1
|
Wang P, Hu J, Zhang Q, Ma W, Tian L, Liu T, Zheng H, Han G. Risk assessment and contamination drivers for heavy metals in kindergarten resuspended dust. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137757. [PMID: 40048790 DOI: 10.1016/j.jhazmat.2025.137757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/03/2025] [Accepted: 02/24/2025] [Indexed: 04/16/2025]
Abstract
It is essential for effective health risk management to precisely evaluate the health risks (HRs) associated with heavy metals (HM) contamination in kindergarten-resuspended dust (KRD) smaller than 100 μm and to identify the driving factors of contamination. The contamination levels and drivers of HM in KRD were investigated in a typical mega-city, and the content- and source-oriented HRs associated with the bio-accessibility (BA) of HM were evaluated. The results show that KRD is heavily polluted by Cd, Cr, and Ni. Furthermore, the BA in gastric solution is higher than that in intestinal solution due to the greater solubility of HM in the acidic environment. Industrial sources are the primary contributors to carcinogenic risks, with Cr and Ni being the main contributors. Notably, HRs based on total HM concentrations are greatly overestimated, so considering the BA of HM can provide more precise risk assessment results. Additionally, the spatial variations of Cr and Ni are primarily influenced by road density and industrial output, while the spatial variation of Cd is mainly affected by elevation, population density, and road density. This work underscores the critical importance of precisely assessing health risks and identifying the drivers of HM contamination in KRD.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, PR China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, PR China; State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jian Hu
- State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Qian Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wenmin Ma
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, PR China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, PR China; State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Liyan Tian
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Tingyi Liu
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, PR China
| | - Houyi Zheng
- China National Administration of Coal Geology, Beijing 100038, PR China
| | - Guilin Han
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, PR China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
2
|
Han X, Wang J, Xiong Z, Li S, Jing J, Wang L, Liang T. Spatial and ecological health impacts of potentially toxic elements in road dust from long-term mining activities: A case study of the Bayan Obo deposit. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137595. [PMID: 39955990 DOI: 10.1016/j.jhazmat.2025.137595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/26/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
The long-term impacts of mining activities at the Bayan Obo deposit on potentially toxic elements (PTEs) in road dust remain insufficiently understood. This study aims to enrich knowledge in this area by investigating the spatial and eco-health impacts of PTEs in both bulk road dust (BRD) and resuspended road dust (RRD) from mining. An integrated approach combining Monte Carlo simulations with multiple statistical and geostatistical methods was used to quantify mining-related impacts. The findings revealed that Cd was the most polluted element. Concentrations of Cd, Mo, Pb and Zn were notably higher near the mine and decreased with increasing distance, with mining activities directly contributing over 20 % to these PTEs. Moderate and considerable eco-risks were identified for BRD and RRD, respectively, primarily driven by Cd and Mo, with higher risks closer to the mine. While non-carcinogenic risks were negligible, carcinogenic risks for adults required attention. Mining-related sources accounted for over 30 % of eco-risks but less than 10 % of health risks. This research integrates multiple methods, providing a more comprehensive understanding of the spatial and eco-health impacts of mining activities on PTEs in road dust. These findings offer critical insights and guidance for managing similar environmental challenges in other mining regions.
Collapse
Affiliation(s)
- Xiaoxiao Han
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhunan Xiong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shun Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Jing
- School of Geographic and Environmental Sciences, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Dong J, Li X, Zhang Y, Zheng X, Zhang S, Zhou Q, He F, Shi D, Jiang Y, Shen H, Zhang X, Ma G, Yun J, Yan X. Lead seasonality: Affect children's blood lead levels and implication for lead exposure prevention. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137349. [PMID: 39922071 DOI: 10.1016/j.jhazmat.2025.137349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 02/10/2025]
Abstract
Lead seasonality attributed to the patterns of Pb variation in the natural environment should be considered in the Pb risk analysis and related to the seasonality evident in humans. In this study, we integrate the Xi'an soil and dust lead seasonality data (554 surface soil samples and 554 road dust samples in three seasons) to evaluate the seasonal lead burden on children and propose the implications for children's lead exposure prevention strategies considering the lead seasonality and the influences from urban land use and children's living environment. The results showed that most seasonal variation patterns of soil and dust Pb are observed in winter (cold season), which coincided with the observation of higher children's blood lead levels in winter, although the strong correlation coefficients between children's blood lead levels (BLLs) and soil/dust Pb are observed in summer. The combinations of meteorological factors and anthropogenic pollutant emission strongly determine the metal seasonal variations. Those arrays of evidence suggest that lead seasonality is multifactorial within the environment and humans. Land uses and living environments such as old residential areas, heavy traffic, and fewer green parks, etc. have a significant impact on the increase of children's BLLs. Lead exposure prevention is proposed by BLLs warning and effective measure of reduction ≤ 50 μm soil/dust size fraction in winter.
Collapse
Affiliation(s)
- Jie Dong
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; School of Business Administration, Lanzhou University of Finance and Economics, Lanzhou 730101, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.
| | - Yu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xueming Zheng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Shuang Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Qishang Zhou
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Feng He
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Danqian Shi
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Yueheng Jiang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - He Shen
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Ge Ma
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Jiang Yun
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xiangyang Yan
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| |
Collapse
|
4
|
Liu R, Liu L, Liu Y, Wang L. Comprehensive evaluation of antibiotic pollution in a typical tributary of the Yellow River, China: Source-specific partitioning and fate analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137294. [PMID: 39862781 DOI: 10.1016/j.jhazmat.2025.137294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/12/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
The partitioning and migrating of antibiotic residues pose a considerable pollution to the river environment. However, a source-specific approach for quantifying the fate of antibiotics is lacking. To further elucidate the migration behavior of antibiotics from different pollution sources in aquatic environments, we introduced a source-specific partition coefficient (S-Kp) based on Positive Matrix Factorization (PMF) model to improve the multimedia model. This study identified six sources of antibiotic pollution in the water and sediment of the Fenhe River. Farmland drainage contributed 2.6 times more antibiotics to sediment than to surface water, whereas livestock sources contributed 0.3 times less to sediment than to water. High S-Kp values were primarily obtained from livestock, aquaculture, and farmland drainage pollution sources, with an average S-Kp value exceeding 200 L/kg. Sulfaquinoxaline (SQX) in sulfonamides (SAs) from livestock sources exhibited the highest S-Kp value of 34,740.04 L/kg. The predicted environmental concentrations indicated that almost 99 % of the antibiotics from the six sources remained in the water phase, with the highest contribution (99.9 %) of azithromycin (AZM) from livestock, pharmaceutical wastewater, and domestic sewage. This study provides novel insights into the migration of antibiotics from source-specific partitions in multimedia environments of watersheds.
Collapse
Affiliation(s)
- Ruimin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China.
| | - Lu Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Yue Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Linfang Wang
- Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Jinzhong 030600, China
| |
Collapse
|
5
|
Toledo EFV, Simões IF, de Farias MT, Minho LAC, Conceição JDL, dos Santos WNL, de Mesquita PRR, Júnior ADFS. A Comprehensive Review of the Harmful Compounds in Electronic Cigarettes. TOXICS 2025; 13:268. [PMID: 40278584 PMCID: PMC12031152 DOI: 10.3390/toxics13040268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
Electronic cigarettes (e-cigarettes) are devices designed to vaporize a liquid solution, offering an alternative to traditional tobacco consumption. The identification, detection, and analysis of the compounds present in these devices are crucial for understanding their impacts on health and the environment. Numerous studies have identified a diverse range of compounds emitted by e-cigarettes, including well-known substances such as nicotine, thermal degradation products, and other toxicants that may be harmful or carcinogenic. Although e-cigarettes are often considered an alternative to conventional smoking, they are not without risks. Recent research has increasingly focused on assessing the health impacts of e-cigarettes, integrating findings from various scientific disciplines. Two primary analytical approaches are used for the sample preparation, identification, and quantification of these compounds. The first approach focuses on aerosol analysis, utilizing techniques such as headspace static extraction and gas chromatography coupled with mass spectrometry (GC-MS). The second approach is directed towards liquid analysis, employing liquid-liquid extraction techniques and liquid chromatography (LC) systems. Given the constant publication of new research in this area, a comprehensive review that consolidates information on identified compounds, sample preparation methods, and extraction and analysis techniques is necessary to integrate current knowledge and address emerging findings.
Collapse
Affiliation(s)
- Eduard Ferney Valenzuela Toledo
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41195-001, Bahia, Brazil; (E.F.V.T.); (I.F.S.); (M.T.d.F.); (J.d.L.C.); (W.N.L.d.S.)
| | - Ivana Ferreira Simões
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41195-001, Bahia, Brazil; (E.F.V.T.); (I.F.S.); (M.T.d.F.); (J.d.L.C.); (W.N.L.d.S.)
| | - Marcel Tavares de Farias
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41195-001, Bahia, Brazil; (E.F.V.T.); (I.F.S.); (M.T.d.F.); (J.d.L.C.); (W.N.L.d.S.)
- Institute of Chemistry, Federal University of Bahia (UFBA), Salvador 40170-115, Bahia, Brazil;
| | | | - Jaquelide de Lima Conceição
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41195-001, Bahia, Brazil; (E.F.V.T.); (I.F.S.); (M.T.d.F.); (J.d.L.C.); (W.N.L.d.S.)
| | - Walter Nei Lopes dos Santos
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41195-001, Bahia, Brazil; (E.F.V.T.); (I.F.S.); (M.T.d.F.); (J.d.L.C.); (W.N.L.d.S.)
- Institute of Chemistry, Federal University of Bahia (UFBA), Salvador 40170-115, Bahia, Brazil;
| | - Paulo Roberto Ribeiro de Mesquita
- Secretariat of Agriculture, Livestock, Irrigation, Fisheries and Aquaculture of the Government of the State of Bahia (SEAGRI), Agricultural Technology Center of the State of Bahia, Salvador 40170-110, Bahia, Brazil;
| | - Aníbal de Freitas Santos Júnior
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41195-001, Bahia, Brazil; (E.F.V.T.); (I.F.S.); (M.T.d.F.); (J.d.L.C.); (W.N.L.d.S.)
- Institute of Chemistry, Federal University of Bahia (UFBA), Salvador 40170-115, Bahia, Brazil;
| |
Collapse
|
6
|
Xu X, Liu Y, Liu Q, Gui D, Cui B, Chen X, Abd-Elmabod SK. Spatial distribution characteristics and risk assessment of heavy metals in soils of Southern Xinjiang oases. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:395. [PMID: 40087190 DOI: 10.1007/s10661-025-13816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
The oasis is the most important territorial system of human-earth relationships in the hyper-arid zone. With the socioeconomic development, increasingly serious environmental problems have occurred in the oases. But current research major focus on the soil water balance of oases while ignore the spatial characteristics and risks of heavy metals in soils. Therefore, taking Southern Xinjiang, a typical hyper-arid zone, as a case study site, we collected soil samples from 15 major oases in the region and analyzed the spatial characteristics and risks of eight heavy metals (Cr, Ni, Cu, Zn, As, Cd, Pb, Hg). Through spatial autocorrelation analysis, the contamination index method, the geoaccumulation index method, and risk assessment methods, the analysis results show that (1) the overall concentration of soil heavy metals in the oases of Southern Xinjiang is low and relatively uniformly distributed, and there is a small-scale aggregation. (2) The eight heavy metals in the study area exhibit significant spatial distribution differences, with varying concentrations, but none exceed the risk screening values. The content of 8 heavy metals in the soil of the Southern Xinjiang oasis ranges from 0.01 to 62.73 mg/kg, in descending order of Zn > Cr > Ni > Cu > Pb > As > Cd > Hg. Among them, Zn, Cr, and Ni have the highest concentrations, while Cd, As, and Pb show significant deviations from background values. (3) Except for Cd and Hg, there is no overall ecological risk from soil heavy metals in the soils of most Southern Xinjiang oases. (4) None of the oasis soils in the study area have shown non-carcinogenic risks from heavy metals, but there are some carcinogenic risks for children, which are related to the accumulation of heavy metals and the specificity of the children's population. This study fills a key gap in soil heavy metal research in oasis areas, offering valuable data for future research and policy. Future work should focus on remediation technologies like phytoremediation and microbial treatments, along with targeted policies to reduce pollution risks, especially for vulnerable populations.
Collapse
Affiliation(s)
- Xinlong Xu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation & Research for Desert Grassland Ecosystem in Xinjiang, Cele, 848300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunfei Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Cele National Station of Observation & Research for Desert Grassland Ecosystem in Xinjiang, Cele, 848300, China.
| | - Qi Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation & Research for Desert Grassland Ecosystem in Xinjiang, Cele, 848300, China
| | - Dongwei Gui
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation & Research for Desert Grassland Ecosystem in Xinjiang, Cele, 848300, China
| | - Bochao Cui
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation & Research for Desert Grassland Ecosystem in Xinjiang, Cele, 848300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaonan Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation & Research for Desert Grassland Ecosystem in Xinjiang, Cele, 848300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sameh Kotb Abd-Elmabod
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Soils and Water Use Department, Agricultural and Biological Research Institute, National Research Centre, Cairo, 12622, Egypt
| |
Collapse
|
7
|
Wang Z, Hong N, Chen Y, Cheng G, Liu A, Huang X, Tan Q. Systematic evaluations of receptor models in source apportionment of particulate solids in road deposited sediments: A practical application for tracking heavy metal sources on urban road surfaces. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136912. [PMID: 39708609 DOI: 10.1016/j.jhazmat.2024.136912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Receptor models have been widely used to identify pollution sources in the urban environment. However, evaluating the accuracy of source apportionment results for road deposited sediments (RDS) using these models has not been the focus of previous studies. This study compared canonical receptor models, i.e., positive matrix factorization (PMF), Unmix, chemical mass balance (CMB) and chemical mass-balance based stochastic approach (SCMD) using six synthetic datasets generated from real-world source profiles, and three error evaluation indicators (ie., relative error (RE), relative prediction error (RPE), and symmetric mean absolute percentage error (SMAPE)) were employed. The SCMD model showed more stable and accurate results, with ranges from 8.48 % - 30.76 %, 16.32-32.34 %, and 7.81-24.55 % of RE, RPE, and SMAPE, respectively. SCMD was then applied for tracking Pb, Zn, Cr, Cu, Ni, and Mn on urban road surfaces in Guangzhou, China. The results showed that vehicle exhaust, tire wear, roadside soil, and brake wear contributed 50.15 %, 41.15 %, 6.84 %, and 1.86 % of the mass of particulate solids, respectively; vehicle exhaust contributed more than half of these six heavy metals, particularly Cr and Ni. These findings provide scientific support for the effective selection of appropriate receptor models for source apportionment in RDS.
