1
|
Jin M, Liu H, Deng H, Yao H. Mobility and bio-accessibility of available phosphorus in sewage sludge: Influencing mechanism of hydrothermal pretreatment and incineration. BIORESOURCE TECHNOLOGY 2025; 428:132429. [PMID: 40157579 DOI: 10.1016/j.biortech.2025.132429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Accurate assessment and enhancement of phosphorus (P) availability are critical for land application of sewage sludge and its thermal-treated products. By simulating different functioning pathways of P in soil, a novel multivariable scheme was developed to evaluate P availability from the perspective of mobility and bio-accessibility, then was applied to investigate the effects of hydrothermal pretreatment (HT), carbonaceous skeleton-assisted HT (CSkel-HT), and incineration on this topic. Sludge contained predominantly slow-release and microbial-available P (>50.0 % of total P). HT and incineration reduced available P through filtrate discharge, organic-P decomposition, and Fe/Al-P volatilization. Surprisingly, CSkel-HT addition promoted soluble Ca/MgHPO4 and thermal-stable Fe/AlPO4 formation under acidic conditions, which not only retained the slow-release and microbial-available P in hydrochar and ash, but also increased the rapid-available and plant-available P contents by 25.0 % and 300.0 %. Our scheme provided more informative insights than traditional single-index methods, and revealed the enhancing mechanism of CSkel-HT on P availability.
Collapse
Affiliation(s)
- Minghao Jin
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huan Liu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Hongping Deng
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Yao
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Jin M, Liu H, He Z, Yao H. Intensified Enrichment and Leaching Strategy of Phosphorus in Sewage Sludge via Species-Targeted Conversion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9285-9297. [PMID: 40315016 DOI: 10.1021/acs.est.4c13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Wet-chemical method for extracting phosphorus (P) from sludge incineration ash suffers from great P loss in the incineration and P-leaching stages due to the multidirectional migration of diversified P species. Existing single-process optimizations are difficult to meet the diverse and often conflicting needs of the two upstream and downstream processes to recover different P species. Herein, we developed a system-oriented strategy, HyperPhosⓅ, to synergistically address multiprocess requirements. It employs a specially designed one-pot pretreatment to create a unique reaction window for the most recoverable Fe/Al-P, achieving the targeted transformation of unstable P species into homogeneous Fe/Al-orthophosphate of 85.6% in proportion. These compounds exhibited remarkable thermal stability during incineration, with volatilization loss of only 60% of conventional technical route (Conv-Tech) even at 1000 °C. Subsequently, these parts of P were completely leached out using H2C2O4 or NaOH through redox reaction and chelating displacement, with the solvent concentration and the codissolution amounts of heavy metals less than half of the mean levels in the literature. Techno-economic analysis showed that HyperPhosⓅ obtained 1.1-2.4 times more P than Conv-Tech, while the unit cost was reduced by up to 49.5%. These findings provide new opportunities to close the P-cycle in a sustainable, economical, and environmentally friendly approach.
Collapse
Affiliation(s)
- Minghao Jin
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huan Liu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhi He
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Yao
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Zhang A, Luo X, Liu J, Yang Y, Qiao Y. Comparative evaluation of phosphorus recovery from sewage sludge thermal products via magnesium ammonium phosphate and hydroxyapatite methods. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 196:51-59. [PMID: 39978038 DOI: 10.1016/j.wasman.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Shortage of phosphorus resource has become a global concern. Due to the high phosphorus content in sewage sludge, phosphorus recovery can be realized from thermal products of sewage sludge. Phosphorus recovery performance of smoldering ash (SA), incineration ash (IA) and pyrolysis char (PC) was investigated. The precipitate rate of phosphorus in acid and alkali leaching solutions is over 94 % by magnesium ammonium phosphate (MAP) and hydroxyapatite (HAP) methods. For MAP method, the recovered P contents in the precipitations of SA, IA and PC are 23.25 ± 0.35, 31.71 ± 0.79 and 23.76 ± 0.24 mg/g, respectively. For HAP recovery, the phosphorus contents per unit mass of precipitated products are lower than that by MAP, ranging from 13.67 ± 0.10 to 22.89 ± 0.34 mg/g. The purity of the recovered products was evaluated based on the contents of major elements and heavy metals in recovered products. Most of major elements and heavy metals can coprecipitate with phosphorus in the recovery products by acid leaching-MAP method. Due to the low impurity content in the alkali leaching solution and insolubility of most heavy metals in it, the products recovered by alkali leaching-HAP shows higher purity than that by acid leaching-MAP method. The phosphorus recovery performance, reagent consumption and purity of recovered products of the two methods were compared. Acid leaching-MAP recovery is optimal for IA due to its highest P recovery and purity, with lower reagent consumption compared to alkali leaching-HAP. For SA and PC, alkali leaching-HAP recovery is preferable due to its higher P recovery purity and market price of hydroxyapatite products.
Collapse
Affiliation(s)
- Aijia Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074 China
| | - Xinyi Luo
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074 China
| | - Jing Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074 China.
| | - Yingju Yang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074 China
| | - Yu Qiao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074 China
| |
Collapse
|
4
|
Ma P, Du Z, Zhang Q, Sadowsky M, Rosen C. Effects of sewage sludge ash as a recycled phosphorus source on the soil microbiome. Curr Opin Biotechnol 2025; 92:103254. [PMID: 39808928 DOI: 10.1016/j.copbio.2024.103254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Ash byproducts have been used as soil amendments to recycle nutrients and modify soil properties such as pH or density. Interest in these practices has continued with increasing emphasis on sustainability, particularly regarding phosphorus reuse from incinerated sewage sludge. Given recent advancements in microbial analyses, the impacts of these practices can now be studied from the soil microbiome perspective. Next-generation DNA sequencing technologies provide information about the taxonomic composition of bacterial, archaeal, and fungal communities in a complex environment like soil. In this review, we discuss the results of microbial analyses of soils amended with recycled ash products, including a pilot study of sewage sludge incinerator ash as a phosphorus source. These results indicated that changes in soil microbial community composition require high amounts of amendment for detectible effects. Future research efforts could include more focused investigations into phosphorus-related microorganisms, such as phosphorus-solubilizing bacteria or polyphosphate-accumulating organisms.
Collapse
Affiliation(s)
- Persephone Ma
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, USA
| | - Zhe Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qian Zhang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Michael Sadowsky
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, USA
| | - Carl Rosen
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
5
|
Yang Z, Du C, Yuan R, Guo H. Selective leaching and recovery of phosphorus from incinerated sewage sludge ash with CaO addition. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 193:143-154. [PMID: 39662325 DOI: 10.1016/j.wasman.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Incinerated sewage sludge ash (ISSA) with high P2O5 content is a potential phosphorus resource that can replace the non-renewable phosphorus rocks. However, extracting phosphorus from ISSA using hydrometallurgical methods also dissolves a large amount of impurity metals into the leachate. Therefore, this study proposes a new method combining high-temperature reaction with CaO addition, selective leaching, and chemical precipitation for efficient and low-cost phosphorus recovery from ISSA. During thermal treatment at 1050 °C, the addition of CaO significantly influenced the types and amounts of phosphate mineral phases in ISSA. When 20 % CaO was added, the Al/Fe-phosphate phases were completely converted into acid-soluble Ca-phosphate phases, while Al and Fe were retained in acid-insoluble phases (e.g., Al- and Fe-containing oxides and silicates). Subsequently, by controlling the pH of acidic leachate (2.0 to 1.5), Ca-phosphate phases were selectively dissolved. At a pH of 1.5, better selective leaching was achieved, with a leaching efficiency of 94.71 % for P and less than 10 % for Al, Fe and Si. The XRF results showed that the majority of SiO2 (38.39 %), Al2O3 (33.26 %) remained in the post-leaching solid residue, which was expected to be further resource utilization. Without purification treatment to remove Al, Fe and Si, almost all phosphate ions were precipitated at pH = 8.5, with P recovery efficiency of 94.07 %. XRD results showed that the precipitate was mainly composed of HAP, with a P2O5 content of 37.51 % and low level of contaminants, thereby realizing the effective recovery of phosphorus from ISSA.
