1
|
Jiao H, Cui M, Yuan S, Dong B, Xu Z. Carbon nanomaterials for co-removal of antibiotics and heavy metals from water systems: An overview. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137566. [PMID: 39952121 DOI: 10.1016/j.jhazmat.2025.137566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/03/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Pollution resulting from the combination of antibiotics and heavy metals (HMs) poses a significant threat to human health and the natural environment. Adsorption is a promising technique for removing antibiotics and HMs owing to its low cost, simple procedures, and high adsorption capacity. In recent years, various novel carbon nanomaterials have been developed, demonstrating outstanding performance in simultaneously removing antibiotics and HMs. This work presents a comprehensive review of carbon nanomaterials (i.e., carbon nanotubes, graphene, resins, and other nanocomposites) for the co-removal of antibiotics and HMs in water systems. The mechanisms influencing the simultaneous removal of antibiotics and HMs include the bridging effect, electrostatic shielding, competition, and spatial site-blocking effects. These mechanisms can promote, inhibit, or have no impact on the adsorption capacity for antibiotics or HMs. Additionally, environmental factors such as pH, inorganic ions, natural organic matter, and microplastics affect the adsorption efficiency. This review also covers adsorbent regeneration and cost estimation. On the laboratory scale, the cost of the adsorption process primarily depends on the chemical and energy costs of adsorbent production. Our assessment highlights that the carbon-nanomaterial-mediated simultaneous removal of antibiotics and HMs warrants comprehensive consideration from both economic and environmental perspectives.
Collapse
Affiliation(s)
- Huiting Jiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Mengke Cui
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, PR China.
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
2
|
Yan Z, Cao X, Su H, Li C, Lin J, Tang K, Zhang J, Fan H, Chen Q, Tang J, Zhou Z. Coral-Symbiodiniaceae symbiotic associations under antibiotic stress: Accumulation patterns and potential physiological effects in a natural reef. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137039. [PMID: 39764960 DOI: 10.1016/j.jhazmat.2024.137039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 03/12/2025]
Abstract
Antibiotics threaten scleractinian corals, but their accumulation patterns and physiological effects on corals in natural reefs remain unclear. This study investigated antibiotic occurrence in seawater and two coral species, Galaxea fascicularis and Pocillopora damicornis, and explored the physiological effects of bioaccumulated antibiotics in a fringing reef of the South China Sea. Nineteen antibiotic components were detected in seawater, with total antibiotic concentrations (ΣABs) ranging from 17.69 to 44.22 ng L⁻¹ . Eleven antibiotic components were accumulated in the coral hosts, and five components were observed in their algal symbionts. Higher ΣABs were significantly associated with increased total antioxidant capacity in the coral hosts of P. damicornis, while G. fascicularis exhibited a significant increase in algal symbiont density. Furthermore, ofloxacin was linked to increased algal symbiont density of G. fascicularis, while several antibiotic components, including tilmicosin, sulfapyridine, ofloxacin, and lincomycin hydrochloride, were observed to reduce antioxidant levels in the algal symbionts of G. fascicularis. No significant correlations between antibiotic components and physiological activities were detected in P. damicornis. These results highlight species-specific bioaccumulation patterns and physiological responses to antibiotics, suggesting that prolonged contaminations could destabilize coral-Symbiodiniaceae symbiosis. The findings improve understanding of the ecological risks of antibiotic pollution in reefs.
Collapse
Affiliation(s)
- Zhicong Yan
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaocong Cao
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China; Hainan Research Academy of Environmental Sciences, Haikou 571126, China
| | - Hao Su
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China
| | - Changqing Li
- Sanya Coral Reef National Marine Nature Reserve, Sanya 572019, China
| | - Jiamin Lin
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China
| | - Kai Tang
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiahua Zhang
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China
| | - Hangbo Fan
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China
| | - Qin Chen
- Hainan Open University, Haikou 570228, China
| | - Jia Tang
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China.
| | - Zhi Zhou
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Yan L, Xi J, Liu L, Hu Q, Zheng M, Chen H. Mechanistic insight into Cu(II)-mediated transformation of oxytetracycline on Fe-bearing smectite: Evidence from kinetic modeling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125865. [PMID: 39956512 DOI: 10.1016/j.envpol.2025.125865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Heavy metals like Cu(II) and oxytetracycline (OTC) frequently coexist in livestock manure and wastewater due to their widespread use as feed additives, forming Cu(II)-OTC complexes that influence OTC transport and transformation in groundwater. This study investigates Cu(II)-mediated OTC transformation on Fe-bearing smectite under dark, anoxic conditions. Results show that OTC adsorption on Fe-bearing smectite undergoes further transformation. Cu(II)-OTC complexes significantly enhance OTC adsorption, accounting for 23.6%, 99.4%, and 92.9% of total OTC at pH 3, 5, and 8.5, respectively, but inhibit OTC transformation. FTIR, XPS, and UPLC-QTOF analyses reveal redox reactions between Cu(II)-OTC complexes and Fe-bearing smectite, reducing Fe(III) to Fe(II). Transformation primarily involves the tricarbonylamide group at pH 3 and 5, extending to the dimethylamino group at pH 8.5. A kinetic model of OTC transformation identifies two key parameters: the transformation rate (k') and the reactive site quantity (Srxn). The k' varies with pH as follows: pH 3 < pH 8.5 < pH 5, while Fe concentration exhibits an inverse relationship with k', suggesting that mineral dissolution reduces the redox activity of Fe-bearing smectite. Furthermore, a linear correlation between the fraction of redox-active Cu(II)-OTC complexes and Srxn indicates that Cu(II) complexation occupies reactive sites on Fe-bearing smectite, inhibiting transformation. These findings highlight the importance of considering heavy metal-antibiotic interactions when assessing groundwater risks.
Collapse
Affiliation(s)
- Lina Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jiaxing Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qiang Hu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Mingxia Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Honghan Chen
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, China.
| |
Collapse
|
4
|
Li D, Liu Z, Meng Q, Xing G, Zhao K, Tang Y. Defective boron nitride aerogels by salt template synthesis: A green adsorbent for tetracycline removal. ENVIRONMENTAL RESEARCH 2025; 269:120871. [PMID: 39824277 DOI: 10.1016/j.envres.2025.120871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/20/2025]
Abstract
Hexagonal boron nitride (h-BN) exhibits unique application potential in water purification due to its large specific surface area, high porosity, and chemical inertness. Designing adsorbents with highly active adsorption sites is one effective method to improve their adsorption capacities. In this study, porous h-BN aerogels containing multiple defect types (DP-BN) were synthesized by using salt templates. The experimental results showed that DP-BN had an extremely low density. With outstanding adsorption capacity for tetracycline (TC), its maximum adsorption capacity was 1620.37 mg/g, which was 2.6 times higher than that reported in the known literature (623.018 mg/g). DP-BN adsorbed TC quickly, and its rate was influenced by liquid film diffusion, pore diffusion, and diffusion to the active adsorption site. The adsorption process was dominated by chemisorption and could take place spontaneously. The adsorption of TC by DP-BN was exothermic. As the environmental temperature increased, the adsorption capacity of DP-BN increased significantly. DP-BN exhibited excellent reusability. After five cycles, the adsorption removal rate remained up to 99.93%. Overall, the high adsorption capacity of DP-BN for TC was attributed to its abundant active adsorption sites, Π-Π interactions, and intermolecular interactions. This study provided a new idea to modulate the microstructure and improve the adsorption performance of h-BN, hoping to accelerate the application of h-BN in wastewater treatment.
