1
|
Zhao P, Zhao Y, Ma Y, Liang C, Yuan Q, Gao Y, Liu X, Zhu X, Hao X, Liang G, Fan H, Wang D. Gestational and lactational exposure to DEHP triggers ACSL4/TFR-mediated hippocampal neuronal ferroptosis via YAP activation: Implication for the neurocognitive disorders in male offspring. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138081. [PMID: 40187248 DOI: 10.1016/j.jhazmat.2025.138081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/07/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is one of the most extensively used phthalate and poses a public health concern. Perinatal exposure to DEHP has been shown to cause neurodevelopmental abnormalities and neurobehavioral disorders in offspring. However, the precise molecular mechanism has not yet been fully elucidated. In this study, pregnant C57BL/6 mice were exposed to DEHP from gestation to weaning. By RNA sequencing and animal experiments, ferroptosis has been identified as the key pathologic process contributing to DEHP-induced hippocampal injury in adult male offspring. In vitro results also showed that Ferrostatin-1 (Fer-1) effectively ameliorated Mono-(2-ethylhexyl) phthalate (MEHP) -induced cell survival via the inhibiting ferroptosis in HT22 cells. Consistently, we found that the expression of ACSL4 and TFR was significantly up-regulated in offspring hippocampi and MEHP-exposed HT22 neurons. However, silencing ACSL4 or knockdown TFR relieved MEHP-induced generation of lipid ROS and cellular iron accumulation, thereby blocking ferroptosis. Mechanistically, ACSL4/TFR-mediated ferroptosis seemed to be a Yes-associated protein (YAP) dependent via TEA domain transcription factor 4 in HT22 neurons. Importantly, treatment with Fer-1, rosiglitazone, and Deferoxamine effectively rescued DEHP-evoked cognitive decline in adult male offspring. Our findings certified that gestational and lactational exposure to DEHP provoked ACSL4/TFR-mediated hippocampal neuronal ferroptosis via YAP activation.
Collapse
Affiliation(s)
- Pu Zhao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yuhang Zhao
- Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yilu Ma
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Chen Liang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Quan Yuan
- Henan Province Rongkang Hospital, Luoyang, China
| | - Yufei Gao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiaoli Liu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiaoying Zhu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xueqin Hao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Gaofeng Liang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Hua Fan
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China.
| | - Dongmei Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
2
|
Li Z, Gong Y, Okeke ES, Li D, Chen Y, Feng W, Zhao T, Yang L, Mao G, Wu X. Novel insights into DBP-induced zebrafish liver inflammatory damage: Ferroptosis activating the HMGB1-TLR4-NF-κB signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126395. [PMID: 40345373 DOI: 10.1016/j.envpol.2025.126395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Typical plasticizer dibutyl phthalate (DBP) has been demonstrated to induce hepatotoxicity in zebrafish, but the underlying molecular mechanisms remain incompletely elucidated. Numerous studies have shown that ferroptosis is involved in the pathophysiological progression of hepatic disease. However, it remains unclear whether ferroptosis is involved in the DBP-induced hepatotoxicity in zebrafish. Initially, histopathological analyses have preliminarily confirmed that DBP can activate inflammatory responses in the zebrafish liver. Further investigation revealed that DBP induces ferroptosis in the zebrafish liver, characterized by iron overload, lipid peroxidation, and aberrant activation of ferroptosis pathways. Furthermore, DBP exposure induced ferroptosis, disrupting cell membranes and subsequent release of HMGB1, which are sensed by immunocytes TLR4/NF-κB signaling pathways, thereby activating the innate immune response in a context-dependent manner. Moreover, the ferroptosis inhibitor Fer-1 effectively rescues the activation of HMGB1-TLR4/NF-κB-mediated immune processes. Overall, this work enriches the molecular mechanism of DBP-induced zebrafish liver inflammatory damage and provides a reliable biomarker for future environmental risk assessment of DBP.
Collapse
Affiliation(s)
- Zixu Li
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Yacan Gong
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Emmanuel Sunday Okeke
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China; Department of Biochemistry, Faculty of Biological Science & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Dan Li
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Yao Chen
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China; School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Weiwei Feng
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China; School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
| | - Xiangyang Wu
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
| |
Collapse
|
3
|
Lan X, Pang X, Tan K, Hu M, Zhu X, Li D, Wang Y. Reproductive Effects of Phthalates and Microplastics on Marine Mussels Based on Adverse Outcome Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7835-7844. [PMID: 40099851 DOI: 10.1021/acs.est.4c12212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Microplastic pollution has emerged as a global environmental concern. As filter-feeding organisms, marine mussels are particularly vulnerable to microplastics. Moreover, phthalic acid esters (PAEs) are known to leach from microplastics under various environmental conditions. Among PAEs, bis(2-ethylhexyl) phthalate (DEHP) is a common endocrine disruptor. We investigated the effects of microplastics and plasticizers on the reproductive function of the female mussel Mytilus coruscus. The results revealed that environmental exposure to DEHP and high-density polyethylene (HDPE) triggered molecular changes by allowing DEHP to act as an antiestrogen by binding with estrogen receptors (ER), thereby constituting the molecular initiating event. Key events were the suppression of ER, cytochrome P450-3 (CYP3), and 17β-hydroxysteroid dehydrogenase (17β-HSD) gene expressions, which reduced estradiol and progesterone levels in ovarian tissues. Ultimately adverse outcomes occurred: antioxidant capacity in ovarian tissue was impaired, hindering ovarian development and reducing reproductive function. This study introduces a novel adverse outcome pathway (AOP) framework focusing on reproductive impairment in shellfish. By integrating experimental findings with the AOP concept, the research provides essential data for understanding the toxicological effects of microplastic pollutants on mussels. This framework offers valuable insights for risk assessment, contributing to a better understanding of how microplastics and plasticizers threaten marine life.
Collapse
Affiliation(s)
- Xukai Lan
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaopeng Pang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, Guangxi, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoshan Zhu
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
4
|
Zhang L, Sun S, Su W, Tan M. Preventive effect of sea bass protein-based high internal phase Pickering emulsion loaded with astaxanthin on DEHP-induced liver lipid metabolism disorder. Int J Biol Macromol 2025; 292:139190. [PMID: 39732256 DOI: 10.1016/j.ijbiomac.2024.139190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The present study was to investigate the effect of the astaxanthin high internal phase Pickering emulsion (H-AXT) on DEHP-induced liver lipid metabolism disorder and to demonstrate its possible protective mechanism. We have developed an antioxidant activity emulsion system to deliver astaxanthin into the liver to maximize its ability to protect the liver. In vitro, H-AXT intervention inhibited oxidative stress restored the level of mitochondrial membrane potential to 90 % of that of normal LO2 cells, and alleviated the imbalance of energy metabolism by protecting mitochondrial structure and function. Based on metabonomics, it was proved that H-AXT inhibited triglyceride accumulation by antagonizing lipid metabolism disorder. In DEHP-induced mice, H-AXT intervention mitigated liver damage by inhibiting oxidative stress and inflammatory reaction, and alleviated metabolic dysfunction by regulating lipid levels and inhibiting fat accumulation. Meanwhile, H-AXT alleviated DEHP-induced testicular tissue damage and maintained the integrity of testicular tissue. The encapsulation of the emulsion system effectively promoted the liver uptake of astaxanthin to prevent liver diseases associated with metabolic disorders.
Collapse
Affiliation(s)
- Lijuan Zhang
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
5
|
Mi Y, Shi J, Ma X, Wei D, Liu R, Samra, Yuan C, Qi Y, Huang D. The mechanism of DEHP-induced lipid accumulation in liver of female zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125455. [PMID: 39638227 DOI: 10.1016/j.envpol.2024.125455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Diethylhexyl phthalate (DEHP) is a typical environmental pollutant and poses a potential threat to organisms by disrupting the lipid metabolism. This study found that DEHP at environmental concentrations, led to lipid accumulation in female zebrafish, as indicated by significant increases in the content of total cholesterol, triglycerides and the lipid droplets, in a concentration-dependent manner. However, how DEHP induces the lipid accumulation remains poorly understood. Our results demonstrated that DEHP up-regulated the expression of fat synthesis related-genes fas, acc, acs, elvol6, scd and dgat1, and increased the enzymatic activity of fatty acid synthase and acetyl-CoA carboxylase. Furthermore, the expression of several key transcription factors that regulate fat synthesis was detected, among which active sterol regulatory element-binding protein-1 (SREBP-1) was significantly increased. When active SREBP-1 was inhibited with specific inhibitor or knocked down by transient transfection, the expression of lipid synthesis-related genes was significantly decreased in DEHP group, indicating that DEHP disrupted the lipid synthesis via SREBP-1 pathway. Additionally, molecular docking revealed direct interaction sites between DEHP and SREBP-1. Our findings revealed that DEHP could directly activate SREBP-1-mediated lipid synthesis, providing theoretical basis for DEHP threatening biological health.
