthase, and lysocardiolipin acyltransferase. Consequently, metabolic disorders of CLs affected the levels of anticardiolipin antibodies, disrupted the homeostasis between platelet thromboxane A2 and endothelial prostacyclin, and promoted thrombotic events including heart ischemia and tachycardia. Our study thus reveals the common molecular mechanisms underlying the CL-induced thrombosis targeted by environmental exposures.
Collapse
Affiliation(s)
- Hang Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yixuan Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shixiong Gao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
23
|
Niu Y, Wang B, Yang R, Wu Y, Zhao Y, Li C, Zhang J, Xing Y, Shao B. Bisphenol Analogues and Their Chlorinated Derivatives in Breast Milk in China: Occurrence and Exposure Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1391-1397. [PMID: 33480683 DOI: 10.1021/acs.jafc.0c06938] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Concentrations of bisphenol A (BPA) and its analogues (together with their chlorinated derivatives are referred to as BPs) were measured in 181 breastmilk samples collected from 9 provinces in China in 2014. Twelve BP types were found. The BP concentrations ranged from not detected to 5.912 μg/L. BPA was the predominant BP, followed by bisphenol F (BPF) and bisphenol S (BPS). The mean BPA, BPF, and BPS levels were 0.444, 0.107, and 0.027 μg/L, respectively. Other BPs were sporadically detected in breastmilk samples. There were no differences (p > 0.05) in BPA, BPF, BPS, or total BP levels in the urban and rural regions or the northern and southern regions. BPA accounted for approximately 70% of the BPs and BPF accounted for more than 20% of the BPs in breast milk samples. The high contribution of BPF indicated that BPA analogues, not only BPA, should receive attention. The upper-bound daily intakes of BPs for infants 0-6 months old were 0.044-1.291 μg/kg bw/day. Despite the absence of tolerable daily intake data, attention should be paid not only on BPA but also BPF.
Collapse
Affiliation(s)
- Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Bin Wang
- Chinese Academy of Inspection and Quarantine Comprehensive Test Center, Beijing 100123, China
| | - Runhui Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Cuizhi Li
- Inner Mongolia Yili Industrial Group Company Limited Share Ltd, Hohhot 010018, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Yang Xing
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| |
Collapse
|