Collapse
Affiliation(s)
- Dan Li
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Zhaowei Liu
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China
| | - Qingnan Meng
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China
| | - Guoxin Xing
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Kang Zhao
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China.
| | - Yufei Tang
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China.
| |
Collapse
|
5
|
Zhang W, Pan S, Yu L, Zhang H, Chen F, Song G, Hu J, Wei Q, Zhao H, Chen J, Zhou F. Dissolved oxygen depletion in Chinese coastal waters. WATER RESEARCH 2025; 272:123004. [PMID: 39729912 DOI: 10.1016/j.watres.2024.123004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
Estuarine and coastal environments have experienced dissolved oxygen (DO hereafter) depression and hypoxia due to increasingly intensified anthropogenic eutrophication and climate warming. This review compared diverse systems in Chinese coastal waters that experience DO depletion or hypoxia, aiming to identify essential aspects in advancing the abilities in comprehensively understanding DO dynamics across systems that span wide ranges of physical and biogeochemical environments. The coastal DO depression and relevant ecological consequences around the world are generally overviewed. DO depression in specific systems around Chinese coastal waters, ranging from large estuarine-coastal system to small embayment, are selected to synthetically understand the environment, the controlling processes, the evolution of eutrophication level, and the potential environmental changes under warming trend. Stressed ecosystems would be put at higher risks with high confidence due to increased complexity and uncertainty caused by future socioeconomic transformation and climate warming. This review proposes key aspects to advancing the abilities in predicting, managing, and mitigating DO stress for marine ecosystems in Chinese coastal waters, potentially providing a framework to discuss future DO changes in the coastal waters worldwide.
Collapse
Affiliation(s)
- Wenxia Zhang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.
| | - Song Pan
- National Marine Data and Information Service, Ministry of Natural Resources, Tianjin, China
| | - Liuqian Yu
- Earth, Ocean and Atmospheric Sciences Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Haiyan Zhang
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, China
| | - Fajin Chen
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Guisheng Song
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, China
| | - Jiatang Hu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Qinsheng Wei
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Huade Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Jianfang Chen
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Feng Zhou
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.
| |
Collapse
|
6
|
Liu J, Yao Q, Yan W, Fang K, He R, Wang X, Cha Y, Yang X, Gu W, Wang C, Lu Y, Zhao M, Ben Y, Wang K, Dong Z, Zhang R, Chang H, Tang S. Antibiotics in ambient fine particulate matter from two metropolitan cities in China: Characterization, source apportionment, and health risk assessment. ENVIRONMENT INTERNATIONAL 2025; 197:109340. [PMID: 40015176 DOI: 10.1016/j.envint.2025.109340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 03/01/2025]
Abstract
Excessive production and widespread application of antibiotic has led to residues in environmental matrices worldwide. There is limited knowledge of the concentrations of antibiotics bound to ambient fine particulate matter (PM2.5) and their health risks. We investigated the occurrence, sources, environmental driving factors, and health risks of antibiotics in PM2.5 samples collected from Beijing and Shijiazhuang, China, during periods of high air pollution. Using ultra-high performance liquid chromatography-tandem mass spectrometry, 25 antibiotics were detected in PM2.5 at concentrations ranging from undetectable to 774.7 pg/m3. These compounds were predominantly tetracyclines and macrolides. The positive matrix factorization model was used to pinpoint the main sources of these antibiotics as pharmaceutical and medical waste, sewage treatment plants, and livestock emissions, with contributions of 39.1 %, 31.7 %, and 29.2 % respectively, to the total concentrations. Crucial environmental driving factors were determined using a linear mixed-effects model and random forest model. Most antibiotics showed a positive correlation with gaseous pollutants and a negative correlation with meteorological factors. PM2.5, PM10, and CO had the highest influence. The estimated daily intake and hazard quotient (HQ) were calculated to assess the human inhalation exposure risks for these antibiotics, and children aged 0-6 years had the highest intake of 102.8 pg/kg/day. Although the calculated health risk of antibiotic inhalation was low (HQ < 1), considering that exposure to antibiotics via inhalation occurs over long periods and these compounds accumulate, further attention should be given to health risks associated with this exposure. Our results provide valuable insight for environmental planning and policymaking concerning antibiotic pollution and its associated health risks.
Collapse
Affiliation(s)
- Juan Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qiao Yao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wenyan Yan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ke Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Runming He
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaona Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Shandong University, Jinan 250061, China
| | - Yu'e Cha
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaoyan Yang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wen Gu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yifu Lu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mingyu Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yujie Ben
- Eastern Institute of Technology, Ningbo (EIT), Ningbo, 315000, China
| | - Kai Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaomin Dong
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Hong Chang
- College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Song Tang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
7
|
Xie R, Yang H, Qiu X, Guo W. FeOOH-CoFe layered double hydroxide carbon felt cathode for the electro-Fenton degradation of oxytetracycline in aqueous solution. ENVIRONMENTAL TECHNOLOGY 2025:1-13. [PMID: 39933549 DOI: 10.1080/09593330.2025.2460839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Heterogeneous electro-Fenton is one of green and promising technologies for removing organic pollutants. In this paper, the FeOOH-CoFe layered double hydroxide carbon felt (LDH/CF) was synthesized by a facile hydrothermal method for an efficient degradation of oxytetracycline (OTC). The structural morphology and elemental composition of the composite electrode were studied by scanning electron microscopy, X-ray diffractometer, and X-ray photoelectron spectroscopy. Then, the electrocatalytic activity of the composite electrode was analysed through electrochemical characterization such as cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy. The removal rate of 20 mg/L OTC reached about 91.6% at pH = 3, with a current density of 6.67 mA cm-2 within 60 minute in the hydrophobic FeOOH-CoFe LDH/CF + PTFE system. Moreover, the catalytic electrode exhibited impressive degradation efficiency over a wide pH range. According to quenching experiments, the principal reactive oxygen species (·O2-, ·OH, and 1O2) involved in the degradation of OTC was identified. Based on this discovery, the possible mechanism for the degradation of OTC was also proposed. In addition, the cyclic experiment demonstrated relatively excellent stability of the hydrophobic FeOOH-CoFe LDH/CF + PTFE electrode, which provided the possibility for the practical application of the electrode.
Collapse
Affiliation(s)
- Ruiqi Xie
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| | - Honglei Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| | - Xuan Qiu
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| | - Weilin Guo
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| |
Collapse
|
8
|
Zhang Y, Liu L, Liu Y, Chen L, Wang J, Li Y, Wang K, Wang W. Deciphering the natural and anthropogenic drivers on the fate and risk of antibiotics and antibiotic resistance genes (ARGs) in a typical river-estuary system, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136006. [PMID: 39357363 DOI: 10.1016/j.jhazmat.2024.136006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
This study conducts an in-depth assessment of the spatial distribution, ecological risks, and correlations among 12 antibiotics, antibiotic resistance genes (ARGs), and dominant microorganisms in a representative river-estuary system, classified by land use and hydrodynamic conditions. Sulfonamides and quinolones were identified as the major contaminants in surface waters, with aquaculture and healthcare wastewater responsible for over 80 % of the antibiotic load. Contrasting seasonal patterns were observed between freshwater (wet season: 215 ng/L, dry season: 99.9 ng/L) and tidal estuaries (wet season: 45.9 ng/L, dry season: 121 ng/L), attributed to antibiotic transport from terrestrial sources or coastal aquaculture areas. The estimated annual antibiotic influx into Jiaozhou Bay was 70.4 kg/year, posing a considerable threat to aquatic algae and disrupting the stability of aquatic food chain. BugBase predictions suggested that antibiotics in the environment suppressed bacteria characterized by biofilm formation (FB) and the presence of mobile elements (CME). However, ARG transmission was likely to drive the spread of CME, FB, and stress-tolerant (OST) bacteria within microbial communities. The significant positive correlations observed between sulfamethoxazole and 63 microbial genera indicate a broad distribution of microbial resistance, which exacerbates the potential for ARG accumulation and dissemination across both the bay and the Yellow Sea.
