1
|
Setu S, Strezov V. Impacts of non-ferrous metal mining on soil heavy metal pollution and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178962. [PMID: 40022981 DOI: 10.1016/j.scitotenv.2025.178962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/20/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Mining activities significantly contribute to soil contamination, posing risks to the environment and human health. This study evaluates the environmental and health impacts of four non-ferrous mining types, which have been rarely examined globally. It highlights gaps in existing datasets from selected mining sites and sampling practices, correlating soil pollutants with atmospheric variables. Overall, the geoaccumulation index (Igeo) of all mine soil types were in the order Hg > Cd > As>Cu > Pb > Zn > Ni > Cr > Mn > Co indicating that Hg and Cd are the main metals posing risks from soil pollution associated with all mining activities. Notably, the highest As contamination (Igeo: class 6) occurs in copper mines in China, Russia, and Portugal, and in lead‑zinc mines in Sweden and Mexico. Cd contamination (Igeo: class 6) was most severe in lead‑zinc mine soils across Tunisia, China, Ireland, Spain, Slovenia, Mexico, France, North Macedonia, Bulgaria, and Egypt, while uranium mines in the USA showed notably lower levels of Cd contamination (Igeo: class 2). Hg contamination levels were higher in gold mine-associated soils in Iran, China, Myanmar, Brazil and Nigeria. About half of the sites faced the highest ecological risks from lead‑zinc mining areas in Vietnam, Tunisia, and Sweden, while copper mines in Cyprus, China, and Portugal had only 8 % in that category. Gold mines in China, Nigeria, and Brazil showed considerable risks from As and Hg, whereas uranium mines in Germany and Bulgaria had a lower ecological risk, due to better environmental management. The primary exposure route for heavy metals is ingestion, with the hazard index (HI) for non-carcinogenic impacts being acceptable for most elements, except for As. Carcinogenic risks are notably present in Brazil, Spain, Slovenia, Mexico, China, and the UK. Hence, this review underscores the urgent need to address heavy metal pollution from global metal mining and offers policy recommendations for effective environmental management and restoration efforts.
Collapse
Affiliation(s)
- Shamsunnahar Setu
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
| | - Vladimir Strezov
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
2
|
Shehzad K, Tu S, Majeed MZ, Lei B, Zhang J. Arthropods in soil reclamation and bioremediation: Functional roles, mechanisms and future perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122820. [PMID: 39393333 DOI: 10.1016/j.jenvman.2024.122820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Soil arthropods are a diverse group of invertebrates that play pivotal roles in nutrient cycling, decomposition, soil structure formation, and regulation of soil biodiversity. Understanding the ecological significance of soil arthropods and their interactions with other soil organisms is crucial. This review paper examines the potential of arthropods in improving soil health and quality, with a specific focus on their relevance in acidic, saline/alkaline, and contaminated soils. The paper investigates the interactions between arthropods and their associated microbiomes, their contributions to soil physical and chemical properties, their influence on nutrient cycling and organic matter mineralization, as well as their role as indicators of soil health due to their sensitivity to environmental changes. Furthermore, the review explores how arthropods enhance the activities of microorganisms, such as bacteria, fungi, and yeast, which employ molecular mechanisms to remediate heavy metal contamination in soils. Lastly, the paper addresses key challenges and future directions for utilizing soil arthropods in the restoration of environmentally friendly soils.
Collapse
Affiliation(s)
- Khurram Shehzad
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuxin Tu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Muhammad Zeeshan Majeed
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Bo Lei
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Zhang
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Garcia R, Calvez I, Koubaa A, Landry V, Cloutier A. Sustainability, Circularity, and Innovation in Wood-based Panel Manufacturing in the 2020s: Opportunities and Challenges. CURRENT FORESTRY REPORTS 2024; 10:420-441. [PMID: 39464643 PMCID: PMC11499423 DOI: 10.1007/s40725-024-00229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 10/29/2024]
Abstract
Purpose of review This review explores the opportunities and challenges associated with using unconventional and underutilized wood sources, such as fast-growing species, logging residues, fire-damaged wood, and post-consumer wood, to manufacture wood-based composite panels (WBCPs), particularly particleboard, medium-density fiberboard (MDF), and oriented strand board. This paper also discusses recent advancements in lightweight and multifunctional panels, with new features such as fire resistance, electrical conductivity, electromagnetic shielding, and antibacterial laminates. Recent findings Climate change, wildfires, and competition from the energy sector threaten current sources of fiber supply for WBCP manufacturing in some regions. Logging residues are abundant but underutilized in some areas, and the abundance of fire-damaged wood is expected to increase in the coming years due to climate change. These raw materials' effects on panel properties and technological limitations are discussed. Recycled wood is increasingly used for non-structural panels, but challenges remain when it comes to recycling panels, particularly post-consumer MDF. Conventional and emerging materials used in lightweight and multifunctional panels are also presented. Natural substances like cellulose, nanocellulose, chitosan, lignin, protein, and phytic acid are promising alternatives to conventional fire retardants. Innovative products such as MDF that contains carbon-based conductive fibers and antimicrobial laminates that use green-synthesized metal compounds are also reported. Summary This review shows that the WBCP industry can improve its sustainability by optimizing and diversifying wood sources, better managing and recycling post-consumer panels, and using more environmentally friendly materials. The hazardous chemicals in adhesives, fire retardants, and coatings are the main obstacles to recycling panels and creating a more circular economy within the WBCP industry.
Collapse
Affiliation(s)
- Rosilei Garcia
- Renewable Materials Research Centre (CRMR), Faculty of Forestry, Geography, and Geomatics, Université Laval, Québec, QC Canada
| | - Ingrid Calvez
- Renewable Materials Research Centre (CRMR), Faculty of Forestry, Geography, and Geomatics, Université Laval, Québec, QC Canada
| | - Ahmed Koubaa
- Forest Research Institute, Université du Québec en Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, QC Canada
| | - Véronic Landry
- Renewable Materials Research Centre (CRMR), Faculty of Forestry, Geography, and Geomatics, Université Laval, Québec, QC Canada
| | - Alain Cloutier
- Renewable Materials Research Centre (CRMR), Faculty of Forestry, Geography, and Geomatics, Université Laval, Québec, QC Canada
- Department of Wood and Forest Sciences, Faculty of Forestry, Geography, and Geomatics, Université Laval, 2425 De La Terrasse Street, Québec, QC G1V 0A6 Canada
| |
Collapse
|
4
|
Yaashikaa PR, Palanivelu J, Hemavathy RV. Sustainable approaches for removing toxic heavy metal from contaminated water: A comprehensive review of bioremediation and biosorption techniques. CHEMOSPHERE 2024; 357:141933. [PMID: 38615953 DOI: 10.1016/j.chemosphere.2024.141933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
In this comprehensive study, highlights emerging environmentally friendly methods to eliminating hazardous heavy metals from contaminated water, with an emphasis on bioremediation and biosorption. Breakthroughs, such as the combination of biological remediation and nanotechnology to improve the elimination of metals effectiveness and the use of genetically modified microbes for targeted pollutant breakdown. Developing biosorption materials made from agricultural waste and biochar, this indicates interesting areas for future research and emphasizes the necessity of sustainable practices in tackling heavy metal contamination in water systems. There seems to be a surge in enthusiasm for the utilization of biological remediation and biosorption methods as sustainable and viable options for eliminating heavy metals from contaminated water in the past couple of decades. The present review intends to offer an in-depth review of the latest understanding and advances in the discipline of biological remediation methods like bioaccumulation, biofiltration, bio-slurping, and bio-venting. Biosorption is specifically explained and includes waste biomass as biosorbent with the removal mechanisms and the hindrances caused in the process are detailed. Advances in biosorption like microbes as biosorbents and the mechanism involved in it. Additionally, novel enhancement techniques like immobilization, genetic modification, and ultrasound-assisted treatment in microbial sorbent are clarified. However, the review extended with analyzing the future advances in the overall biological methods and consequences of heavy metal pollution.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India 602105.