Collapse
Affiliation(s)
- Yueyue Mi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Jiamin Shi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Xuan Ma
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Dongqiong Wei
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Rongjian Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Samra
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Cong Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China.
| |
Collapse
|
6
|
Kim JH, Park K, Kim WS, Kwak IS. Expressions of Immune Prophenoloxidase (proPO) System-Related Genes Under Oxidative Stress in the Gonads and Stomach of the Mud Crab ( Macrophthalmus japonicus) Exposed to Endocrine-Disrupting Chemicals. Antioxidants (Basel) 2024; 13:1433. [PMID: 39765762 PMCID: PMC11672836 DOI: 10.3390/antiox13121433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Endocrine-disrupting chemicals (EDCs) significantly damage biological systems related to reproductive, neurological, and metabolic functions. Approximately 1000 chemicals are known to possess endocrine-acting properties, including bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP). This study primarily focuses on the potential effects of EDCs on the transcriptional levels of innate immune prophenoloxidase (proPO) system-related genes under oxidative stress in the gonads and stomach of the mud crab Macrophthalmus japonicus, an indicator species for assessing coastal benthic environments, when exposed to 1 µg L-1, 10 µg L-1, and 30 µg L-1 BPA or DEHP. After EDC exposure, the expression of lipopolysaccharide and β-1,3-glucan-binding protein (LGBP), a pattern recognition protein that activates the proPO system, was upregulated in the stomach of M. japonicus, whereas LGBP gene expression was downregulated in the gonads. In the gonads, which is a reproductive organ, EDC exposure mainly induced the transcriptional upregulation of trypsin-like serine protease (Tryp) at relatively low concentrations. In the stomach, which is a digestive organ, LGBP expression was upregulated at relatively low concentrations of EDCs over 7 days, whereas all proPO system-related genes (LGBP, Tryp, serine protease inhibitor (Serpin), and peroxinectin (PE)) responded to all concentrations of EDCs. These results suggest that the antioxidant and immune defense responses of the proPO system to EDC toxicity may vary, causing different degrees of damage depending on the tissue type in the mud crab.
Collapse
Affiliation(s)
- Ji-Hoon Kim
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Republic of Korea;
| | - Kiyun Park
- Fisheries Science Institue, Chonnam National University, Yeosu 59626, Republic of Korea; (K.P.); (W.-S.K.)
| | - Won-Seok Kim
- Fisheries Science Institue, Chonnam National University, Yeosu 59626, Republic of Korea; (K.P.); (W.-S.K.)
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Republic of Korea;
- Fisheries Science Institue, Chonnam National University, Yeosu 59626, Republic of Korea; (K.P.); (W.-S.K.)
| |
Collapse
|
7
|
Li S, Gu X, Zhang M, Jiang Q, Xu T. Di (2-ethylhexyl) phthalate and polystyrene microplastics co-exposure caused oxidative stress to activate NF-κB/NLRP3 pathway aggravated pyroptosis and inflammation in mouse kidney. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171817. [PMID: 38513858 DOI: 10.1016/j.scitotenv.2024.171817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Polystyrene microplastic (PS-MPs) contamination has become a worldwide hotspot of concern, and its entry into organisms can cause oxidative stress resulting in multi-organ damage. The plasticizer di (2-ethylhexyl) phthalate (DEHP) is a common endocrine disruptor, these two environmental toxins often occur together, but their combined toxicity to the kidney and its mechanism of toxicity are unknown. Therefore, in this study, we established PS-MPS and/or DEHP-exposed mouse models. The results showed that alone exposure to both PS-MPs and DEHP caused inflammatory cell infiltration, cell membrane rupture, and content spillage in kidney tissues. There were also down-regulation of antioxidant enzyme levels, increased ROS content, activated of the NF-κB pathway, stimulated the levels of heat shock proteins (HSPs), pyroptosis, and inflammatory associated factors. Notably, the co-exposure group showed greater toxicity to kidney tissues, the cellular assay further validated these results. The introduction of the antioxidant n-acetylcysteine (NAC) and the NLRP3 inhibitor (MCC950) could mitigate the changes in the above measures. In summary, co-exposure of PS-MPs and DEHP induced oxidative stress that activated the NF-κB/NLRP3 pathway and aggravated kidney pyroptosis and inflammation, as well as that HSPs are also involved in this pathologic injury process. This study not only enriched the nephrotoxicity of plasticizers and microplastics, but also provided new insights into the toxicity mechanisms of multicomponent co-pollution in environmental.
Collapse
Affiliation(s)
- Shanshan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xuedie Gu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Muyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qihang Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China..
| |
Collapse
|
8
|
Hou T, Fan X, Zhang Q, Zhang H, Zhang D, Tao L, Wang Z. Dibutyl phthalate exposure induced mitochondria-dependent ferroptosis by enhancing VDAC2 in zebrafish ZF4 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123846. [PMID: 38548160 DOI: 10.1016/j.envpol.2024.123846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Dibutyl phthalate (DBP) contamination has raised global concern for decades, while its health risk with toxic mechanisms requires further elaboration. This study used zebrafish ZF4 cells to investigate the toxicity of ferroptosis with underlying mechanisms in response to DBP exposure. Results showed that DBP induced ferroptosis, characterized by accumulation of ferrous iron, lipid peroxidation, and decrease of glutathione peroxidase 4 levels in a time-dependent manner, subsequently reduced cell viability. Transcriptome analysis revealed that voltage-dependent anion-selective channel (VDAC) in mitochondrial outer membrane was upregulated in ferroptosis signaling pathways. Protecting mitochondria with a VDAC2 inhibitor or siRNAs attenuated the accumulation of mitochondrial superoxide and lipid peroxides, the opening of mitochondrial permeability transition pore (mPTP), and the overload of iron levels, suggesting VDAC2 oligomerization mediated the influx of iron into mitochondria that is predominant and responsible for mitochondria-dependent ferroptosis under DBP exposure. Furthermore, the pivotal role of activating transcription factor 4 (ATF4) was identified in the transcriptional regulation of vdac2 by ChIP assay. And the intervention of atf4b inhibited DBP-induced VDAC2 upregulation and oligomerization. Taken together, this study reveals that ATF4-VDAC2 signaling pathway is involved in the DBP-induced ferroptosis in zebrafish ZF4 cells, contributing to the in-depth understanding of biotoxicity and the ecological risk assessment of phthalates.
Collapse
Affiliation(s)
- Tingting Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qianqing Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haowei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dingfu Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lu Tao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
9
|
Deakin K, Savage G, Jones JS, Porter A, Muñoz-Pérez JP, Santillo D, Lewis C. Sea surface microplastics in the Galapagos: Grab samples reveal high concentrations of particles <200 μm in size. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171428. [PMID: 38438045 DOI: 10.1016/j.scitotenv.2024.171428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Plastic pollution in the oceans is increasing, yet most global sea surface data is collected using plankton nets which limits our knowledge of the smaller and more bioaccessible size fraction of microplastics (<5 mm). We sampled the biodiverse coastal waters of the Galapagos Island of San Cristobal, comparing two different microplastic sampling methodologies; 1 l whole seawater grab samples filtered to 1.2 μm and sea surface plankton tows with a net mesh size of 200 μm. Our data reveal high concentrations of microplastics in Galapagos coastal waters surrounding the urban area, averaging 11.5 ± 1.48 particles l-1, with a four-order of magnitude increase in microplastic abundance observed using grab sampling compared with 200 μm plankton nets. This increase was greater when including anthropogenic cellulose particles, averaging 19.8 ± 1.86 particles l-1. Microplastic and anthropogenic cellulose particles smaller than 200 μm comprised 44 % of the particles from grab samples, suggesting previous estimates of microplastic pollution based on plankton nets likely miss and therefore underestimate these smaller particles. The particle characteristics and distribution of these smaller particles points strongly to a local input of cellulosic fibres in addition to the microplastic particles transported longer distances via the Humbolt current found across the surface seawater of the Galapagos. Improving our understanding of particle characteristics and distributions to highlight likely local sources will facilitate the development of local mitigation and management plans to reduce the input and impacts of microplastics to marine species, not just in the Galapagos but globally.