Collapse
Affiliation(s)
- Zicheng Wang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Nian Hong
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yushan Chen
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Guanhui Cheng
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - An Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaowu Huang
- Department of Environmental Science and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Qian Tan
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Ale TO, Ololade IA, Ogunribido TH, Faseki OE, Gideon M. Assessment of groundwater quality and soil properties in recharge and discharge areas of a basement environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6904-6921. [PMID: 40025332 DOI: 10.1007/s11356-025-36117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
This study examined the interaction between soil and groundwater in a recharge and discharge areas of Akungba-Akoko, Southwestern Nigeria. Ten water samples (R1-R5 from the recharge and D6-D10 from the discharge areas) and ten soil samples from trial pits were collected and analyzed for hydrochemical parameters (Ca2+, Mg2+, K+, Na+, Cl+, SO42+, NO3-, PO43-, Fe, Zn, and Pb) and geotechnical investigation. Ten Schlumberger vertical electrical sounding (VES) were carried out to determine the subsurface resistivity distribution. The concentrations of all the hydrochemical parameters including Ca2+ (0.06-0115 mg/L), Mg2+ (0.05-0.099 mg/L), K+ (0.021-0.042 mg/L), Cl- (3.778-9.885 mg/L), Zn (0.01-0.025 mg/L), and Pb (0.003-0.004 mg/L) were within the WHO stipulated standards. Geotechnical tests revealed that the soil was sandy-clay loam with a subgrade rating of A-2-6 or A-2-7 and medium compressibility, indicating the soil was suitable for agricultural purposes. Grain size analysis showed that the sand content of the soil (average = 48.2%) is ideal for agriculture. The VES model revealed four lithologic layers with four curve types (HA, AA, AK, and HK). The wells were located in clayey to sandy-rich weathered layer (66.9-794.4 Ωm) with an average thickness of 11.4 m. The thin layer was responsible for the observed variations in groundwater during the dry season. Two viable fracture zones were identified with good potential. The health risk assessment, drinking water, and irrigation indices (WQI, SAR, SSP, KR, and MH) indicated that the groundwater in both areas was good for drinking and irrigation purposes, with no associated health risks. Nine pairwise parameters were identified with a strong correlation between changes in groundwater quality (sodium content) and the resistivity response of the soil. Continued monitoring of groundwater quality and soil resistivity response will provide effective groundwater management strategies.
Collapse
Affiliation(s)
- Temitayo Olamide Ale
- Department of Earth Sciences, Adekunle Ajasin University, Akungba-Akoko, 001, Ondo State, Nigeria.
| | - Isaac Ayodele Ololade
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, 001, Ondo State, Nigeria
| | | | - Oluyemi Emmanuel Faseki
- Department of Earth Sciences, Adekunle Ajasin University, Akungba-Akoko, 001, Ondo State, Nigeria
| | - Moses Gideon
- Department of Earth Sciences, Adekunle Ajasin University, Akungba-Akoko, 001, Ondo State, Nigeria
| |
Collapse
|
9
|
Haddadi Y, Chahlaoui A, Taouraout A, Belkhiri A. Assessing blood metal levels in house sparrows (Passer domesticus) across urban and rural habitats in Meknes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:4707-4717. [PMID: 39883355 DOI: 10.1007/s11356-025-35997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
This study investigates the concentration of heavy metals lead (Pb), cadmium (Cd), and zinc (Zn) in the blood of house sparrows (Passer domesticus) across various urban habitats in Meknes, Morocco. Fifty adult sparrows were captured from five distinct sites, including industrial, high-traffic, and rural areas. Blood samples were specifically analyzed for Pb, Cd, and Zn using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). Significant variations in metal concentrations were observed across the different sites, with the highest levels found in the industrial zone: lead (Pb) at 336.02 µg/L, cadmium (Cd) at 12.28 µg/L, and zinc (Zn) at 1736.09 µg/L. Principal component analysis (PCA) and K-means clustering identified three distinct pollution clusters: Cluster 0 (high Zn, low Pb and Cd), Cluster 1 (moderate levels of all metals), and Cluster 2 (high levels of all metals). These findings emphasize the ecological and health risks posed by urban pollution, and demonstrate the value of house sparrows as effective bioindicators.
Collapse
Affiliation(s)
- Youssef Haddadi
- Natural Resources Management and Development Team, Environment and Health Laboratory, Department of Biology, Faculty of Sciences, Moulay Ismaïl University, Zitoune, B.P.11201, Meknes, Morocco.
| | - Abdelkader Chahlaoui
- Natural Resources Management and Development Team, Environment and Health Laboratory, Department of Biology, Faculty of Sciences, Moulay Ismaïl University, Zitoune, B.P.11201, Meknes, Morocco
| | - Aziz Taouraout
- Natural Resources Management and Development Team, Environment and Health Laboratory, Department of Biology, Faculty of Sciences, Moulay Ismaïl University, Zitoune, B.P.11201, Meknes, Morocco
| | - Abdelkhalek Belkhiri
- Natural Resources Management and Development Team, Environment and Health Laboratory, Department of Biology, Faculty of Sciences, Moulay Ismaïl University, Zitoune, B.P.11201, Meknes, Morocco
| |
Collapse
|
10
|
Amarloei A, Nourmoradi H, Nazmara S, Heidari M, Mohammadi-Moghadam F, Mazloomi S. Toxic heavy metals of agricultural products in developing countries and its human health risk assessment: A study from Iran. Heliyon 2025; 11:e40886. [PMID: 39802024 PMCID: PMC11720943 DOI: 10.1016/j.heliyon.2024.e40886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Food toxicity through heavy metals, particularly from cereal consumption, poses significant threats to human health. This study studied various toxic heavy metals (Pb, As, Cr, Cd, Co, Hg, and Ag) in cereal products and their human health risk assessment in Ilam province, Iran. This study analyzed 30 samples of the most commonly cultivated cereals (wheat, rice, corn, pea, and lentil) in Ilam province. ICP-MS was used to measure the concentrations of selected toxic heavy metals. According to the obtained results, only the rice samples had concentrations of As and Pb that exceeded Iran's national standards. Monte Carlo simulation showed that the 95th percentile (P95th) values of hazard quotient (HQ) for As in wheat and rice, Hg in wheat, and Pb in rice were above 1. Moreover, P95th values of incremental lifetime cancer risk (ILCR) for As in wheat and rice were above 10-4 The findings showed that the consumption of wheat and rice in the Ilam province was a potential source of exposure to As, Pb, and Hg. This study recommends the necessity of monitoring heavy metals in cereal products to protect human health.
Collapse
Affiliation(s)
- Ali Amarloei
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Heshmatollah Nourmoradi
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Shahrokh Nazmara
- Department of Environmental Health Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Heidari
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fazel Mohammadi-Moghadam
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sajad Mazloomi
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
11
|
Yu B, Lu X, Wang Z, Yang Y, Lei K, Pan H. Comprehensive assessment of potential toxic elements in surface dust of community playgrounds in Xi'an, China. ENVIRONMENTAL RESEARCH 2025; 264:120386. [PMID: 39551370 DOI: 10.1016/j.envres.2024.120386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/29/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
To identify the key factors for managing and controlling potential toxic elements (PTEs) in surface dust of urban community playgrounds, this study comprehensively analyzed the content, pollution characteristics, eco-health risks, and sources of commonly concerned PTEs in surface dust of Xi'an community playgrounds. The average levels of Cd, Hg, Cu, Cr, Ba, Zn and Pb in the dust were 2.2, 0.27, 1.4 × 102, 2.1 × 102, 1.7 × 103, 2.9 × 102, 1.5 × 102 mg kg-1, respectively, exceeding the soil background values. The main sources of PTEs in the dust were natural source, mixed source of construction and weathering of entertainment facilities, traffic source, and industrial source, accounting for 24.9%, 45.7%, 18.1%, and 11.3%, respectively. The contamination and ecological risk of PTEs in the dust were elevated, and Cd and industrial source were identified as the primary contributors. The non-carcinogenic risks for different age groups were within a safe range, but the cancer risk was high, especially for toddlers and the elderly. It is worth noting that the cancer risk based on the minimum values of key exposure parameters for toddlers, preschool children, children, and teenagers has exceeded the acceptable level. According to the results of source-oriented health risk assessment, the traffic source was identified as the main contributors of health risk, and Ni was a particularly concerned PTE. These findings can provide the scientific basis for controlling PTEs pollution in urban community playgrounds and the guidance for protecting residents' health.
Collapse
Affiliation(s)
- Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
| | - Zhenze Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, 710065, China.
| | - Huiyun Pan
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| |
Collapse
|
12
|
Wen T, Cheng Y, Yuan Y, Sun R. Quantitative analysis and risk assessment of heavy metal pollution in an intensive industrial and agricultural region. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117634. [PMID: 39756178 DOI: 10.1016/j.ecoenv.2024.117634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
In recent decades, the study of heavy metal pollution has garnered significant attention owing to the advancement of industrialization. To explore the contamination of heavy metals in an intensive industrial and agricultural region in Shandong province, China, 101 surface soil samples and 80 samples of edible crop parts were collected from the vicinity of an industrial park. A positive matrix factorization-multilayer perceptron model (PMF-MLP) was established to identify the sources of heavy metals and quantify the complex relationships between pollution sources, crop types, and pollution status. Index and human health-risk methods were used to assess the heavy metal pollution. The results show that (1) lead (Pb) and cadmium (Cd) in the soil may originate from industrial-traffic mixed pollution sources in the surrounding industrial park, whereas copper (Cu) is derived from agricultural pollution sources in the southern farmland. (2) Pollution is primarily concentrated in the central and northern regions of the study area. The analysis of the PMF-MLP model indicates that human activities account for the majority (79.6 %) of the risk of associated with heavy metal pollution. Among them, industrial, traffic, and agricultural mixed pollution sources, agricultural pollution sources associated with northern livestock farms, and crop types contribute to 49.3, 24.5, and 5.80 % of the total risk, respectively. (3) The oral intake of heavy metals represents the primary route of entry into the human body. Cd and Cu are the most significant elements associated with adverse human health, with Cd and Cu contributing the most to carcinogenic and non-carcinogenic risks in both adults and children, respectively. The results will provide references for the formulation of control strategies to curb heavy metal pollution.
Collapse
Affiliation(s)
- Tao Wen
- Environment Research Institute, Shandong University, Qingdao, China
| | - Yibo Cheng
- Environment Research Institute, Shandong University, Qingdao, China
| | - Yali Yuan
- Environment Research Institute, Shandong University, Qingdao, China
| | - Ruilian Sun
- Environment Research Institute, Shandong University, Qingdao, China.
| |
Collapse
|
13
|
Pang K, Luo K, Zhang S, Hao L. Source-oriented health risk assessment of groundwater based on hydrochemistry and two-dimensional Monte Carlo simulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135666. [PMID: 39217947 DOI: 10.1016/j.jhazmat.2024.135666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/02/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Accurately assessing the health risks posed by major contaminants is essential for protecting groundwater. However, the complexity of pollution sources and the uncertainty of parameters pose challenges for quantitative health risk assessment. In this study, a source-oriented groundwater risk evaluation process was improved by screening key pollutants, employing a combined hydrochemical and positive matrix factorization (PMF) approach for source apportionment, and incorporating two-dimensional Monte Carlo simulation for risk characterization. The application of this process to groundwater assessment in Central Jiangxi Province identified NO3-, F-, Se and Mn as the key pollutants. The pollution sources were anthropogenic activities, rock dissolution, regional geological processes, and ion exchange. Anthropogenic sources contributed 36.8 % and 28.8 % of the pollution during the wet season and dry season, respectively, and accounted for more than half of the health risks. NO3- from anthropogenic sources was the primary controlling pollutant. Additionally, the risk assessment indicated that children were at the highest health risk during the dry season, with ingestion rate suggested to be controlled below 1.062 L·day-1 to make the health risk within an acceptable range. The improved assessment methodology could provide more accurate results and recommended intakes.