| | - Jeyanthi Palanivelu
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India 602105
| | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| |
Collapse
|
5
|
Barreto MSC, Elzinga EJ, Kubicki JD, Sparks DL. A multi-scale assessment of the impact of salinity on the desorption of chromate from hematite: Sea level rise implications. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133041. [PMID: 38043423 DOI: 10.1016/j.jhazmat.2023.133041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
The solubility and transport of Cr(VI) is primarily controlled by adsorption-desorption reactions at the surfaces of soil minerals such as iron oxides. Environmental properties such as pH, ionic strength, and ion competition are expected to affect the mobility and fate of Cr(VI). Sea level rise (SLR), and consequent seawater intrusion, is creating a new biogeochemical soil environment at coastal margins, potentially impacting Cr(VI) retention at contaminated sites. We employed in-situ ATR-FTIR spectroscopy and DFT calculations to investigate at the molecular level the adsorption of Cr(VI) on the hematite surface and its desorption by sulfate, as a function of pH and ionic strength. We further used a batch experiment to assess Cr(VI) desorption at varying artificial seawater (ASW) concentrations. IR results demonstrate the complexity of Cr(VI) adsorption, showing a combination of monodentate inner-sphere complexation at high pH and dichromate outer-sphere (∼75%) at low pH. The Cr(VI)-complexes exhibited desorption induced by increasing pH values (58% of desorption) and sulfate competition (∼40% desorption). ASW desorbed ∼20% more Cr(VI), even at just 1% concentration. Our findings provide insight into Cr(VI)-adsorption complexation that controls the retention and remobilization of Cr(VI) on Fe-oxide minerals. The results point to an elevated risk of Cr(VI) mobilization in contaminated soils affected by SLR.
Collapse
Affiliation(s)
| | - Evert J Elzinga
- Department of Earth & Environmental Sciences, Rutgers University, Newark, NJ, USA
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Donald L Sparks
- Department of Plant & Soil Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
6
|
Sadiki M, Balouiri M, Elabed S, Bennouna F, Lachkar M, Ibnsouda Koraichi S. The combined effect of essential oils on wood physico-chemical properties and their antiadhesive activity against mold fungi: application of mixture design methodology. BIOFOULING 2023; 39:537-554. [PMID: 37477240 DOI: 10.1080/08927014.2023.2236029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
In the heritage field, the microbial adhesion on wood, and consequently the formation of biofilm led to inestimable losses of historical and cultural monuments. Thereby, this study aimed to examine the combined effect of Thymus vulgaris, Myrtus communis, and Mentha pulegium essential oils on wood surface physico-chemical properties, and to elaborate the optimal mixture using the mixture design approach coupled to the contact angle method. It was found that both wood hydrophobicity and electron donor character increased significantly after treatment using an optimal mixture containing 57% and 43% of M. pulegium and M. communis essential oils, respectively. The theoretical and experimental fungal adhesion on untreated and treated wood were also investigated. The results showed that the adhesion was favorable on untreated wood and reduced using the optimal mixture. Moreover, the experimental data demonstrated that the same mixture exhibited an antiadhesive efficacy effect with a reduction of 36-75% in adhesion.
Collapse
Affiliation(s)
- Moulay Sadiki
- Laboratory of Geo-Bio-Environment and Innovation Engineering, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
- Laboratory of Microbial Biotechnology and Bioactive Molecules (LB2MB), Faculty of Science and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco
| | - Mounyr Balouiri
- Laboratory of Microbial Biotechnology and Bioactive Molecules (LB2MB), Faculty of Science and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco
| | - Soumya Elabed
- Laboratory of Microbial Biotechnology and Bioactive Molecules (LB2MB), Faculty of Science and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco
- City of Innovation-Regional University Centre of Interface, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Fadoua Bennouna
- Laboratory of Microbial Biotechnology and Bioactive Molecules (LB2MB), Faculty of Science and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco
| | - Mohammed Lachkar
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Science, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Saad Ibnsouda Koraichi
- Laboratory of Microbial Biotechnology and Bioactive Molecules (LB2MB), Faculty of Science and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco
- City of Innovation-Regional University Centre of Interface, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
7
|
Xing D, Magdouli S, Zhang J, Bouafif H, Koubaa A. A Comparative Study on Heavy Metal Removal from CCA-Treated Wood Waste by Yarrowia lipolytica: Effects of Metal Stress. J Fungi (Basel) 2023; 9:jof9040469. [PMID: 37108923 PMCID: PMC10145133 DOI: 10.3390/jof9040469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Bioremediation is an effective way to remove heavy metals from pollutants. This study investigated the effects of Yarrowia lipolytica (Y. lipolytica) on the bioremediation of chromated copper arsenate (CCA)-treated wood wastes. Copper ions stressed the yeast strains to improve their bioremediation efficiency. A comparison of changes in morphology, chemical composition, and metal content of CCA wood before and after bioremediation was conducted. The amount of arsenic (As), chromium (Cr), and copper (Cu) was quantified by microwave plasma atomic emission spectrometer. The results showed that yeast strains remained on the surface of CCA-treated wood after bioremediation. The morphologies of the strains changed from net to spherical because of the Cu2+ stress. Fourier-transform infrared spectroscopy showed that carboxylic acid groups of wood were released after removing heavy metals. A large amount of oxalic acid was observed when the optical density (OD600nm) was 0.05 on the 21st day. Meanwhile, the highest removal rate of Cu, As, and Cr was 82.8%, 68.3%, and 43.1%, respectively. Furthermore, the Cu removal from CCA-treated wood increased by about 20% after Cu2+ stress. This study showed that it is feasible to remove heavy metals from CCA-treated wood by Y. lipolytica without destroying the wood structure, especially by copper-induced Y. lipolytica.