Collapse
Affiliation(s)
- Zhonghua Yang
- School of Metallurgy, Northeastern University, Shenyang 110819, Liaoning, PR China
| | - Chuanming Du
- School of Metallurgy, Northeastern University, Shenyang 110819, Liaoning, PR China; Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, Liaoning, PR China.
| | - Ruiyuan Yuan
- School of Metallurgy, Northeastern University, Shenyang 110819, Liaoning, PR China
| | - Haixin Guo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China
| |
Collapse
|
6
|
Ekka B, Mierina I, Zarina R, Mezule L. Efficient removal of lipophilic compounds from sewage sludge: Comparative evaluation of solvent extraction techniques. Heliyon 2024; 10:e40749. [PMID: 39687164 PMCID: PMC11648152 DOI: 10.1016/j.heliyon.2024.e40749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/04/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Municipal sewage sludge, a by-product of wastewater treatment plants, presents environmental challenges due to its complex composition. Particular concern is the lipophilic and aliphatic compounds that pose risks to the environment and human health. This study focuses on the efficient removal of those compounds from sewage sludge using several organic solvents (hexane, toluene, chloroform, dichloromethane, acetone, hexane-methanol mixture, ethanol, and methanol) and ionic liquids (ILs) like tetrakis(hydroxymethyl)phosphonium chloride and 1-ethyl-3-methylimidazolium acetate by solvent extraction techniques. To determine optimal conditions, various factors such as solvent types, contact time, and temperature were examined. The results reveal that solvent polarity significantly impacts extract composition, with non-polar solvents like hexane and toluene yielding profiles characteristic of lipid-type compounds. An in-depth analysis of contaminants present in the sewage sludge was studied by Fourier-transform infrared spectroscopy (FTIR). Additionally, nuclear magnetic resonance (NMR) was used to identify the extracted compounds, including triglycerides, aliphatic esters, aliphatic alcohols, and free carboxylic acids. NMR provides data on the composition of the sewage sludge and indicates that among all the solvents used, tetrakis(hydroxymethyl) phosphonium chloride was the most suitable solvent for removing lipophilic and aliphatic compounds. Regeneration potential and reusability of the IL were conducted and verified by NMR. The results showed that tetrakis(hydroxymethyl) phosphonium chloride ionic liquid could be used for several extraction cycles. Identifying these compounds in the extracted mixture demonstrates that it adds value and potential for various applications. Towards environmental sustainability and circular economy, this effort develops strategies for the safe management, disposal, and recyclability of sewage sludge and, the reduction in environmental and health hazards associated with organic compounds.
Collapse
Affiliation(s)
- Basanti Ekka
- Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Kipsalas 6a, Riga, Latvia
| | - Inese Mierina
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena 3, Riga, LV-1048, Latvia
| | - Ruta Zarina
- Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Kipsalas 6a, Riga, Latvia
| | - Linda Mezule
- Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Kipsalas 6a, Riga, Latvia
| |
Collapse
|
7
|
Zhou W, Xu J, Fu B, Wu Y, Zhang K, Han J, Kong J, Ma Y. Microplastic accumulation and transport in agricultural soils with long-term sewage sludge amendments. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136263. [PMID: 39471613 DOI: 10.1016/j.jhazmat.2024.136263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Land application of sewage sludge brings microplastic contamination to soil. However, studies regarding the occurrence and mobility of sludge-borne microplastics in soil are insufficient. In the present study, based on an experimental field, the effects of sludge application amount on the accumulation and migration of microplastics in 0-20 (upper) and 20-40 cm (lower) soil layers were evaluated. After 16 years of continuous sludge application (36 t/ha per year), the microplastic content and migration ratio in upper soil reached 6811 particles/kg and 148 %, which was about 5 and 20 times, respectively, higher than that of the control soil without sludge. The microplastics in upper and lower soil layers, were mainly 0.2-0.5 mm in size, mostly fibrous in shape, primarily transparent in color, and predominantly rayon in composition. Microplastic surfaces may persistently adsorb clay minerals and iron/titanium oxides from soil, posing potential environmental risks. Sludge application had a significant positive correlation with soil microplastic abundance, resulting in a good fit of predictive model constructed for microplastic accumulation in sludge-amended soils. These findings help to improve the knowledge on environmental behavior of microplastics in sludge-amended soil, and can provide a scientific basis for the regulation of microplastic pollution during sludge land application.
Collapse
Affiliation(s)
- Weimin Zhou
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
| | - Jiukai Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bomin Fu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China.
| | - Yang Wu
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
| | - Kai Zhang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
| | - Juanjuan Han
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiejing Kong
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yibing Ma
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China.
| |
Collapse
|
8
|
Xuan G, Gu X, Qin P, Li S. Optimizing iron removal from sewage sludge ash for enhanced phosphate fertilizer bioavailability. BIORESOURCE TECHNOLOGY 2024; 412:131385. [PMID: 39222862 DOI: 10.1016/j.biortech.2024.131385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Sewage sludge derived fertilizer is a promising solution for phosphorus (P) recovery from biowaste, however, the inherent iron content in the sludge ash (SSA) impedes the P availability of the fused calcium magnesium phosphate fertilizer (FCMP). To achieve the goal of iron removal during the process, carbothermal reduction was adopted for the first time and the performance of carbon addition was systematically evaluated. Results showed that carbon addition at 4.50 % significantly increased the P availability from 9.50 % to 11.00 % and decreased the required amounts of calcium/magnesium. Moreover, ferrophosphate with 20.20 % P can be produced and the melting point of the system can be reduced by manipulating carbon addition. Finally, a process design was provided for the co-production of FCMP and ferrophosphate. This study highlights the addition of carbon to facilitate iron removal in SSA for the production of FCMP with enhanced bioavailability at a reduced energy consumption scenario.
Collapse
Affiliation(s)
- Guohui Xuan
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center for Education and Research, Beijing 100190, China
| | - Xiangyu Gu
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Pengfei Qin
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center for Education and Research, Beijing 100190, China
| | - Songgeng Li
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Zhang Y, Yaphary YL, Jiao X, Yau Li SF. Valorization of sewage sludge incineration ash as a novel soilless growing medium for urban agriculture and greenery. CHEMOSPHERE 2024; 364:143059. [PMID: 39134181 DOI: 10.1016/j.chemosphere.2024.143059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Limited open areas for urban agriculture and greenery have led to the search for innovative, sustainable growing media to strengthen the food supply and improve atmospheric quality for a resilient city. Rampant land developments have caused soil to become increasingly scarce. Sewage sludge incineration ash (SSIA), the by-product of waste-to-energy (WtE) incineration of sewage sludge, is a major municipal waste containing phosphorus-fertilizing nutrients. For the first time, we investigated the novel application of SSIA as a soilless plant-growing medium with built-in fertilizer. SSIA outperformed topsoil in bulk density, water-holding capacity, porosity, and nutrient content. However, it was found that SSIA has a high salinity and should be treated first. Wheatgrass (Triticum aestivum L.), a fast-growing glycophyte, thrived in the desalinated SSIA, showing growth and nutrient content comparable to the topsoil case. Simultaneously, it demonstrated phytoremediation. The SSIA residue was then recycled into cementitious materials, using desalinating water for mixing. SSIA upcycle into a growing medium facilitates urban resource management by utilizing nutrients in sewage waste for eco-friendly plant cultivation, benefiting urban agriculture and greenery. It is also a prudent valorization step before further recycling SSIA to reduce landfill requirements.