Collapse
Affiliation(s)
- Katie Deakin
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Georgie Savage
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Jen S Jones
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK; Galapagos Conservation Trust, 7-14 Great Dover Street, London SE1 4YR, UK
| | - Adam Porter
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Juan Pablo Muñoz-Pérez
- Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito USFQ, Quito, Ecuador; School of Science, Technology and Engineering, University of the Sunshine Coast UniSC, Hervey Bay, QLD, Australia
| | - David Santillo
- Greenpeace Research Laboratories, School of Biosciences, Innovation Centre Phase 2, University of Exeter, Exeter EX4 4RN, UK
| | - Ceri Lewis
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
10
|
Liu Y, You S, Ding L, Yuan F, Sun Y. Hepatotoxic effects of chronic exposure to environmentally relevant concentrations of Di-(2-ethylhexyl) phthalate (DEHP) on crucian carp: Insights from multi-omics analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171447. [PMID: 38447714 DOI: 10.1016/j.scitotenv.2024.171447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is an extensively used phthalate esters (PAEs) that raise growing ecotoxicological concerns due to detrimental effects on living organisms and ecosystems. This study performed hepatotoxic investigations on crucian carp under chronic low-dosage (CLD) exposure to DEHP at environmentally relevant concentrations (20-500 μg/L). The results demonstrated that the CLD exposure induced irreversible damage to the liver tissue. Multi-omics (transcriptomics and metabolomics) analyses revealed the predominant toxicological mechanisms underlying DEHP-induced hepatotoxicity by inhibiting energy production pathways and the up-regulation of the purine metabolism. Disruption of metabolic pathways led to excessive reactive oxygen species (ROS) production and subsequent oxidative stress. The adverse metabolic effects were exacerbated by an interplay between oxidative stress and endoplasmic reticulum stress. This study not only provides new mechanistic insights into the ecotoxicological effects of DEHP under chronic low-dosage exposure, but also suggests a potential strategy for further ecological risk assessment of PAEs.
Collapse
Affiliation(s)
- Yingjie Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Ding
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Fangying Yuan
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Yanchun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China.
| |
Collapse
|
11
|
Cao Y, Zhao W, Zhong Y, Jiang X, Mei H, Chang Y, Wu D, Dou J, Vasquez E, Shi X, Yang J, Jia Z, Tan X, Li Q, Dong Y, Xie R, Gao J, Wu Y, Liu Y. Effects of chronic low-level lead (Pb) exposure on cognitive function and hippocampal neuronal ferroptosis: An integrative approach using bioinformatics analysis, machine learning, and experimental validation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170317. [PMID: 38301787 DOI: 10.1016/j.scitotenv.2024.170317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Lead (Pb), a pervasive and ancient toxic heavy metal, continues to pose significant neurological health risks, particularly in regions such as Southeast Asia. While previous research has primarily focused on the adverse effects of acute, high-level lead exposure on neurological systems, studies on the impacts of chronic, low-level exposure are less extensive, especially regarding the precise mechanisms linking ferroptosis - a novel type of neuron cell death - with cognitive impairment. This study aims to explore the potential effects of chronic low-level lead exposure on cognitive function and hippocampal neuronal ferroptosis. This research represents the first comprehensive investigation into the impact of chronic low-level lead exposure on hippocampal neuronal ferroptosis, spanning clinical settings, bioinformatic analyses, and experimental validation. Our findings reveal significant alterations in the expression of genes associated with iron metabolism and Nrf2-dependent ferroptosis following lead exposure, as evidenced by comparing gene expression in the peripheral blood of lead-acid battery workers and workers without lead exposure. Furthermore, our in vitro and in vivo experimental results strongly suggest that lead exposure may precipitate cognitive dysfunction and induce hippocampal neuronal ferroptosis. In conclusion, our study indicates that chronic low-level lead exposure may activate microglia, leading to the promotion of ferroptosis in hippocampal neurons.
Collapse
Affiliation(s)
- Yingsi Cao
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wenjing Zhao
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yanqi Zhong
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaofan Jiang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Huiya Mei
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuanjin Chang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dongqin Wu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - JianRui Dou
- Center for Disease Control and Prevention of Yangzhou, Yangzhou, China
| | - Emely Vasquez
- School of Medicine, The City University of New York School of Medicine, New York, USA
| | - Xian Shi
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jiatao Yang
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhongtang Jia
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaochao Tan
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Qian Li
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuying Dong
- Center for Disease Control and Prevention of Yangzhou, Yangzhou, China
| | - Ruijin Xie
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ju Gao
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
| | - Yu Wu
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, China.
| | - Yueying Liu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
12
|
Gaur K, Varshney H, Subhan I, Fatima J, Jyoti S, Siddique YH. Evaluation of Bis(2-ethylhexyl) phthalate toxicity on the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg 9. Food Chem Toxicol 2024; 184:114425. [PMID: 38160779 DOI: 10.1016/j.fct.2023.114425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Bis(2-ethylhexyl) phthalate, generally known as DEHP is a synthetic compound mainly used as a plasticizer to make polyvinyl chloride products flexible and soft. The present work aimed to study the toxicity of Bis(2-ethylhexyl) phthalate on the third instar larvae of transgenic Drosophila melanogaster(hsp70-lacZ) Bg9. The hsp70 gene is associated with the β-galactosidase in our present transgenic strain therefore, the more activity of β-galactosidase will indirectly correspond to hsp70 expression. The third instar larvae were allowed to feed on the diet for 24 h having 0.001, 0.005, 0.01, and 0.02 M of Bis(2-ethylhexyl) phthalate at the final concentration. After the exposure of 24hrs, the larvae were subjected to ONPG assay, X-gal staining, trypan blue exclusion test, oxidative stress markers assays, and comet assay. A dose-dependent increase in hsp70 expression, tissue damage, Glutathione-S-transferase (GST) activity, lipid peroxidation, monoamine oxidase, caspase-9 & 3, protein carbonyl content (PCC), DNA damage and decrease in the glutathione (GSH) content, delta-aminolevulinic acid dehydrogenase (ẟ-ALD-D) and acetylcholinesterase activity were observed in the larvae exposed to 0.005, 0.01, 0.02 M of Bis-(2-ethylhexyl) phthalate. The dose of 0.001 M of Bis(2-ethylhexyl) phthalate did not showed any toxic effects and hence can be considered as No Observed Adverse Effect Level (NOAEL) for Bis(2-ethylhexyl) phthalate. The study supports the use of Drosophila for the evaluation of possible toxic effects associated with synthetic compounds.
Collapse
Affiliation(s)
- Kajal Gaur
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Himanshi Varshney
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Iqra Subhan
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Javeria Fatima
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Smita Jyoti
- Department of Zoology, School of Sciences, IFTM University, Moradabad, UP, India
| | - Yasir Hasan Siddique
- Department of Zoology, School of Sciences, IFTM University, Moradabad, UP, India.
| |
Collapse
|
13
|
Shi H, Zhao XH, Peng Q, Zhou XL, Liu SS, Sun CC, Cao QY, Zhu SP, Sun SY. Green tea polyphenols alleviate di-(2-ethylhexyl) phthalate-induced liver injury in mice. World J Gastroenterol 2023; 29:5054-5074. [PMID: 37753369 PMCID: PMC10518738 DOI: 10.3748/wjg.v29.i34.5054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Di (2-ethylhexyl) phthalate (DEHP) is a common plasticizer known to cause liver injury. Green tea is reported to exert therapeutic effects on heavy metal exposure-induced organ damage. However, limited studies have examined the therapeutic effects of green tea polyphenols (GTPs) on DEHP-induced liver damage. AIM To evaluate the molecular mechanism underlying the therapeutic effects of GTPs on DEHP-induced liver damage. METHODS C57BL/6J mice were divided into the following five groups: Control, model [DEHP (1500 mg/kg bodyweight)], treatment [DEHP (1500 mg/kg bodyweight) + GTP (70 mg/kg bodyweight), oil, and GTP (70 mg/kg bodyweight)] groups. After 8 wk, the liver function, blood lipid profile, and liver histopathology were examined. Differentially expressed micro RNAs (miRNAs) and mRNAs in the liver tissues were examined using high-throughput sequencing. Additionally, functional enrichment analysis and immune infiltration prediction were performed. The miRNA-mRNA regulatory axis was elucidated using the starBase database. Protein expression was evaluated using immunohistochemistry. RESULTS GTPs alleviated DHEP-induced liver dysfunction, blood lipid dysregulation, fatty liver disease, liver fibrosis, and mitochondrial and endoplasmic reticulum lesions in mice. The infiltration of macrophages, mast cells, and natural killer cells varied between the model and treatment groups. mmu-miR-141-3p (a differentially expressed miRNA), Zcchc24 (a differentially expressed mRNA), and Zcchc24 (a differentially expressed protein) constituted the miRNA-mRNA-protein regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage in mice. CONCLUSION This study demonstrated that GTPs mitigate DEHP-induced liver dysfunction, blood lipid dysregulation, fatty liver disease, and partial liver fibrosis, and regulate immune cell infiltration. Additionally, an important miRNA-mRNA-protein molecular regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage was elucidated.