Collapse
Affiliation(s)
- Dan Xing
- Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC J9X 5E4, Canada
| | - Sara Magdouli
- Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada
| | - Jingfa Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Hassine Bouafif
- Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, 433 Boulevard du Collège, Rouyn-Noranda, QC J9X 0E1, Canada
| | - Ahmed Koubaa
- Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC J9X 5E4, Canada
| |
Collapse
|
8
|
Priya AK, Gnanasekaran L, Dutta K, Rajendran S, Balakrishnan D, Soto-Moscoso M. Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. CHEMOSPHERE 2022; 307:135957. [PMID: 35985378 DOI: 10.1016/j.chemosphere.2022.135957] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/17/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Globally, ecotoxicologists, environmental biologists, biochemists, pathologists, and other experts are concerned about environmental contamination. Numerous pollutants, such as harmful heavy metals and emerging hazardous chemicals, are pervasive sources of water pollution. Water pollution and sustainable development have several eradication strategies proposed and used. Biosorption is a low-cost, easy-to-use, profitable, and efficient method of removing pollutants from water resources. Microorganisms are effective biosorbents, and their biosorption efficacy varies based on several aspects, such as ambient factors, sorbing materials, and metals to be removed. Microbial culture survival is also important. Biofilm agglomerates play an important function in metal uptake by extracellular polymeric molecules from water resources. This study investigates the occurrence of heavy metals, their removal by biosorption techniques, and the influence of variables such as those indicated above on biosorption performance. Ion exchange, complexation, precipitation, and physical adsorption are all components of biosorption. Between 20 and 35 °C is the optimal temperature range for biosorption efficiency from water resources. Utilizing living microorganisms that interact with the active functional groups found in the water contaminants might increase biosorption efficiency. This article discusses the negative impacts of microorganisms on living things and provides an outline of how they affect the elimination of heavy metals.
Collapse
Affiliation(s)
- A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Kingshuk Dutta
- Advanced Polymer Design and Development Research Laboratory (APDDRL), School for Advanced Research in Petrochemicals (SARP), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bengaluru, 562149, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 60210, India
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | | |
Collapse
|
9
|
Somu P, Narayanasamy S, Gomez LA, Rajendran S, Lee YR, Balakrishnan D. Immobilization of enzymes for bioremediation: A future remedial and mitigating strategy. ENVIRONMENTAL RESEARCH 2022; 212:113411. [PMID: 35561819 DOI: 10.1016/j.envres.2022.113411] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Over the years, extensive urbanization and industrialization have led to xenobiotics contamination of the environment and also posed a severe threat to human health. Although there are multiple physical and chemical techniques for xenobiotic pollutants management, bioremediation seems to be a promising technology from the environmental perspective. It is an eco-friendly and low-cost method involving the application of microbes, plants, or their enzymes to degrade xenobiotics into less toxic or non-toxic forms. Moreover, bioremediation involving enzymes has gained an advantage over microorganisms or phytoremediation due to better activity for pollutant degradation with less waste generation. However, the significant disadvantages associated with the application of enzymes are low stability (storage, pH, and temperature) as well as the low possibility of reuse as it is hard to separate from reaction media. The immobilization of enzymes without affecting their activity provides a possible solution to the problems and allows reusability by easing the process of separation with improved stability to various environmental factors. The present communication provides an overview of the importance of enzyme immobilization in bioremediation, carrier selection, and immobilization methods, as well as the pros and cons of immobilization and its prospects.
Collapse
Affiliation(s)
- Prathap Somu
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea; Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 600124, India
| | - Saranya Narayanasamy
- Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 600124, India
| | - Levin Anbu Gomez
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to Be University), Coimbatore, 641114, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| |
Collapse
|
10
|
Chen L, Zhou M, Wang J, Zhang Z, Duan C, Wang X, Zhao S, Bai X, Li Z, Li Z, Fang L. A global meta-analysis of heavy metal(loid)s pollution in soils near copper mines: Evaluation of pollution level and probabilistic health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155441. [PMID: 35469881 DOI: 10.1016/j.scitotenv.2022.155441] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
With the rapid development of the mining industry, the pollution of heavy metal(loid)s in soils near copper (Cu) mining sites is a significant concern worldwide. However, the pollution status and probabilistic health risks of heavy metal(loid)s of soils associated with Cu mines, have rarely been studied on a global scale. In this study, eight heavy metal(loid) concentrations in soil samples taken near 102 Cu mining sites worldwide were obtained through a literature review. Based on this database, the heavy metal(loid) pollution and ecological risk in soils near Cu mines were evaluated. Most of the study sites exceeded the moderately to heavily polluted levels of Cu and Cd; compared to other regions, higher pollution levels were observed at sites in Oman, China, Australia, and the United Kingdom. Soil pollution by Cd, Pb, and Zn at agricultural sites was higher than that in non-agricultural sites. In addition, these heavy metal(loid)s produced a high ecological risk to soils around Cu mining sites in which the contribution of Cd, Cu, and As reached up to 46.5%, 21.7%, and 18.4%, respectively. The mean hazard indices of the eight heavy metal(loid)s were 0.209 and 0.979 for adults and children, respectively. The Monte Carlo simulation further predicted that 1.40% and 29.9% of non-carcinogenic risk values for adults and children, respectively, exceeded the safe level of 1.0. Moreover, 84.5% and 91.0% of the total cancer risk values for adults and children, respectively, exceeded the threshold of 1E-04. Arsenic was the main contributor to non-carcinogenic risk, while Cu had the highest exceedance of carcinogenic risk. Our findings indicate that the control of Cu, Cd, and As should be prioritized because of their high incidence and significant risks in soils near Cu mines. These results provide valuable inputs for policymakers in designing effective strategies for reducing the exposure of heavy metal(loid)s in this area worldwide.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; State Key Laboratory of soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Mingxi Zhou
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 Ceske Budejovice, Czech Republic
| | - Jingzhe Wang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, Guangdong Key Laboratory of Urban Informatics, Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen 518060, China
| | - Zhiqin Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Chengjiao Duan
- State Key Laboratory of soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Xiangxiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shuling Zhao
- State Key Laboratory of soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Xiaohan Bai
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zhijie Li
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), 52425 Jülich, Germany
| | - Zimin Li
- Universit'e catholique de Louvain (UCLouvain), Earth and Life Institute, Soil Science, Louvain-La-Neuve 1348, Belgium
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; State Key Laboratory of soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China.