Collapse
Affiliation(s)
- Kuo Pang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunli Luo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shixi Zhang
- School of Geosciences and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Litao Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| |
Collapse
|
14
|
Cui S, Yu W, Han X, Hu T, Yu M, Liang Y, Guo S, Ma J, Teng L, Liu Z. Factors influencing the distribution, risk, and transport of microplastics and heavy metals for wildlife and habitats in "island" landscapes: From source to sink. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134938. [PMID: 38901262 DOI: 10.1016/j.jhazmat.2024.134938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Microplastics (MPs) and heavy metals (HMs) are important pollutants in terrestrial ecosystems. In particular, the "island" landscape's weak resistance makes it vulnerable to pollution. However, there is a lack of research on MPs and HMs in island landscapes. Therefore, we used Helan Mountain as the research area. Assess the concentrations, spatial distribution, ecological risks, sources, and transport of MPs and HMs in the soil and blue sheep (Pseudois nayaur) feces. Variations in geographical distribution showed a connection between human activity and pollutants. Risk assessment indicated soil and wildlife were influenced by long-term pollutant polarization and multi-element inclusion (Igeo, Class I; PHI, Class V; RI (MPs), 33 % Class II, and 17 % Class IV; HI = 452.08). Source apportionment showed that tourism and coal combustion were the primary sources of pollutants. Meanwhile, a new coupling model of PMF/Risk was applied to quantify the source contribution of various risk types indicated transportation roads and tourism sources were the main sources of ecological and health risks, respectively. Improve the traceability of pollution source risks. Furthermore, also developed a novel tracing model for pollutant transportation, revealing a unique "source-sink-source" cycle in pollutant transportation, which provides a new methodological framework for the division of pollution risk areas in nature reserves and the evaluation of spatial transport between sources and sinks. Overall, this study establishes a foundational framework for conducting comprehensive risk assessments and formulating strategies for pollution control and management.
Collapse
Affiliation(s)
- Shuang Cui
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Wei Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - XingZhi Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianhua Hu
- Ningxia Helan Mountain National Nature Reserve Administration, Yinchuan 750021, China
| | - Mengqi Yu
- Forest Pest Control and Quarantine Station of Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yongliang Liang
- Ningxia Helan Mountain National Nature Reserve Administration, Yinchuan 750021, China
| | - Songtao Guo
- The College of Life Sciences, Northwest University, Shaanxi Key Laboratory for Animal Conservation, Xi'an 710069, China
| | - Jinlian Ma
- Inner Mongolia Helan Mountain National Natural Nature Reserve Administration, Alxa League, 750306, China
| | - Liwei Teng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin 150040, China.
| | - Zhensheng Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin 150040, China.
| |
Collapse
|
15
|
Zhang Y, Lu X, Han X, Zhu T, Yu B, Wang Z, Lei K, Yang Y, Deng S. Determination of contamination, source, and risk of potentially toxic metals in fine road dust in a karst region of Southwest China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:403. [PMID: 39196318 DOI: 10.1007/s10653-024-02191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Understanding the pollution situation of potentially toxic metals (PTMs) in fine road dust (FRD) in emerging industrialized cities and identifying priority control factors is crucial for urban environmental management, resident health protection, and pollution control. This study conducted a comprehensive investigation on PTMs pollution in FRD in Zunyi, a representative emerging industrialized city in the karst region of southwestern China. The average contents of Ni, Cr, Mn, Cu, Zn, Ba, Pb, V, and Co in the FRD were 43.2, 127.0, 1232.1, 134.4, 506.6, 597.8, 76.1, 86.8, and 16.2 mg kg-1, respectively, which were obviously higher than the corresponding background levels of the local soil except for V and Co. The comprehensive pollution level of the determined PTMs in the FRD was very high, primarily caused by Zn and Cu. The sources of PTMs in Zunyi FRD were traffic, industrial, construction, and natural sources, accounting for 38.0, 23.7, 21.9, and 16.4% of the total PTMs content, respectively. The PTMs in Zunyi FRD exhibited a low to moderate overall ecological risk level, mainly contributed by Cu and traffic source. The cancer risks of PTMs in Zunyi FRD were high for all populations. The non-carcinogenic risk of PTMs in Zunyi FRD was acceptable for adults, but cannot be ignored for children. According to the source-specific probabilistic health risk estimation results, the priority control source is industrial source and the priority control PTM is Cr. Local governments need to give more attention to the carcinogenic risks and health hazards posed by PTMs in the FRD.
Collapse
Affiliation(s)
- Yingsen Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiufeng Han
- College of Resources and Environment, Baotou Normal College, Baotou, 014030, China.
| | - Tong Zhu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhenze Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, 710065, China
| | - Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Sijia Deng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
16
|
Wang Y, Cui T, Niu K, Ma H. Root cell wall polysaccharides and endodermal barriers restrict long-distance Cd translocation in the roots of Kentucky bluegrass. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116633. [PMID: 38941659 DOI: 10.1016/j.ecoenv.2024.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Soil Cd pollution is a significant environmental issue faced by contemporary society. Kentucky bluegrass is considered a potential phytoremediation species, as some varieties have excellent cadmium (Cd) tolerance. However, the mechanisms of Cd accumulation and transportation in Kentucky bluegrass are still not fully understood. The Cd-tolerant Kentucky bluegrass cultivar 'Midnight' (M) exhibits lower Cd translocation efficiency and a higher leaf Cd concentration compared to the Cd-sensitive cultivar 'Rugby II' (R). We hypothesized that Cd translocation from roots to shoots in cultivar M is hindered by the endodermal barriers and cell wall polysaccharides; hence, we conducted Cd distribution, cytological observation, cell wall component, and transcriptomic analyses under Cd stress conditions using the M and R cultivars. Cd stress resulted in the thickening of the endodermis and increased synthesis of cell wall polysaccharides in both the M and R cultivars. Endodermis development restricted the radical transport of Cd from the root cortex to the stele, while the accumulation of cell wall polysaccharides promoted the binding of Cd to the cell wall. These changes further inhibited the long-distance translocation of Cd from the roots to the aerial parts. Furthermore, the M cultivar exhibited limited long-distance Cd translocation efficiency compared to the R cultivar, which was attributed to the enhanced development of endodermal barriers and increased Cd binding by cell wall polysaccharides. This study provides valuable insights for screening high Cd transport efficiency in Kentucky bluegrass based on anatomical structure and genetic modification.
Collapse
Affiliation(s)
- Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Ting Cui
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
17
|
Ale TO, Ogunribido TH, Ademila O, Akingboye AS. Soil–water contamination assessment due to dumpsite-impacted leachates in a metamorphic environment. JOURNAL OF AFRICAN EARTH SCIENCES 2024; 216:105312. [DOI: 10.1016/j.jafrearsci.2024.105312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Akbarimorad S, Sobhanardakani S, Hosseini NS, Martín DB. Pinus eldarica (L.) bark as urban atmospheric trace element pollution bioindicator: pollution status, spatial variations, and quantitative source apportionment based on positive matrix factorization receptor model. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:771. [PMID: 39085500 DOI: 10.1007/s10661-024-12929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
In this study, a total of 180 Pinus eldarica bark samples were collected from different regions of Hamedan megacity, Iran, in 2023, and contents of Cd, Cr, Cu, Mn, Ni, Pb, and Zn in the samples were determined using ICP-OES. The results illustrated that the average contents of all the analyzed elements were greater than those in the background contents, which presumably demonstrated anthropogenic sources of these potentially toxic elements (PTEs). The greatest concentrations of the analyzed PTEs for different functional areas were observed in specimens collected from commercial or industrial areas, indicating the impact of human entries. The I-geo values were in the range of "unpolluted to moderately polluted" to "moderately to heavily polluted", PI showed "moderate to very high pollution", and PLI reflected high to very high pollution levels for the whole study area. Additionally, the cumulative mean value of ecological risk (RI) was found to be 152, demonstrating moderate ecological risk across the study area. The results of positive matrix factorization (PMF) showed that the PTE contamination in the air of Hamedan could mainly have an anthropogenic origin (82.7%) and that the traffic emissions as the primary pollution source (33.6%) make the highest contribution to the PTE pollution and ecological risks in the study area. In residential areas, demolition and construction activities could be considered the main sources of PTEs, while in commercial and industrial areas traffic emissions and industrial emissions, could be regarded as the main sources of such pollution, respectively. In conclusion, this study provides a useful approach to identifying the sources and contributions of the toxic elements in different functional areas and can inform future endeavors that aim at managing and controlling metal element pollution.
Collapse
Affiliation(s)
- Shima Akbarimorad
- Department of Energy and Fuels, School of Mining and Energy Engineering, Universidad Politécnica de Madrid, 28003, Madrid, Spain
| | - Soheil Sobhanardakani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
| | - Nayereh Sadat Hosseini
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - David Bolonio Martín
- Department of Energy and Fuels, School of Mining and Energy Engineering, Universidad Politécnica de Madrid, 28003, Madrid, Spain
| |
Collapse
|
19
|
Yang Y, Lu X, Yu B, Wang Z, Wang L, Lei K, Zuo L, Fan P, Liang T. Exploring the environmental risks and seasonal variations of potentially toxic elements (PTEs) in fine road dust in resource-based cities based on Monte Carlo simulation, geo-detector and random forest model. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134708. [PMID: 38795490 DOI: 10.1016/j.jhazmat.2024.134708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
The environmental pollution caused by mineral exploitation and energy consumption poses a serious threat to ecological security and human health, particularly in resource-based cities. To address this issue, a comprehensive investigation was conducted on potentially toxic elements (PTEs) in road dust from different seasons to assess the environmental risks and influencing factors faced by Datong City. Multivariate statistical analysis and absolute principal component score were employed for source identification and quantitative allocation. The geo-accumulation index and improved Nemerow index were utilized to evaluate the pollution levels of PTEs. Monte Carlo simulation was employed to assess the ecological-health risks associated with PTEs content and source orientation. Furthermore, geo-detector and random forest analysis were conducted to examine the key environmental variables and driving factors contributing to the spatiotemporal variation in PTEs content. In all PTEs, Cd, Hg, and Zn exhibited higher levels of content, with an average content/background value of 3.65 to 4.91, 2.53 to 3.34, and 2.15 to 2.89 times, respectively. Seasonal disparities were evident in PTEs contents, with average levels generally showing a pattern of spring (winter) > summer (autumn). PTEs in fine road dust (FRD) were primarily influenced by traffic, natural factors, coal-related industrial activities, and metallurgical activities, contributing 14.9-33.9 %, 41.4-47.5 %, 4.4-8.3 %, and 14.2-29.4 % to the total contents, respectively. The overall pollution and ecological risk of PTEs were categorized as moderate and high, respectively, with the winter season exhibiting the most severe conditions, primarily driven by Hg emissions from coal-related industries. Non-carcinogenic risk of PTEs for adults was within the safe limit, yet children still faced a probability of 4.1 %-16.4 % of unacceptable risks, particularly in summer. Carcinogenic risks were evident across all demographics, with children at the highest risk, mainly due to Cr and smelting industrial sources. Geo-detector and random forest model indicated that spatial disparities in prioritized control elements (Cr and Hg) were primarily influenced by particulate matter (PM10) and anthropogenic activities (industrial and socio-economic factors); variations in particulate matter (PM10 and PM2.5) and meteorological factors (wind speed and precipitation) were the primary controllers of seasonal disparities of Cr and Hg.
Collapse
Affiliation(s)
- Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Zhenze Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Ling Zuo
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Peng Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
20
|
Dantas Arouca NGF, Moreira LFF, Moraes EP, do Nascimento Batista JA. Spatio-temporal variability of potentially toxic elements' pollution in road-deposited sediments according to health risk thresholds: a meta-analysis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:258. [PMID: 38886307 DOI: 10.1007/s10653-024-02038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
Road deposited sediments (RDS) are important sinks of potentially toxic elements (PTEs), which may have a significant impact on human health. A systematic review of published papers on the PTEs occurrence in RDS was carried out. The main goal was to assess the global RDS contamination by PTEs and human health risks linked with anthropogenic activities. A systematic search was made to collect information about the most cited PTEs in the published literature and perform a statistical analysis. Subsequently, health risks were assessed for 35 different areas worldwide. PTE concentrations showed high variability, and means were multiple times higher than the corresponding consensus-based threshold effect concentrations (5.2-, 10.3-, 5.3-, 3-, 7.3-, and 3.6-fold higher for Zn, Pb, Ni, Cr, Cu, and Cd, respectively). PTEs concentrations were ranked as Zn > Pb > Cu > Mn > Cr > Ni > Cd. Non carcinogenic risks followed the trend Pb > Cu > Zn > Cd. Lead is responsible for the highest significant non carcinogenic risk to human health. Unacceptable exposition to carcinogenic risks is present in most areas. The top carcinogenic risk areas were Singapore > Beijing > Yixing > Shanghai > Zhuzhou for adult male, Dresden > Singapore > Ulsan > Huludao for adult females, and Dresden > Singapore > Ulsan > Huludao for children. Highest chromium and nickel carcinogenic risks occurred in Singapore, Cd in Dresden, and Cu in Huludao. Highest RDS contamination was seen in industrial areas due to pollutants deposition. Highest Zn, Cu, Cd, and Pb concentrations occur in densely urbanized areas due to heavy-duty vehicular exhausts.
Collapse
Affiliation(s)
| | - Lucio Flavio Ferreira Moreira
- Department of Civil and Environmental Engineering, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil.
| | - Edgar Perin Moraes
- Chemometrics and Biological Chemistry Group (CBC), Institute of Chemistry, UFRN, Natal, RN, Brazil
| | | |
Collapse
|
21
|
Amarloei A, Mirzaei SA, Noorimotlagh Z, Nazmara S, Nourmoradi H, Fard NJH, Heidari M, Mohammadi-Moghadam F, Mazloomi S. Human health risk assessment of toxic heavy metals in summer crops and vegetables: a study in Ilam Province, Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:139-148. [PMID: 38887759 PMCID: PMC11180035 DOI: 10.1007/s40201-023-00881-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/25/2023] [Indexed: 06/20/2024]
Abstract
Purpose The presence of toxic heavy metals (HMs) in agricultural crops can be considered as a noteworthy threat for consumers. The aim of this study was to assess the content of HMs (Pb, As, Cr, Cd, Co, Hg, and Ag) and their potential health risk in summer crops and vegetables (watermelon, cantaloupe, cucumber, melon, tomato, onion, potato, raw and stewed vegetables) in Ilam province, Iran. Methods Totally, 31 crop samples were collected from local farms during the 2019 harvest season and the elements content were evaluated using inductively coupled plasma-mass spectrometry (ICP-MS). The non-carcinogenic health risk of HMs to the adults and children was estimated by Monte Carlo simulation method and target hazard quotients (THQs). Results In general, the results showed that the concentration of Cr in the studied agricultural crops was higher than other HMs. As well as, the carcinogenic risk (CR) obtained for adults and children were more than the acceptable range for As. Also, CR for As in raw vegetable was the most (8.19E-1) and violated the threshold risk limit. The total carcinogenic risk of HMs in children was higher than that in adults. Conclusion These results suggest that the agricultural crops were not safe for human consumption with potential risks associated. Due to the possible health effects of such products consumption, proper action should be taken to avoid chronic exposure, prevention of further pollution and consequent adverse health implications.