Collapse
Affiliation(s)
- Yijie Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yohannes L Yaphary
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| | - Xiaotong Jiao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
10
|
Vráblová M, Smutná K, Chamrádová K, Vrábl D, Koutník I, Rusín J, Bouchalová M, Gavlová A, Sezimová H, Navrátil M, Chalupa R, Tenklová B, Pavlíková J. Co-composting of sewage sludge as an effective technology for the production of substrates with reduced content of pharmaceutical residues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169818. [PMID: 38184247 DOI: 10.1016/j.scitotenv.2023.169818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/15/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Sewage sludge is a valuable source of elements such as phosphorus and nitrogen. At the same time, heavy metals, emerging organic compounds, micropollutants (pharmaceuticals, pesticides, PCPs, microplastics), or some potentially dangerous bacteria can be present. In this study, the sewage sludge was aerobically treated by composting with other materials (co-composted), and the resulting substrate was tested for suitability of its use in agriculture. Closer attention was focused on the pharmaceuticals (non-steroidal antiphlogistics, sartanes, antiepileptics, caffeine, and nicotine metabolites) content and ecotoxicity of the resulting substrates in the individual phases of sludge co-composting. It has been verified that during co-composting there is a potential for reduction of the content of pharmaceutical in the substrates up to 90 %. The course of the temperature in the thermophilic phase is decisive. Growth and ecotoxicity experiments demonstrated that with a suitable co-composting procedure, the resulting stabilized matter is suitable as a substrate for use in plant production, and the risk of using sewage sludge on agricultural land is substantially reduced.
Collapse
Affiliation(s)
- Martina Vráblová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic.
| | - Kateřina Smutná
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Kateřina Chamrádová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Daniel Vrábl
- University of Ostrava, Faculty of Science, Department of Physics, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Ivan Koutník
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Jiří Rusín
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Markéta Bouchalová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Anna Gavlová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Hana Sezimová
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Martin Navrátil
- University of Ostrava, Faculty of Science, Department of Physics, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Richard Chalupa
- FCC Česká republika, s.r.o., Ďáblická 791/89, 182 00 Praha, Czech Republic
| | - Barbora Tenklová
- FCC Česká republika, s.r.o., Ďáblická 791/89, 182 00 Praha, Czech Republic
| | - Jitka Pavlíková
- FCC Česká republika, s.r.o., Ďáblická 791/89, 182 00 Praha, Czech Republic
| |
Collapse
|
11
|
Huang Y, Chen Z, Liu Y, Lu JX, Bian Z, Yio M, Cheeseman C, Wang F, Sun Poon C. Recycling of waste glass and incinerated sewage sludge ash in glass-ceramics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:229-239. [PMID: 38070442 DOI: 10.1016/j.wasman.2023.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
Disposal of waste glass and incinerated sewage sludge ash (ISSA) in landfills is a waste of resources and poses significant environmental risks. This work aims to recycle waste glass and ISSA together to form value-added glass-ceramics. The physical and mechanical properties, leaching behaviour, and microstructure of the glass-ceramics produced with different proportions of waste glass powder (WGP) and ISSA were investigated. Thermodynamic calculations were performed to predict the formation of crystalline phases and the phase transformation involved. The results showed the potential of WGP and ISSA as raw materials in glass-ceramics production. WGP effectively densified the microstructure of the glass-ceramics by forming a viscous phase. As WGP content increased, the total porosity of glass-ceramics decreased whereas the density increased, accompanied by the formed anorthite transforming into wollastonite. The incorporation of WGP densified and refined the pore structure of the glass-ceramics, thereby improving the mechanical properties and reducing the water absorption. The glass-ceramics produced with a 50:50 blend of WGP and ISSA exhibited the highest compressive strength of 43.7 MPa and the lowest water absorption of 0.3 %. All fabricated glass-ceramics exhibited innocuous heavy metal leaching. The co-sintering of ISSA and WGP can produce additive-free glass-ceramics, characterized by reduced energy consumption and notable heavy metal immobilization capacity. These materials hold promise for utilization in construction as building materials.
Collapse
Affiliation(s)
- Yujie Huang
- Department of Civil and Environmental Engineering & Research Centre for Resources Engineering Towards Carbon Neutrality (RCRE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ziwei Chen
- Department of Civil and Environmental Engineering & Research Centre for Resources Engineering Towards Carbon Neutrality (RCRE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yunpeng Liu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China
| | - Jian-Xin Lu
- Department of Civil and Environmental Engineering & Research Centre for Resources Engineering Towards Carbon Neutrality (RCRE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Zuwang Bian
- Department of Civil and Environmental Engineering & Research Centre for Resources Engineering Towards Carbon Neutrality (RCRE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Marcus Yio
- UKCRIC Advanced Infrastructure Materials Laboratory, Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ, United Kingdom
| | - Christopher Cheeseman
- UKCRIC Advanced Infrastructure Materials Laboratory, Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ, United Kingdom
| | - Fazhou Wang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China
| | - Chi Sun Poon
- Department of Civil and Environmental Engineering & Research Centre for Resources Engineering Towards Carbon Neutrality (RCRE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
12
|
Wang X, Shi C, Hao X, Wu Y. Phosphate recovery from sludge-incinerated ash by adsorption with hydrotalcite synthesized by metals in the ash. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167263. [PMID: 37741405 DOI: 10.1016/j.scitotenv.2023.167263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Selective adsorption of phosphorus (P) from the acidic leachate of sludge-incinerated ash (SIA) becomes more attractive due to avoiding removing heavy metals. Especially, layered double hydroxides (LDHs) as an anion adsorbent could be applied into this area owing to their good capacity on P-adsorption and low cost on preparation. Interestingly, SIA contains more aluminum (Al) and iron (Fe) needed to be removed prior to P-recovery, and removed Al and Fe could be utilized to synthesize LDHs, like Mg/Al-LDH and Mg/Fe-LDH. With this study, Mg/Al-LDH-r and Mg/Fe-LDH-r were economically synthesized with Al and Fe removed from SIA, which were similar in their chemical structures to commercial LDHs. The synthesized LDHs had a high P-adsorption capacity, up to 95.0%. The maximal phosphate capacity of the recovered LDHs (Mg/Al-LDH-r and Mg/Fe-LDH-r) was 239.0 and 199.8 mg P/g LDHs, respectively. "NaOH + desalinated brine" as a new desorption solution could achieve a desorption ratio at about 80%, which could reduce the liquid-solid ratio by at least 60%, greatly decreasing the desorption cost. Pot trials demonstrated that the desorbed and precipitated CaP could promote the growth of maize as well as a commercial P-fertilizer. Furthermore, the adsorbed phosphate by LDHs could be directly used as a slow-released P-fertilizer and also improve the pH value of acidic soil, completely deleting the desorption process.
Collapse
Affiliation(s)
- Xiangyang Wang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China
| | - Chen Shi
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China
| | - Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China.
| | - Yuanyuan Wu
- Beijing Capital Eco-Environment Protection Group Co., Ltd., Beijing 100044, PR China
| |
Collapse
|
13
|
Brown S, Butman D, Kurtz K. Steps to circularity: Impact of resource recovery and urban agriculture in Seattle and Tacoma, Washington. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118648. [PMID: 37506445 DOI: 10.1016/j.jenvman.2023.118648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
Capturing the value in urban residuals (food scraps and wastewater) is a critical component of urban sustainability and a circular nutrient economy. Food production in urban areas has also been recognized as an important component of urban health. Data from two cities (Seattle and Tacoma, WA) with active resource recovery and community garden programs were used to quantify nutrient recovery and food production potential. Yield data from growth trials conducted using soil amendments produced from locally generated organic residuals were used to model yields in existing urban agriculture programs. Our survey showed much lower than expected volume of food scraps from both residential and multifamily housing for both cities. Nutrient generation rates from food scraps were estimated as 0.55-0.67 kg N and 0.09-0.11 kg P capita-1 yr-1. Recovery rates for Seattle with an established food scrap collection program were 0.21 kg N and 0.006 kg P capita-1 yr-1. Nutrient recovery from wastewater biosolids was higher; 1-1.67 kg N and 0.23-0.76 kg P capita-1 yr-1. Data on effluent quantity and nutrient concentrations from these programs suggests that effluent has a high potential for nutrient recovery (4.03-5 kg N and 0.3-0.5 kg P capita yr-1). Yield was modeled for kale (brassica oleracea) considering the number of people that could be fed per hectare for one year using a 67 g portion by comparing yields from synthetic fertilizer and residuals-based amendments in both high and low quality urban soils. The Tacoma biosolids potting soil yielded enough for 310 and 736 people ha-1 yr-1 for the high and low quality soils, respectively. The modeled food/yard compost produced from the food scraps yielded sufficient kale for 148 to 353 people ha-1 yr-1. Relative yield from fertilizer for the low and high quality soils was 15 and 263 people ha-1yr-1, respectively. Considering yield, enough biosolids are produced to meet 6.7-29.2% of the vegetable needs of each city. These results suggest that significant nutrients can be recovered using existing infrastructure. With enhanced nutrient capture from wastewater effluent, sufficient nutrients could be recovered to meet the N and P needs for food crops for the residents of each city.