Collapse
Affiliation(s)
- Yaru Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Lin Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China.
| | - Yonglin Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China.
| | - Lin Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Jiakai Wang
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yanan Li
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Kun Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Weiliang Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China.
| |
Collapse
|
9
|
Zhang B, Wang X, Meng F, Du S, Li H, Xia Y, Yao Y, Zhang P, Cui J, Cui Z. Metabolic variation and oxidative stress responses of clams (Ruditapes philippinarum) perturbed by ofloxacin exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135783. [PMID: 39276738 DOI: 10.1016/j.jhazmat.2024.135783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Ofloxacin (OFL), one of the most widely used fluoroquinolone antibiotics, has been frequently detected in marine environments. Nonetheless, researchers are yet to focus on the effects of OFL on the benthos. In the present study, marine clams (Ruditapes philippinarum) were exposed to OFL (0.5, 50, and 500 μg/L) for 14 d, followed by a 7 d depuration period. The accumulation of OFL, antioxidative defense responses, neurotoxicity, burrowing behavior, and metabolomic changes in clams were evaluated. The results indicated that OFL could accumulate in clams, albeit with a low bioaccumulation capacity. The intermediate (50 μg/L) and high (500 μg/L) levels of OFL induced significant antioxidative responses in the gills and digestive glands of clams, mainly manifesting as the inhibition of catalase activities and the induction of superoxide dismutase and glutathione S-transferase activities, which ultimately elevated the content of malondialdehyde, causing oxidative damage. Furthermore, the significant induction of acetylcholinesterase activities was observed, coinciding with a significant increase in burrowing rates of clams. The high level of OFL affected glycerophospholipid, arachidonic acid, steroid hormone biosynthesis, unsaturated fatty acids biosynthesis, and glycolysis/glycogenesis metabolism. In conclusion, this study has contributed to the understanding of the physiological and biochemical effects and molecular toxicity mechanisms of OFL to marine bivalves.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| | - Xiaotong Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China; College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China.
| | - Shuhao Du
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Haiping Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Yufan Xia
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Yu Yao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Ping Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Jiali Cui
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Zhengguo Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| |
Collapse
|
10
|
Gu S, Yin J, Shang M, Ke H, Dong J, Zhu X, Xie H. Transport, sources, and risks of particulate antibiotics in coastal environments: The crucial role of particles in mud coasts. MARINE POLLUTION BULLETIN 2024; 209:117204. [PMID: 39486195 DOI: 10.1016/j.marpolbul.2024.117204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Excessive antibiotic use has created environmental burdens. Coastal waters are often turbid, with suspended sediments (SPS) serving as carriers of antibiotics and intrinsically linked to particles in tidal flats. Although the distribution of antibiotics in water and sediments is well documented, environmental behaviors of particulate antibiotics remain limited. This study investigated 15 antibiotics in tidal sediments and coastal SPS, finding concentrations of 3.45-18.7 ng/g and 89.1-1.26 × 103 ng/g respectively, dominated by doxycycline (DXC) and oxytetracycline (OTC). Higher antibiotic proportion of SPS to water necessitated further research. Antibiotics were more evenly distributed in sediments. The primary source of antibiotics was rainfall runoff. Risk assessments highlighted antibiotics' risks to human health and ecosystems, especially fluoroquinolones. CODMn level in coastal water could predict antibiotic contamination in solids. This study distinguishes between dissolved and particulate antibiotics, elucidating their source, risk, and transport in turbid coastal environments, aiding in developing new seawater quality standards.
Collapse
Affiliation(s)
- Shiya Gu
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiaxuan Yin
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Meiqi Shang
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Haiyu Ke
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jianwei Dong
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Xuexia Zhu
- College of Animal Science and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Hui Xie
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
11
|
Ma N, Zhang H, Yuan L, Li Y, Yang W, Huang Y. Biotransformation of enrofloxacin-copper combined pollutant in aqueous environments by fungus Cladosporium cladosporioides (CGMCC 40504). World J Microbiol Biotechnol 2024; 40:397. [PMID: 39604658 DOI: 10.1007/s11274-024-04204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The combined pollution of antibiotics and heavy metals in aqueous environments increases the risk of aquatic ecosystem disruption and the complication of pollutant management. Here, a fungus Cladosporium cladosporioides 11 (CC11) isolated from aquaculture pond sediments possessed effective capacities to biotransform the combined pollution of enrofloxacin (ENR) and copper ion (Cu). ENR and Cu were considerably abated by CC11, and the presence of Cu (30 mg/L) promoted the biotransformation efficiency of ENR. The biotranformation of ENR in ENR-Cu co-contamination was associated to ligninolytic enzyme action. The expression of ligninolytic enzymes was enhanced by ENR and ENR-Cu combined pollution. And the increased activities of ligninolytic enzymes confirmed the significant role of enzymatic transformation. Cu played an important role in increasing the expression and activities of ligninolytic enzymes. The expressions of many genes associated with transporters, phosphate assimilation, oxidative phosphorylation, hyperosmotic stress and pectin metabolism were significantly up-regulated when facing Cu-stress, indicating their important roles in determining Cu removal and enhancing Cu-resistance. Additionally, CC11 significantly biotransformed other antibiotic and heavy metal combined pollution. All these results contributed to the applications of CC11 in aqueous environments.
Collapse
Affiliation(s)
- Ning Ma
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Hongyu Zhang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Wenbo Yang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China.
| |
Collapse
|
12
|
Li D, Qin M, Lou X, Zhu J, Ma W, Zhang N, Lu M. Constructing perfluorinated UiO-67 for enrichment of polycyclic aromatic hydrocarbons in seawater and seabed sediments. J Chromatogr A 2024; 1737:465463. [PMID: 39490196 DOI: 10.1016/j.chroma.2024.465463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
To investigate the ocean contamination caused by polycyclic aromatic hydrocarbons (PAHs), UiO-67/perfluorooctanoic acid (UiO-67/PFOA) was synthesized through solvent-assisted ligand incorporation method. The UiO-67/PFOA was then served as an adsorbent in headspace solid-phase microextraction (HS-SPME) technology for collecting and concentrating trace PAHs. The addition of the PFOA improved the hydrophobicity and stability of the UiO-67/PFOA coating, and the C-F functional group in UiO-67/PFOA could form the pseudo hydrogen bonding with the CH on the benzene ring of PAHs, which endowed the UiO-67/PFOA with 1.60-4.63 times enrichment performance for PAHs than UiO-67. Under optimal conditions, the wide linear ranges of PAHs (0.01-20 ng·mL-1) with good coefficients of determination (R2 ≥ 0.9950) and low limits of detection (LODs, 0.003-0.008 ng·mL-1) were obtained. The recoveries of five PAHs from spiked seawater and seabed sediment by the developed method ranged from 81.14 % to 116.0 % with satisfactory results. This work provided a good adsorbent for the enrichment of trace PAHs in complicated environments and a new approach for the subsequent synthesis of adsorbents with good enrichment performance.