Collapse
Affiliation(s)
- Ali Amarloei
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Seyed Abbas Mirzaei
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Zahra Noorimotlagh
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Shahrokh Nazmara
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Heshmatollah Nourmoradi
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Mohsen Heidari
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fazel Mohammadi-Moghadam
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sajad Mazloomi
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
22
|
Zhang Y, Frimpong AJ, Tang J, Olayode IO, Kyei SK, Owusu-Ansah P, Agyeman PK, Fayzullayevich JV, Tan G. An explicit review and proposal of an integrated framework system to mitigate the baffling complexities induced by road dust-associated contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123957. [PMID: 38631446 DOI: 10.1016/j.envpol.2024.123957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/03/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Road dust-associated contaminants (RD-AC) are gradually becoming a much thornier problem, as their monotonous correlations render them carcinogenic, mutagenic, and teratogenic. While many studies have examined the harmful effects of road dust on both humans and the environment, few studies have considered the co-exposure risk and gradient outcomes given the spatial extent of RD-AC. In this spirit, this paper presents in-depth elucidation into the baffling complexities induced by both major and emerging contaminants of road dust through a panorama-to-profile up-to-date review of diverse studies unified by the goal of advancing innovative methods to mitigate these contaminants. The paper thoroughly explores the correlations between RD-AC and provides insights to understand their potential in dispersing saprotrophic microorganisms. It also explores emerging challenges and proposes a novel integrated framework system aimed at thermally inactivating viruses and other pathogenic micro-organisms commingled with RD-AC. The main findings are: (i) the co-exposure risk of both major and emerging contaminants add another layer of complexity, highlighting the need for more holistic framework strategies, given the geospatial morphology of these contaminants; (ii) road dust contaminants show great potential for extended prevalence and severity of viral particles pollution; (iii) increasing trend of environmentally persistent free radicals (EPFRs) in road dust, with studies conducted solely in China thus far; and (iv) substantial hurdle exists in acquiring data concerning acute procedural distress and long-term co-exposure risk to RD-ACs. Given the baffling complexities of RD-ACs, co-exposure risk and the need for innovative mitigation strategies, the study underscore the significance of establishing robust systems for deep road dust contaminants control and future research efforts while recognizing the interconnectivity within the contaminants associated with road dust.
Collapse
Affiliation(s)
- Yuxiao Zhang
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China
| | - Alex Justice Frimpong
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China; Department of Automotive and Agricultural Mechanization Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Jingning Tang
- National Special Purpose Vehicle Product Quality Inspection and Testing Center, Suizhou City, Hubei Province, China
| | - Isaac Oyeyemi Olayode
- Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, P. O. Box 2028, Johannesburg, South Africa
| | - Sampson Kofi Kyei
- Department of Chemical Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Prince Owusu-Ansah
- Department of Automotive and Agricultural Mechanization Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Philip Kwabena Agyeman
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China
| | - Jamshid Valiev Fayzullayevich
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China; School of Automobile and Automotive Economy, Tashkent State Transport University, Tashkent, Uzbekistan
| | - Gangfeng Tan
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China.
| |
Collapse
|
23
|
Chen L, Fang L, Yang X, Luo X, Qiu T, Zeng Y, Huang F, Dong F, White JC, Bolan N, Rinklebe J. Sources and human health risks associated with potentially toxic elements (PTEs) in urban dust: A global perspective. ENVIRONMENT INTERNATIONAL 2024; 187:108708. [PMID: 38703447 DOI: 10.1016/j.envint.2024.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Long-term exposure to urban dust containing potentially toxic elements (PTEs) poses detrimental impacts on human health. However, studies estimating human health risks in urban dusts from a global perspective are scarce. We evaluated data for twelve PTEs in urban dusts across 59 countries from 463 published articles, including their concentrations, input sources, and probabilistic risks to human health. We found that 34.1 and 60.3% of those investigated urban dusts have been heavily contaminated with As and Cd, respectively. The input of PTEs was significantly correlated with economic structure due to emissions of industrial activities and traffic emissions being the major sources. Based on the Monte Carlo simulation, we found that the mean hazard index below the safe threshold (1.0) could still cause non-negligible risks to human health. Arsenic and Cr were the major PTEs threatening human health, and relatively high risk levels were observed in cities in China, Korea, Chile, Malaysia, and Australia. Importantly, our analysis suggested that PTEs threaten the health of approximately 92 million adults and 280 million children worldwide. Overall, our study provides important foundational understanding and guidance for policy decision-making to reduce the potential risks associated with PTE exposure and to promote sustainable development of urban economies.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| | - Xing Yang
- College of Ecology and Environment, Hainan University, Haikou 570100, China
| | - Xiaosan Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Fengyu Huang
- College of Environment and Resource, Xichang University, Xichang 615000, China; College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Faqin Dong
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jörg Rinklebe
- School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, University of Wuppertal, Pauluskirchstraße 7, Wuppertal 42285, Germany
| |
Collapse
|
24
|
Gopal V, Krishnamurthy RR, Indhumathi A, Sharon BTX, Priya TSD, Rathinavel K, Bharath KM, Magesh NS, Ayyamperumal R. Geochemical evaluation, ecological and human health risk assessment of potentially toxic elements in urban soil, Southern India. ENVIRONMENTAL RESEARCH 2024; 248:118413. [PMID: 38316388 DOI: 10.1016/j.envres.2024.118413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Roadside soil contamination is mostly caused by human-caused pollutant deposition. PTEs are among the many substances that are harmful for both humans and the environment. PTE concentrations in roadside soil in Chennai, southern India, have been determined in this study. To evaluate the seriousness of the threats, more environmental and geochemical indices have been applied. 83 soil samples have been obtained from the study regions and focusing on important roads. Elemental analysis has been analyzed with ED-XRF and sieve-filtered samples focused on PTEs such as arsenic, barium, cobalt, chromium, copper, iron, potassium, nickel, lead, thorium, titanium, zinc, and uranium. Significant metallic variations have been found in soil samples around roads by the investigation. The elements this study examined section ascending in the following sequence: Fe > Ti > Zn > Cr > Pb > Cu > Ni > Th > As > U > K. In the research area, the CD classification denotes high contamination, whereas the CF indices show mild to significant pollution. PLI indicates moderate to high pollution, whereas EF suggests excessive enrichment. Igeo demonstrates a range from uncontaminated to highly contaminated. PERI showed high levels in the northern study region, whereas GUFI shows several hot spots indicating moderate to severe pollution. The Hazard Index (HI) values for all metals were less than one, demonstrating the absence of non-carcinogenic risks for both adults and children. Multivariate data show natural and anthropogenic PTEs in roadside soil. In addition, a soil quality monitoring system is needed to mitigate continual contamination risks.
Collapse
Affiliation(s)
- V Gopal
- Centre for Earth and Atmospheric Sciences (CEAS), Sathyabama Institute of Science and Technology Deemed to Be University, Chennai, 600 119, Tamil Nadu, India.
| | - R R Krishnamurthy
- Department of Applied Geology, University of Madras, Guindy Campus, Chennai, 600 025, Tamil Nadu, India
| | - A Indhumathi
- Department of Applied Geology, University of Madras, Guindy Campus, Chennai, 600 025, Tamil Nadu, India
| | - Beenu T X Sharon
- Department of Applied Geology, University of Madras, Guindy Campus, Chennai, 600 025, Tamil Nadu, India
| | - T S Derlin Priya
- Department of Applied Geology, University of Madras, Guindy Campus, Chennai, 600 025, Tamil Nadu, India
| | - K Rathinavel
- Department of Applied Geology, University of Madras, Guindy Campus, Chennai, 600 025, Tamil Nadu, India
| | - K Manikanda Bharath
- Department of Civil & Environmental Engineering, National Institute of Technical Teachers Training and Research (NITTTR), (Ministry of Education, Govt. of India), Anna University, Chennai, 600 025, Tamil Nadu, India
| | - N S Magesh
- Centre for Water Resources Development and Management, Kozhikode, 673 571, Kerala, India
| | | |
Collapse
|
25
|
Li M, Zhou J, Cheng Z, Ren Y, Liu Y, Wang L, Cao L, Shen Z. Pollution levels and probability risk assessment of potential toxic elements in soil of Pb-Zn smelting areas. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:165. [PMID: 38592368 DOI: 10.1007/s10653-024-01933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Soil pollution around Pb-Zn smelters has attracted widespread attention around the world. In this study, we compiled a database of eight potentially toxic elements (PTEs) Pb, Zn, Cd, As, Cr, Ni, Cu, and Mn in the soil of Pb-Zn smelting areas by screening the published research papers from 2000 to 2023. The pollution assessment and risk screening of eight PTEs were carried out by geo-accumulation index (Igeo), potential ecological risk index (PERI) and health risk assessment model, and Monte Carlo simulation employed to further evaluate the probabilistic health risks. The results suggested that the mean values of the eight PTEs all exceeded the corresponding values in the upper crust, and more than 60% of the study sites had serious Pb and Cd pollution (Igeo > 4), with Brazil, Belgium, China, France and Slovenia having higher levels of pollution than other regions. Besides, PTEs in smelting area caused serious ecological risk (PERI = 10912.12), in which Cd was the main contributor to PREI (86.02%). The average hazard index (HI) of the eight PTEs for adults and children was 7.19 and 9.73, respectively, and the average value of total carcinogenic risk (TCR) was 4.20 × 10-3 and 8.05 × 10-4, respectively. Pb and As are the main contributors to non-carcinogenic risk, while Cu and As are the main contributors to carcinogenic risk. The probability of non-carcinogenic risk in adults and children was 84.05% and 97.57%, while carcinogenic risk was 92.56% and 79.73%, respectively. In summary, there are high ecological and health risks of PTEs in the soil of Pb-Zn smelting areas, and Pb, Cd, As and Cu are the key elements that cause contamination and risk, which need to be paid attention to and controlled. This study is expected to provide guidance for soil remediation in Pb-Zn smelting areas.
Collapse
Affiliation(s)
- Mingyue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinyang Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhiwen Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuanyang Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yawei Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Linling Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liu Cao
- Jiyuan Industrial and Urban Integration Demonstration Zone Ecological Environment Bureau, Jiyuan, 459000, China
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
26
|
Zhang L, Zhu Y, Zhang Y, Zhong J, Li J, Yang S, Ta W, Zhang Y. Characteristics, source analysis, and health risk assessment of potentially toxic elements pollution in soil of dense molybdenum tailing ponds area in central China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:129. [PMID: 38483651 DOI: 10.1007/s10653-024-01886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 03/19/2024]
Abstract
The issue of potentially toxic elements (PTEs) contamination of regional soil caused by mining activities and tailings accumulation has attracted wide attention all over the world. The East Qinling is one of the three main molybdenum mines in the world, and the concentration of PTEs such as Hg, Pb and Cu in the slag is high. Quantifying the amount of PTEs contamination in soil and identifying potential sources of contamination is vital for soil environmental management. In the present investigation, the pollution levels of 8 PTEs in the Qinling molybdenum tailings intensive area were quantitatively identified. Additionally, an integrated source-risk method was adopted for resource allocation and risk assessment based on the PMF model, the ecological risk, and the health risk assessment model. The mean concentrations of Cu, Ni, Pb, Cd, Cr, Zn, As, and Hg in the 80 topsoil samples ranged from 0.80 to 13.38 times the corresponding background values; notably high levels were observed for Pb and Hg. The source partitioning results showed that PTEs were mainly affected by four pollution sources: natural and agricultural sources, coal-burning sources, combined transport and mining industry sources, and mining and smelting sources. The health risk assessment results revealed that the risks of soil PTEs for adults are acceptable, while the risks for children exceeded the limit values. The obtained results will help policymakers to obtain the sources of PTEs of tailing ponds intensive area. Moreover, it provides priorities for the governance of subsequent pollution sources and ecological restoration.