Collapse
Affiliation(s)
| | - David Butman
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
14
|
Yu R, Xiao Y, Zhao X, Yao P, Yan T. Utilizing CaCl 2 to promote the enrichment and bioavailability of phosphorus in incinerated sludge ash. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2634-2647. [PMID: 37318916 PMCID: wst_2023_152 DOI: 10.2166/wst.2023.152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recovering phosphorus from incineration sludge sewage ash (ISSA) is a well-established technology, with a greater recovery potential than that of supernatant or sludge. ISSA can be utilized as a secondary raw material in the fertilizer industry, or as a fertilizer if heavy metal concentrations do not exceed permissible limits, thus reducing the cost of phosphorus recovery. Increasing the temperature to produce ISSA with higher solubility and plant availability of phosphorus is advantageous for both pathways. But a decrease in the extraction of phosphorus is also observed at high temperatures, thereby diminishing the overall economic benefits. In this study, CaCl2 was utilized to mitigate the decrease in the extraction rate and also to promote the bioavailability of phosphorus. The addition of CaCl2 (80 g/kg of dry sludge) effectively promoted the conversion of non-apatite inorganic phosphorus to apatite inorganic phosphorus at a rate of 87.73% at 750 °C. Furthermore, the decrease in the extraction rate of phosphorus at 1,050 °C was comparatively smaller in the presence of CaCl2. If iron flocculants are used to capture P in wastewater management, it may be necessary to pay special attention to the amount of addition and incineration temperature to maximize the economic potential of recycling.
Collapse
Affiliation(s)
- Rongzhen Yu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Ya Xiao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaojiao Zhao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Pin Yao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Tinggui Yan
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang, Guizhou 550025, China E-mail:
| |
Collapse
|
15
|
De Silva S, Carson P, Indrapala DV, Warwick B, Reichman SM. Land application of industrial wastes: impacts on soil quality, biota, and human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67974-67996. [PMID: 37138131 DOI: 10.1007/s11356-023-26893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 04/04/2023] [Indexed: 05/05/2023]
Abstract
Globally, waste disposal options such as landfill, incineration, and discharge to water, are not preferred long-term solutions due to their social, environmental, political, and economic implications. However, there is potential for increasing the sustainability of industrial processes by considering land application of industrial wastes. Applying waste to land can have beneficial outcomes including reducing waste sent to landfill and providing alternative nutrient sources for agriculture and other primary production. However, there are also potential hazards, including environmental contamination. This article reviewed the literature on industrial waste applications to soils and assessed the associated hazards and benefits. The review investigated wastes in relation to soil characteristics, dynamics between soils and waste constituents, and possible impacts on plants, animals, and humans. The current body of literature demonstrates the potential for the application of industrial waste into agricultural soils. The main challenge for applying industrial wastes to land is the presence of contaminants in some wastes and managing these to enhance positive effects and reduce negative outcomes to within acceptable limits. Examination of the literature also revealed several gaps in the research and opportunities for further investigation: specifically, a lack of long-term experiments and mass balance assessments, variable waste composition, and negative public opinion.
Collapse
Affiliation(s)
- Shamali De Silva
- Environment Protection Authority Victoria, EPA Science, Macleod, VIC, 3085, Australia
- School of Engineering, RMIT University, Melbourne, 3001, Australia
| | - Peter Carson
- School of Engineering, RMIT University, Melbourne, 3001, Australia
| | | | - Barry Warwick
- Environment Protection Authority Victoria, EPA Science, Macleod, VIC, 3085, Australia
| | - Suzie M Reichman
- Centre for Anthropogenic Pollution Impact and Management (CAPIM), University of Melbourne, Parkville, 3010, Australia.
- School of Biosciences, University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
16
|
Hu S, Yi K, Li C, Ma S, Liu J, Yang W. Efficient and selective recovery of iron phosphate from the leachate of incinerated sewage sludge ash by thermally induced precipitation. WATER RESEARCH 2023; 238:120024. [PMID: 37156102 DOI: 10.1016/j.watres.2023.120024] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/26/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Phosphorus recovery from incinerated sewage sludge ash (ISSA) is important but hindered by low selectivity. Here, a novel strategy of acid leaching followed by thermally induced precipitation was proposed for the efficient and selective recovery of FePO4 from ISSA samples. A high phosphorus leaching efficiency of ∼ 99.6% was achieved with 0.2 mol/L H2SO4 and liquid to solid (L/S) ratio of 50 mL/g. Without removing various co-existing ions (Al3+, Ca2+, SO42-, etc.), high-purity FePO4 of ∼ 92.9% could be facilely produced from this highly acidic H2SO4 leachate (pH = 1.2) by simple addition of Fe(III) at a molar ratio of 1:1 to the phosphorus and reacted at 80 °C for thermally induced precipitation. The remained acid leachate could be further reused for five times to continue leaching phosphorus from the ISSA samples and produce the FePO4 precipitates with a high phosphorus recovery efficiency of 81.1 ± 1.8%. The selective recovery of FePO4 from the acid leachate was demonstrated more thermodynamically favorable compared to other precipitates at this acidic pH of 1.2, and elevated temperature of 80 °C towards thermally induced precipitation. The estimated cost of this strategy was ∼$26.9/kg-P and lower than that of other existing technologies. The recovered FePO4 precipitates could be used as a phosphate fertilizer to promote the growth of ryegrass, and also as a precursor to synthesize high-value LiFePO4 battery material, demonstrating the high-value application potential of the phosphorus from the ISSA.
Collapse
Affiliation(s)
- Shaogang Hu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Kexin Yi
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Chao Li
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Shengqiang Ma
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Juan Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Wulin Yang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
17
|
Wang X, Shi C, Hao X, van Loosdrecht MCM, Wu Y. Synergy of phosphate recovery from sludge-incinerated ash and coagulant production by desalinated brine. WATER RESEARCH 2023; 231:119658. [PMID: 36708629 DOI: 10.1016/j.watres.2023.119658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Wet-chemical approach is widely applied for phosphate recovery from incinerated ash of waste activated sludge (WAS), along with metals removed/recovered. The high contents of both aluminum (Al) and iron (Fe) in WAS-incinerated ash should be suitable for producing coagulants with some waste anions like Cl- and SO42- With acid (HCl) leaching and metals' removing, approximately 88 wt% of phosphorus (P) in the ash could be recovered as hydroxylapatite (HAP: Ca5(PO4)3OH); Fe3+ in the acidic leachate could be selectively removed/recovered by extraction with an organic solvent of tributyl phosphate (TBP), and thus a FeCl3-based coagulant could be synthesized by stripping the raffinate with the original brine (containing abundant Cl- and SO42-). Furthermore, a liquid poly-aluminum chloride (PAC)-based coagulant could also be synthesized with Al3+ removed from the ash and the brine, which behaved almost the same in the coagulation performance as a commercial coagulant on both phosphate and turbidity removals. Both P-recovery from the ash and coagulant production associated with the brine would enlarge the markets of both 'blue' phosphate and 'green' coagulants.