Collapse
Affiliation(s)
- Heng Shi
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
- Department of Gastroenterology, The Central Hospital of Shaoyang, Shaoyang 422000, Hunan Province, China
| | - Xin-Hai Zhao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| | - Qin Peng
- Department of Gastroenterology, The Central Hospital of Shaoyang, Shaoyang 422000, Hunan Province, China
| | - Xian-Ling Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| | - Si-Si Liu
- Department of Pathology, The Central Hospital of Shaoyang, Shaoyang 422000, Hunan Province, China
| | - Chuan-Chuan Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| | - Qiu-Yu Cao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| | - Shi-Ping Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| | - Sheng-Yun Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| |
Collapse
|
14
|
Desai A, Pathan F, Yadav R, Yogi D, Nanajkar MR. Phthalate induced hormetic effect reveals susceptibility of gill compared to muscle tissue after depuration in commercially important fish (Etroplus suratensis). MARINE POLLUTION BULLETIN 2023; 194:115238. [PMID: 37437518 DOI: 10.1016/j.marpolbul.2023.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Effect of Bis-2ethylhexyl phthalate (DEHP) on commercially important tropical fish pearl spot has not been demonstrated at environmental concentrations along with depuration. The species is estuarine, juvenile and difficult to maintain but widely consumed and well distributed in tropical estuaries. Antioxidant activity of SOD, CAT and GPx was enhanced on all exposure days for gill and muscle suggesting high oxidative stress, except on day 5. Detoxifying enzyme-GST behaved differentially in gill and muscle tissue after depuration, depicting inhibited activity of GST in gill leading to lipid peroxidation. However, the muscle tissue was able to recover from stress after 7 days of depuration with the help of detoxifying enzymes. Overcompensation of antioxidant activity was observed over disruption of homeostasis defining hormesis effect. Integrated biomarker (IBR) index depicted high toxicity during entire exposure time, but after depuration, gill could not mediate LPO at lowest concentration (10 μg/l) while muscle tissue recovered, suggesting persistence of stress in gill.
Collapse
Affiliation(s)
- Aniket Desai
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - F Pathan
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - R Yadav
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - D Yogi
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - M R Nanajkar
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
15
|
Yang Y, Li A, Qiu J, Yan W, Han L, Li D, Yin C. Effects of lipophilic phycotoxin okadaic acid on the early development and transcriptional expression of marine medaka Oryzias melastigma. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106576. [PMID: 37196507 DOI: 10.1016/j.aquatox.2023.106576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
The lipophilic okadaic acid (OA)-group toxins produced by some species of Dinophysis spp. and Prorocentrum spp. marine dinoflagellates have been frequently and widely detected in natural seawater environments, e.g. 2.1∼1780 ng/L in Spanish sea and 5.63∼27.29 ng/L in the Yellow Sea of China. The toxicological effects of these toxins dissolved in seawater on marine fish is still unclear. Effects of OA on the embryonic development and 1-month old larvae of marine medaka (Oryzias melastigma) were explored and discussed in this study. Significantly increased mortality and decreased hatching rates occurred for the medaka embryos exposed to OA at 1.0 μg/mL. Diverse malformations including spinal curvature, dysplasia and tail curvature were also observed in the embryos exposed to OA and the heart rates significantly increased at 11 d post fertilization. The 96 h LC50 of OA for 1-month old larvae was calculated at 3.80 μg/mL. The reactive oxygen species (ROS) was significantly accumulated in medaka larvae. Catalase (CAT) enzyme activity was significantly increased in 1-month old larvae. Acetylcholinesterase (AChE) activity significantly increased with a dose-dependent pattern in 1-month old larvae. Differentially expressed genes (DEGs) were enriched in 11 KEGG pathways with Q value < 0.05 in 1-month old medaka larvae exposed to OA at 0.38 μg/mL for 96 h, which were mainly related to cell division and proliferation, and nervous system. Most of DEGs involved in DNA replication, cell cycle, nucleotide excision repair, oocyte meiosis, and mismatch repair pathways were significantly up-regulated, while most of DEGs involved in synaptic vesicle cycle, glutamatergic synapse, and long-term potentiation pathways were markedly down-regulated. This transcriptome analysis demonstrated that a risk of cancer developing was possibly caused by OA due to DNA damage in marine medaka larvae. In addition, the neurotoxicity of OA was also testified for marine fish, which potentially cause major depressive disorder (MDD) via the up-regulated expression of NOS1 gene. The genotoxicity and neurotoxicity of OA to marine fish should be paid attention to and explored further in the future.
Collapse
Affiliation(s)
- Yongmeng Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Wenhui Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Lilin Han
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Dongyue Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chao Yin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
16
|
Hong Y, Ning X, Liang YY, Li XL, Cui Y, Wu W, Cai Y, Zhao S, Zhu M, Zhong TX, Wang H, Xu DX, Xu T, Zhao LL. Colonic mechanism of serum NAD + depletion induced by DEHP during pregnancy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162188. [PMID: 36781136 DOI: 10.1016/j.scitotenv.2023.162188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride products such as feed piping, packing bag, and medical consumable. Our previous studies have demonstrated that DEHP exposure reduced the concentration of nicotinamide adenine dinucleotide (NAD+) in pregnant mice serum, which cuts off the source of NAD+ to placenta and results fetal growth restriction. However, the mechanism of serum NAD+ depletion by DEHP remains elusive. This study investigated the intestinal mechanism of NAD+ shortage-induced by DEHP in pregnant mice. The transcriptome results implicated that the mRNA level of oxidative response genes Cyp1a1, Gsto2, Trpv1 and Trpv3 were upregulated in colon. These changes induced intestinal inflammation. Transmission Electron Microscopy results displayed that DEHP destroyed the tight junctions and cell polarity of colonic epithelial cells. These dysfunctions diminished the expression of NAD+ precursor transporters SLC12A8, SLC5A8, SLC7A5, and the NAD+ biosynthetic key enzymes NAMPT, NMNAT1-3, and TDO2 in colonic epithelial cells. Analysis of the gut microbiota showed that DEHP led to the dysbiosis of gut microbiota, reducing the relative abundance of Prevotella copri which possesses the VB3 biosynthetic pathway. Therefore, maternal DEHP exposure during pregnancy decreased the transportation of NAD+ precursors from enteric cavity to colonic epithelial cells, and inhibited the synthesis of NAD+ in colonic epithelial cells. Meanwhile, DEHP reduced the NAD+ precursors provided by gut microbiota. Eventually, serum NAD+ content was lowered. Taken together, our findings provide a new insight for understanding the intestinal mechanisms by which DEHP affects serum NAD+ levels.
Collapse
Affiliation(s)
- Yun Hong
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Xia Ning
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Yue-Yue Liang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Xiao-Lu Li
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Ya Cui
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Wei Wu
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Yang Cai
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Shuai Zhao
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Meng Zhu
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Tian-Xiao Zhong
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Hua Wang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
| | - Tao Xu
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China.
| | - Ling-Li Zhao
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
17
|
Liu H, Cui H, Huang Y, Yang Y, Jiao L, Zhou Y, Hu J, Wan Y. Enzyme-Catalyzed Hydrogen-Deuterium Exchange between Environmental Pollutants and Enzyme-Regulated Endogenous Metabolites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6844-6853. [PMID: 37080910 DOI: 10.1021/acs.est.2c08056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Environmental pollutants can disrupt the homeostasis of endogenous metabolites in organisms, leading to metabolic disorders and syndromes. However, it remains highly challenging to efficiently screen for critical biological molecules affected by environmental pollutants. Herein, we found that enzyme could catalyze hydrogen-deuterium (H-D) exchange between a deuterium-labeled environmental pollutant [D38-bis(2-ethylhexyl) phthalate (D38-DEHP)] and several groups of enzyme-regulated metabolites [cardiolipins (CLs), monolysocardiolipins (MLCLs), phospholipids (PLs), and lysophospholipids (LPLs)]. A high-throughput scanning identified the D-labeled endogenous metabolites in a simple enzyme [phospholipase A2 (PLA2)], enzyme mixtures (liver microsomes), and living organisms (zebrafish embryos) exposed to D38-DEHP. Mass fragmentation and structural analyses showed that similar positions were D-labeled in the CLs, MLCLs, PLs, and LPLs, and this labeling was not attributable to natural metabolic transformations of D38-DEHP or incorporation of its D-labeled side chains. Molecular docking and competitive binding analyses revealed that DEHP competed with D-labeled lipids for binding to the active site of PLA2, and this process mediated H-D exchange. Moreover, competitive binding of DEHP against biotransformation enzymes could interfere with catabolic or anabolic lipid metabolism and thereby affect the concentrations of endogenous metabolites. Our findings provide a tool for discovering more molecular targets that complement the known toxic endpoints of metabolic disruptors.