Collapse
Affiliation(s)
- Liyuan Zhang
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China
| | - Yuxi Zhu
- School of Water and Environment, Chang'an University, Xi'an, China
| | - Yanan Zhang
- School of Water and Environment, Chang'an University, Xi'an, China
| | - Jiahao Zhong
- School of Water and Environment, Chang'an University, Xi'an, China
| | - Jiangwei Li
- School of Water and Environment, Chang'an University, Xi'an, China
| | - Shitong Yang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Weiyuan Ta
- Shaanxi Environmental Investigation and Assessment Center, Xi'an, China
| | - Yue Zhang
- School of Architecture, Chang'an University, Xi'an, China.
| |
Collapse
|
27
|
Wang P, Han G, Hu J, Zhang Q, Tian L, Wang L, Liu T, Ma W, Li J, Zheng H. Remarkable contamination characteristics, potential hazards and source apportionment of heavy metals in surface dust of kindergartens in a northern megacity of China. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133295. [PMID: 38134690 DOI: 10.1016/j.jhazmat.2023.133295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
It is essential to understand the impact of heavy metals (HMs) present in the surface dust (SD) of kindergartens on children, who are highly sensitive to contaminated dust in cities in their growth stage. A study was conducted on 11 types of HMs present in the SD of 73 kindergartens in Beijing. This study aims to assess the pollution levels and sources of eleven HMs in Beijing's kindergartens surface dust (KSD), and estimate the potential health risks in different populations and sources. The results indicate that Cd has the highest contamination in the KSD, followed by Pb, Zn, Ni, Ba, Cr, and Cu. The sources of these pollutants are identified as industrial sources (23.7%), natural sources (22.1%), traffic sources (30.4%), and construction sources (23.9%). Cancer risk is higher in children (4.02E-06) than in adults (8.93E-06). Notably, Cr is the priority pollutant in the KSD, and industrial and construction activities are the main sources of pollution that need to be controlled. The pollution in the central and surrounding areas is primarily caused by historical legacy industrial sites, transportation, urban development, and climate conditions. This work provides guidance to manage the pollution caused by HMs in the KSD of Beijing. ENVIRONMENTAL IMPLICATION: Children within urban populations are particularly sensitive to pollutants present in SD. Prolonged exposure to contaminated SD significantly heightens the likelihood of childhood illnesses. The pollution status and potential health risks of HMs within SD from urban kindergartens are comprehensively investigated. Additionally, the contributions from four primary sources are identified and quantified. Furthermore, a pollution-source-oriented assessment is adopted to clearly distinguish the diverse impacts of different sources on health risks, and the priority pollutants and sources are determined. This work holds pivotal importance for risk management, decision-making, and environmental control concerning HMs in KSD.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, PR China; Nu Surficial Environment & Hydrological Geochemistry Laboratory, China University of Geosciences (Beijing), Beijing 100083, PR China; The State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guilin Han
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, PR China; Nu Surficial Environment & Hydrological Geochemistry Laboratory, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Jian Hu
- The State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Qian Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Liyan Tian
- Institute of Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Lingqing Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Tingyi Liu
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Wenmin Ma
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, PR China; Nu Surficial Environment & Hydrological Geochemistry Laboratory, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Jun Li
- The State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Houyi Zheng
- General Institute of Geological Survey, China Chemical Geology and Mine Bureau, Beijing 100013, PR China
| |
Collapse
|
28
|
Xia F, Zhao Z, Niu X, Wang Z. Integrated pollution analysis, pollution area identification and source apportionment of heavy metal contamination in agricultural soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133215. [PMID: 38101021 DOI: 10.1016/j.jhazmat.2023.133215] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Given the global prevalence of soil heavy metal contamination, knowledge concerning of soil environmental quality assessment, pollution area identification and source apportionment is critical for implementation of soil pollution prevention and safe utilization strategies. In this study, soil static environmental capacity (QI) for heavy metals was selected to evaluate pollution risks in agricultural soils of Wenzhou, southeast China. Combined with geostatistical methods, the pollution area was identified along with uncertainty analysis. Potential sources were quantitatively apportioned using a positive matrix factorization model (PMF). Results showed that agricultural soils in this study were mainly contaminated by Cd and Pb based on both Nemerow and QI indices. The environmental capacity assessment found more than 90% areas were identified as polluted soils for Qi-Zn, Qi-Cd and Qi-Pb, with minor uncertain areas. Cu was identified as having a high proportion of uncertain pollution area status, which was similar to the results of the integrated environmental capacity for all metals. PMF results indicated that industrial discharge, agrochemicals and parent material accounted for 32.1%, 32.2% and 35.7% of heavy metal accumulation in soils, respectively. Implementation of strict policies to reduce anthropogenic source emissions and remediate soil pollution are crucial to minimize metal pollution inputs, improve agricultural soil quality and enhance food safety.
Collapse
Affiliation(s)
- Fang Xia
- School of Life and Environmental Science, Shaoxing University, Shaoxing 312000, China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Zefang Zhao
- School of Life and Environmental Science, Shaoxing University, Shaoxing 312000, China
| | - Xiang Niu
- Shaoxing Academy of Agricultural Science, Shaoxing 312003, China
| | - Zhenfeng Wang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
29
|
Yang ZY, Liu H, Li JY, Bao YB, Yang J, Li L, Zhao ZY, Zheng QX, Xiang P. Road dust exposure and human corneal damage in a plateau high geological background provincial capital city: Spatial distribution, sources, bioaccessibility, and cytotoxicity of dust heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169140. [PMID: 38070561 DOI: 10.1016/j.scitotenv.2023.169140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 01/18/2024]
Abstract
Ocular surface diseases are common in the plateau city, Kunming China, the continued daily exposure to heavy metals in dust may be an important inducement. In this study, the 150 road dust samples from five functional areas in Kunming were collected. The concentrations, distribution, possible sources, and bioaccessibility of heavy metals were analyzed. The adverse effects of dust extracts on human corneal epithelial cells and the underlying mechanisms were also assessed. The concentrations (mg·kg-1) of As (19.1), Cd (2.67), Cr (90.5), Cu (123), Pb (78.4), and Zn (389) in road dust were higher than the soil background, with commercial and residential areas showing the highest pollution. Their bioaccessibility in artificial tears was As (6.59 %) > Cu (5.11 %) > Ni (1.47 %) > Cr (1.17 %) > Mn (0.84 %) > Cd (0.76 %) > Zn (0.50 %) > Pb (0.31 %). The two main sources of heavy metals included tire and mechanical abrasion (24.5 %) and traffic exhaust (21.6 %). All dust extracts induced cytotoxicity, evidenced by stronger inhibition of cell viability, higher production of ROS, and altered mRNA expression of antioxidant enzymes and cell cycle-related genes, with commercial- areas-2 (CA2)-dust extract showing the greatest oxidative damage and cell cycle arrest. Our data may provide new evidence that dust exposure in high geological background cities could trigger human cornea damage.
Collapse
Affiliation(s)
- Zi-Yue Yang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Hai Liu
- Affiliated Hospital of Yunnan University, Eye Hospital of Yunnan Province, Kunming 650224, China
| | - Jing-Ya Li
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Ya-Bo Bao
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Ji Yang
- Affiliated Hospital of Yunnan University, Eye Hospital of Yunnan Province, Kunming 650224, China
| | - Li Li
- Precious Metal Testing Co. LTD of Yunnan Gold Mining Group, Kunming 650215, China
| | - Zi-Yu Zhao
- Precious Metal Testing Co. LTD of Yunnan Gold Mining Group, Kunming 650215, China
| | - Qin-Xiang Zheng
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo 315040, China.
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
30
|
Koç İ, Canturk U, Isinkaralar K, Ozel HB, Sevik H. Assessment of metals (Ni, Ba) deposition in plant types and their organs at Mersin City, Türkiye. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:282. [PMID: 38369612 DOI: 10.1007/s10661-024-12448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
The increase in heavy metal concentrations in the air, especially after the Industrial Revolution, is notable for the scientific world because of the adverse effects that threaten environmental and human health. Among the trace elements, nickel (Ni) is carcinogenic, and all barium (Ba) compounds are toxic. Trace elements are critical for human and environmental health. Their threat further increases, especially in the urban areas and surroundings with a high population. In urban areas, the trace element contamination in the airborne can be reduced using plants. However, which plant and plant organs absorb trace elements could not be determined. In the present study, Ni and Ba concentrations in the branch, wood, and leaf samples of 14 species collected from the city center of Mersin province were determined. As a result, broad-leaved species' Ni and Ba concentrations in their leaf sample were generally higher than other species. Almost all species had the lowest Ni and Ba concentrations in their wood samples. Among these 14 species, it was found that Ni concentration was very high, especially in non-washed leaves of Platanus orientalis, Photinia serrulata, and Citrus reticulate, and Ba concentration was very high in Citrus reticulata, Chamaecyparis lawsoniana, Laurus nobilis, and Acer hyrcanum. Using broad-leaved species in urban areas where pollution is at high levels will significantly contribute to reducing Ni and Ba pollution. It is recommended that these points be considered in future urban landscaping projects.
Collapse
Affiliation(s)
- İsmail Koç
- Department of Forest Engineering, Düzce University, 81620, Düzce, Türkiye.
| | - Ugur Canturk
- Institute of Science, Düzce University, 81620, Düzce, Türkiye
| | - Kaan Isinkaralar
- Faculty of Engineering and Architecture, Department of Environmental Engineering, Kastamonu University, 37150, Kastamonu, Türkiye
| | - Halil Baris Ozel
- Department of Forest Engineering, Bartın University, 74100, Bartın, Türkiye
| | - Hakan Sevik
- Department of Environmental Engineering, Kastamonu University, Kastamonu, Türkiye
| |
Collapse
|
31
|
Kao CS, Wang YL, Jiang CB, Tai PJ, Chen YH, Chao HJ, Lo YC, Hseu ZY, Hsi HC, Chien LC. Assessment of sources and health risks of heavy metals in metropolitan household dust among preschool children: The LEAPP-HIT study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120015. [PMID: 38194873 DOI: 10.1016/j.jenvman.2024.120015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/27/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024]
Abstract
The most common construction material used in Taiwan is concrete, potentially contaminated by geologic heavy metals (HMs). Younger children spend much time indoors, increasing HM exposure risks from household dust owing to their behaviors. We evaluated arsenic (As), cadmium (Cd), and lead (Pb) concentrations in fingernails among 280 preschoolers between 2017 and 2023. We also analyzed HM concentrations, including As, Cd, Pb, chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn), in 90 household dust and 50 road dust samples from a residential area where children lived between 2019 and 2021 to deepen the understanding of sources and health risks of exposure to HMs from household dust. The average As, Cd, and Pb concentrations in fingernails were 0.12 ± 0.06, 0.05 ± 0.05, and 0.95 ± 0.77 μg/g, respectively. Soil parent materials, indoor construction activities, vehicle emissions, and mixed indoor combustion were the pollution sources of HMs in household dust. Higher Cr and Pb levels in household dust may pose non-carcinogenic risks to preschoolers. Addressing indoor construction and soil parent materials sources is vital for children's health. The finding of the present survey can be used for indoor environmental management to reduce the risks of HM exposure and avoid potential adverse health effects for younger children.
Collapse
Affiliation(s)
- Chi-Sian Kao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ying-Lin Wang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Chuen-Bin Jiang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, SanZhi District, New Taipei City, Taiwan
| | - Pei-Ju Tai
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hua Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Hsing-Jasmine Chao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Zeng-Yei Hseu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan.
| | - Ling-Chu Chien
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
32
|
Li J, Liu JZ, Tai XS, Jiao L, Zhang M, Zang F. Pollution and source-specific risk analysis of potentially toxic metals in urban soils of an oasis-tourist city in northwest China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:55. [PMID: 38263529 DOI: 10.1007/s10653-023-01850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024]
Abstract
Source-specific risk apportionment for soil potentially toxic metals (PTMs) is of great significance for contamination prevention and risk management in urban environments. Eighty-five urban soil samples were obtained from an oasis-tourist city, China and examined for eight PTMs (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn). The pollution levels, sources, and ecological risk of soil PTMs were quantified, and their source-specific ecological and human health effects were also estimated using the multi-proxy approaches. The results demonstrated that accumulation of Cd, Hg, Pb, Cr, Cu, and Zn in soils was observed compared to their background levels, and the soils experienced varying degrees of PTMs pollution, especially at sites with high-intensity anthropogenic activities. Natural sources, atmospheric deposition, industrial sources, vehicular emissions, and comprehensive inputs were the principal sources, with contributions of 29.28%, 25.86%, 20.13%, 16.50%, and 8.23%, respectively. The integrated ecological risks of PTMs in soils were moderate at most sites, with atmospheric deposition being the dominant contributor to ecological risks. Children exhibited pronounced non-cancer risks, but adults had no notable non-cancer risks. Moreover, there were potential carcinogenic risks for both children and adults within the study region. Non-cancer and carcinogenic risks were more significant for children than adults, and traffic emissions were the primary contributor to non-cancer risks (adults: 20.53%, children: 20.49%) and carcinogenic risks (adults: 22.95%, children: 22.08%). The industrial and traffic activities were considered as priority control sources for soil pollution control and risk management, with Hg, Cd, Zn, and Pb corresponding to the priority elements. This study highlights the source-specific ecological and human health effects of PTMs pollution in urban soils, thereby providing valuable information for targeted pollution control and priority source management.
Collapse
Affiliation(s)
- Jun Li
- College of Urban Environment, Lanzhou City University, Lanzhou, 730070, China.
| | - Jun-Zhuo Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xi-Sheng Tai
- College of Urban Environment, Lanzhou City University, Lanzhou, 730070, China
| | - Liang Jiao
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou, 730070, China
| | - Ming Zhang
- College of Urban Environment, Lanzhou City University, Lanzhou, 730070, China
| | - Fei Zang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| |
Collapse
|
33
|
Nie J, Guo L, Liu Y, Deng N, Hu Z, Zheng P, Lau C. Heavy metals high-sensitive detection by laser-induced breakdown spectroscopy based on radial electroosmotic flow-driven enrichment. Talanta 2024; 267:125199. [PMID: 37717536 DOI: 10.1016/j.talanta.2023.125199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Heavy metal detection is imperative for human health and environmental sustainability. However, the commonly used liquid sample pretreatment, drying liquid droplet to solid, encounters solute diffusion and nonuniform distribution, thus causing unpromising detection results. Here, we developed a radial electroosmotic flow-driven (REOF) platform to enrich heavy metals in water for high-sensitive detection using laser-induced breakdown spectroscopy (LIBS). Firstly, the electrodes in the substate for REOF were designed and produced by the printed circuit board manufacturer. Different particle deposition patterns were observed by modifying the direction and magnitude of voltage in the evaporated droplets of Cadmium Chloride (CdCl2) on the substrate. Then, the two-dimensional model of the evaporating droplets with REOF was established to verify the experimental phenomenon. The CdCl2 (10-50 mg/L) and Manganese Chloride (MnCl2, 1-8 mg/L) solutions were quantitatively analyzed with the optimized parameter on the substrate by LIBS. The detection limits of Ca and Mn can be reduced by approximately 42 times with REOF substrates by LIBS. Finally, the Mn in the real underground water sample was tested with the REOF substrate by LIBS, and the relative error was 5.5% compared with the results of ICP-MS. The results demonstrated that the REOF can enrich and uniformly distribute the solute on the substrate, and be helpful for the analysis of heavy metals in solution with LIBS.