Collapse
Affiliation(s)
- Xiangyang Wang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing 100044, China
| | - Chen Shi
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing 100044, China
| | - Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing 100044, China.
| | - Mark C M van Loosdrecht
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing 100044, China; Dept. of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Yuanyuan Wu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing 100044, China
| |
Collapse
|
18
|
Li X, Shen S, Xu Y, Guo T, Dai H, Lu X. Mining phosphorus from waste streams at wastewater treatment plants: a review of enrichment, extraction, and crystallization methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28407-28421. [PMID: 36680723 DOI: 10.1007/s11356-023-25388-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Two interrelated problems exist: the non-renewability of phosphate rock as a resource and the excess phosphate in the water system lead to eutrophication. Removal and recovery of phosphorus (P) from waste streams at wastewater treatment plants (WWTPs) is one of the promising solutions. This paper reviews strategies for P recovery from waste streams in WWTPs are reviewed, and the main P recovery processes were broken down into three parts: enrichment, extraction, and crystallization. On this basis, the present P recovery technology was summarized and compared. The choice of P recovery technology depends on the process of sewage treatment and sludge treatment. Most P recovery processes can meet the financial requirements since the recent surge in phosphate rock prices. The safety requirements of P recovery products add a high cost to toxic substance removal, so it is necessary to control the discharge of toxic substances such as heavy metals and persistent organic pollutants from the source.
Collapse
Affiliation(s)
- Xiang Li
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Shuting Shen
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Yuye Xu
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Ting Guo
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Hongliang Dai
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang, 212018, China
| | - Xiwu Lu
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China.
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China.
| |
Collapse
|
19
|
Zheng X, Ying Z, Feng Y, Wang B, Dou B. CaO-assisted hydrothermal treatment combined with incineration of sewage sludge: Focusing on phosphorus (P) fractions, P-bioavailability, and heavy metals behaviors. CHEMOSPHERE 2022; 308:136391. [PMID: 36096311 DOI: 10.1016/j.chemosphere.2022.136391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Dewatering of sewage sludge (SS) was the prerequisite for saving its drying energy and sustaining its stable combustion. Hydrothermal treatment (HT) has been a promising technology for improving SS dewaterability with high energy efficiency. However, the knowledge of phosphorus (P) transformation and heavy metals (HMs) behaviors in the combined HT and incineration process was still lack. P fractions, P-bioavailability, HMs speciation, and their environmental risk in the ash samples from this combination process were evaluated and compared with those from the co-incineration of SS and CaO. The combination process was superior to the latter one in the light of P and HMs. CaO preferred to enhance the transformation of non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP) initially with enriched P and increased P-bioavailability in the resultant ash samples. The combination process further reduced the values of risk assessment code and individual contamination factor with the increment of the stable F4 fraction in HMs. Significant reduction of potential ecological risk was observed with the lowest global risk index of 43.76 in the combination process. Optimum CaO addition of 6% was proposed in terms of P and HMs. The work here can provide theoretical references for the potential utilization of P from SS to mitigate the foreseeable shortage of P rocks.
Collapse
Affiliation(s)
- Xiaoyuan Zheng
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Key Laboratory of Heat Transfer and Multiphase Flow in Power Engineering, Shanghai, 200093, China
| | - Zhi Ying
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuheng Feng
- Thermal and Environment Engineering Institute, School of Mechanical Engineering, Tongji University, Shanghai, 200092, China.
| | - Bo Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Binlin Dou
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
20
|
Zheng Y, Wan Y, Zhang Y, Huang J, Yang Y, Tsang DCW, Wang H, Chen H, Gao B. Recovery of phosphorus from wastewater: A review based on current phosphorous removal technologies. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2022; 53:1148-1172. [PMID: 37090929 PMCID: PMC10116781 DOI: 10.1080/10643389.2022.2128194] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phosphorus (P) as an essential nutrient for life sustains the productivity of food systems; yet misdirected P often accumulates in wastewater and triggers water eutrophication if not properly treated. Although technologies have been developed to remove P, little attention has been paid to the recovery of P from wastewater. This work provides a comprehensive review of the state-of-the-art P removal technologies in the science of wastewater treatment. Our analyses focus on the mechanisms, removal efficiencies, and recovery potential of four typical water and wastewater treatment processes including precipitation, biological treatment, membrane separation, and adsorption. The design principles, feasibility, operation parameters, and pros & cons of these technologies are analyzed and compared. Perspectives and future research of P removal and recovery are also proposed in the context of paradigm shift to sustainable water treatment technology.
Collapse
Affiliation(s)
- Yulin Zheng
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Yongshan Wan
- National Health and Environmental Effects Research Laboratory, US EPA, Gulf Breeze, Florida, USA
| | - Yue Zhang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Jinsheng Huang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Yicheng Yang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Hao Chen
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
21
|
Sakiewicz P, Piotrowski K, Rajca M, Maj I, Kalisz S, Ober J, Karwot J, Pagilla KR. Innovative Technological Approach for the Cyclic Nutrients Adsorption by Post-Digestion Sewage Sludge-Based Ash Co-Formed with Some Nanostructural Additives under a Circular Economy Framework. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11119. [PMID: 36078831 PMCID: PMC9518112 DOI: 10.3390/ijerph191711119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 05/27/2023]
Abstract
This paper presents a new, innovative technological approach, in line with Circular Economy principles, to the effective management of sludge generated during municipal wastewater treatment processes and subsequently used for biogas production. This approach allows for optimal, functional, and controlled cascade-type biotechnological thermal conversion of carbon compounds present in sewage sludge, later in solid digestate residues (after biogas production), and finally in the ash structure (after incineration, purposefully dosed nanostructural additives make the production of a useful solid product possible, especially for cyclic adsorption and slow release of nutrients (N, P, K) in the soil). The idea is generally targeted at achieving an innovative conversion cycle under a Circular Economy framework. In particular, it is based on an energy carrier (methane biogas) and direct energy production. The functionalized combustion by-products can be advantageous in agriculture. The use of ashes with nanostructural additives (halloysite, kaolinite) from combustion of sewage sludge after the anaerobic fermentation as an adsorbent of selected nutrients important in agriculture (Na+, K+, NO3-, SO42-, PO43-, Cl-) was verified at laboratory scale. The tests were carried out both for pure ash and for the ash derived from combustion with the purposeful addition of kaolinite or halloysite. The equilibrium conditions for nitrate, potassium, sodium, phosphate(V), sulphate(VI), and chloride ions from aqueous solutions with the use of the three adsorbent structures were determined. The obtained innovative results were interpreted theoretically with adsorption isotherm models (Langmuir, Freundlich, Temkin, Jovanović). The most spectacular and clearly favorable results related to the influence of nanostructural additives in the process of sludge combustion, and formation of sorption surfaces under high temperature conditions were identified in the case of sorption-based separation of phosphate(V) ions (an increase from 1.13% to 61.24% with the addition of kaolinite, and even up to 76.19% with addition of halloysite).
Collapse
Affiliation(s)
- Piotr Sakiewicz
- Division of Nanocrystalline and Functional Materials and Sustainable Pro-Ecological Technologies, Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
| | - Krzysztof Piotrowski
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 7, 44-100 Gliwice, Poland
| | - Mariola Rajca
- Institute of Water and Wastewater Engineering, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
| | - Izabella Maj
- Department of Power Engineering and Turbomachinery, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
| | - Sylwester Kalisz
- Department of Power Engineering and Turbomachinery, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
| | - Józef Ober
- Department of Applied Social Sciences, Faculty of Organization and Management, Silesian University of Technology, Roosevelta 26-28, 41-800 Zabrze, Poland
| | - Janusz Karwot
- Sewage and Water Supply Ltd., Pod Lasem 62, 44-210 Rybnik, Poland
| | - Krishna R Pagilla
- Department of Civil & Environmental Engineering, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
22
|
Nilsson C, Sjöberg V, Grandin A, Karlsson S, Allard B, von Kronhelm T. Phosphorus speciation in sewage sludge from three municipal wastewater treatment plants in Sweden and their ashes after incineration. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2022; 40:1267-1276. [PMID: 34920692 DOI: 10.1177/0734242x211065231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Given the high efficiency in phosphorus removal at municipal wastewater treatment plants (MMWWTP), sewage sludge constitutes a promising resource for phosphorus (P) recovery. Sewage sludge is, however, a complex matrix and its direct use as fertiliser is limited by its content of metals/metalloids and organic pollutants. In order to increase its usability as a potential resource of P, there is a need for increased knowledge on phosphorus speciation in these matrices. The sludge composition is highly influenced by local conditions (i.e. wastewater composition and treatment method), and it is therefore important to study sludge from several MMWWTPs. In this study, three different protocols for sequential extraction were utilised to investigate the chemical speciation of phosphorus in sludge from three different MMWWTP sludges in Sweden, as well as in corresponding ashes following incineration. The results showed that the total amounts of phosphorus ranged from 26 to 32 mg g-1 sludge (dry weight), of which 79-94% was inorganically bound (IP). In the sludge, 21-30% of the IP was associated with calcium (Ca-P), which is the preferred species for fertiliser production. Following incineration, this fraction increased to 54-56%, mainly due to transformation of iron-associated phosphorus (Fe-P), while aluminium-associated species of phosphorus (Al-P) remained unaltered. The results from this study confirm that incineration is a suitable treatment for sewage sludge in terms of potential phosphorus recovery.