Collapse
Affiliation(s)
- Dongxue Li
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Mengjie Qin
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Xuejing Lou
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Jiawen Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Wende Ma
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China.
| | - Ning Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
13
|
Chen A, Zhang T, Cheng F, Yang H, Guo Z, Zhao S, Zhang YN, Qu J. Comprehensive analysis and risk assessment of Antibiotic contaminants, antibiotic-resistant bacteria, and resistance genes: Patterns, drivers, and implications in the Songliao Basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124852. [PMID: 39216670 DOI: 10.1016/j.envpol.2024.124852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/28/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The pervasive use of antibiotics has raised substantial environmental concerns, especially regarding their temporal and spatial distribution across diverse water systems. This study addressed the gap in comprehensive research on antibiotic contamination during different hydrological periods, focusing on the Jilin section of the Songliao Basin in Northeast China, an area with severe winter ice cover. The study examined the occurrence, distribution, influencing factors, and potential ecological risks of prevalent antibiotic contaminants. Findings revealed antibiotic concentrations ranging from 239.64 to 965.81 ng/L, with antibiotic resistance genes (ARGs) at 5.22 × 10-2 16S rRNA-1 and antibiotic-resistant bacteria (ARB) up to 5.76 log10 CFU/mL. Ecological risk assessments identified significant risks to algae from oxytetracycline, erythromycin, and amoxicillin. Redundancy analysis and co-occurrence networks with ordinary least squares (OLS) demonstrated that the dispersion of ARGs and ARB is significantly influenced by environmental factors such as total organic carbon (TOC), total phosphorus (TP), total nitrogen (TN), fluoride (F⁻), and nitrate (NO₃⁻). These elements, along with mobile genetic elements (MGEs), play crucial roles in ARG patterns (R2 = 0.94, p ≤ 0.01). This investigation offers foundational insights into antibiotic pollution dynamics in cold climates, supporting the development of targeted mitigation strategies for aquatic systems.
Collapse
Affiliation(s)
- Anjie Chen
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Tingting Zhang
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Fangyuan Cheng
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Hao Yang
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Zhengfeng Guo
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Siyu Zhao
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Ya-Nan Zhang
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
14
|
Xie Y, Diao J, Meng J, Wang J, Zhang J, Zhang J, Zhang L, Leung JYS, Bi R, Liu W, Wang T. Optimizing entropy weight model to accurately predict variation of pharmaceuticals and personal care products in the estuaries and coasts of the South China. MARINE POLLUTION BULLETIN 2024; 207:116825. [PMID: 39142051 DOI: 10.1016/j.marpolbul.2024.116825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) have raised increasing concern worldwide due to their continuous release and potential hazards to the ecosystem and human health. This study optimized the entropy weight model (EW-WRSR) that combines entropy weight with multi-criteria decision analysis to investigate pollution patterns of PPCPs in the coasts and estuaries. The results revealed that occurrences of PPCPs from the 1940s to the present were consistent with using PPCPs, different types of human activities, and local urban development. This helped better understand the history of PPCP contamination and evaluate the uncertainty of EW-WRSR. The model predicted hotspots of PPCPs that were consistent with the actual situation, indicating that PPCPs mainly enter the nearshore ecosystem by the form of sewage discharge and residual aquaculture. This study can provide method that identifying highly contaminated regions on a global scale.
Collapse
Affiliation(s)
- Yuxin Xie
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Protection, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Jieyi Diao
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Protection, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Jing Meng
- Key Laboratory of Environment Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100084, China
| | - Jianwen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Protection, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Jiaer Zhang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Protection, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Jingru Zhang
- Laboratory of New Pollutants Risk Assessment & Control, Guangdong Provincial Academic of Environmental Science, Guangzhou 510045, China
| | - Lulu Zhang
- Laboratory of New Pollutants Risk Assessment & Control, Guangdong Provincial Academic of Environmental Science, Guangzhou 510045, China
| | - Jonathan Y S Leung
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Protection, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ran Bi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Protection, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Protection, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Protection, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| |
Collapse
|
15
|
Hu H, Da X, Li Z, Li T, Zhang X, Bian T, Jin Y, Xu K, Guo Y. Determination and Ecological Risk Assessment of Quinolone Antibiotics in Drinking and Environmental Waters Using Fully Automated Disk-Based SPE Coupled with UPLC-MS/MS. Molecules 2024; 29:4611. [PMID: 39407541 PMCID: PMC11477713 DOI: 10.3390/molecules29194611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Quinolone antibiotics (QNs) contamination in the aquatic environment is a global public health issue considering their resistance and mobility. In this study, a simple, efficient, and sensitive method was developed for the accurate quantification of fifteen QNs in water using automated disk-based solid-phase extraction (SPE) coupled with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). By utilizing a 3M SDB-XC disk to enrich QNs from a 1000 mL water sample, the detection limits were improved to 0.008-0.055 ng/L due to the satisfactory enrichment factors of 897-1136, but only requiring about 60 min per six samples. The linearity of the method ranged from 0.05 to 100 μg/L for the 15 QNs, with correlation coefficients of 0.9992-0.9999, and the recoveries were in the range of 81-114%, with relative standard deviations of 0.2-13.3% (n = 6). The developed method was applicable for the quantification of trace QNs at low ng/L levels in drinking and environmental waters. The results showed that no QNs were detected in tap water, while three and four QNs were detected in the river water of Zhoushan and the seawater of Daiquyang and Yueqing Bay, East China, respectively, with a total concentration of 1.600-8.511 ng/L and 1.651-16.421 ng/L, respectively. Among the detected QNs, ofloxacin (OFL) was the predominant compound in river water, while enrofloxacin (ENR) was predominant in seawater. The risk quotient (RQ) results revealed that QNs posed a low risk to crustaceans and fish, but a low-to-medium risk to algae, and OFL presented the main ecological risk factor in river water, while ENR and CIP in seawater. Overall, the proposed automated disk-based SPE-UPLC-MS/MS method is highly efficient and sensitive, making it suitable for routine analysis of QNs in drinking and environmental waters.
Collapse
Affiliation(s)
- Hongmei Hu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (H.H.)
| | - Xingyu Da
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (H.H.)
| | - Zhenhua Li
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (H.H.)
| | - Tiejun Li
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (H.H.)
| | - Xiaoning Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Tianbin Bian
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, China
| | - Yanjian Jin
- Zhejiang Marine Ecology and Environment Monitoring Center, Zhoushan 316021, China
| | - Kaida Xu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (H.H.)
| | - Yuanming Guo
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (H.H.)
| |
Collapse
|
16
|
Wang L, Lu X, Xing Z, Teng X, Wang S, Liu T, Zheng L, Wang X, Qu J. Macrogenomics Reveals Effects on Marine Microbial Communities during Oplegnathus punctatus Enclosure Farming. BIOLOGY 2024; 13:618. [PMID: 39194557 DOI: 10.3390/biology13080618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
(1) Background: Laizhou Bay is an important aquaculture area in the north of China. Oplegnathus punctatus is one of the species with high economic benefits. In recent years, the water environment of Laizhou Bay has reached a mild eutrophication level, while microorganisms are an important group between the environment and species. In this study, we evaluated alterations in environmental elements, microbial populations, and antibiotic resistance genes (ARGs) along with their interconnections during Oplegnathus punctatus net culture. (2) Methods: A total of 142 samples from various water layers were gathered for metagenome assembly analysis. Mariculture increases the abundance of microorganisms in this culture area and makes the microbial community structure more complex. The change had more significant effects on sediment than on seawater. (3) Results: Certain populations of cyanobacteria and Candidatus Micrarchaecta in seawater, and Actinobacteria and Thaumarchaeota in sediments showed high abundance in the mariculture area. Antibiotic resistance genes in sediments were more sensitive to various environmental factors, especially oxygen solubility and salinity. (4) Conclusions: These findings highlight the complex and dynamic nature of microorganism-environment-ARG interactions, characterized by regional specificity and providing insights for a more rational use of marine resources.