Collapse
Affiliation(s)
- Junfei Nie
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hunan Provincial Key Laboratory of Girds Operation and Control on Multi-Power Sources Area, Shaoyang University, Shaoyang, Hunan, 422000, China
| | - Lianbo Guo
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Yuanchao Liu
- Department of Physics, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, China.
| | - Nan Deng
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - ZhenLin Hu
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Peichao Zheng
- Chongqing Municipal Level Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400000, China
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, China
| |
Collapse
|
34
|
Chen Z, Wang S, Xu J, He L, Liu Q, Wang Y. Assessment and machine learning prediction of heavy metals fate in mining farmland assisted by Positive Matrix Factorization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119587. [PMID: 38000273 DOI: 10.1016/j.jenvman.2023.119587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023]
Abstract
The accurate pollutant prediction by Machine Learning (ML) is significant to efficient environmental monitoring and risk assessment. However, application of ML in soil is under studied. In this study, a Positive Matrix Factorization (PMF) assisted prediction method was developed with Support Vector Machine (SVM) and Random Forest (RF) for heavy metals (HMs) prediction in mining farmland. Principal Component Analysis (PCA) and Redundancy Analysis (RDA) were selected to pretreat data. Experiment results illustrated Cd was the main pollutant with heavy risks in the study area and Pb was easy to migrate. The method effects of HMs total concentration predicting were PMF > Simple > PCA > PCA - PMF, and RF predicted better than SVM. Data pretreatment by RDA prior inspection improved the model results. Characteristic HMs Tessier fractions prediction received good effects with average R value as 0.86. Risk classification prediction performed good in Cd, Cu, Ni and Zn, however, Pb showed weak effect by simple model. The best classifier method for Pb was PMF - RF method with relatively good effect (Area under ROC Curve = 0.896). Overall, our study suggested the combination between PMF and ML can assist the prediction of HMs in soil. Spatial weighted attribute of HMs can be provided by PMF.
Collapse
Affiliation(s)
- Zhaoming Chen
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Shengli Wang
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Jun Xu
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Liang He
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Qi Liu
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Yufan Wang
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
35
|
Zhou H, Yue X, Chen Y, Liu Y. Source-specific probabilistic contamination risk and health risk assessment of soil heavy metals in a typical ancient mining area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167772. [PMID: 37839479 DOI: 10.1016/j.scitotenv.2023.167772] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Heavy metal pollution (HMP) from mining operations severely threatens soil ecosystems and human health. Identifying the sources of soil heavy metals (HMs) and assessing source-specific risks are critical for developing effective risk mitigation strategies. In this study, a combination of methodologies including PMF, Monte Carlo analysis, soil pollution risk index, and a human health risk assessment model were utilized to investigate soil HM risks in a typical ancient mining area in Daye City, China, considering both environmental pollution and human health impacts. Cu emerged as the most significant soil pollution risk, whereas As posing the highest health risk. About 48.44 % of the multi-element integrated soil pollution risk has escalated to the heavy level. Furthermore, around 22.42 % of the non-carcinogenic risk (NCR) and 9.53 % of the carcinogenic risk (CR) exceeded unacceptable thresholds (THI > 1 for NCR and TCR > 1E-4 for CR). The PMF model identified four distinct sources: the smelting industry, traffic emissions, a combination of agricultural and natural factors, and mining activities. The mixed agricultural and natural source significantly impacted health risks, contributing 42.17 % to NCR and 53.88 % to CR, followed by the mining source, contributing 31.67 % to NCR and 24.07 % to CR. Interestingly, the mining source contributed the highest soil pollution risk at 42.45 %, while the mixed agricultural and natural source exhibited the lowest at 16.33 %. Furthermore, the study explored source-specific risk components by evaluating the contributions of different sources to specific elements. The mining source was identified as the focus for soil HMP control, followed by the mixed agricultural and natural source. Overall, this study provided an in-depth analysis of soil heavy metal risks in mining areas from the source apportionment perspective, which broadened the research framework of soil heavy metal source analysis and risk assessment, potentially providing scientific guidance for managing regional soil HMP.
Collapse
Affiliation(s)
- Hao Zhou
- Wuhan University of Science and Technology, No.947 Heping Avenue, Wuhan 430080, Hubei, China; National Key Laboratory of Environmental Protection Mining and Metallurgy Resource Utilization and Pollution Control, Wuhan 430080, Hubei, China.
| | - Xuemei Yue
- Wuhan University of Science and Technology, No.947 Heping Avenue, Wuhan 430080, Hubei, China; National Key Laboratory of Environmental Protection Mining and Metallurgy Resource Utilization and Pollution Control, Wuhan 430080, Hubei, China.
| | - Yong Chen
- Wuhan University of Science and Technology, No.947 Heping Avenue, Wuhan 430080, Hubei, China; National Key Laboratory of Environmental Protection Mining and Metallurgy Resource Utilization and Pollution Control, Wuhan 430080, Hubei, China; Hubei Provincial Key Laboratory of Efficient Utilization and Agglomeration of Metallurgical Mineral Resources, Wuhan 430080, Hubei, China.
| | - Yanzhong Liu
- Wuhan University of Science and Technology, No.947 Heping Avenue, Wuhan 430080, Hubei, China; Hubei Provincial Key Laboratory of Efficient Utilization and Agglomeration of Metallurgical Mineral Resources, Wuhan 430080, Hubei, China.
| |
Collapse
|
36
|
Buljovčić M, Živančev J, Antić I, Đurišić-Mladenović N. Heavy elements in indoor dust from Serbian households: pollution status, sources, and potential health risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:50-60. [PMID: 36170597 DOI: 10.1080/09603123.2022.2128077] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Occurrence of five heavy elements (HEs) was analyzed in indoor dust (n = 45) in households from four settlements in Vojvodina Province, Serbia. Overall medians (mg/kg) of Pb (5.6), Ni (5.2), Cu (27), and Cr (6.8) were below soil background values, while median for Cd (1.1) exceeded it. Pollution load index showed that the households' microenvironment in examined region might be regarded as unpolluted. Integrated pollution index revealed low contamination by Pb, Ni, and Cr, but high with Cu and Cd. Source apportionment by principal component analysis and positive matrix factorization suggested two possible sources: outdoor pollution and household materials. Hazard index was below safe limit (<1), indicating no adverse non-carcinogenic health effects. Estimated total carcinogenic risk for children and adult population was not negligible. Results indicated that attention should be paid to the presence of HE in indoors to conduct effective control measures and to ensure the health of the population.
Collapse
Affiliation(s)
- Maja Buljovčić
- Faculty of Technology, University of Novi Sad Faculty of Technology Novi Sad, Novi Sad, Serbia
| | - Jelena Živančev
- Faculty of Technology, University of Novi Sad Faculty of Technology Novi Sad, Novi Sad, Serbia
| | - Igor Antić
- Faculty of Technology, University of Novi Sad Faculty of Technology Novi Sad, Novi Sad, Serbia
| | | |
Collapse
|
37
|
Zhang X, Song X, Zhang H, Li Y, Hou Y, Zhao X. Source apportionment and risk assessment of heavy metals in typical greenhouse vegetable soils in Shenyang, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:72. [PMID: 38127220 DOI: 10.1007/s10661-023-12250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
In this study, the concentrations of Cr, Cu, Ni, Pb, Zn, Cd, As, and Hg in the typical greenhouse vegetable soils in Shenyang, Northeast of China, were determined, and the pollution characteristics and primary sources of heavy mental pollution in soil were analyzed. Results showed that the sum of the mean values of eight typical heavy metals in the soil of the greenhouse soils was 219.79 mg/kg. According to the "Chinese Environmental Quality Evaluation Standard for Farmland of Greenhouse Vegetables Production" (HJ/T 333-2006), the concentrations of Cu (33.50 ± 11.99 mg/kg), Cd (0.246 ± 0.156 mg/kg), and Hg (0.214 ± 0.177 mg/kg) exceeded the limit values in 14.29%, 39.29%, and 39.29% of sampling points, respectively. The single factor pollution index and the Nemerow comprehensive pollution index of heavy metal elements showed that most greenhouse soils were at safety, alert, or light pollution levels. The potential ecological risk index (RI = 505.19) showed that 42.86% of the samples were at high or very high risk and Cd and Hg were the main ecological risk factors. Based on the result of correlation analysis, the Positive Matrix Factorization (PMF) differentiated sources of heavy metal pollution in the study area into four components, including fertilizer input, soil parent material, pesticide spraying and raw coal combustion, and plastic film mulching, which accounted for 36.76%, 22.64%, 20.89%, and 19.71%, respectively, of the total sources of heavy metals.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Xueying Song
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, Shenyang University, Shenyang, 110044, China.
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants Putian University, Putian, 351100, China.
| | - Huiyu Zhang
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Yushuang Li
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, Shenyang University, Shenyang, 110044, China
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants Putian University, Putian, 351100, China
| | - Yongxia Hou
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, Shenyang University, Shenyang, 110044, China
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants Putian University, Putian, 351100, China
| | - Xiaoxu Zhao
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants Putian University, Putian, 351100, China
| |
Collapse
|
38
|
Kumari H, Yadav S. A comparative study on metal pollution from surface dust of informal and formal e-waste recycling sectors in national capital region of New Delhi and associated risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166791. [PMID: 37678522 DOI: 10.1016/j.scitotenv.2023.166791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Electrical and electronic waste (e-waste) is considered as resource and secondary source of metals, and is being recycled for recovery of precious and base metals. But the processes of recycling and the waste generated during e-waste recycling in informal and formal sectors contribute toxic metals in to the environment. This work aimed to compare the environmental and health impacts of informal and formal e-waste recycling facilities at New Delhi and Bhiwadi Industrial area in India, respectively. Here, concentrations of Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sn, V, Zn, and Ag, and As in surface dust collected from informal and formal recycling sectors and their associated pollution, human health and ecological risk are presented. Metal concentrations were higher than the background levels in both sectors. Contamination factor (Cf), contamination degree (Cdeg), pollution load index (PLI), geo-accumulation index (Igeo) and enrichment factor (EnF) of metals indicated severe pollution levels in both sectors. However, contamination in informal sector was comparatively higher than the formal sector. Sampling sites in both sectors had very high ecological risk. Storage, dismantling/shredding and recycling techniques were contributors of metals in surface dust in formal sector whereas fumes deposition, re-suspension, and dried by-products during acid bath treatments were additional sources in informal sector. Metal pollution depends on metal(s), e-waste type(s) and recycling sector(s). Total non-carcinogenic health risk due to metals was 6.5E+00 and 6.0E+01 and 6.2E+00 and 5.5E+01 in adult and children in informal and formal sectors, respectively. Total carcinogenic risk was 3.3E-03 and 7.2E-03 in informal and formal sectors, respectively. Ingestion was major pathways of metals followed by dermal and inhalation and children were more prone to risk compared to adults. Formal sectors too cause metal pollution but to lesser degree compared to informal. More effective pollution control measures are required in formal sector to control environmental pollution.
Collapse
Affiliation(s)
- Hina Kumari
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sudesh Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
39
|
Wu J, Yang G, Chen H, Zhai Y, Teng Y, Li J, Chen R. Source apportionment and source specific health risk assessment of HMs and PAHs in soils with an integrated framework in a typical cold agricultural region in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167337. [PMID: 37748612 DOI: 10.1016/j.scitotenv.2023.167337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
A new innovative methodology system framework for source apportionment and source-specific risk assessment has been proposed and actively applied to identify the contamination characteristics, oriented sources and health risks associated with contamination levels of Heavy metals (HMs) and Polycyclic Aromatic Hydrocarbons (PAHs) in soils, a typical cold agricultural region in Northeastern China. To achieve this meaningful goal, a large-scale dataset including 1780 top soil samples, 10 HMs and 16 priority PAHs has been organized and collected from a typical study area in China. The total concentrations of the 10 selected HMs in study area range from 0.05 to 2147.40 mg/kg, with an average of 549.25 ± 541.37 mg/kg. The average concentrations of PAHs for (3-6)-rings are 16.60 ± 18.90, 26.40 ± 28.20, 9.51 ± 13.00 and 1.99 ± 5.30 ng/g, respectively. On the base of optimized literature source fingerprints for HM and PAH, a widely used receptor model, positive matrix factorization (PMF) has been applied to apportion the contamination sources HMs and PAHs in soils. Then source-specific health risk of soil HMs and PAHs have been assessed using the probabilistic incremental lifetime cancer risk model incorporated with source apportionment results data. Fertilizer residues/coke oven comprise the primary contamination source contributors of HMs and PAHs with corresponding contributions of 32.23 % and 27.93 % for HMs and 37.94 % for PAHs. Fertilizer/pesticide residues contributes most to the risks of soil HMs (28.8 %), followed by fossil fuel combustion (24.6 %), mining activities (20.2 %), traffic and vehicle emission (16.3 %) and electroplating/dyeing (14.1 %). Meanwhile, the ranking of health risks from the five identified contamination sources of soil PAHs are resident discharge, coal-fired boilers, coke oven emission, gasoline combustion and power plant, with the contribution of 27.1 %, 25.3 %, 17.3 %, 15.5 % and 14.8 %. And relatively, source-specific risk assessment demonstrates fossil fuel and coal combustion contribute the greatest impact to the total risk of HMs and PAHs (61.7 % and 56.1 %), respectively. This study provides a good example of how the source specific health risk assessment can be utilized to reduce the contamination in soils.