Collapse
Affiliation(s)
- Charlotte Nilsson
- MTM Research Centre, Örebro University, Örebro, Sweden
- Fortum Waste Solutions AB, Kumla, Sweden
| | | | - Anna Grandin
- MTM Research Centre, Örebro University, Örebro, Sweden
| | | | - Bert Allard
- MTM Research Centre, Örebro University, Örebro, Sweden
| | | |
Collapse
|
23
|
Hušek M, Moško J, Pohořelý M. Sewage sludge treatment methods and P-recovery possibilities: Current state-of-the-art. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115090. [PMID: 35489186 DOI: 10.1016/j.jenvman.2022.115090] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
With the growing emphasis on environmental protection, the ways of sewage sludge treatment are changing. In this review, we analyse different methods of sewage sludge treatment in terms of potential environmental risk and raw materials recovery. The review begins with a comparison and assessment of existing reviews on this topic. Then, it focuses on the properties and current utilisation of sewage sludge in agriculture and a brief description of sludge thermal treatment methods (mono- and co-incineration, pyrolysis, and gasification). The final part of the review is devoted to technologies for treating sludge ash from mono-incinerators to recover phosphorus, a substance listed as a critical raw material by the EU. Our results show that direct use of sewage sludge likewise composts containing sewage sludge should no longer be considered as a direct source of nutrients and organic matter in agriculture, because of its pollutant content. Co-incineration and landfilling represent a dead-end in sludge treatment due to the loss of raw materials, whereas pyrolysis is sustainable for remote locations with low heavy metal content sludge. Heavy metals also pose a problem for the direct use of sludge ash and must be therefore removed. There are already sludge ash processing technologies that are capable of processing ash to form a variety of raw materials such as phosphorus. These regeneration approaches are currently in their infancy, but are gradually being introduced. The sewage sludge treatment industry is rapidly evolving, and we have attempted to summarise and discuss the current state of knowledge in this review, which will provide a baseline towards the future of sewage sludge suitable treatment.
Collapse
Affiliation(s)
- Matěj Hušek
- Department of Power Engineering, Faculty of Environmental Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, 6, Czech Republic; The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02, Prague, 6-Suchdol, Czech Republic
| | - Jaroslav Moško
- Department of Power Engineering, Faculty of Environmental Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, 6, Czech Republic; The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02, Prague, 6-Suchdol, Czech Republic
| | - Michael Pohořelý
- Department of Power Engineering, Faculty of Environmental Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, 6, Czech Republic; The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02, Prague, 6-Suchdol, Czech Republic.
| |
Collapse
|
24
|
Hao X, Wu D, Li J, Liu R, van Loosdrecht M. Making Waves: A sea change in treating wastewater - Why thermodynamics supports resource recovery and recycling. WATER RESEARCH 2022; 218:118516. [PMID: 35523037 DOI: 10.1016/j.watres.2022.118516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Entropy is a concept defined by the second law of thermodynamics. Applying this concept to the world we live in, entropy production must be minimized and negentropy (negative entropy production) should be accelerated, in order to produce a healthy and stable ecological system. The present wastewater treatment, however, contributes to entropy production. This means that conventional wastewater treatment, without recovery of resource and energy, will gradually but inevitably contribute to a deteriorating ecological balance. When the self-cleaning ability of the natural ecological system is limited, the need to develop sustainable wastewater treatment in order to delay entropy production and accelerate negentropy becomes urgent. Resource and energy recovery from wastewater should be the first priority, as they can contribute significantly towards minimizing entropy production and accelerating negentropy. Sustainable wastewater treatment must focus on recovering recyclable high value-added organic chemicals from wastewater and/or excess sludge to minimize entropy production caused by methane (CH4, once combusted, is converted into CO2 - an even higher substance in entropy) via anaerobic digestion. Instead of CH4, thermal energy present in the effluent can be utilized for heating/cooling buildings and also for drying excess sludge towards incineration to recover more energy. Overall, this can lead to a carbon-neutral operation and even creating a "carbon sink" could be possible for wastewater treatment.
Collapse
Affiliation(s)
- Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Daoqi Wu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Ji Li
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Ranbin Liu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Mark van Loosdrecht
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Department of Biotechnology, Delft University of Technology, van der Maasweg 9, HZ, Delft 2629, the Netherlands
| |
Collapse
|
25
|
Yang H, Kang JK, Park SJ, Lee CG. Phosphorus recovery from cattle manure bottom ash by extraction and precipitation methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39567-39577. [PMID: 35103943 DOI: 10.1007/s11356-022-18934-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus, a limiting element, is essential for living organisms, but the total amount available is decreasing with its increasing use. This problem can be solved by studying the methods of phosphorus recovery from waste. Phosphorus (P2O5, 13.75%) is abundantly present in cattle manure bottom ash (CMBA), indicating its potential as a source for phosphorus recovery. Herein, phosphorus recovery from CMBA was investigated by acid extraction and precipitation methods. The optimum concentration of sulfuric acid for extraction was 1.4 M, which eluted approximately 90% of the phosphorus contained in CMBA. In the precipitation method, sodium hydroxide and calcium silicate hydrate (CSH, CaSiO3∙nH2O) were used to adjust the solution pH to 4 and 8, where more than 99% of the eluted phosphorus was recovered when the pH was adjusted to 8 using CSH alone. The chemical composition and crystal forms of the recovered precipitates were analyzed using X-ray fluorescence and an X-ray powder diffractometer. The results indicated monetite and brushite were the main crystal forms of precipitates at pH 4, and struvite, hydroxyapatite, and tricalcium phosphate were the main crystal forms at pH 8. The availability of phosphorus in the precipitates was also evaluated by quinoline gravimetric analysis using water and 2% citric acid, and the water-soluble precipitate was less than 35%, whereas it ranged from 65 to 97% in 2% citric acid. This study suggests that CMBA can be used as a promising source to recover phosphorus via acid extraction and precipitation processes.