| |
Collapse
|
11
|
Comparative Copper Resistance Strategies of Rhodonia placenta and Phanerochaete chrysosporium in a Copper/Azole-Treated Wood Microcosm. J Fungi (Basel) 2022; 8:jof8070706. [PMID: 35887462 PMCID: PMC9320278 DOI: 10.3390/jof8070706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/25/2022] Open
Abstract
Copper-based formulations of wood preservatives are widely used in industry to protect wood materials from degradation caused by fungi. Wood treated with preservatives generate toxic waste that currently cannot be properly recycled. Despite copper being very efficient as an antifungal agent against most fungi, some species are able to cope with these high metal concentrations. This is the case for the brown-rot fungus Rhodonia placenta and the white-rot fungus Phanerochaete chrysosporium, which are able to grow efficiently in pine wood treated with Tanalith E3474. Here, we aimed to test the abilities of the two fungi to cope with copper in this toxic environment and to decontaminate Tanalith E-treated wood. A microcosm allowing the growth of the fungi on industrially treated pine wood was designed, and the distribution of copper between mycelium and wood was analysed within the embedded hyphae and wood particles using coupled X-ray fluorescence spectroscopy and Scanning Electron Microscopy (SEM)/Electron Dispersive Spectroscopy (EDS). The results demonstrate the copper biosorption capacities of P. chrysosporium and the production of copper-oxalate crystals by R. placenta. These data coupled to genomic analysis suggest the involvement of additional mechanisms for copper tolerance in these rot fungi that are likely related to copper transport (import, export, or vacuolar sequestration).
Collapse
|
12
|
Saravanan A, Kumar PS, Ramesh B, Srinivasan S. Removal of toxic heavy metals using genetically engineered microbes: Molecular tools, risk assessment and management strategies. CHEMOSPHERE 2022; 298:134341. [PMID: 35307383 DOI: 10.1016/j.chemosphere.2022.134341] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The direct release of industrial effluent into the water and other anthropogenic activities causes water pollution. Heavy metal ions are the primary contaminant in the industrial effluents which are exceptionally toxic at low concentrations, terribly disturb the endurance equilibrium of activities in the eco-system and be remarkably hazardous to human health. Different conventional treatment methodologies were utilized for the removal of toxic pollutants from the contaminated water which has several drawbacks such as cost-ineffective and lower efficiency. Recently, genetically modified micro-organisms (GMMs) stand-out for the removal of toxic heavy metals are viewed as an economically plausible and environmentally safe technique. GMMs are microorganisms whose genetic material has been changed utilizing genetic engineering techniques that exhibit enhanced removal efficiency in comparison with the other treatment methodologies. The present review comments the GMMs such as bacteria, algae and fungi and their potential for the removal of toxic heavy metals. This review provides current aspects of different advanced molecular tools which have been used to manipulate micro-organisms through genetic expression for the breakdown of metal compounds in polluted areas. The strategies, major limitations and challenges for genetic engineering of micro-organisms have been reviewed. The current review investigates the approaches working on utilizing genetically modified micro-organisms and effective removal techniques.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - B Ramesh
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Srinivasan
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
13
|
Brar KK, Magdouli S, Othmani A, Ghanei J, Narisetty V, Sindhu R, Binod P, Pugazhendhi A, Awasthi MK, Pandey A. Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review. ENVIRONMENTAL RESEARCH 2022; 207:112202. [PMID: 34655607 DOI: 10.1016/j.envres.2021.112202] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, nanoparticles (NPs) and nanomaterials (NMs) are used extensively in various streams such as medical science, solar energy, drug delivery, water treatment, and detection of persistent pollutants. Intensive synthesis of NPs/NMs carried out via physico-chemical technologies is deteriorating the environment globally. Therefore, an urgent need to adopt cost-effective and green technologies to synthesize NPs/NMs by recycling of secondary waste resources is highly required. Environmental wastes such as metallurgical slag, electronics (e-waste), and acid mine drainage (AMD) are rich sources of metals to produce NPs. This concept can remediate the environment on the one hand and the other hand, it can provide a future roadmap for economic benefits at industrial scale operations. The waste-derived NPs will reduce the industrial consumption of limited primary resources. In this review article, green emerging technologies involving lignocellulosic waste to synthesize the NPs from the waste streams and the role of potential microorganisms such as microalgae, fungi, yeast, bacteria for the synthesis of NPs have been discussed. A critical insight is also given on use of recycling technologies and the incorporation of NMs in the membrane bioreactors (MBRs) to improve membrane functioning and process performance. Finally, this study aims to mitigate various persisting scientific and technological challenges for the safe disposal and recycling of organic and inorganic waste for future use in the circular economy.
Collapse
Affiliation(s)
- Kamalpreet Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, J9X0E1, Canada
| | - Sara Magdouli
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, J9X0E1, Canada
| | - Amina Othmani
- Department of Chemistry, Faculty of Sciences of Monastir, University of Monastir, 5019, Monastir, Tunisia
| | - Javad Ghanei
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, J9X0E1, Canada
| | - Vivek Narisetty
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, Kerala, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712 100, China
| | - Ashok Pandey
- Centre for Innovation and Translational Research CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow, 226 0019, India.
| |
Collapse
|
14
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
15
|
Karimi Darvanjooghi MH, Malakootikhah M, Magdouli S, Brar SK. Ethylene and cyclohexane co-production in the fixed-bed catalytic membrane reactor: Experimental study and modeling optimization. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Othmani A, Magdouli S, Senthil Kumar P, Kapoor A, Chellam PV, Gökkuş Ö. Agricultural waste materials for adsorptive removal of phenols, chromium (VI) and cadmium (II) from wastewater: A review. ENVIRONMENTAL RESEARCH 2022; 204:111916. [PMID: 34428450 DOI: 10.1016/j.envres.2021.111916] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 05/21/2023]
Abstract
Management of basic natural resources and the spent industrial and domestic streams to provide a sustainable safe environment for healthy living is a magnum challenge to scientists and environmentalists. The present remedial approach to the wastewater focuses on recovering pure water for reuse and converting the contaminants into a solid matrix for permanent land disposal. However, the ground water aquifers, over a long period slowly leach the contaminants consequently polluting the ground water. Synthetic adsorbents, mainly consisting of polymeric resins, chelating agents, etc. are efficient and have high specificity, but ultimate disposal is a challenge as most of these materials are non-biodegradable. In this context, it is felt appropriate to review the utility of adsorbents based on natural green materials such as agricultural waste and restricted to few model contaminants: phenols, and heavy metals chromium(VI), and cadmium(II) in view of the vast amount of literature available. The article discusses the features of the agricultural waste material-based adsorbents including the mechanism. It is inferred that agricultural waste materials are some of the common renewable sources available across the globe and can be used as sustainable adsorbents. A discussion on challenges for industrial scale implementation and integration with advanced technologies like magnetic-based approaches and nanotechnology to improve the removal efficiency is included for future prospects.