Collapse
Affiliation(s)
- Lijun Wang
- College of Life Science, Yantai University, Yantai 264005, China
| | - Xiaofei Lu
- College of Life Science, Yantai University, Yantai 264005, China
| | - Zhikai Xing
- College of Life Science, Yantai University, Yantai 264005, China
| | - Xindong Teng
- Qingdao International Travel Healthcare Center, Qingdao 266071, China
| | - Shuang Wang
- College of Life Science, Yantai University, Yantai 264005, China
| | - Tianyi Liu
- College of Life Science, Yantai University, Yantai 264005, China
| | - Li Zheng
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Xumin Wang
- College of Life Science, Yantai University, Yantai 264005, China
| | - Jiangyong Qu
- College of Life Science, Yantai University, Yantai 264005, China
| |
Collapse
|
17
|
Xu C, Gong B, Zhao S, Sun XM, Wang SG, Song C. Cu(II) inhibited the transport of tetracycline in porous media: role of complexation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1417-1428. [PMID: 39007296 DOI: 10.1039/d4em00210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Tetracycline (TC) and Cu(II) coexist commonly in various waters, which may infiltrate into the subterranean environment through runoff and leaching, resulting in substantial ecological risks. However, the underlying mechanisms why Cu(II) affects the transport of TC in porous media remain to be further explored and supported by more evidence, especially the role of complexation. In this study, the transport of TC with coexisting Cu(II) was comprehensively explored with column experiments and density functional theory (DFT) calculation. At natural environmental concentrations, Cu(II) significantly inhibited the transport of TC in the quartz sand column. Cu(II) augmented the retention of TC in the column mainly via electrostatic force and complexation. The interaction between TC and TC-Cu complexes on the surface of SiO2 was investigated with first-principles calculations for the first time. There were strong van der Waals forces and coordination bonds on the surface of complexes and SiO2, leading to higher adsorption energy than that of TC and inhibiting its penetration. This study offers novel insights and theoretical framework for the transport of antibiotics in the presence of metal ions to better understand the fate of antibiotics in nature.
Collapse
Affiliation(s)
- Chang Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Bo Gong
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiao-Min Sun
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
- Sino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
- WeiHai Research Institute of Industrial Technology of Shandong University, Weihai, 264209, China
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
18
|
Adjei JK, Acquah H, Essumang DK. Occurrence, efficiency of treatment processes, source apportionment and human health risk assessment of pharmaceuticals and xenoestrogen compounds in tap water from some Ghanaian communities. Heliyon 2024; 10:e31815. [PMID: 38845891 PMCID: PMC11153180 DOI: 10.1016/j.heliyon.2024.e31815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/15/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
The occurrence of pharmaceuticals and xenoestrogen compounds (PXCs) in drinking water presents a dire human health risk challenge. The problem stems from the high anthropogenic pollution load on source water and the inefficiencies of the conventional water treatment plants in treating PXCs. This study assessed the PXCs levels and the consequential health risks of exposure to tap water from selected Ghanaian communities as well as that of raw water samples from the respective treatment plants. Thus the PXCs treatment efficiency of two drinking water treatment plants in the metropolises studied was also assessed. The study also conducted source apportionment of the PXCs in the tap water. Twenty six (26) tap and raw water samples from communities in the Cape Coast and Sekondi-Takoradi metropolises were extracted using SPE cartridges and analysed for PXCs using Ultra-fast-HPLC-UV instrument. Elevated levels of PXCs up to 24.79 and 22.02 μg/L were respectively recorded in raw and tap water samples from the metropolises. Consequently, elevated non-cancer health risk (HI > 1) to residential adults were found for tap water samples from Cape Coast metropolis and also for some samples from Sekondi-Takoradi metropolis. Again, elevated cumulative oral cancer risks >10-5 and dermal cancer risk up to 4 × 10-5 were recorded. The source apportionment revealed three significant sources of PXCs in tap water samples studied. The results revealed the inefficiency of the treatment plants in removing PXCs from the raw water during treatments. The situation thus requires urgent attention to ameliorate it, safeguarding public health. It is recommended that the conventional water treatment process employed be augmented with advanced treatment technologies to improve their efficacy in PXCs treatment.
Collapse
Affiliation(s)
- Joseph K. Adjei
- Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana
| | - Henrietta Acquah
- Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana
| | - David K. Essumang
- Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana
| |
Collapse
|
19
|
Tian D, Zhang W, Lu L, Yu Y, Yu Y, Zhang X, Li W, Shi W, Liu G. Enrofloxacin exposure undermines gut health and disrupts neurotransmitters along the microbiota-gut-brain axis in zebrafish. CHEMOSPHERE 2024; 356:141971. [PMID: 38604519 DOI: 10.1016/j.chemosphere.2024.141971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The environmental prevalence of antibiotic residues poses a potential threat to gut health and may thereby disrupt brain function through the microbiota-gut-brain axis. However, little is currently known about the impacts of antibiotics on gut health and neurotransmitters along the microbiota-gut-brain axis in fish species. Taking enrofloxacin (ENR) as a representative, the impacts of antibiotic exposure on the gut structural integrity, intestinal microenvironment, and neurotransmitters along the microbiota-gut-brain axis were evaluated in zebrafish in this study. Data obtained demonstrated that exposure of zebrafish to 28-day environmentally realistic levels of ENR (6 and 60 μg/L) generally resulted in marked elevation of two intestinal integrity biomarkers (diamine oxidase (DAO) and malondialdehyde (MDA), upregulation of genes that encode inter-epithelial tight junction proteins, and histological alterations in gut as well as increase of lipopolysaccharide (LPS) in plasma, indicating an evident impairment of the structural integrity of gut. Moreover, in addition to significantly altered neurotransmitters, markedly higher levels of LPS while less amount of two short-chain fatty acids (SCFAs), namely acetic acid and valeric acid, were detected in the gut of ENR-exposed zebrafish, suggesting a disruption of gut microenvironment upon ENR exposure. Along with corresponding changes detected in gut, significant disruption of neurotransmitters in brain indicated by marked alterations in the contents of neurotransmitters, the activity of acetylcholin esterase (AChE), and the expression of neurotransmitter-related genes were also observed. These findings suggest exposure to environmental antibiotic residues may impair gut health and disrupt neurotransmitters along the microbiota-gut-brain axis in zebrafish. Considering the prevalence of antibiotic residues in environments and the high homology of zebrafish to other vertebrates including human, the risk of antibiotic exposure to the health of wild animals as well as human deserves more attention.
Collapse
Affiliation(s)
- Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
20
|
Wei C, Wang Y, Zhang R, Liu F, Zhang ZE, Wang J, Yu K. Spatiotemporal distribution and potential risks of antibiotics in coastal water of Beibu Gulf, South China Sea: Livestock and poultry emissions play essential effect. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133550. [PMID: 38290337 DOI: 10.1016/j.jhazmat.2024.133550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Antibiotics have been the subject of much attention in recent years due to their widespread use and the potential ecological risks and resistance risks. In this study, we conducted an extensive survey of 19 antibiotics in a wide range of waters of the Beibu Gulf during summer and winter (154 samples). The total concentrations of the 19 antibiotics (Σ19ABs, ng/L) were significantly higher in winter (n.d.-364) than in summer (n.d.-70.1) and were mainly concentrated in areas of seagoing rivers (1.50-364). The primary route for antibiotics entering Beibu Gulf was through riverine input. Precisely, florfenicol (FF) (n.d.-278 ng/L) discharged from livestock and poultry farms upstream of Nanliu River, predominantly in swine farming, constitutes the main pollutant in Beibu Gulf throughout the year. The Nanliu River (988 kg/a) accounts for 85% of the gulf's total annual antibiotic emission flux. Source analysis identified livestock and poultry farming, particularly swine farming, as the primary pollution source, contributing 58% in summer. Risk assessment reveals that algae (0.51 ± 0.56) exhibited relatively high sensitivity to antibiotics, presenting a medium-high risk at specific sites in Nanliu River during winter. Additionally, FF discharged from swine farming demonstrates a certain level of antibiotic resistance risk. Therefore, reinforcing control measures for antibiotic discharges from livestock and poultry farming, especially upstream of Nanliu River, can effectively mitigate antibiotic-related risks in the water bodies of Beibu Gulf.