Collapse
Affiliation(s)
- Hang Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Yangshengtang Co., Ltd., Hangzhou 310007, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yixuan Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Yang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ling Jiao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yulan Zhou
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Chen L, Zhang H, Shi H, Li Z, Xue C. Application of multi-omics combined with bioinformatics techniques to assess salinity stress response and tolerance mechanisms of Pacific oyster (Crassostrea gigas) during depuration. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108779. [PMID: 37120087 DOI: 10.1016/j.fsi.2023.108779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Depuration is a vital stage to ensure the safety of oyster consumption, and salinity had a great impact on the environmental adaptability of oysters, but the underlying molecular mechanism was poorly understood during depuration stage. Here, Crassostrea gigas was depurated for 72 h at different salinity (26, 29, 32, 35, 38 g/L, corresponding to ±20%, ±10% salinity fluctuation away from oyster's production area) and then analyzed by using transcriptome, proteome, and metabolome combined with bioinformatics techniques. The transcriptome showed that the salinity stress led to 3185 differentially expressed genes and mainly enriched in amino acid metabolism, carbohydrate metabolism, lipid metabolism, etc. A total of 464 differentially expressed proteins were screened by the proteome, and the number of up-regulated expression proteins was less than the down-regulated, indicating that the salinity stress would affect the regulation of metabolism and immunity in oysters. 248 metabolites significantly changed in response to depuration salinity stress in oysters, including phosphate organic acids and their derivatives, lipids, etc. The results of integrated omics analysis indicated that the depuration salinity stress induced abnormal metabolism of the citrate cycle (TCA cycle), lipid metabolism, glycolysis, nucleotide metabolism, ribosome, ATP-binding cassette (ABC) transport pathway, etc. By contrast with Pro-depuration, more radical responses were observed in the S38 group. Based on the results, we suggested that the 10% salinity fluctuation was suitable for oyster depuration and the combination of multi-omics analysis could provide a new perspective for the analysis of the mechanism changes.
Collapse
Affiliation(s)
- Lipin Chen
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China
| | - Hongwei Zhang
- Food and Agricultural Products Testing Agency, Technology Center of Qingdao Customs District, Qingdao, Shandong Province, 266237, PR China
| | - Haohao Shi
- College of Food Science and Technology, Hainan University, Hainan, 570228, PR China.
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| |
Collapse
|
19
|
Ding WJ, Huang SL, Huang S, Xu WP, Wei W. Di(2-ethylhexyl) phthalate mediates oxidative stress and activates p38MAPK/NF-kB to exacerbate diabetes-induced kidney injury in vitro and in vivo models. Toxicol Res (Camb) 2023; 12:332-343. [PMID: 37125328 PMCID: PMC10141783 DOI: 10.1093/toxres/tfad022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/27/2023] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
Plasticizer di(2-ethylhexyl) phthalate (DEHP) is employed to make polyethylene polymers. Some studies in epidemiology and toxicology have shown that DEHP exposure over an extended period may be hazardous to the body, including nephrotoxicity, and aggravate kidney damage in the context of underlying disease. However, studies on the toxicity of DEHP in diabetes-induced kidney injury have been rarely reported. Using a high-fat diet (HFD) and streptozotocin (STZ, 35 mg/kg)-induced kidney injury in mice exposed to various daily DEHP dosages, we explored the impacts of DEHP on diabetes-induced kidney injury. We discovered that DEHP exposure significantly promoted the renal inflammatory response and oxidative stress in mice, with increased P-p38 and P-p65 protein levels and exacerbated the loss of podocin. The same findings were observed in vitro after stimulation of podocytes with high glucose (30 mmol/L) and exposure to DEHP. Our results suggest that DEHP exacerbates diabetes-induced kidney injury by mediating oxidative stress and activating p38MAPK/NF-κB.
Collapse
Affiliation(s)
- Wen-Jie Ding
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Key Laboratory of Anti-Inflammatory and Immune Medicine of Education Ministry, Institute of Clinical Pharmacology of Anhui Medical University, Hefei 230032, Anhui, China
| | - Shou-Lin Huang
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Key Laboratory of Anti-Inflammatory and Immune Medicine of Education Ministry, Institute of Clinical Pharmacology of Anhui Medical University, Hefei 230032, Anhui, China
| | - Song Huang
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Key Laboratory of Anti-Inflammatory and Immune Medicine of Education Ministry, Institute of Clinical Pharmacology of Anhui Medical University, Hefei 230032, Anhui, China
| | - Wei-Ping Xu
- The First Affiliated Hospital of USTC, Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Wei Wei
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Key Laboratory of Anti-Inflammatory and Immune Medicine of Education Ministry, Institute of Clinical Pharmacology of Anhui Medical University, Hefei 230032, Anhui, China
| |
Collapse
|
20
|
Li ZH, Xing S, Li P, He S, Cao Z, Wang X, Cao X, Liu B, You H. Systematic toxicological analysis of the effect of salinity on the physiological stress induced by triphenyltin in Nile tilapia. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106441. [PMID: 36848695 DOI: 10.1016/j.aquatox.2023.106441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/11/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Triphenyltin (TPT), a synthetic chemical, is prevalent in complex salinity areas, including estuaries and coastal regions. However, current studies on the toxicological effects of TPT relevant to the environment at different salinities are limited. In the study, biochemical, histological, and transcriptional analyses of TPT and salinity alone, or in combination, was performed on the Nile tilapia (Oreochromis niloticus) liver. Nile tilapia exhibited weakened antioxidant defenses and liver damage. Transcriptomic analysis revealed that TPT exposure primarily affected lipid metabolism and immunity; salinity exposure alone particularly affected carbohydrate metabolism; combined exposure primarily immune- and metabolic-related signaling pathways. In addition, the single exposure to TPT or salinity induced inflammatory responses by up-regulating the expression of pro-inflammatory cytokines, whereas combined exposure suppressed inflammation by down-regulating pro-inflammatory cytokine levels. These findings are beneficial to understand the negative effects of TPT exposure in Nile tilapia in the broad salinity zones and its potential defense mechanisms.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Hong You
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
21
|
Guo Z, Sun J, Lv X, Zhang T, Yao H, Wu W, Xing Z, Kong N, Wang L, Song L. The ferroptosis in haemocytes of Pacific oyster Crassostrea gigas upon erastin treatment. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108556. [PMID: 36669600 DOI: 10.1016/j.fsi.2023.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Ferroptosis is an iron and oxidative dependent form of cell death usually mediated by redox related molecules in vertebrates. In the present study, a glutathione peroxidase 4 (GPX4) and a solute carrier family 7 member 11 (SLC7A11, xCT) homologues were identified from the oyster Crassostrea gigas (designed as CgGPX4 and CgxCT), which contained a GSHPx domain and an AA_permease domain, respectively. The mRNA transcripts of CgGPX4 and CgxCT were expressed in all the examined tissues, including gill, gonad, adductor muscle, labial palp, mantle, hepatopancreas and haemocytes, with the highest expression in haemocytes. After erastin treatment, the rate of cell malformation and cell death increased significantly in haemocytes, and the mitochondrial atrophy, crest loss and fracture were observed in haemocytes. While the amount of Fe2+ and Malondialdehyde (MDA) increased significantly, the mRNA expressions of CgGPX4, CgxCT and voltage-dependent anion channel 2 (CgVDAC2) in haemocytes decreased significantly after erastin treatment. These results indicated that erastin was able to induce the ferroptosis of oyster haemocytes.