Collapse
Affiliation(s)
- Amina Othmani
- Faculty of Sciences of Monastir, University of Monastir, Avenue of the Environment, 5019, Monastir, Tunisia.
| | - Sara Magdouli
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, M3J 1P3, Ontario, Canada; Institut National de la Recherche Scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 Rue de la Couronne, Québec, G1K 9A9, Qc, Canada; Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, 433 Boulevard du Collège, J9X0E1, Canada
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Ashish Kapoor
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | | | - Ömür Gökkuş
- Erciyes University, Engineering Faculty Environmental Engineering Department, 38039, Kayseri, Turkey
| |
Collapse
|
17
|
Costa LGD, Brocco VF, Paes JB, Kirker GT, Bishell AB. Biological and chemical remediation of CCA treated eucalypt poles after 30 years in service. CHEMOSPHERE 2022; 286:131629. [PMID: 34375193 DOI: 10.1016/j.chemosphere.2021.131629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study was to evaluate the efficacy of biological and chemical remediation of chromated copper arsenate (CCA) treated Corymbia citriodora poles, removed from service after 30 years. The presence of arsenic (As), chromium (Cr) and copper (Cu) was quantified by inductively coupled plasma optical emission spectrometry (ICP-OES). Twelve species of decay fungi were used for the biological remediation assay. For chemical remediation oxalic, citric, maleic and ethylenediamine tetraacetic (EDTA) acids were used for 24 and 48 h. In biological remediation, copper-tolerant brown-rot fungi, Wolfiporia cocos, Antrodia xantha and Fibroporia radiculosa, performed the best results, with the highest removals for As (59-85 %) and Cr (38-61 %). Cu was the most easily extracted, with removals above 60 % among the tested fungi, with the best results (90-98 %) for F. radiculosa, Coniophora puteana, Antrodia vaillantii and Postia placenta. In chemical remediation, the extraction time of 48 h was the most effective, and oxalic acid generally reached the highest removals. The EDTA + oxalic acid combination reached the highest value for Cu extraction (98 %).
Collapse
Affiliation(s)
- Lais Gonçalves da Costa
- Department of Forest and Wood Science, Federal University of Espírito Santo, Governador Lindemberg, 316, 29550-000, Jerônimo Monteiro, Espírito Santo, Brazil.
| | - Victor Fassina Brocco
- Center for Higher Studies of Itacoatiara, Amazonas State University (CESIT/UEA), Avenida Mário Andreazza, São Francisco, 69100-000, Itacoatiara, Amazonas, Brazil.
| | - Juarez Benigno Paes
- Department of Forest and Wood Science, Federal University of Espírito Santo, Governador Lindemberg, 316, 29550-000, Jerônimo Monteiro, Espírito Santo, Brazil.
| | - Grant T Kirker
- USDA-FS Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI, 53726-2398, USA.
| | - Amy B Bishell
- USDA-FS Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI, 53726-2398, USA.
| |
Collapse
|
18
|
Building Materials Made of Wood Waste a Solution to Achieve the Sustainable Development Goals. MATERIALS 2021; 14:ma14247638. [PMID: 34947233 PMCID: PMC8706229 DOI: 10.3390/ma14247638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022]
Abstract
In order to reduce the impact of human activities on the environment, in 2015, the United Nations launched the 2030 Agenda for Sustainable Development, proposing 17 Sustainable Development Goals with 169 associated targets. It is well-known that the construction industry is a major contributor to global CO2 emissions, and if a solution to reduce construction activity is not possible, considering the increasing population, then other solutions must be developed to decrease their negative environmental impact. In this context, the purpose of this paper is to investigate whether the use of wood waste as a building material can be a solution to achieve the Sustainable Development Goals. The research procedure included a bibliometric literature search, a scientometric analysis and an in-depth discussion. The analysis was done with the help of the software VOSviewer and Bibliometrix; the data were extracted mainly from the ISI Web of Science database. The extraction of data was done using the PRISMA method, and thus a sample of 212 peer-reviewed journal articles was established. The main results indicate an increasing interest in this topic in the last several years, as well as a switch from considering wood waste as just a source to generate heat and energy to the use of wood waste as a building material. The main uses of wood waste as a building material are in the composition of particleboards and in various mortar and concrete mixtures. The field of wood waste has many potential directions towards future development, and if the immense treasure represented by the forests, and implicitly the wood, is used efficiently, it can be a good solution to the problem of sustainable development of society.
Collapse
|
19
|
Kadri T, Robert T, Rouissi T, Sebastian J, Magdouli S, Brar SK, Martel R, Lauzon JM. Column tests for evaluation of the enzymatic biodegradation capacity of hydrocarbons (C 10-C 50) contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117986. [PMID: 34523511 DOI: 10.1016/j.envpol.2021.117986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/12/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Though many studies pertaining to soil bioremediation have been performed to study the microbial kinetics in shake flasks, the process efficiency in column tests is seldom. In the present study, soil columns tests were carried out to study the biodegradation of soil contaminated with a high concentration of diesel (≈19.5 g/kg) petroleum hydrocarbons expressed as C10-C50. Experiments were done with crude enzymatic cocktail produced by the hydrocarbonoclastic bacterium, Alcanivorax borkumensis. A. borkumensis was grown on a media with 3% (v/v) motor oil as the sole carbon and energy source. The effects of the enzyme concentration, treatment time and oxidant on the bioremediation efficiency of C10-C50 were investigated. A batch test was also carried out in parallel to investigate the stability of the enzymes and the effect of the biosurfactants on the desorption and the bioconversion of C10-C50. Batch tests indicated that the biosurfactants significantly affected the desorption and alkane hydroxylase and lipase enzymes, maintained their catalytic activity during the 20-day test, with a half-life of 7.44 days and 8.84 days, respectively. The crude enzyme cocktail, with 40 U/mL of lipase and 10 U/mL of alkane hydroxylase, showed the highest conversion of 57.36% after 12 weeks of treatment with a degradation rate of 0.0218 day-1. The results show that the soil column tests can be used to optimize operating conditions for hydrocarbon degradation and to assess the performance of the overall bioremediation process.
Collapse
Affiliation(s)
- Tayssir Kadri
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Thomas Robert
- TechnoRem Inc., 4701, rue Louis-B.-Mayer, Laval, Québec, H7P 6G5, Canada
| | - Tarek Rouissi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Joseph Sebastian
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Sara Magdouli
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada; Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada; Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada.