Collapse
Affiliation(s)
- Chaoshuai Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Institute of Green and Low Carbon Technology, Guangxi Institute of Industrial Technology, Nanning 530201, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Fang Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zheng-En Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jingzhen Wang
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in the Beibu Gulf, Bubei Gulf University, Qinzhou, 535011, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
21
|
Mu Y, Tang B, Cheng X, Fu Y, Huang W, Wang J, Ming D, Xing L, Zhang J. Source apportionment and predictable driving factors contribute to antibiotics profiles in Changshou Lake of the Three Gorges Reservoir area, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133522. [PMID: 38244452 DOI: 10.1016/j.jhazmat.2024.133522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Lakes, crucial antibiotic reservoirs, lack thorough exploration of quantitative relationships between antibiotics and influencing factors. Here, we conducted a comprehensive year-long investigation in Changshou Lake within the Three Gorges Reservoir area, China. The concentrations of 21 antibiotics spanned 35.6-200 ng/L, 50.3-348 ng/L and 0.57-57.9 ng/g in surface water, overlying water and sediment, respectively. Compared with abundant water period, surface water and overlying water displayed significantly high antibiotic concentrations in flat and low water periods, while sediment remained unchanged. Moreover, tetracyclines, fluoroquinolones and erythromycin posed notable risks to algae. Six primary sources were identified using positive matrix factorization model, with aquaculture contributing 21.2%, 22.7% and 25.4% in surface water, overlying water and sediment, respectively. The crucial predictors were screened through machine learning, redundancy analysis and Mantel test. Our findings emphasized the pivotal roles of water quality parameters, including water temperature (WT), pH, dissolved oxygen, electrical conductivity, inorganic anions (NO3⁻, Cl⁻ and F⁻) and metal cations (Ca, Mg, Fe, K and Cr), with WT influencing greatest. Total nitrogen (TN), cation exchange capacity, K, Al and Cd significantly impacted sediment antibiotics, with TN having the most pronounced effect. This study can promise valuable insights for environmental planning and policies addressing antibiotic pollution.
Collapse
Affiliation(s)
- Yue Mu
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Bobin Tang
- Technical Centre, Chongqing Customs, Chongqing 400020, PR China
| | - Xian Cheng
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Yuanhang Fu
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Weibin Huang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Jing Wang
- Technical Centre, Chongqing Customs, Chongqing 400020, PR China
| | - Dewang Ming
- Technical Centre, Chongqing Customs, Chongqing 400020, PR China
| | - Liangshu Xing
- Eco-Environmental Monitoring Station of Changshou District, Chongqing 401220, PR China
| | - Jinzhong Zhang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
22
|
Wani AK, Ul Gani Mir T, Akhtar N, Chopra C, Bashir SM, Hassan S, Kumar V, Singh R, Américo-Pinheiro JHP. Algae-Mediated Removal of Prevalent Genotoxic Antibiotics: Molecular Perspective on Algae-Bacteria Consortia and Bioreactor-Based Strategies. Curr Microbiol 2024; 81:112. [PMID: 38472428 DOI: 10.1007/s00284-024-03631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024]
Abstract
Antibiotic pollution poses a potential risk of genotoxicity, as antibiotics released into the environment can induce DNA damage and mutagenesis in various organisms. This pollution, stemming from pharmaceutical manufacturing, agriculture, and improper disposal, can disrupt aquatic ecosystems and potentially impact human health through the consumption of contaminated water and food. The removal of genotoxic antibiotics using algae-mediated approaches has gained considerable attention due to its potential for mitigating the environmental and health risks associated with these compounds. The paper provides an in-depth examination of the molecular aspects concerning algae and bioreactor-driven methodologies utilized for the elimination of deleterious antibiotics. The molecular analysis encompasses diverse facets, encompassing the discernment and profiling of algae species proficient in antibiotic degradation, the explication of enzymatic degradation pathways, and the refinement of bioreactor configurations to augment removal efficacy. Emphasizing the significance of investigating algal approaches for mitigating antibiotic pollution, this paper underscores their potential as a sustainable solution, safeguarding both the environment and human health.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Tahir Ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, 190006, India
| | - Shabir Hassan
- Department of Biology, College of Arts and Sciences, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates
| | - Vineet Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, São Paulo, 18610-034, Brazil.
- Brazil University, Street Carolina Fonseca, 584, São Paulo, São Paulo, 08230-030, Brazil.
| |
Collapse
|
23
|
Bouzidi A, Krouma A. Impact of lead and zinc heavy metal pollution on the growth and phytoremediation potential of Sulla carnosa in Sebkha el Kalbia, Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32350-w. [PMID: 38424244 DOI: 10.1007/s11356-024-32350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Heavy metal pollution from human and natural activities poses significant environmental and health concerns for wildlife and humans, with lead and zinc being particularly threatening. This study focuses on Sebkha el Kalbia in Tunisia, highlighting the challenges faced by local communities in addressing heavy metal pollution. The area is prone to contamination through rivers and streams that transport pollutants from industrial zones and rural areas into the salt pan. The recent establishment of an industrial zone has worsened pollution levels, calling for strict regulatory measures and clean technologies to limit heavy metal pollution and protect human health and the environment. The study assesses the impact of lead and zinc pollution on the growth of Sulla carnosa and its potential for phytoremediation. Soil and plant samples from contaminated areas were analyzed, revealing high levels of heavy metal contamination. The growth parameters of Sulla carnosa, such as plant height, weight, and enzymatic activity, were examined, showing a significant reduction in plant growth when exposed to high metal concentrations. Specifically, in the presence of 100 ppm of lead (Pb), net photosynthetic assimilation (An) decreased by 52%, while the amount of Pb increased by 78%. At 800 ppm of Pb, An decreased by 87%, and the amount of Pb increased by over 800%. Furthermore, the relationship between net photosynthetic assimilation and lead (Pb) content remained significant but negative. At high doses (800 ppm), the biomass produced decreases by 64%, while the amount of Zn increases 2.7 times. These results suggest that at low doses, zinc is not toxic. These findings highlight Sulla carnosa as a potential candidate for phytoremediation with preferential metal accumulation in the roots and improved enzymatic activity, underscoring the urgency of addressing heavy metal pollution in Sebkha el Kalbia.
Collapse
Affiliation(s)
- Amal Bouzidi
- Laboratory of Ecosystems and Biodiversity in Arid Land of Tunisia, Faculty of Sciences, University of Sfax, Sfax, Tunisia.
| | - Abdelmajid Krouma
- Faculty of Sciences and Techniques of Sidi Bouzid, University of Kairouan, Sidi Bouzid, Tunisia
| |
Collapse
|
24
|
Li X, Jiang H, Zhu L, Tang J, Liu Z, Dai Y. Adsorption interactions between typical microplastics and enrofloxacin: Relevant contributions to the mechanism. CHEMOSPHERE 2024; 351:141181. [PMID: 38211798 DOI: 10.1016/j.chemosphere.2024.141181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
Microplastics (MPs) are increasingly contaminating the environment and they can combine with antibiotics as carriers to form complex contaminants. In this study, we systematically investigated the interactions between the antibiotic enrofloxacin (ENR) and MPs comprising polyethylene (PE), polyvinyl chloride (PVC), and polystyrene (PS). Characterization was performed by using conventional techniques and the mechanisms involved in interactions were initially explored based on adsorption kinetics, isotherms, and resolution experiments, and the adsorption capacities of the MPs were determined. In addition, the extended Derjaguin-Landau-Verwey-Overbeek theory was used to investigate the interaction mechanisms. The results showed that the interactions were weaker in strong acidic and alkaline environments, and the interactions were also inhibited at higher salt ion concentrations. The saturation adsorption amounts of ENR on PVC, PE, and PS were 74.63 μg/g, 103.09 μg/g, and 142.86 μg/g, respectively. The interactions between MPs and ENR were dominated by hydrophobic interactions, followed by van der Waals forces and acid-base forces. This study provides new insights into the adsorption behavior of ENR by MPs.