Collapse
Affiliation(s)
- Zhicheng Guo
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoqian Lv
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Tong Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Hongsheng Yao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Wei Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhen Xing
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
22
|
Chen Y, Chen X, Li X, Liu Y, Guo Y, Wang Z, Dong Z. Effects of bisphenol AF on growth, behavior, histology and gene expression in marine medaka (Oryzias melastigma). CHEMOSPHERE 2022; 308:136424. [PMID: 36116629 DOI: 10.1016/j.chemosphere.2022.136424] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol AF (BPAF) is one of the substitutes for bisphenol A (BPA), which has endocrine-disrupting, reproductive and neurological toxicity. BPAF has frequently been detected in the aquatic environment, which has been a long-term threat to the health of aquatic organisms. In this study, female marine medaka (Oryzias melastigma) were exposed to 6.7 μg/L, 73.4 μg/L, and 367.0 μg/L BPAF for 120 d. The effects of BPAF on behavior, growth, liver and ovarian histology, gene transcriptional profiles, and reproduction of marine medaka were determined. The results showed that with the increase of BPAF concentration, the swimming speed of female marine medaka showed an increasing trend and then decreasing trend. BPAF (367.0 μg/L) significantly increased body weight and condition factors in females. BPAF (73.4 μg/L and 367.0 μg/L) significantly delayed oocyte maturation. Exposure to 367.0 μg/L BPAF showed an increasing trend in the transcript levels of lipid synthesis and transport-related genes such as fatty acid synthase (fasn), sterol regulatory element binding protein (srebf), diacylglycerol acyltransferase (dgat), solute carrier family 27 member 4 (slc27a4), fatty acid-binding protein (fabp), and peroxisome proliferator-activated receptor gamma (pparγ) in the liver. In addition, 6.7 μg/L BPAF significantly down-regulated the expression levels of antioxidant-related genes [superoxide dismutase (sod), glutathione peroxidase (gpx), and catalase (cat)], and complement system-related genes [complement component 5 (c5), complement component 7a (c7a), mannan-binding lectin serine peptidase 1 (masp1), and tumor necrosis factor (tnf)] were significantly up-regulated in the 73.4 and 367.0 μg/L groups, which implies the effect of BPAF on the immune system in the liver. In the hypothalamic-pituitary-ovarian axis (HPG) results, the transcription levels of estrogen receptor α (erα), estrogen receptor β (erβ), androgen receptor (arα), gonadotropin-releasing hormone 2 (gnrh2), cytochrome P450 19b (cyp19b), aromatase (cyp19a), and luteinizing hormone receptor (lhr) in the brain and ovary, and vitellogenin (vtg) and choriogenin (chg) in the liver of 367.0 μg/L BPAF group showed a downward trend. In addition, exposure to 367.0 μg/L BPAF for 120 d inhibited the spawning behavior of marine medaka. Our results showed that long-term BPAF treatment influenced growth (body weight and condition factors), lipid metabolism, and ovarian maturation, and significantly altered the immune response and the transcriptional expression levels of HPG axis-related genes.
Collapse
Affiliation(s)
- Yuebi Chen
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Xiaotian Chen
- Center for Industrial Analysis and Testing, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Xueyou Li
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yue Liu
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yusong Guo
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; State Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University School, Changsha, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
23
|
Zhang Y, Lyu L, Tao Y, Ju H, Chen J. Health risks of phthalates: A review of immunotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120173. [PMID: 36113640 DOI: 10.1016/j.envpol.2022.120173] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Phthalates (PAEs) are known environmental endocrine disruptors that have been widely detected in several environments, and many studies have reported the immunotoxic effects of these compounds. Here, we reviewed relevant published studies, summarized the occurrence and major metabolic pathways of six typical PAEs (DMP, DEP, DBP, BBP, DEHP, and DOP) in water, soil, and the atmosphere, degradation and metabolic pathways under aerobic and anaerobic conditions, and explored the molecular mechanisms of the toxic effects of eleven PAEs (DEHP, DPP, DPrP, DHP, DEP, DBP, MBP, MBzP, BBP, DiNP, and DMP) on the immune system of different organisms at the gene, protein, and cellular levels. A comprehensive understanding of the mechanisms by which PAEs affect immune system function through regulation of immune gene expression and enzymes, increased ROS, immune signaling pathways, specific and non-specific immunosuppression, and interference with the complement system. By summarizing the effects of these compounds on typical model organisms, this review provides insights into the mechanisms by which PAEs affect the immune system, thus supplementing human immune experiments. Finally, we discuss the future direction of PAEs immunotoxicity research, thus providing a framework for the analysis of other environmental pollutants, as well as a basis for PAEs management and safe use.
Collapse
Affiliation(s)
- Ying Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Liang Lyu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Yue Tao
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Hanxun Ju
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Jie Chen
- Rural Energy Station of Heilongjiang Province, Harbin, 150030, PR China.
| |
Collapse
|
24
|
Zhang F, Zhen H, Cheng H, Hu F, Jia Y, Huang B, Jiang M. Di-(2-ethylhexyl) phthalate exposure induces liver injury by promoting ferroptosis via downregulation of GPX4 in pregnant mice. Front Cell Dev Biol 2022; 10:1014243. [PMID: 36438553 PMCID: PMC9686828 DOI: 10.3389/fcell.2022.1014243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/25/2022] [Indexed: 10/07/2023] Open
Abstract
As one kind of endocrine disrupting chemical, di-(2-ethylhexyl) phthalate (DEHP) has been reported to cause liver dysfunction in epidemiological and experimental studies. Abnormal liver function in pregnancy is associated with adverse maternal and perinatal outcomes. Few studies have investigated the potential effect of gestational DEHP exposure on the liver in pregnant mice, and the underlying mechanisms remain unclear. In the present study, pregnant ICR mice were exposed to doses (0, 500, 1,000 mg/kg/day) of DEHP in the presence or absence of 5 mg/kg/day ferrostatin-1 (Fer-1, ferroptosis inhibitor) by oral gavage from gestation day 4 to day 18. HepG2 cells were exposed to different doses of monoethylhexyl phthalate (MEHP, a major metabolite of DEHP) in vitro. Hepatic function and pathologic changes were observed. Oxidative stress, iron metabolism, and ferroptosis-related indicators and genes were evaluated both in vivo and in vitro. The results showed that gestational DEHP exposure induced disordered liver function and hepatocyte morphology changes in pregnant mice, along with increased malondialdehyde (MDA) and Fe2+ content and decreased glutathione (GSH) levels. The expression levels of the selected ferroptosis-related genes Slc7a11, Gpx4, and Nfr2 were significantly decreased, and Ptgs2 and Lpcat3 were significantly increased. Notably, Fer-1 attenuated DEHP-induced liver injury and ferroptosis. Furthermore, MEHP exhibited a synergistic effect with RSL3 (a GPX4 inhibitor) in promoting ferroptosis in vitro. Taken together, the results demonstrated that DEHP induced liver injury and ferroptosis in pregnant mice, probably by inhibiting the GPX4 pathway through lipid peroxidation and iron accumulation.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Hualong Zhen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Hengshun Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Fengying Hu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Yunfei Jia
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Binbin Huang
- MOE Key Laboratory of Population Health Across Life Cycle, Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Minmin Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Wang L, Gan D, Gong L, Zhang Y, Wang J, Guan R, Zeng L, Qu J, Dong M, Wang L. Analysis of the performance of the efficient di-(2-ethylhexyl) phthalate-degrading bacterium Rhodococcus pyridinovorans DNHP-S2 and associated catabolic pathways. CHEMOSPHERE 2022; 306:135610. [PMID: 35810862 DOI: 10.1016/j.chemosphere.2022.135610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/17/2022] [Accepted: 07/03/2022] [Indexed: 05/12/2023]
Abstract
The widespread use of plastic has led to the global occurrence of phthalate esters (PAEs) pollution. PAEs can be effectively removed from polluted environments by microbe-mediated degradation. Di-(2-ethylhexyl) phthalate (DEHP) has the highest residual concentration in agricultural soil-contaminated areas compared to other PAEs in most of China. The Rhodococcus pyridinovorans DNHP-S2 microbial isolate identified was found to efficiently degrade DEHP. Within a 72 h period, the bacteria were able to degrade 52.47% and 99.75% of 500 mg L-1 DEHP at 10 °C and 35 °C, respectively. Dimethyl phthalate (DMP) was first identified as an intermediate metabolite of DEHP, which is different from the previously reported DEHP catabolic pathway. Genomic sequencing of DNHP-S2 identified benzoate 1,2-dioxygenase and catechol 2,3/1,2-dioxygenase as potential mediators of DEHP degradation, consistent with the existence of two downstream metabolic pathways governing DEHP degradation. Three targets DEHP metabolism-related enzymes were found to be DEHP-inducible at the mRNA level, and DNHP-S2 was able to mediate the complete degradation of DEHP at lower temperatures, as confirmed via RT-qPCR. DNHP-S2 was also found to readily break down other PAEs including DMP, di-n-butyl phthalate (DBP), di-n-octyl phthalate (DnOP), and n-butyl benzyl phthalate (BBP). Together, these results thus highlight DNHP-S2 as a bacterial strain with great promise as a tool for the remediation of PAE pollution. In addition to providing new germplasm and genetic resources for use in the context of PAE degradation, these results also offer new insight into the potential mechanisms whereby PAEs undergo catabolic degradation, making them well-suited for use in PAE-contaminated environments.