| | - Richard Martel
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Jean-Marc Lauzon
- TechnoRem Inc., 4701, rue Louis-B.-Mayer, Laval, Québec, H7P 6G5, Canada
| |
Collapse
|
20
|
Fu D, Rui Y, Zevenbergen C, Singh RP. Nitrogen absorption efficiency and mechanism in Arbuscular mycorrhizal fungi - Canna indica symbiosis. CHEMOSPHERE 2021; 282:130708. [PMID: 34090002 DOI: 10.1016/j.chemosphere.2021.130708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) and its symbiosis with Canna indica on nitrogen (N) absorption was investigated for the remediation of contaminated soil. Canna indica plants with rhizome and leaf integrity intact were collected in spring and autumn seasons. To maintain the ideal nutrient composition, Hoagland concentrated nutrient solution was diluted with deionized water and additional nutrient solution was added periodically. Treated root samples were observed with an optical microscope and the number of hyphae and intersections as well as inoculation status were examined. High-throughput sequencing experiment was conducted to quantify AMF inoculation. Alpha diversity study was used to characterize abundance and diversity of the symbiosis. Hydroponic experiments were conducted to explore the absorption effectiveness of AMF-Canna symbiosis under different NH4+-N and NO3--N combinations. Hyphal colonization rate was only about 5.66 ± 1.08% in seedling stage in spring, but enhanced in the adult stage in autumn (53.89 ± 1.43%). Results revealed that AMF had no significant impact on NO3--N absorption by Canna roots, however, absorption of NH4+-N was improved by 63% under low concentration. Results revealed that when NH4+-N and NO3--N were applied combinedly in a 1:1 ratio, their respective absorption rates were enhanced to 99.63% and 99.50%. Compared with the case of NH4+-N as N source alone, synergistic effect of NH4+-N and NO3--N significantly changed the absorption of NH4+-N by C. indica, but its correlation with AMF inoculation was still not significant. Current findings could enhance understanding for effective N uptake and resource recovery.
Collapse
Affiliation(s)
- Dafang Fu
- School of Civil Engineering, Southeast University (SEU), Nanjing, 210096, China; SEU-Monash University Joint Research Center for Future Cities, Nanjing, 210096, China
| | - Yuhan Rui
- School of Civil Engineering, Southeast University (SEU), Nanjing, 210096, China; SEU-Monash University Joint Research Center for Future Cities, Nanjing, 210096, China
| | | | - Rajendra Prasad Singh
- School of Civil Engineering, Southeast University (SEU), Nanjing, 210096, China; SEU-Monash University Joint Research Center for Future Cities, Nanjing, 210096, China.
| |
Collapse
|
21
|
Etteieb S, Zolfaghari M, Magdouli S, Brar KK, Brar SK. Performance of constructed wetland for selenium, nutrient and heavy metals removal from mine effluents. CHEMOSPHERE 2021; 281:130921. [PMID: 34289608 DOI: 10.1016/j.chemosphere.2021.130921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/12/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
Passive biological treatment using constructed wetlands has been employed as a cost-effective and environmentally friendly alternative for mine effluents treatment in Canada. The current work aimed to assess the performance of a laboratory-scale constructed wetland for the removal of selenium, nutrients and heavy metals. This work achieved a maximum selenium removal rate of 54.13% corresponding to the highest hydraulic residence time (almost 47 days). Typha Latifolia was efficient for selenium assimilation and removal from mine effluent. 4.4% of Se mass was accumulated in the under and aboveground biomass while 32.2% was volatilized. Levels <1.69 mg of selenate, <1.69 mg of selenite, <3.39 mg of selenomethionine and <3.39 mg of unknown selenium species were distributed in the underground biomass while levels <0.75 mg of selenate, <0.75 mg of selenite, <1.51 mg of selenomethionine and <1.51 mg of unknown selenium species were found in T. Latifolia leaves. Ammonia removal was mainly based on a nitrification process confirmed by the decrease of ammonia (>96%) and nitrite in association with the increase of nitrate concentrations in the outlet compared to the inlet. The concentrations of other nitrogen compounds mainly thiocyanate and cyanate have significantly decreased from initial average values of 163 and 22.7 mg.L-1 in the influent to 1.5 and 0.3 mg.L-1 final concentrations, respectively. Orthophosphate concentrations were also efficiently decreased from an influent average value of 21.5 ± 3.3 mg.L-1 to an effluent concentration of 9.1 ± 4.4 mg.L-1. Understanding the selenium and nutrient removal mechanisms will allow treatment performance enhancement and the development of large-scale constructed wetlands for sophisticated mine effluent treatment.
Collapse
Affiliation(s)
- Selma Etteieb
- Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, 433 boulevard du collège, Rouyn-Noranda, J9X 0E1, Canada; Centre Eau, Terre et Environnement, Institut national de la recherche scientifique, Université du Québec, 490 rue de la Couronne, Québec, G1K 9A9, Canada
| | - Mehdi Zolfaghari
- Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, 433 boulevard du collège, Rouyn-Noranda, J9X 0E1, Canada
| | - Sara Magdouli
- Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, 433 boulevard du collège, Rouyn-Noranda, J9X 0E1, Canada; Centre Eau, Terre et Environnement, Institut national de la recherche scientifique, Université du Québec, 490 rue de la Couronne, Québec, G1K 9A9, Canada; Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, M3J 1P3, Canada.
| | - Kamalpreet Kaur Brar
- Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, 433 boulevard du collège, Rouyn-Noranda, J9X 0E1, Canada; Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, M3J 1P3, Canada
| | - Satinder Kaur Brar
- Centre Eau, Terre et Environnement, Institut national de la recherche scientifique, Université du Québec, 490 rue de la Couronne, Québec, G1K 9A9, Canada; Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, M3J 1P3, Canada
| |
Collapse
|
22
|
Ali SS, Jiao H, Mustafa AM, Koutra E, El-Sapagh S, Kornaros M, Elsamahy T, Khalil M, Bulgariu L, Sun J. Construction of a novel microbial consortium valued for the effective degradation and detoxification of creosote-treated sawdust along with enhanced methane production. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126091. [PMID: 34118544 DOI: 10.1016/j.jhazmat.2021.126091] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Lignocellulosic biomass represents an unlimited and ubiquitous energy source, which can effectively address current global challenges, including climate change, greenhouse gas emissions, and increased energy demand. However, lignocellulose recalcitrance hinders microbial degradation, especially in case of contaminated materials such as creosote (CRO)-treated wood, which necessitates appropriate processing in order to eliminate pollution. This study might be the first to explore a novel bacterial consortium SST-4, for decomposing birchwood sawdust, capable of concurrently degrading lignocellulose and CRO compounds. Afterwards, SST-4 which stands for molecularly identified bacterial strains Acinetobacter calcoaceticus BSW-11, Shewanella putrefaciens BSW-18, Bacillus cereus BSW-23, and Novosphingobium taihuense BSW-25 was evaluated in terms of biological sawdust pre-treatment, resulting in effective lignocellulose degradation and 100% removal of phenol and naphthalene. Subsequently, the maximum biogas production observed was 18.7 L/kg VS, while cumulative methane production was 162.8 L/kg VS, compared to 88.5 without microbial pre-treatment. The cumulative energy production from AD-I and AD-II through biomethanation was calculated as 3177.1 and 5843.6 KJ/kg, respectively. The pretreatment process exhibited a significant increase in the energy yield by 83.9%. Lastly, effective CRO detoxification was achieved with EC50 values exceeding 90%, showing the potential for an integrated process of effective contaminated wood management and bioenergy production.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ahmed M Mustafa
- State Key Laboratory of Pollution Control and Resourses Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, Patras 26504, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, Patras 26504, Greece
| | - Shimaa El-Sapagh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, Patras 26504, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, Patras 26504, Greece
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Maha Khalil
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Laura Bulgariu
- Department of Environmental Engineering and Management, Cristofor Simionescu Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
23
|
Etteieb S, Magdouli S, Komtchou SP, Zolfaghari M, Tanabene R, Brar KK, Calugaru LL, Brar SK. Selenium speciation and bioavailability from mine discharge to the environment: a field study in Northern Quebec, Canada. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50799-50812. [PMID: 33970419 DOI: 10.1007/s11356-021-14335-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The speciation, behaviour, and bioavailability of released selenium (Se) from mine effluent discharge to sediments and plants were assessed. Discharged mine effluent containing 65±0.9 μg/L of total Se subsequently contaminated the exposed sediment with an average total Se concentration of 321 mg/kg as well as exposed Typha latifolia plants where 534 and 92 mg/kg were found in roots and leaves, respectively. The strategy of T. latifolia in Se phytoremediation consisted of a phytostabilization and accumulation of Se predominantly in roots. Se plant root uptake was promoted by synergistic effects of Cu, Pb, Zn, and Cd while Co, Fe, Mn, Ni, Na, K, and Mg had antagonistic effects. Se plant uptake was also governed by sediment characteristics mainly pH, total Se, and iron concentration. Se speciation results demonstrated that the most accumulated Se species by T. latifolia roots were selenite and selenomethionine with average concentrations of 2.68 and 2.04 mg/kg respectively while other Se species were the most translocated (average translocation factor of 1.89). Se speciation in roots was positively correlated with sediment pH, organic matter, electrical conductivity, and iron concentration. This study confirms deploying corrective measures for mine effluent treatment before discharge in a sediment-plant environment to protect living organisms from toxic effects. T. latifolia is recommended as a Se-hyperaccumulator to be used for mine soil phytoremediation in cold regions in Canada.