Collapse
Affiliation(s)
- Jin Wu
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Gang Yang
- Development Research Center, Ministry of Water Resources, Beijing 100038, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jiao Li
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Ruihui Chen
- Beijing Water Science and Technology Institute, Beijing 100048, China.
| |
Collapse
|
40
|
Lu X, Wang Z, Chen Y, Yang Y, Fan X, Wang L, Yu B, Lei K, Zuo L, Fan P, Liang T, Cho JW, Antoniadis V, Rinklebe J. Source-specific probabilistic risk evaluation of potentially toxic metal(loid)s in fine dust of college campuses based on positive matrix factorization and Monte Carlo simulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119056. [PMID: 37757688 DOI: 10.1016/j.jenvman.2023.119056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Contamination, hazard level and source of 10 widely concerned potentially toxic metal(loid)s (PTMs) Co, As, Pb, Cr, Cu, Zn, Ni, Mn, Ba, and V in fine dust with particle size below 63 μm (FD63) were investigated to assess the environmental quality of college campuses and influencing factors. PTMs sources were qualitatively analyzed using statistical methods and quantitatively apportioned using positive matrix factorization. Probabilistic contamination degrees of PTMs were evaluated using enrichment factor and Nemerow integrated enrichment factor. Eco-health risk levels of content-oriented and source-oriented for PTMs were evaluated using Monte Carlo simulation. Mean levels of Zn (643.8 mg kg-1), Pb (146.0 mg kg-1), Cr (145.9 mg kg-1), Cu (95.5 mg kg-1), and Ba (804.2 mg kg-1) in FD63 were significantly larger than soil background values. The possible sources of the concerned PTMs in FD63 were traffic non-exhaust emissions, natural source, mixed source (auto repair waste, paints and pigments) and traffic exhaust emissions, which accounted for 45.7%, 25.4%, 14.5% and 14.4% of total PTMs contents, respectively. Comprehensive contamination levels of PTMs were very high, mainly caused by Zn pollution and non-exhaust emissions. Combined ecological risk levels of PTMs were low and moderate, chiefly caused by Pb and traffic exhaust emissions. The non-cancer risks of the PTMs in FD63 to college students fell within safety level, while the carcinogenic PTMs in FD63 had a certain cancer risks to college students. The results of source-specific health risk assessment indicated that Cr and As were the priority PTMs, and the mixed source was the priority pollution source of PTMs in FD63 from college campuses, which should be paid attention to by the local government.
Collapse
Affiliation(s)
- Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhenze Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Yurong Chen
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyao Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, 710065, China
| | - Ling Zuo
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Peng Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin Woo Cho
- Department of Environment, Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany.
| |
Collapse
|
41
|
Janjani H, Yunesian M, Yaghmaeian K, Aghaei M, Yousefian F, Alizadeh B, Fazlzadeh M. BTEX in indoor air of barbershops and beauty salons: Characterization, source apportionment and health risk assessment. CHEMOSPHERE 2023; 345:140518. [PMID: 37890789 DOI: 10.1016/j.chemosphere.2023.140518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Volatile organic compounds, mainly BTEX, are among the pollutants of concern in beauty salons and barbershops that threaten both staff personnel and clients' health. This study aimed to determine the concentration of BTEX in barbershops and beauty salons and assess the carcinogenic and non-carcinogenic risks based on the actual risk coefficients. Also, possible sources of BTEX were determined. METHOD Samples were collected by passive sampling. Quantitative and qualitative measurements of BTEX compounds were performed using gas chromatography-mass spectrometry (GC-MASS). Subsequently, the health risks were assessed according to the US Environmental Protection Agency. SPSS24 software and positive matrix factorization (PMF) analysis were used for statistical analysis and source apportionment respectively. RESULTS Toluene is the most abundant compound in beauty salons, with a maximum concentration of 219.4 (μg/m3) in beauty salons. Results indicated that the mean ELCR value estimated for benzene regarding female staff exposure (1.04 × 10-5) was higher than that for men (4.05 × 10-6). Also, ELCR values of ethylbenzene for staff exposure were 2.08 × 10-6 and 3.8 × 10-6 for men and women, respectively, and possess possible carcinogenesis risks. CONCLUSION Use of solvents and cosmetic products, improper heating systems, and type of service are the sources that probably contribute to BTEX emissions in beauty salons. It is necessary to follow health guidelines and conduct continuous monitoring for their implementation, in addition to setting a mandated occupational regulation framework or air quality requirements, to improve the health conditions in beauty salons.
Collapse
Affiliation(s)
- Hosna Janjani
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Yaghmaeian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Aghaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yousefian
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Bahram Alizadeh
- Students Research Committee, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehdi Fazlzadeh
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
42
|
Yang F, Mamun AA, Cheng I, Qiu X, Zhang L. Contributions of the oil sands sources to the ambient concentrations and deposition of particulate elements in the Canadian Athabasca oil sands region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165519. [PMID: 37451466 DOI: 10.1016/j.scitotenv.2023.165519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
In this study, model sensitivity tests were conducted to investigate the relative contributions between emission sources of oil sands (OS) activities and other sources to the ambient concentrations and deposition of 29 particulate elements in the Athabasca oil sands region (AOSR) of Canada. Element emission sources from a recently developed emission database were grouped into three source sectors for elements in PM2.5 (OS-Industrial, OS-Dust, and Non-OS) and two source sectors for elements in PM2.5-10 (OS-All and Non-OS). The OS-Dust and OS-Industrial sectors (combined as one sector for PM2.5-10; OS-All) included element sources linked to dust and other industrial activities from the OS activities, respectively, whereas the Non-OS sector included remaining sources in the region, unrelated to the OS activities. The OS-Industrial, OS-Dust, and Non-OS emissions (tonnes/year) of all elements in PM2.5 were 326, 1430, and 562, respectively. The OS-All and Non-OS emissions (tonnes/year) of all elements in PM2.5-10 were 5890 and 2900, respectively. The element concentrations were simulated by the CALPUFF dispersion model. The sum of the domain averaged annual mean concentrations of all elements in PM2.5 and PM2.5-10 from all sources were 57.3 ng/m3 and 30.4 ng/m3, respectively. Except for Co (PM2.5 and PM2.5-10), Sb (PM2.5-10), and Sn (PM2.5-10), major proportions (≥ 59 %) of the ambient concentrations of the individual elements were linked to the OS source sector. Overall, the OS sector was responsible for 78 % and 68 % of the sum of the mean ambient concentrations of all elements in PM2.5 and PM2.5-10, respectively, which are close to the corresponding emission contributions (76 % and 67 %, respectively). Likewise, the bulk proportion (∼74 %) of the sum of the total atmospheric deposition of all elements was also associated with the OS sources. Carcinogenic and non-carcinogenic risks associated with inhalation exposure to airborne elements were below the recommended threshold risk levels.
Collapse
Affiliation(s)
- Fuquan Yang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada; SLR Consulting (Canada) Ltd, 100 Stone Road West, Suite 201, Guelph, Ontario N1G 5L3, Canada
| | - Abdulla Al Mamun
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Irene Cheng
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Xin Qiu
- SLR Consulting (Canada) Ltd, 100 Stone Road West, Suite 201, Guelph, Ontario N1G 5L3, Canada
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada.
| |
Collapse
|
43
|
Zhu H, Liu X, Wang Q, Zhang B, Xu C, Wang Z, Chen H. Heavy metals pollution of soil in central plains urban agglomeration (CPUA), China: human health risk assessment based on Monte Carlo simulation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8063-8079. [PMID: 37530923 DOI: 10.1007/s10653-023-01711-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
The present study conducted the concentration evaluation, pollution assessment, source analysis, and risk assessment of heavy metals in the soil of the CPUA, China, to contribute to the smooth construction of urban agglomeration. Elevated levels of mean concentrations of cadmium (Cd), chromium (Cr), and copper (Cu) in the soils were shown compared to background values. Cu and zinc (Zn) and also lead (Pb) and Cd exhibited spatial similarity. Manganese (Mn) and Cr exhibited point source characteristics such as the concentrations at a point much higher than the surrounding area. The potential ecological risk in the northern region belonged to the moderate risk level category. Cd contributed over 90% to the potential ecological risk. The health risk among children was higher than that among adults. The major exposure pathways were different for adults and children. Exposure, as shown using Hazard Index (HI), to adults was mainly through the skin contact route, while to children was through both the skin contact and ingestion route. The primary CR (carcinogenic risk) to adults was through the inhalation route, while that to children was through the ingestion route. In both children and adults, Cr was the main contributor to HI and CR. According to the Monte Carlo simulation results, the cumulative probability of exceeding the critical value of HI for children was approximately 2.8-3.0 times that for adults. According to the sensitivity analysis results, non-carcinogenic risk prevention should begin mainly by reducing exposure duration and skin contact. The cancer risk may be reduced primarily by decreasing the exposure duration and controlling ingestion. The PMF (Positive Matrix Factorization) source analysis revealed that Pb mainly came from transportation sources. In addition, Cu, Pb, and Mn were derived mainly from agricultural sources. Cr was derived mostly from a natural source, and Cd originated mainly from an industrial source.
Collapse
Affiliation(s)
- Huina Zhu
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, Henan Province, People's Republic of China.
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan Province, People's Republic of China.
- Institute for Carbon Neutrality, Henan University of Technology, Zhengzhou, 450001, Henan Province, People's Republic of China.
| | - Xiaolong Liu
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, Henan Province, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan Province, People's Republic of China
- Institute for Carbon Neutrality, Henan University of Technology, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Qun Wang
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, Henan Province, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan Province, People's Republic of China
- Institute for Carbon Neutrality, Henan University of Technology, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Baozhong Zhang
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, Henan Province, People's Republic of China.
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan Province, People's Republic of China.
- Institute for Carbon Neutrality, Henan University of Technology, Zhengzhou, 450001, Henan Province, People's Republic of China.
| | - Chunhong Xu
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, Henan Province, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan Province, People's Republic of China
- Institute for Carbon Neutrality, Henan University of Technology, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Zhiwei Wang
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, Henan Province, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan Province, People's Republic of China
- Institute for Carbon Neutrality, Henan University of Technology, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Hanyu Chen
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, Henan Province, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan Province, People's Republic of China
- Institute for Carbon Neutrality, Henan University of Technology, Zhengzhou, 450001, Henan Province, People's Republic of China
| |
Collapse
|
44
|
Li J, Li KM, Jiao L, Zang F, Li X, Yang YQ, Mao XX, Tai XS. Contamination, ecological-health risks, and sources of potentially toxic elements in road-dust sediments and soils of the largest urban riverfront scenic park in China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8169-8186. [PMID: 37548849 DOI: 10.1007/s10653-023-01715-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Identifying the contamination and sources of potentially toxic elements (PTEs) in road-dust sediment (RDS) and the surrounding greenspace soil of urban environments and understanding their ecological-health risks are important for pollution management and public health. The contamination characteristics, ecological and probabilistic health risks, and source apportionment of eight PTEs (Cd, Pb, Cr, Cu, Ni, As, Zn, and Hg) in the Yellow River Custom Tourist Line of Lanzhou, which is the largest open urban riverfront scenic park in China, were investigated. The results showed that all the RDS PTE mean concentrations exceeded their soil background values, whereas for the surrounding greenspace soils, the concentrations of the PTEs, except for Cr and Ni, were also higher than their local background levels. Moreover, the RDS-soil system was mainly contaminated by Cd, Zn, Pb, Cu, and Hg to varying degrees, and the integrated ecological risks of PTEs in the RDS and soil were high and considerable at most sites, respectively. The probabilistic health risk assessment results demonstrated that the non-carcinogenic hazard risk for humans was negligible, but the total carcinogenic risks should be considered. Source apportionment using a positive matrix factorization model combined with multivariate statistical analyses revealed that Cr, Ni, and As in the RDS-soil system were from natural and industrial sources, Cd, Pb, Zn, Cu came from vehicle emissions and pesticide and fertilizer applications, and Hg was from natural and industrial sources and utilization of pesticides with fertilizers. This work provides scientific evidence for urban planning and human health protection in urban environments.
Collapse
Affiliation(s)
- Jun Li
- College of Urban Environment, Lanzhou City University, Lanzhou, 730070, China.
| | - Kai-Ming Li
- College of Urban Environment, Lanzhou City University, Lanzhou, 730070, China
| | - Liang Jiao
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou, 730070, China
| | - Fei Zang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xu Li
- College of Urban Environment, Lanzhou City University, Lanzhou, 730070, China
| | - Yun-Qin Yang
- College of Urban Environment, Lanzhou City University, Lanzhou, 730070, China
| | - Xiao-Xuan Mao
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xi-Sheng Tai
- College of Urban Environment, Lanzhou City University, Lanzhou, 730070, China
| |
Collapse
|
45
|
Dat ND, Nguyen LSP, Vo TDH, Van Nguyen T, Do TTL, Tran ATK, Hoang NTT. Pollution characteristics, associated risks, and possible sources of heavy metals in road dust collected from different areas of a metropolis in Vietnam. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7889-7907. [PMID: 37493982 DOI: 10.1007/s10653-023-01696-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Road dust samples were collected from different areas in Ho Chi Minh City (HCMC)-the largest city in Vietnam to explore pollution characteristics, ecological and human health risks, and sources of heavy metals (HMs). Results revealed the level of HMs found in the samples from residential and industrial zones of HCMC in the order of Mn > Zn > Cu > Cr > Pb > Ni > Co > As > Cd, Zn > Mn > Cu > Cr > Pb > Ni > Co > As > Cd. Due to the high enrichment of Cu, Zn in residential areas and Cu, Pb, Zn in industrial areas, the HM contamination in these areas remained moderate to severe. The findings also revealed a rising trend in the level of HMs in road dust from the east to the west of HCMC, and a heavy metal contamination hotspot in the west. In addition, industrial areas were more contaminated with HMs, posing greater associated risks than residential areas. Children living in urban areas of HCMC were found to be exposed to unacceptable health risks. Meanwhile, adults living in industrial areas face intolerable cancer risk. Among the nine HMs, Cd, Pb, and Cu posed the greatest ecological risk, while Cr and As were the main culprits behind health risks. HMs in road dust might derive from non-exhaust vehicular emissions, crustal materials, and industrial activities. The results suggested that industrial areas to the west of HCMC should focus more on reducing and controlling severe pollution of HMs.