Collapse
Affiliation(s)
- Xiang Li
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Huating Jiang
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China; School of Environmental Science and Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Liya Zhu
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Junqian Tang
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Zhihua Liu
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| | - Yingjie Dai
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
25
|
Zhang T, Wang X, Zhang Q, Yang D, Zhang X, Liu H, Wang Q, Dong Z, Zhao J. Interactive effects of multiple antibiotic residues and ocean acidification on physiology and metabolome of the bay scallops Argopecten irradians irradians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168941. [PMID: 38056652 DOI: 10.1016/j.scitotenv.2023.168941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Coastal areas are confronted with compounding threats arising from both climatic and non-climatic stressors. Antibiotic pollution and ocean acidification are two prevalently concurrent environmental stressors. Yet their interactive effects on marine biota have not been investigated adequately and the compound hazard remain obscure. In this study, bay scallops Argopecten irradians irradians were exposed to multiple antibiotics (sulfamethoxazole, tetracycline, oxytetracycline, norfloxacin, and erythromycin, each at a concentration of 1 μg/L) combined with/without acidic seawater (pH 7.6) for 35 days. The single and interactive effects of the two stressors on A. irradians irradians were determined from multidimensional bio-responses, including energetic physiological traits as well as the molecular underpinning (metabolome and expressions of key genes). Results showed that multiple antibiotics predominantly enhanced the process of DNA repair and replication via disturbing the purine metabolism pathway. This alternation is perhaps to cope with the DNA damage induced by oxidative stress. Ocean acidification mainly disrupted energy metabolism and ammonia metabolism of the scallops, as evidenced by the increased ammonia excretion rate, the decreased O:N ratio, and perturbations in amino acid metabolism pathways. Moreover, the antagonistic effects of multiple antibiotics and ocean acidification caused alternations in the relative abundance of neurotransmitter and gene expression of neurotransmitter receptors, which may lead to neurological disorders in scallops. Overall, the revealed alternations in physiological traits, metabolites and gene expressions provide insightful information for the health status of bivalves in a natural environmental condition under the climate change scenarios.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qianqian Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Dinglong Yang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Xiaoli Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Hui Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Qing Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Zhijun Dong
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China.
| |
Collapse
|
26
|
Zhang T, Wang X, Zhang Q, Li K, Yang D, Zhang X, Liu H, Wang Q, Dong Z, Yuan X, Zhao J. Intrinsic and extrinsic pathways of apoptosis induced by multiple antibiotics residues and ocean acidification in hemocytes of scallop Argopecten irradians irradians: An interactionist perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115806. [PMID: 38091672 DOI: 10.1016/j.ecoenv.2023.115806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
The increasing prevalence of antibiotics in seawater across global coastal areas, coupled with the ocean acidification induced by climate change, present a multifaceted challenge to marine ecosystems, particularly impacting the key physiological processes of marine organisms. Apoptosis is a critical adaptive response essential for maintaining cellular homeostasis and defending against environmental threats. In this study, bay scallops Argopecten irradians irradians were exposed to multiple antibiotics (sulfamethoxazole, tetracycline, oxytetracycline, norfloxacin, and erythromycin, each at a concentration of 1 μg/L) combined with/without acidic seawater (pH 7.6) for 35 days. The single and interactive effects of the two stressors on apoptosis and the underlying mechanisms in hemocytes of A. irradians irradians were determined through flow cytometry analysis, comet assay, oxidative stress biomarkers analysis, and transcriptome analysis. Results showed that apoptosis could be triggered by either AM exposure or OA exposure, but through different pathways. Exposure to AM leads to mitochondrial dysfunction and oxidative damage, which in turn triggers apoptosis via a series of cellular events in both intrinsic and extrinsic pathways. Conversely, while OA exposure similarly induced apoptosis, its effects are comparatively subdued and are predominantly mediated through the intrinsic pathway. Additionally, the synergistic effects of AM and OA exposure induced pronounced mitochondrial dysfunction and oxidative damages in the hemocytes of A. irradians irradians. Despite the evident cellular distress and the potential initiation of apoptotic pathways, the actual execution of apoptosis appears to be restrained, which might be attributed to an energy deficit within the hemocytes. Our findings underscore the constrained tolerance capacity of A. irradians irradians when faced with multiple environmental stressors, and shed light on the ecotoxicity of antibiotic pollution in the ocean under prospective climate change scenarios.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qianqian Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Ke Li
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Dinglong Yang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Xiaoli Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Hui Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Qing Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Zhijun Dong
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Xiutang Yuan
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China.
| |
Collapse
|
27
|
Liu R, Wang Y, Wang L, Wang Y, Peng X, Cao L, Liu Y. Spatio-temporal distribution and source identification of antibiotics in suspended matter in the Fen River Basin. CHEMOSPHERE 2023; 345:140497. [PMID: 37866500 DOI: 10.1016/j.chemosphere.2023.140497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
In this study, 26 typical antibiotics in the suspended matter of the Fen River basin were analyzed during the wet and dry seasons, and the main sources of antibiotic contamination were further identified. The results showed that the concentrations of antibiotics in the suspended matter varied seasonally. Sixteen antibiotics were detected in the suspended matter during the wet season with an average concentration of 463.56 ng/L. However, a total of 21 antibiotics were detected in the dry season, with an average concentration of 106.00 ng/L. The concentration of chloramphenicol antibiotics was outstanding in the wet season and dry season. The spatial distribution of the antibiotics in suspended matter showed little spatial discrepancy during the wet season. During the dry season, nevertheless, the concentration was higher upstream than midstream and downstream. The main sources of antibiotics in the Fen River Basin were livestock and poultry breeding, wastewater from wastewater treatment plants (WWTPs), agricultural drainage, domestic sewage, and pharmaceutical wastewater. Wastewater from WWTPs and domestic sewage were identified as two primary sources in the suspended matter during the wet season, with wastewater from WWTPs contributing the most accounting for 37%. While the most significant source of antibiotics in the suspended matter in the dry season was pharmaceutical wastewater, accounting for 36%. In addition, the contribution proportion of sources for antibiotics exhibited discrepant spatial distribution characteristics. In the wet season, wastewater from WWTPs dominated in the upstream and midstream, and livestock and poultry breeding was prominent in the midstream and downstream. Pharmaceutical wastewater was the main source in the midstream and downstream regions during the dry season.
Collapse
Affiliation(s)
- Ruimin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Yunan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Linfang Wang
- Sorghum Research Institute, Shanxi Agricultural University/Shanxi Academy of Agricultural Sciences, No.238, Yuhuaxi Street, Jinzhong, 030600, China.
| | - Yifan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Xinyuan Peng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Leiping Cao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Yue Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| |
Collapse
|
28
|
Zhang F, Fu H, Lou H, Sun X, Zhang D, Sun P, Wang X, Li Y, Lu J, Bao M. Assessment of eutrophication from Xiaoqing River estuary to Laizhou Bay: Further warning of ecosystem degradation in typically polluted estuary. MARINE POLLUTION BULLETIN 2023; 193:115209. [PMID: 37364339 DOI: 10.1016/j.marpolbul.2023.115209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
The coast of Laizhou Bay is plagued by a number of environmental issues, such as eutrophication, which are likely to worsen over the next few decades as a result of trends toward industrialization and urbanization. High nutrient levels in the Xiaoqing River are believed to be the main cause of Laizhou Bay becoming eutrophicated. Therefore, we conducted two cruises from the Xiaoqing River estuary to Laizhou Bay in August 2022 and December 2022, respectively, in the wet and dry periods to assess the potential impact of status of eutrophication due to human activities. The results showed that the concentration of DIN was higher than the quality standard for water (fi > 1) in both the wet season (August 2022) and the dry season (December 2022). DIN has major environmental impacts in Laizhou Bay. The eutrophication level index and organic pollution index have obvious spatial and temporal characteristics. In terms of time, the dry season is higher than the wet season. In space, Xiaoqing estuary is higher than Laizhou Bay. In the two surveys, DIN and DIP concentrations were significantly positively correlated, indicating that N and P pollution in the region had a common source and destination, and the spatial distribution was also similar. In addition, the current environmental conditions in the region are not ideal, reaching moderate and severe eutrophication levels, which proves that the ecosystem has the risk of aggravating degradation. As the Xiaoqing River is about to resume full navigation, human-related nutrient input (especially DIN) will continue to increase, and it is expected that the eutrophication risk in this area will increase in the next few years due to the increase in nutrient load.