Collapse
Affiliation(s)
- Selma Etteieb
- Centre technologique des résidus industriels en Abitibi Témiscamingue, 433 boulevard du collège, Rouyn-Noranda, J9X 0E1, Canada
- Centre Eau, Terre et Environnement, Institut national de la recherche scientifique, Université du Québec, 490 rue de la Couronne, Québec, G1K 9A9, Canada
| | - Sara Magdouli
- Centre technologique des résidus industriels en Abitibi Témiscamingue, 433 boulevard du collège, Rouyn-Noranda, J9X 0E1, Canada.
- Centre Eau, Terre et Environnement, Institut national de la recherche scientifique, Université du Québec, 490 rue de la Couronne, Québec, G1K 9A9, Canada.
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, M3J 1P3, Canada.
| | - Simon Pierre Komtchou
- Centre technologique des résidus industriels en Abitibi Témiscamingue, 433 boulevard du collège, Rouyn-Noranda, J9X 0E1, Canada
| | - Mehdi Zolfaghari
- Centre technologique des résidus industriels en Abitibi Témiscamingue, 433 boulevard du collège, Rouyn-Noranda, J9X 0E1, Canada
| | - Rayen Tanabene
- Centre technologique des résidus industriels en Abitibi Témiscamingue, 433 boulevard du collège, Rouyn-Noranda, J9X 0E1, Canada
| | - Kamalpreet Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, M3J 1P3, Canada
| | - Luliana Laura Calugaru
- Centre technologique des résidus industriels en Abitibi Témiscamingue, 433 boulevard du collège, Rouyn-Noranda, J9X 0E1, Canada
| | - Satinder Kaur Brar
- Centre Eau, Terre et Environnement, Institut national de la recherche scientifique, Université du Québec, 490 rue de la Couronne, Québec, G1K 9A9, Canada
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, M3J 1P3, Canada
| |
Collapse
|
24
|
Besserer A, Troilo S, Girods P, Rogaume Y, Brosse N. Cascading Recycling of Wood Waste: A Review. Polymers (Basel) 2021; 13:1752. [PMID: 34071945 PMCID: PMC8198968 DOI: 10.3390/polym13111752] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Wood is an increasingly demanded renewable resource and an important raw material for construction and materials. In addition, new consumption habits are leading to the production of ever greater volumes of waste wood, which constitutes a feedstock that can be mobilized for the cascade production of new materials such as particleboard. However, current legislation and wood waste recycling processes need to be improved in order to maximize the volumes that can be reused and to upgrade the properties of the recycled wood. This review describes wood waste flows and volumes available in Europe, the current French and European legislation, and the innovations under development in this field: innovative automated sorting techniques, physical-chemical processes for cleaning residual glue from the surface of wood particles, cleaning of MDF, and bioremediation processes for cleaning hazardous wood contaminated by heavy metals or creosote.
Collapse
Affiliation(s)
- Arnaud Besserer
- LERMAB, Université de Lorraine, INRAE, GP4W, F 54 000 Nancy, France; (A.B.); (S.T.)
| | - Sarah Troilo
- LERMAB, Université de Lorraine, INRAE, GP4W, F 54 000 Nancy, France; (A.B.); (S.T.)
| | - Pierre Girods
- LERMAB, Université de Lorraine, INRAE, ERBE, F 88 000 Epinal, France; (P.G.); (Y.R.)
| | - Yann Rogaume
- LERMAB, Université de Lorraine, INRAE, ERBE, F 88 000 Epinal, France; (P.G.); (Y.R.)
| | - Nicolas Brosse
- LERMAB, Université de Lorraine, INRAE, GP4W, F 54 000 Nancy, France; (A.B.); (S.T.)
| |
Collapse
|
25
|
Videgain-Marco M, Marco-Montori P, Martí-Dalmau C, Jaizme-Vega MDC, Manyà-Cervelló JJ, García-Ramos FJ. The Effects of Biochar on Indigenous Arbuscular Mycorrhizae Fungi from Agroenvironments. PLANTS 2021; 10:plants10050950. [PMID: 34068692 PMCID: PMC8150396 DOI: 10.3390/plants10050950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022]
Abstract
The effects of biochar on soil–plant–microorganisms systems are currently being extensively investigated. Considering that arbuscular mycorrhizal fungi (AMF) play an essential role in nutrient dynamics, the present study aims at understanding vine shoot-derived biochar effects on AMF activity and the impact of their multiplication in soils on water-stress resistance of plants. Three agronomic tests were performed in greenhouse pots. The first experiment evaluated the effects of three factors: final pyrolysis temperature for biochar production (400 °C and 600 °C), application rate (0 weight-wt.- % as a control, 1.5 wt. %, and 3.0 wt. %) and texture of the growing media (sandy-loam and clay-loam origin) on AMF, microbial communities and phosphatase activity. In the second experiment, an indigenous consortium of AMF was multiplied through the solid substrate method and sorghum as a trap plant with biochar addition. This process was compared to a control treatment without biochar. Obtained inocula were tested in a third experiment with lettuce plants under different water irrigation conditions. Results from the first experiment showed a general increase in AMF activity with the addition of the biochar produced at 400 °C in the sandy-loam texture substrate. Results of the second experiment showed that the biochar addition increased AMF root colonization, the number of AMF spores and AMF infective potential. Results of the third experiment showed that biochar-derived AMF inoculum increased AMF root colonization, AMF spores, dry biomass and the SPAD index in a lettuce crop under low-water irrigation conditions.