Collapse
Affiliation(s)
- Heejin Yang
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Jin-Kyu Kang
- Environmental Functional Materials and Water Treatment Laboratory, Seoul National University, Seoul, Republic of Korea
| | - Seong-Jik Park
- Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, Republic of Korea
| | - Chang-Gu Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
26
|
Schirmeister CG, Mülhaupt R. Closing the Carbon Loop in the Circular Plastics Economy. Macromol Rapid Commun 2022; 43:e2200247. [PMID: 35635841 DOI: 10.1002/marc.202200247] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/07/2022] [Indexed: 11/06/2022]
Abstract
Today, plastics are ubiquitous in everyday life, problem solvers of modern technologies, and crucial for sustainable development. Yet the surge in global demand for plastics of the growing world population has triggered a tidal wave of plastic debris in the environment. Moving from a linear to a zero-waste and carbon-neutral circular plastic economy is vital for the future of the planet. Taming the plastic waste flood requires closing the carbon loop through plastic reuse, mechanical and molecular recycling, carbon capture, and use of the greenhouse gas carbon dioxide. In the quest for eco-friendly products, plastics do not need to be reinvented but tuned for reuse and recycling. Their full potential must be exploited regarding energy, resource, and eco efficiency, waste prevention, circular economy, climate change mitigation, and lowering environmental pollution. Biodegradation holds promise for composting and bio-feedstock recovery, but it is neither the Holy Grail of circular plastics economy nor a panacea for plastic littering. As an alternative to mechanical downcycling, molecular recycling enables both closed-loop recovery of virgin plastics and open-loop valorization, producing hydrogen, fuels, refinery feeds, lubricants, chemicals, and carbonaceous materials. Closing the carbon loop does not create a Perpetuum Mobile and requires renewable energy to achieve sustainability. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Carl G Schirmeister
- Freiburg Materials Research Center and Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104, Freiburg, Germany
| | - Rolf Mülhaupt
- Sustainability Center, University of Freiburg, Ecker-Str. 4, D-79104, Freiburg, Germany
| |
Collapse
|
27
|
Boniardi G, Turolla A, Fiameni L, Gelmi E, Bontempi E, Canziani R. Phosphorus recovery from a pilot-scale grate furnace: influencing factors beyond wet chemical leaching conditions. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2525-2538. [PMID: 35576251 DOI: 10.2166/wst.2022.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phosphorus is a non-renewable resource going to be exhausted in the future. Sewage sludge ash is a promising secondary raw material due to its high phosphorus content. In this work, the distribution of 19 elements in bottom and cyclone ashes from pilot-scale grate furnace have been monitored to determine the suitability for the phosphorus acid extraction. Moreover, the influence of some parameters beyond wet chemical leaching conditions were investigated. Experimental results showed that bottom ash presented lower contamination in comparison to cyclone ash and low co-dissolution of heavy metals (especially Cr, Pb and Ni), while high phosphorus extraction efficiencies (76-86%) were achieved. High Al content in the bottom ash (9.4%) negatively affected the phosphorus extraction efficiency as well as loss on ignition, while the particle size reduction was necessary for ensuring a suitable contact surface. The typology of precipitating agents did not strongly affect the phosphorus precipitation, while pH was the key parameter. At pH 3.5-5, phosphorus precipitation efficiencies higher than 90% were achieved, with a mean phosphorus content in the recovered material equal to 16-17%, comparable to commercial fertilizers. Instead, the co-precipitation of Fe and Al had a detrimental effect on the recovered material, indicating the need for additional treatments.
Collapse
Affiliation(s)
- G Boniardi
- Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 21, 20133, Milano, Italy E-mail:
| | - A Turolla
- Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 21, 20133, Milano, Italy E-mail:
| | - L Fiameni
- INSTM and University of Brescia, Via Branze 38, 25123, Brescia, Italy
| | - E Gelmi
- Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 21, 20133, Milano, Italy E-mail:
| | - E Bontempi
- INSTM and University of Brescia, Via Branze 38, 25123, Brescia, Italy
| | - R Canziani
- Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 21, 20133, Milano, Italy E-mail:
| |
Collapse
|
28
|
Phosphorus Fertilizers from Sewage Sludge Ash and Animal Blood as an Example of Biobased Environment-Friendly Agrochemicals: Findings from Field Experiments. Molecules 2022; 27:molecules27092769. [PMID: 35566125 PMCID: PMC9100326 DOI: 10.3390/molecules27092769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Wastes of biological origin from wastewater treatment systems and slaughterhouses contain substantial amounts of phosphorus (P) with high recovery potential and can contribute to alleviating the global P supply problem. This paper presents the performance of fertilizer (AF) and biofertilizer (BF) from sewage sludge ash and animal blood under field conditions. BF is AF incorporated with lyophilized cells of P-solubilizing bacteria, Bacillus megaterium. In the experiments with spring or winter wheat, the biobased fertilizers were compared to commercial P fertilizer, superphosphate (SP). No P fertilization provided an additional reference. Fertilizer effects on wheat productivity and on selected properties of soil were studied. BF showed the same yield-forming efficiency as SP, and under poorer habitat conditions, performed slightly better than AF in increasing yield and soil available P. Biobased fertilizers applied at the P rate up to 35.2 kg ha-1 did not affect the soil pH, did not increase As, Cd, Cr, Ni, and Pb content, and did not alter the abundance of heterotrophic bacteria and fungi in the soil. The findings indicate that biobased fertilizers could at least partially replace conventional P fertilizers. Research into strain selection and the proportion of P-solubilizing microorganisms introduced into fertilizers should be continued.
Collapse
|
29
|
Zhang C, Guisasola A, Baeza JA. A review on the integration of mainstream P-recovery strategies with enhanced biological phosphorus removal. WATER RESEARCH 2022; 212:118102. [PMID: 35091221 DOI: 10.1016/j.watres.2022.118102] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P), an essential nutrient for all organisms, urgently needs to be recovered due to the increasing demand and scarcity of this natural resource. Recovering P from wastewater is a feasible and promising way widely studied nowadays due to the need to remove P in wastewater treatment plants (WWTPs). When enhanced biological P removal (EBPR) is implemented, an innovative option is to recover P from the supernatant streams obtained in the mainstream water line, and then combine it with liquor-crystallisation recovery processes, being the final recovered product struvite, vivianite or hydroxyapatite. The basic idea of these mainstream P-recovery strategies is to take advantage of the ability of polyphosphate accumulating organisms (PAO) to increase P concentration under anaerobic conditions when some carbon source is available. This work shows the mainstream P-recovery technologies reported so far, both in continuous and sequenced batch reactors (SBR) based configurations. The amount of extraction, as a key parameter to balance the recovery efficiency and the maintenance of the EBPR of the system, should be the first design criterion. The maximum value of P-recovery efficiency for long-term operation with an adequate extraction ratio would be around 60%. Other relevant factors (e.g. COD/P ratio of the influent, need for an additional carbon source) and operational parameters (e.g. aeration, SRT, HRT) are also reported and discussed.
Collapse
Affiliation(s)
- Congcong Zhang
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, Bellaterra (Barcelona) 08193, Spain
| | - Albert Guisasola
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, Bellaterra (Barcelona) 08193, Spain.
| | - Juan Antonio Baeza
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, Bellaterra (Barcelona) 08193, Spain
| |
Collapse
|
30
|
Winchell LJ, Ross JJ, Brose DA, Pluth TB, Fonoll X, Norton JW, Bell KY. High-temperature technology survey and comparison among incineration, pyrolysis, and gasification systems for water resource recovery facilities. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10715. [PMID: 35388572 PMCID: PMC9324225 DOI: 10.1002/wer.10715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 05/13/2023]
Abstract
Solids from wastewater treatment undergo processing to reduce mass, minimize pathogens, and condition the products for specific end uses. However, costs and contaminant concerns (e.g., per- and polyfluoroalkyl substances [PFAS]) challenge traditional landfill and land application practices. Incineration can overcome these issues but has become complicated due to evolving emissions regulations, and it suffers from poor public perception. These circumstances are driving the re-emergence of pyrolysis and gasification technologies. A survey of suppliers was conducted to document differences with technologies. Both offer advantages over incineration with tailored production of a carbon-rich solid, currently less stringent air emission requirements, and lower flue gas flows requiring treatment. However, incineration more simply combines drying and thermal processing into one reactor. Equipment costs provided favor pyrolysis and gasification at lower capacities but converge with incineration at higher capacities. Long-term operational experience will confirm technology competitiveness and elucidate whether pyrolysis and gasification warrant widespread adoption. PRACTITIONER POINTS: Pyrolysis and gasification systems are gaining traction in the wastewater industry with several full-scale installations operating, in construction, or design Several advantages, but some disadvantages, are considered in comparison with incineration Organic contaminants, including PFAS, will undergo transformation and potentially complete mineralization through each process.