Collapse
Affiliation(s)
- Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Deping Gan
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Li Gong
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Jingyi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Rui Guan
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Lingling Zeng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Maofeng Dong
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, 2901 Beizhai Road, Minhang District, Shanghai, People's Republic of China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
26
|
Liu Y, Chen Z, Li S, Ding L, Wei X, Han S, Wang P, Sun Y. Multi-omics profiling and biochemical assays reveal the acute toxicity of environmental related concentrations of Di-(2-ethylhexyl) phthalate (DEHP) on the gill of crucian carp (Carassius auratus). CHEMOSPHERE 2022; 307:135814. [PMID: 35921887 DOI: 10.1016/j.chemosphere.2022.135814] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is one of the most extensively utilized plasticizers in the plastic manufacturing process. It is widely used in various fields due to its low cost and excellent effect. Although there is evidence that DEHP is harmful to animal and human health, DEHP-induced gill toxicity in aquatic organisms is inconclusive, and its mechanism has not been fully elucidated. Here, we investigated the effects of DEHP acute exposure on crucian carp gills at environmentally relevant concentrations of 20, 100, and 500 μg/L. Multi-omics profiling and biochemical assays were employed to characterize the potential toxicological mechanisms. The results showed that acute exposure to 100 and 500 μg/L of DEHP leads to oxidative stress in gills, as evidenced by overproduction of reactive oxygen species (ROS), increased antioxidant enzyme activity, and the transformation of glutathione from reduced to oxidized form, resulting in lipid peroxidation. Integrative analysis of transcriptomics and metabolomics indicated that increased purine metabolism was the potential source of increased ROS. Moreover, lipid metabolism disorder, including arachidonic acid metabolism, induces inflammation. Further, DEHP causes the imbalance of the CYP enzyme system in the gill, and DEHP-induced gill toxicity in crucian carp was associated with interference with CYP450 homeostasis. Taken together, this study broadens the molecular understanding of the DEHP-induced gill toxicity in aquatic organisms and provides novel perspectives for assessing the effects of DEHP on target and non-target aquatic organisms in the environment.
Collapse
Affiliation(s)
- Yingjie Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhongxiang Chen
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China
| | - Shanwei Li
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Lu Ding
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaofeng Wei
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China; College of Food Science and Engineering, Dalian Ocean University, Dalian, 116023, China
| | - Shicheng Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China
| | - Peng Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China
| | - Yanchun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
27
|
Yu D, Zhu D, Wang X, Li B, Li J, Lu P, Ji Y, Wang X. Prenatal di-(2-ethylhexyl) phthalate exposure induced myocardial cytotoxicity via the regulation of the NRG1-dependent ErbB2/ErbB4-PI3K/AKT signaling pathway in fetal mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113771. [PMID: 35716406 DOI: 10.1016/j.ecoenv.2022.113771] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Environmental sanitation of maternal contact during pregnancy is extremely important for the development of different fetal tissues and organs. In particular, during early pregnancy, any adverse exposure may cause abnormal fetal growth or inhibit the development of embryogenic organs. The potential risks of phthalate exposure, which affects the development of humans and animals, are becoming a serious concern worldwide. However, the specific molecular mechanism of di-(2-ethylhexyl) phthalate (DEHP)-induced cardiotoxicity in fetal mice remains unclear. In this study, animal models of DEHP gavage at concentrations of 250, 500, and 1000 mg/kg/day within 8.5-18.5 days of pregnancy were established. The cell proliferation, survival, and apoptosis rates were evaluated using CCK8, EdU, TUNEL and flow cytometry. The molecular mechanism was assessed via transcriptome sequencing, immunohistochemistry, immunofluorescence, reverse transcription-quantitative polymerase chain reaction, and Western blot analysis. In vivo, DEHP increased apoptosis, decreased Ki67 and CD31 expression, reduced heart weight and area, slowed down myocardial sarcomere development, and caused cardiac septal defect in fetal mice heart. Transcriptome sequencing showed that DEHP decreased NRG1 expression and downregulated the ErbB2/ErbB4-PI3K/AKT signaling pathway-related target genes. In vitro, primary cardiomyocytes were cultured with DEHP at a concentration of 150 μg/mL combined with ErbB inhibitor (AG1478, 10 μmol/L) and/or NRG1 protein (100 ng/mL) for 72 h. After DEHP intervention, the expression of NRG1 and the phosphorylation level of ErbB2, ErbB4, PI3K, and AKT decreased, and the apoptosis-related protein levels increased. Moreover, the apoptosis rate increased. After adding exogenous NRG1, the phosphorylation level of the NRG1/ERbB2/ERbB4-PI3K/AKT pathway increased, and the apoptosis-related protein levels decreased. Further, the apoptosis rate reduced. Interestingly, after exposure to DEHP and AG1478 + NRG1, the anti-apoptotic effect of NRG1 and cardiomyocyte proliferation decreased by inhibiting the NRG1/ERbB2/ERbB4-PI3K/AKT pathway. Hence, the NRG1-dependent regulation of the ERbB2/ERbB4-PI3K/AKT signaling pathway may be a key mechanism of DEHP-induced myocardial cytotoxicity.
Collapse
Affiliation(s)
- Dongmin Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Dawei Zhu
- Department of Cardiothoracic Surgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211000, China
| | - Xufeng Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Ben Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Jinghang Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Peng Lu
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Yumeng Ji
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
28
|
Liao H, Liu S, Junaid M, Gao D, Ai W, Chen G, Wang J. Di-(2-ethylhexyl) phthalate exacerbated the toxicity of polystyrene nanoplastics through histological damage and intestinal microbiota dysbiosis in freshwater Micropterus salmoides. WATER RESEARCH 2022; 219:118608. [PMID: 35605397 DOI: 10.1016/j.watres.2022.118608] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 05/20/2023]
Abstract
Organic pollutants such as di-(2-ethylhexyl) phthalate (DEHP) interact with nanoplastics (NPs) and change their bioavailability and toxicity to aquatic organisms. This study aims to assess the ecotoxicological impacts of NPs in the presence and absence of DEHP on juvenile largemouth bass (LMB) Micropterus salmoides. Therefore, LMB was fed with diets containing various concentrations (0, 2, 10, and 40 mg/g) of polystyrene nanoplastics (PSNPs) by the weight of diets. After a 21-day of PSNPs dietary exposure, LMB was treated with DEHP at 450 μg/L through waterborne exposure for three days. Our results showed that PSNPs were accumulated in the intestinal tissues, which significantly decreased the feeding and growth rates in LMB. The histopathological analysis showed the intestine and liver of LMB were subjected to various degrees of structural damage caused by PSNPs, and DEHP-PSNP co-exposure enhanced those histopathological damages in both tissues. Additionally, the co-exposure induced oxidative stress in terms of increased activities of glutathione S-transferase, catalase, and superoxide dismutase enzymes in the liver, intestine, spleen, and serum. Furthermore, the co-exposure significantly changed the intestinal microbial composition, i.e., the decrease in the abundance of probiotics (Bacteroidetes and Proteobacteria) and the increase in pathogenic bacteria (Firmicutes) posed a great threat to fish metabolism and health. Therefore, this study highlights that the presence of DEHP enhances the toxicity of NPs on LMB in freshwater and suggests the regulated use of plastic and its additives for improving the health status of aquaculture fish for food safety in humans.
Collapse
Affiliation(s)
- Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenjie Ai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guanglong Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 528478, China.
| |
Collapse
|
29
|
Ferroptosis as a mechanism of non-ferrous metal toxicity. Arch Toxicol 2022; 96:2391-2417. [PMID: 35727353 DOI: 10.1007/s00204-022-03317-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Ferroptosis is a recently discovered form of regulated cell death, implicated in multiple pathologies. Given that the toxicity elicited by some metals is linked to alterations in iron metabolism and induction of oxidative stress and lipid peroxidation, ferroptosis might be involved in such toxicity. Although direct evidence is insufficient, certain pioneering studies have demonstrated a crosstalk between metal toxicity and ferroptosis. Specifically, the mechanisms underlying metal-induced ferroptosis include induction of ferritinophagy, increased DMT-1 and TfR cellular iron uptake, mitochondrial dysfunction and mitochondrial reactive oxygen species (mitoROS) generation, inhibition of Xc-system and glutathione peroxidase 4 (GPX4) activity, altogether resulting in oxidative stress and lipid peroxidation. In addition, there is direct evidence of the role of ferroptosis in the toxicity of arsenic, cadmium, zinc, manganese, copper, and aluminum exposure. In contrast, findings on the impact of cobalt and nickel on ferroptosis are scant and nearly lacking altogether for mercury and especially lead. Other gaps in the field include limited studies on the role of metal speciation in ferroptosis and the critical cellular targets. Although further detailed studies are required, it seems reasonable to propose even at this early stage that ferroptosis may play a significant role in metal toxicity, and its modulation may be considered as a potential therapeutic tool for the amelioration of metal toxicity.