Collapse
Affiliation(s)
- María Videgain-Marco
- Departamento de Ciencias Agrarias y del Medio Natural, EPS, Universidad de Zaragoza, Carretera de Cuarte s/n, E-22071 Huesca, Spain; (C.M.-D.); (F.J.G.-R.)
- Correspondence: ; Tel.: +34-974292656
| | - Pedro Marco-Montori
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón—IA2 (CITA-Universidad de Zaragoza), Unidad de Recursos Forestales, Avenida Montañana 930, E-50059 Zaragoza, Spain;
| | - Clara Martí-Dalmau
- Departamento de Ciencias Agrarias y del Medio Natural, EPS, Universidad de Zaragoza, Carretera de Cuarte s/n, E-22071 Huesca, Spain; (C.M.-D.); (F.J.G.-R.)
| | - María del Carmen Jaizme-Vega
- Departamento de Protección Vegetal, Instituto Canario de Investigaciones Agrarias (ICIA), Carretera de El Boquerón s/n, Valle Guerra, La Laguna, E-38270 Tenerife, Spain;
| | - Joan Josep Manyà-Cervelló
- Thermochemical Processes Group, Aragón Institute of Engineering Research (I3A), EPS, University of Zaragoza, Carretera de Cuarte s/n, E-22071 Huesca, Spain;
| | - Francisco Javier García-Ramos
- Departamento de Ciencias Agrarias y del Medio Natural, EPS, Universidad de Zaragoza, Carretera de Cuarte s/n, E-22071 Huesca, Spain; (C.M.-D.); (F.J.G.-R.)
- Instituto Agroalimentario de Aragón—IA2 (CITA-Universidad de Zaragoza), EPS, Universidad de Zaragoza, Carretera de Cuarte s/n, E-22071 Huesca, Spain
| |
Collapse
|
26
|
Barbero-López A, Akkanen J, Lappalainen R, Peräniemi S, Haapala A. Bio-based wood preservatives: Their efficiency, leaching and ecotoxicity compared to a commercial wood preservative. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142013. [PMID: 32890867 DOI: 10.1016/j.scitotenv.2020.142013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Companies in the wood industry are constantly developing their outdoor products. The possibility of using bio-based chemicals as an alternative to traditional wood preservatives-regulated in Europe by The Biocidal Products Regulation No 528/2012-has been considered, but chemical leaching from the wood decreases its effectiveness and may negatively affect the environment. This study aims to compare the effectiveness of bio-based chemicals with potential use in wood preservation to commercially available preservatives, to investigate their fixation to wood and their ecotoxicity and to quantify the potentially toxic elements leached from the wood. Pyrolysis distillates of tree bark, organic acids found in distillates, Colatan GT10 tannin extract and log soaking liquid as a hardwood veneer process residue were tested and compared with commercial pine oil and a copper-based wood preservative. In the wood decay test of impregnated pine sapwood specimens, Colatan GT10 extract performed as well as the commercial wood preservatives. The same decay trial with leached specimens significantly reduced the performance of the bio-based chemicals. The results of the ecotoxicity test with photoluminescent Aliivibrio fischeri bacteria showed that many bio-based chemicals with potential use in wood preservation have markedly lower ecotoxicity than commercially available wood preservatives, but the ecotoxicity of some bio-based chemicals is higher, as in the case of some of the pyrolysis distillates. The wood preservation efficiency and the ecotoxicity of the studied chemicals had a poor correlation, implying that other factors besides treatment agent toxicity play a role in deterring fungal growth on treated wood. The amount of elemental toxins in the leachates was low. These results emphasize the importance of the chemical ecotoxicity of bio-based preservative compounds, as their detrimental effect on the environment can be higher than that of the traditional preservatives unless effectively linked to wood to prevent leaching.
Collapse
Affiliation(s)
- Aitor Barbero-López
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, Joensuu 80101, Finland.
| | - Jarkko Akkanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, Joensuu 80101, Finland
| | - Reijo Lappalainen
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Sirpa Peräniemi
- School of Pharmacy, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Antti Haapala
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, Joensuu 80101, Finland
| |
Collapse
|
27
|
Augaitis N, Vaitkus S, Członka S, Kairytė A. Research of Wood Waste as a Potential Filler for Loose-Fill Building Insulation: Appropriate Selection and Incorporation into Polyurethane Biocomposite Foams. MATERIALS 2020; 13:ma13235336. [PMID: 33255683 PMCID: PMC7728156 DOI: 10.3390/ma13235336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022]
Abstract
Currently, the recycling potential of wood waste (WW) is still limited, and in a resource efficiency approach, recycling WW in insulation materials, such as polyurethane (PUR), appears as an appropriate solution. It is known that the quality of WW is the main aspect which influences the stability of the final products. Therefore, the current study analyses different WW-based fillers as possible modifiers for polyurethane biocomposite foams for the application as loose-fill materials in building envelopes. During the study of WW-based fillers, it was determined that the most promising filler is wood scobs (WS) with a thermal conductivity of 0.0496 W/m·K, short-term water absorption by partial immersion—12.5 kg/m2, water vapour resistance—0.34 m2·h·Pa/mg and water vapour diffusion resistance factor—2.4. In order to evaluate the WS performance as a filler in PUR biocomposite foams, different ratios of PUR binder and WS filler (PURb/WS) were selected. It was found that a 0.40 PURb/WS ratio is insufficient for the appropriate wetting of WS filler while a 0.70 PURb/WS ratio produced PUR biocomposite foams with the most suitable performance: thermal conductivity reduced from 0.0523 to 0.0476 W/m·K, water absorption—from 5.6 to 1.3 kg/m2, while the compressive strength increased from 142 to 272 kPa and the tensile strength increased from 44 to 272 kPa.
Collapse
Affiliation(s)
- Nerijus Augaitis
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, 10221 Vilnius, Lithuania; (N.A.); (A.K.)
| | - Saulius Vaitkus
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, 10221 Vilnius, Lithuania; (N.A.); (A.K.)
- Correspondence: ; Tel.: +370-5251-2344
| | - Sylwia Członka
- Institute of Polymer and Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Agnė Kairytė
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, 10221 Vilnius, Lithuania; (N.A.); (A.K.)
| |
Collapse
|