Collapse
Affiliation(s)
| | | | - Dominic A. Brose
- Metropolitan Water Reclamation District of Greater ChicagoCiceroIllinoisUSA
| | - Thaís B. Pluth
- Metropolitan Water Reclamation District of Greater ChicagoCiceroIllinoisUSA
| | | | | | | |
Collapse
|
31
|
Boniardi G, Turolla A, Fiameni L, Gelmi E, Malpei F, Bontempi E, Canziani R. Assessment of a simple and replicable procedure for selective phosphorus recovery from sewage sludge ashes by wet chemical extraction and precipitation. CHEMOSPHERE 2021; 285:131476. [PMID: 34265709 DOI: 10.1016/j.chemosphere.2021.131476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/27/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The selective phosphorus recovery by wet chemical extraction and precipitation was assessed at the laboratory scale aiming at identifying a simple and replicable procedure that could be effectively applied to different types of sewage sludge ashes. The experimental work was performed on five samples of sewage sludge ashes, of which three were obtained from muffle-furnace incineration and two from full-scale mono-incineration plants. A single-step extraction procedure has been investigated by applying different operating conditions (type of leaching acid, liquid-to-solid ratio, contact time). Experimental results indicated that phosphorus recovery efficiency varied between 54 and 92% with limited co-dissolution of metals and metalloids, except for arsenic. Operating conditions, sewage sludge ashes characteristics and phosphorus removal processes in the wastewater treatment plant were the main factors affecting phosphorus recovery efficiency. The application of optimal operating conditions (0.2 M sulfuric acid, liquid-to-solid ratio of 20 and contact time of 2 h) resulted in phosphorus recovery from 76 to 92% on four samples. Subsequently, precipitation of phosphorus from acidic leachate was carried out by lime dosing. After filtering and drying, the recovered products presented a P2O5 content between 11.5 and 36.7% dry weight, with a fraction of soluble phosphorus between 75 and 91%, a good percentage for application as fertilizer or animal feed. Since few undesired elements (i.e., As, Cu and Zn) exceeded the limits for fertilizer application (exception was represented by Ni and Pb, which were present at low concentration), an additional purification step may be required. Overall, experimental results highlighted the influence of process parameters on phosphorus recovery.
Collapse
Affiliation(s)
- Gaia Boniardi
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA) - Environmental Section, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Andrea Turolla
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA) - Environmental Section, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
| | - Laura Fiameni
- INSTM and University of Brescia, Department of Mechanical and Industrial Engineering (DIMI), Via Branze 38, 25123, Brescia, Italy
| | - Enrico Gelmi
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA) - Environmental Section, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Francesca Malpei
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA) - Environmental Section, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Elza Bontempi
- INSTM and University of Brescia, Department of Mechanical and Industrial Engineering (DIMI), Via Branze 38, 25123, Brescia, Italy
| | - Roberto Canziani
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA) - Environmental Section, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| |
Collapse
|
32
|
Zhang Y, Shan C, Qian J, Pan B. Scenario oriented strategies for phosphorus management by using environmental nanotechnology. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Towards Precision Fertilization: Multi-Strategy Grey Wolf Optimizer Based Model Evaluation and Yield Estimation. ELECTRONICS 2021. [DOI: 10.3390/electronics10182183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Precision fertilization is a major constraint in consistently balancing the contradiction between land resources, ecological environment, and population increase. Even more, it is a popular technology used to maintain sustainable development. Nitrogen (N), phosphorus (P), and potassium (K) are the main sources of nutrient income on farmland. The traditional fertilizer effect function cannot meet the conditional agrochemical theory’s conditional extremes because the soil is influenced by various factors and statistical errors in harvest and yield. In order to find more accurate scientific ratios, it has been proposed a multi-strategy-based grey wolf optimization algorithm (SLEGWO) to solve the fertilizer effect function in this paper, using the “3414” experimental field design scheme, taking the experimental field in Nongan County, Jilin Province as the experimental site to obtain experimental data, and using the residuals of the ternary fertilizer effect function of Nitrogen, phosphorus, and potassium as the target function. The experimental results showed that the SLEGWO algorithm could improve the fitting degree of the fertilizer effect equation and then reasonably predict the accurate fertilizer application ratio and improve the yield. It is a more accurate precision fertilization modeling method. It provides a new means to solve the problem of precision fertilizer and soil testing and fertilization.
Collapse
|
34
|
Mallick SP, Ryan DR, Venkiteshwaran K, McNamara PJ, Mayer BK. Electro-oxidation to convert dissolved organic nitrogen and soluble non-reactive phosphorus to more readily removable and recoverable forms. CHEMOSPHERE 2021; 279:130876. [PMID: 34134436 DOI: 10.1016/j.chemosphere.2021.130876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
Conventional wastewater treatment processes cannot effectively remove dissolved organic nitrogen (DON) and soluble non-reactive phosphorus (sNRP), which can pose regulatory compliance challenges for total nitrogen and total phosphorus discharges. Moreover, DON and sNRP are not easily recoverable for beneficial reuse as part of the waste to resource paradigm. Conversion of DON and sNRP to more readily removable dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (sRP), respectively, will help meet stringent nutrient limits and facilitate nutrient recovery. In this study, electro-oxidation (EO) was evaluated for conversion of four DON compounds to DIN and five sNRP compounds to sRP. EO was more efficient and provided higher extents of conversion of the recalcitrant nutrient fractions compared to a more traditional advanced oxidation process, UV/H2O2. Direct electron transfer was likely the dominant oxidation mechanism for EO-based DON and sNRP conversion, with DON being more recalcitrant. Among the DON compounds tested, greater availability of primary amine (C-N bonds) yielded greater conversion compared to compounds with fewer primary amine or those with secondary amine (C-N-C bond). Among the sNRP compounds tested, those with P-O-C bonds (organic sNRP) converted more readily than those with P-O-P bonds (inorganic sNRP), presumably because cleavage of the latter bond requires greater energy. Using 30 min of EO treatment, the highest DON and sNRP compound conversion was 11.7 ± 0.09% for urea and 31.1 ± 0.75% for beta-glycerol phosphate. A similar extent of EO-based conversion of DON (6.41 ± 1.5%) and sNRP (32.7 ± 3.3%) was observed in real wastewater.
Collapse
Affiliation(s)
- Synthia P Mallick
- Department of Civil, Construction and Environmental Engineering Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI, 53233, USA.
| | - Donald R Ryan
- Department of Civil, Construction and Environmental Engineering Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI, 53233, USA.
| | - Kaushik Venkiteshwaran
- Department of Civil, Construction and Environmental Engineering Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI, 53233, USA.
| | - Patrick J McNamara
- Department of Civil, Construction and Environmental Engineering Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI, 53233, USA.
| | - Brooke K Mayer
- Department of Civil, Construction and Environmental Engineering Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI, 53233, USA.
| |
Collapse
|
35
|
Can the Application of Municipal Sewage Sludge Compost in the Aided Phytostabilization Technique Provide an Effective Waste Management Method? ENERGIES 2021. [DOI: 10.3390/en14071984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
(1) Background: sewage sludge is a by-product of wastewater treatment, which needs to be managed appropriately, e.g., in composting processes. The application of municipal sewage sludge composts (MSSCs) as a soil amendment is a potential way to effectively manage sewage sludge. (2) Methods: this paper presents the results of a vegetation pot experiment undertaken to assess the suitability of Dactylis glomerata L. and MSSC in the aided phytostabilization technique when applied on soils from an area effected by industrial pressure; this is characterized by high levels of heavy metal (HM). The contents of HMs in the test plant (the roots and above-ground parts), as well as in the soil and MSSC, were determined via an atomic spectrometry method. (3) Results: the application of MSSC positively contributed to an increased production of plant biomass and an increase in the pH in the soil. Concentrations of Cu, Cd, Pb, Zn, and Cr were higher in the roots than in the above-ground parts of Dactylis glomerata L. The addition of MSSC contributed most significantly to the considerable reduction in Ni, Pb, and Zn contents in the soil after the experiment. (4) Conclusions: MSSC can support the phytostabilization of soils contaminated with high levels of HMs.
Collapse
|