Collapse
|
30
|
Yang L, Jiang L, Sun X, Li J, Wang N, Liu X, Yao X, Zhang C, Deng H, Wang S, Yang G. DEHP induces ferroptosis in testes via p38α-lipid ROS circulation and destroys the BTB integrity. Food Chem Toxicol 2022; 164:113046. [PMID: 35447293 DOI: 10.1016/j.fct.2022.113046] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/16/2023]
Abstract
Exposure to Di (2-ethylhexyl) phthalate (DEHP) has been associated with toxic effects of the reproductive system. However, the exact mechanism remains to be elucidated. In this study we explored the testicular toxicity induced by DEHP, and the probable molecular mechanism in the process. In vivo, the results demonstrated that DEHP affected testosterone levels and blood-testosterone barrier (BTB) integrity and caused ferroptosis. We further demonstrated that DEHP up-regulated the expression of p38α, p-p38α, p53, p-p53, SAT1, ALOX15. This view has also been confirmed in TM4 cells. After pre-treatment with fer-1 or si-MAPK14, the expression of either p53, p-p53, SAT1 and ALOX15 up-regulated by MEHP was inhibited in vitro. Interestingly, p38α can prevent the accumulation of lipid ROS, and the production of lipid ROS in turn promoted the expression of p38α, thus forming a feedback loop during the ferroptosis. In this process, a vicious cycle consisting of p38α, p53, SAT1, ALOX15, lipid ROS was involved. This study provides new mechanistic insights into DEHP-induced toxicity of the reproductive system.
Collapse
Affiliation(s)
- Ling Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Liping Jiang
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, 116044, China
| | - Xiance Sun
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, 116044, China
| | - Jing Li
- Department of Pathology, Dalian Medical University, Dalian, 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Xiaofang Liu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Xiaofeng Yao
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Shaopeng Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China.
| |
Collapse
|
31
|
Depletion of mmu_circ_0001751 (circular RNA Carm1) protects against acute cerebral infarction injuries by binding with microRNA-3098-3p to regulate acyl-CoA synthetase long-chain family member 4. Bioengineered 2022; 13:4063-4075. [PMID: 35114894 PMCID: PMC8974190 DOI: 10.1080/21655979.2022.2032971] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Circular RNAs (circRNAs) play a critical role in acute cerebral infarction (ACI). Our research discussed the effect of circ-Carm1 in ACI and its potential molecular mechanisms. Healthy controls and patients with ACI were included in this study. The establishment of an oxygen and glucose deprivation/reoxygenation (OGD/R) model of HT22 cells was conducted to mimic ACI in vitro. Quantitative reverse transcription polymerase chain reaction was conducted to determine mRNA levels extracted from serum and HT22 cell samples, and Western blotting was performed to determine protein levels. Terminal deoxynucleotidyl transferase dUTP nick end labeling and cell counting kit 8 assays were conducted to evaluate cellular functions. Concentrations of Fe2+ and malondialdehyde, and levels of transferrin receptor 1, glutathione peroxidase 4, and glutathione were evaluated to determine ferroptosis in OGD/R-induced HT22 cells. The binding relationships between mRNAs and miRNAs were verified. circ-Carm1 was highly expressed in OGD/R-treated HT22 cells. Deficiency of circ-Carm1 restored cell viability and suppressed ferroptosis in OGD/R-induced HT22 cells. miR-3098-3p was predicted to be a target of circ-Carm1. The miR-3098-3p inhibitor partly neutralized the functions of circ-Carm1 in OGD/R-induced HT22 cells. Furthermore, acyl-CoA synthetase long-chain family member 4 (ACSL4) was confirmed to be a downstream target of miR-3098-3p and was elevated in OGD/R-induced HT22 cells. Overexpression of ACSL4 mitigated the functions of miR-3098-3p and accelerated HT22 cell dysfunction. Hence, circ-Carm1 is upregulated in ACI. circ-Carm1 suppression protects HT22 cells from dysfunction by inhibiting ferroptosis. Therefore, inducing circ-Carm1 deficiency may be a promising therapeutic method for ACI.
Collapse
|
32
|
Kumar V, Sehgal R, Gupta R. Blends and composites of polyhydroxyalkanoates (PHAs) and their applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Huang Y, Ren W, Liu H, Wang H, Xu Y, Han Y, Teng Y. Contrasting impacts of drying-rewetting cycles on the dissipation of di-(2-ethylhexyl) phthalate in two typical agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148433. [PMID: 34146807 DOI: 10.1016/j.scitotenv.2021.148433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) pollution has become a growing problem in farmlands of China. Drying-rewetting (DW) cycle is one of frequent environmental changes that agricultural production is confronted with, and also a convenient and practical agronomic regulation measure. In this study, in order to explore the effects of DW cycles on the dissipation of DEHP and their driving mechanisms in different types of soils, we performed a 45-day microcosm culture experiment with two typical agricultural soils, Lou soil (LS) and Red soil (RS). High-throughput sequencing was applied to study the response of soil microbial communities in the process of DEHP dissipation under DW cycles. The results showed that the DW cycles considerably inhibited the dissipation of DEHP in LS while promoted that in RS. The DW cycles obviously decreased the diversity, the relative abundance of significantly differential bacteria, and the total abundance of potential degrading bacterial groups in LS, whereas have little effect on bacterial community in RS, except at the initial cultivation stage when the corresponding parameters were promoted. The inhibition of the DW cycles on DEHP dissipation in LS was mainly derived from microbial degradation, but the interplay between microbial functions and soil attributes contributed to the promotion of DEHP dissipation in RS under the DW cycles. This comprehensive understanding of the contrasting impacts and underlying driving mechanisms may provide crucial implications for the prevention and control of DEHP pollution in regional soils.
Collapse
Affiliation(s)
- Yiwen Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; School of Environment and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Haoran Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huimin Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujuan Han
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
34
|
Chen B, Wang H, Lv C, Mao C, Cui Y. Long non-coding RNA H19 protects against intracerebral hemorrhage injuries via regulating microRNA-106b-5p/acyl-CoA synthetase long chain family member 4 axis. Bioengineered 2021; 12:4004-4015. [PMID: 34288826 PMCID: PMC8806815 DOI: 10.1080/21655979.2021.1951070] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is one of the most common refractory diseases. Long non-coding RNAs (lncRNAs) play crucial roles in ICH. This study was designed to investigate the role of lncRNA H19 in ICH and the underlying molecular mechanisms involved. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to determine mRNA expression. Cell viability was analyzed using Cell Counting Kit 8 (CCK8). PI staining Flow cytometry and TdT-mediated biotinylated nick end-labeling (TUNEL) assays were performed to determine ferroptosis in brain microvascular endothelial cells (BMVECs). Targeting relationships were predicted using Starbase and TargetScan and verified by RNA pull-down and luciferase reporter gene assays. Western blotting was performed to assess protein expression. LncRNA H19 is highly expressed in ICH model cells. Over-expression of H19 suppressed cell viability and promoted ferroptosis of BMVECs. miR-106b-5p is predicted to be a target of H19. The expression of miR-106b-5p was lower in oxygen and glucose deprivation hemin-treated (OGD/H-treated) cells. Over-expression of miR-106b-5p reversed the effects of H19 on cell viability and ferroptosis in BMVECs. Furthermore, acyl-CoA synthetase long-chain family member 4 (ACSL4) was verified to be a target gene of miR-106b-5p and was highly expressed in OGD/H-treated cells. Upregulation of ACSL4 inhibited the effects of miR-106b-5p and induced BMVEC dysfunction. In conclusion, lncRNA H19 was overexpressed in ICH. Knockdown of H19 promoted cell proliferation and suppressed BMVECs ferroptosis by regulating the miR-106b-5p/ACSL4 axis. Therefore, H19 knockdown may be a promising therapeutic strategy for ICH.
Collapse
Affiliation(s)
- Bing Chen
- Department of Neurosurgery, Qingdao Eighth People's Hospital, Qingdao, Shandong, China
| | - Haoran Wang
- Department of Neurosurgery, Qingdao Eighth People's Hospital, Qingdao, Shandong, China
| | - Chenglin Lv
- Department of Neurosurgery, Qingdao Eighth People's Hospital, Qingdao, Shandong, China
| | - Chongdan Mao
- Department of Neurosurgery, Qingdao Eighth People's Hospital, Qingdao, Shandong, China
| | - Yuguang Cui
- Department of Neurosurgery, Qingdao Eighth People's Hospital, Qingdao, Shandong, China
| |
Collapse
|