Collapse
Affiliation(s)
- Nguyen Duy Dat
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, Thu Duc, Ho Chi Minh, 700000, Viet Nam.
| | - Ly Sy Phu Nguyen
- Faculty of Environment, University of Science, Ho Chi Minh City, 700000, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000, Viet Nam
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam
| | - Truc Van Nguyen
- Department of Environmental Sciences, Saigon University, Ho Chi Minh City, 700000, Viet Nam
| | - Thi Thuy Linh Do
- Institute for Environment and Resources (IER), Ho Chi Minh City, 700000, Viet Nam
- Department of Science and Technology, Vietnam National University, Ho Chi Minh City, 700000, Viet Nam
| | - Anh Thi Kim Tran
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, Thu Duc, Ho Chi Minh, 700000, Viet Nam
| | - Nhung Thi-Tuyet Hoang
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, Thu Duc, Ho Chi Minh, 700000, Viet Nam
| |
Collapse
|
46
|
Das M, Proshad R, Chandra K, Islam M, Abdullah Al M, Baroi A, Idris AM. Heavy metals contamination, receptor model-based sources identification, sources-specific ecological and health risks in road dust of a highly developed city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8633-8662. [PMID: 37682507 DOI: 10.1007/s10653-023-01736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023]
Abstract
The present study quantified Ni, Cu, Cr, Pb, Cd, As, Zn, and Fe levels in road dust collected from a variety of sites in Tangail, Bangladesh. The goal of this study was to use a matrix factorization model to identify the specific origin of these components and to evaluate the ecological and health hazards associated with each potential origin. The inductively coupled plasma mass spectrometry was used to determine the concentrations of Cu, Ni, Cr, Pb, As, Zn, Cd, and Fe. The average concentrations of these elements were found to be 30.77 ± 8.80, 25.17 ± 6.78, 39.49 ± 12.53, 28.74 ± 7.84, 1.90 ± 0.79, 158.30 ± 28.25, 2.42 ± 0.69, and 18,185.53 ± 4215.61 mg/kg, respectively. Compared to the top continental crust, the mean values of Cu, Pb, Zn, and Cd were 1.09, 1.69, 2.36, and 26.88 times higher, respectively. According to the Nemerow integrated pollution index (NIPI), pollution load index (PLI), Nemerow integrated risk index (NIRI), and potential ecological risk (PER), 84%, 42%, 30%, and 16% of sampling areas, respectively, which possessed severe contamination. PMF model revealed that Cu (43%), Fe (69.3%), and Cd (69.2%) were mainly released from mixed sources, natural sources, and traffic emission, respectively. Traffic emission posed high and moderate risks for modified NIRI and potential ecological risks. The calculated PMF model-based health hazards indicated that the cancer risk value for traffic emission, natural, and mixed sources had been greater than (1.0E-04), indicating probable cancer risks and that traffic emission posed 38% risk to adult males where 37% for both adult females and children.
Collapse
Affiliation(s)
- Mukta Das
- Department of Zoology, Government Saadat College, Tangail, 1903, Bangladesh
| | - Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Krishno Chandra
- Faculty of Agricultural Engineering and Technology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Maksudul Islam
- Department of Environmental Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Mamun Abdullah Al
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Artho Baroi
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 62529, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, 62529, Abha, Saudi Arabia
| |
Collapse
|
47
|
Vaezi A, Shahbazi R, Lak R, Ahmadi N, Sheikh M, Gol ARM. Assessment of potentially toxic elements in atmospheric dust and associated health risks in Zahedan City, Iran. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7759-7773. [PMID: 37428427 DOI: 10.1007/s10653-023-01674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023]
Abstract
Zahedan City is situated in the Sistan basin, a highly active dust source region that poses significant risks to human and ecological health due to potentially toxic elements (PTEs) present in atmospheric dust. In this study, we investigated the concentration, sources, and human health risk assessment of PTEs in 88 monthly atmospheric dust samples collected between December 2020 and October 2021 using inductively coupled plasma mass spectrometry. The results showed that the concentrations of PTEs in atmospheric dust followed the descending order of Mn > Zn > Ba > Sr > Cr > V > Ni > Cu > Pb > Co > As > Mo > Cd. The calculated enrichment factors revealed significant enrichment for As > Zn, moderate enrichment Pb > Ni, deficiency to minimal enrichment for Cr > Mn > Fe > Sr > Cd > V > Cu > Ba > Co, and no enrichment for Mo. Arsenic was found to be the major contributor to the potential ecological risk index, accounting for 55% of the total risk. The widespread utilization of arsenic-based pesticides in the surrounding agricultural lands may be a significant contributor to the severe arsenic pollution in the region. The winter season exhibited the highest monthly mean concentrations of Zn and Pb possibly due to temperature inversions trapping local anthropogenic pollutants near the Earth's surface. Cluster analysis revealed a strong correlation between Ni-Cr-Fe-V-Mn-Al, which shows mainly the geogenic source for these elements. The predominant exposure route for non-carcinogenic risk to humans was ingestion. The hazard index (HI) values for the heavy metals studied decreased in the following order: Cr > As > Pb > Ni > Zn > Cu > Cd, for both children and adults. The HI values indicated that there was no possible non-carcinogenic risk associated with exposure to these heavy metals in Zahedan's atmospheric dust. The result of the inhalation cancer risk assessment suggested that while the potential risks of cancer for As, Cd, Cr, and Ni were below the safe level, the levels of Chromium were close enough to the threshold to warrant further investigation and monitoring.
Collapse
Affiliation(s)
- Alireza Vaezi
- Research Institute for Earth Sciences, Geological Survey of Iran, Tehran, Iran
| | | | - Razyeh Lak
- Research Institute for Earth Sciences, Geological Survey of Iran, Tehran, Iran.
| | | | | | | |
Collapse
|
48
|
Feltracco M, Mazzi G, Barbaro E, Rosso B, Sambo F, Biondi S, Barbante C, Gambaro A. Occurrence and phase distribution of benzothiazoles in untreated highway stormwater runoff and road dust. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107878-107886. [PMID: 37740162 DOI: 10.1007/s11356-023-30019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
The study about how tyre-derived particles can potentially worsen the water quality and how traffic pollution markers can affect the environment is crucial for environmental management. Road emissions are known to contribute to pollution in various environments, and benzothiazoles and their derivates can be used to trace pollutant inputs related to surface runoff in the aquatic system. A total of eight benzothiazoles were determined in highway stormwater runoff and road dust collected from February to August 2022 near Venice (Casale sul Sile, Veneto Region, Italy). A new analytical method was validated, by using an UHPLC system coupled to a mass spectrometer (triple quadrupole). The target compounds were determined in both dissolved phase and suspended particulate matter of runoff, and the road dust samples were divided into seven fractions depending on particle diameters to understand the fraction partitioning. The results indicate that 2-SO3H-BTH was the most concentrated benzothiazole in all the analysed substrates, suggesting tyre debris as the main source because it is usually used in the vulcanization process. 2-SO3H-BTH reached a mean concentration of 115 ± 59 µg L-1, 4 ± 3 µg L-1, and 411 ± 441 µg Kg-1 for dissolved phase, suspended particulate matter, and road dust, respectively, while 2-OH-BTH and BTH showed values about an order of magnitude lower. The size distribution of most BTHs suggests that they are distributed in the finest fraction of road dust. An exception was given by 2-SCNMeS-BTH being present only in particles with a diameter > 1 mm.
Collapse
Affiliation(s)
- Matteo Feltracco
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155 - 30172, Venice Mestre, VE, Italy.
| | - Giovanna Mazzi
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155 - 30172, Venice Mestre, VE, Italy
| | - Elena Barbaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155 - 30172, Venice Mestre, VE, Italy
- Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155 - 30172, Venice Mestre, VE, Italy
| | - Beatrice Rosso
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155 - 30172, Venice Mestre, VE, Italy
| | - Francesca Sambo
- SWI Group S.R.L. Via III Armata 3, 30176, Venice Marghera, VE, Italy
| | - Stefano Biondi
- SWI Group S.R.L. Via III Armata 3, 30176, Venice Marghera, VE, Italy
| | - Carlo Barbante
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155 - 30172, Venice Mestre, VE, Italy
- Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155 - 30172, Venice Mestre, VE, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155 - 30172, Venice Mestre, VE, Italy
- Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155 - 30172, Venice Mestre, VE, Italy
| |
Collapse
|
49
|
Dadipoor S, Hemayatkhah M, Eshaghi Sani Kakhaki H, Mohseni S, Fattahi E, Shahabi N, El-Shahawy O. The role of intrapersonal and interpersonal factors in waterpipe cessation: a case-control study. BMC Public Health 2023; 23:1705. [PMID: 37667194 PMCID: PMC10476390 DOI: 10.1186/s12889-023-16597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND The prevalence of waterpipe smoking among women in southern Iran is significantly higher than women in other regions of Iran. We aimed to explore the effect of several demographic factors, knowledge, attitude, self-efficacy and social norms on a successful cessation of waterpipe smoking in the marginalized women of Bandar Abbas city, in the south of Iran. METHODS This case-control study was conducted in 2022 among 731 women (246 subjects who successfully quit waterpipe smoking in the case group and 485 who smoked waterpipe in the control group). A cluster sampling method was used to collect the required data through face-to-face interviews and a researcher-made questionnaire. The questionnaire consisted of demographic information, behavioral information about waterpipe smoking and knowledge, attitude, self-efficacy and social norms. The data were analyzed in STATA 14 using univariate and multivariate regression analyses. RESULTS The mean and standard deviation of age was 39.24 ± 11.93 and 37.18 ± 13.57 in the control and case groups, respectively. With an increase of one score in social norm (OR: 1.046), the odds of cessation were increased for 4%. With an increase of one score in self-efficacy (OR: 1.152), the odds of cessation were increased for 15%. With an increase of one score in knowledge (OR: 1.064), the odds of cessation were increased for 6%. With an increase of one score in attitude (OR: 1.215) the odds of cessation were increased for 21%. CONCLUSION The present findings revealed personal and interpersonal influential factors in successful waterpipe cessation. Women's knowledge can be increased and their attitude can be changed. Important people in women's lives can be influenced to, consequently, affect women positively and improve their self-esteem.
Collapse
Affiliation(s)
- Sara Dadipoor
- Tobacco and Health Research Centre, Hormozgan University of Medical Sciences, Bandar Abbas, Bandar Abbas, Iran
| | | | - Hadi Eshaghi Sani Kakhaki
- Tobacco and Health Research Centre, Hormozgan University of Medical Sciences, Bandar Abbas, Bandar Abbas, Iran
| | - Shokrollah Mohseni
- Determinants in Health Promotion Research Centre, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Esmaeil Fattahi
- Department of Health Education and Promotion, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Nahid Shahabi
- Tobacco and Health Research Centre, Hormozgan University of Medical Sciences, Bandar Abbas, Bandar Abbas, Iran.
| | - Omar El-Shahawy
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
50
|
Wang Z, Lu X, Yu B, Yang Y, Wang L, Lei K. Ascertaining priority control pollution sources and target pollutants in toxic metal risk management of a medium-sized industrial city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:164022. [PMID: 37172841 DOI: 10.1016/j.scitotenv.2023.164022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Re-suspended surface dust (RSD) often poses higher environmental risks due to its specific physical characteristics. To ascertain the priority pollution sources and pollutants for the risk control of toxic metals (TMs) in RSD of medium-sized industrial cities, this study took Baotou City, a representative medium-sized industrial city in North China, as an example to systematically study TMs pollution in RSD. The levels of Cr (242.6 mg kg-1), Pb (65.7 mg kg-1), Co (54.0 mg kg-1), Ba (1032.4 mg kg-1), Cu (31.8 mg kg-1), Zn (81.7 mg kg-1), and Mn (593.8 mg kg-1) in Baotou RSD exceeded their soil background values. Co and Cr exhibited significant enrichment in 94.0 % and 49.4 % of samples, respectively. The comprehensive pollution of TMs in Baotou RSD was very high, mainly caused by Co and Cr. The main sources of TMs in the study area were industrial emissions, construction, and traffic activities, accounting for 32.5, 25.9, and 41.6 % of the total TMs respectively. The overall ecological risk in the study area was low, but 21.5 % of samples exhibited moderate or higher risk. The carcinogenic risks of TMs in the RSD to local residents and their non-carcinogenic risks to children cannot be ignored. Industrial and construction sources were priority pollution sources for eco-health risks, with Cr and Co being the target TMs. The south, north and west of the study area were the priority control areas for TMs pollution. The probabilistic risk assessment method combining of Monte Carlo simulation and source analysis can effectively identify the priority pollution sources and pollutants. These findings provide scientific basis for TMs pollution control in Baotou and constitute a reference for environmental management and protection of residents' health in other similar medium-sized industrial cities.
Collapse
Affiliation(s)
- Zhenze Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| |
Collapse
|