Collapse
Affiliation(s)
- Feifei Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Institute for Advanced, Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Hongrui Fu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Institute for Advanced, Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Huawei Lou
- Shouguang Marine Fishery Development Center, Weifang 262700, China
| | - Xiaojun Sun
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Institute for Advanced, Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Dong Zhang
- Shouguang Marine Fishery Development Center, Weifang 262700, China.
| | - Peiyan Sun
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao 266100, China
| | - Xinping Wang
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao 266100, China
| | - Yiming Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Institute for Advanced, Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jinren Lu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Institute for Advanced, Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
29
|
He LX, He LY, Gao FZ, Zhang M, Chen J, Jia WL, Ye P, Jia YW, Hong B, Liu SS, Liu YS, Zhao JL, Ying GG. Mariculture affects antibiotic resistome and microbiome in the coastal environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131208. [PMID: 36966625 DOI: 10.1016/j.jhazmat.2023.131208] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/23/2023] [Accepted: 03/12/2023] [Indexed: 05/03/2023]
Abstract
Antibiotics are increasingly used and released into the marine environment due to the rapid development of mariculture, resulting in spread of antibiotic resistance. The pollution, distribution, and characteristics of antibiotics, antibiotic resistance genes (ARGs) and microbiomes have been investigated in this study. Results showed that 20 antibiotics were detected in Chinese coastal environment, with predominance of erythromycin-H2O, enrofloxacin and oxytetracycline. In coastal mariculture sites, antibiotic concentrations were significantly higher than in control sites, and more types of antibiotics were detected in the South than in the North of China. Residues of enrofloxacin, ciprofloxacin and sulfadiazine posed high resistance selection risks. β-Lactam, multi-drug and tetracycline resistance genes were frequently detected with significantly higher abundance in the mariculture sites. Of the 262 detected ARGs, 10, 26, and 19 were ranked as high-risk, current-risk, future-risk, respectively. The main bacterial phyla were Proteobacteria and Bacteroidetes, of which 25 genera were zoonotic pathogens, with Arcobacter and Vibrio in particular ranking in the top10. Opportunistic pathogens were more widely distributed in the northern mariculture sites. Phyla of Proteobacteria and Bacteroidetes were the potential hosts of high-risk ARGs, while the conditional pathogens were associated with future-risk ARGs, indicating a potential threat to human health.
Collapse
Affiliation(s)
- Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510611, China
| | - Jun Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510611, China
| | - Wei-Li Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Pu Ye
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu-Wei Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Bai Hong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Si-Si Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
30
|
Zhai M, Fu B, Zhai Y, Wang W, Maroney A, Keller AA, Wang H, Chovelon JM. Simultaneous removal of pharmaceuticals and heavy metals from aqueous phase via adsorptive strategy: A critical review. WATER RESEARCH 2023; 236:119924. [PMID: 37030197 DOI: 10.1016/j.watres.2023.119924] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/03/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
The coexistence of pharmaceuticals and heavy metals is regarded as a serious threat to aquatic environments. Adsorbents have been widely applied to the simultaneous removal of pharmaceuticals and metals from aqueous phase. Through a comprehensive review, behaviors that promote, inhibit, or have no effect on simultaneous adsorption of pharmaceuticals and heavy metals were found to depend on the system of contaminants and adsorbents and their environmental conditions, such as: characteristics of adsorbent and pollutant, temperature, pH, inorganic ions, and natural organic matter. Bridging and competition effects are the main reasons for promoting and inhibiting adsorption in coexisting systems, respectively. The promotion is more significant in neutral or alkaline conditions. After simultaneous adsorption, a solvent elution approach was most commonly used for regeneration of saturated adsorbents. To conclude, this work could help to sort out the theoretical knowledge in this field, and may provide new insights into the prevention and control of pharmaceuticals and heavy metals coexisting in wastewater.
Collapse
Affiliation(s)
- Mudi Zhai
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Bomin Fu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China; Macao Environmental Research Institute, Macau University of Science and Technology, Macao 999078, China
| | - Yuhui Zhai
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Weijie Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Amy Maroney
- College of Engineering and Science, Louisiana Tech University, 201 Mayfield Ave. Ruston, LA 71272, United States
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, United States
| | - Hongtao Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, UNEP-TONGJI Institute of Environment for Sustainable Development, Shanghai 200092, China.
| | - Jean-Marc Chovelon
- IRCELYON, CNRS UMR 5256, Université Claude Bernard Lyon 1, 2 Avenue Albert-Einstein, Villeurbanne F-69626, France
| |
Collapse
|
31
|
Liu X, Pei Y, Cao M, Yang H, Li Y. Magnetic CuFe 2O 4 nanoparticles anchored on N-doped carbon for activated peroxymonosulfate removal of oxytetracycline from water: Radical and non-radical pathways. CHEMOSPHERE 2023; 334:139025. [PMID: 37236278 DOI: 10.1016/j.chemosphere.2023.139025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/19/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
In this work, magnetic CuFe2O4 was prepared for the removal of oxytetracycline (OTC) by a self-propagating combustion synthesis method. Almost complete degradation (99.65%) of OTC was achieved within 25 min at [OTC]0 = 10 mg/L, [PMS]0 = 0.05 mM, CuFe2O4 = 0.1 g/L under pH = 6.8 at 25 °C for deionized water. Specially, the addition CO32- and HCO3- induced the CO3•- appearance enhancing the selective degradation to electron-rich OTC molecule. The prepared CuFe2O4 catalyst exhibited desirable OTC removal rate (87.91%) even in hospital wastewater. The reactive substances were analyzed by free radical quenching experiments and electron paramagnetic resonance (EPR), and the results demonstrated that 1O2 and •OH were the main active substances. Liquid chromatography-mass spectrometry (LC-MS) was used to analyze the intermediates produced during the degradation of OTC and thus to speculate on the possible degradation pathways. Ecotoxicological studies were conducted to unveil large-scale application prospect.
Collapse
Affiliation(s)
- Xun Liu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Yan Pei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Mengbo Cao
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Hongbing Yang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China.
| | - Yongsheng Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China.
| |
Collapse
|
32
|
Jia D, You X, Tang M, Lyu Y, Hu J, Sun W. Single and combined genotoxicity of metals and fluoroquinolones to zebrafish embryos at environmentally relevant concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106495. [PMID: 37019017 DOI: 10.1016/j.aquatox.2023.106495] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/25/2023] [Accepted: 03/11/2023] [Indexed: 06/19/2023]
Abstract
Fluoroquinolones (FQs) are known to have genotoxicity to aquatic organisms. However, their genotoxicity mechanisms, individually and in combination with heavy metals, are poorly understood. Here, we investigated the single and joint genotoxicity of FQs, ciprofloxacin (CIP) and enrofloxacin (ENR), and metals (Cd and Cu) at environmentally relevant concentrations (0.2 µM) to zebrafish embryos. We found that FQs or/and metals induced genotoxicity (i.e., DNA damage and cell apoptosis) to zebrafish embryos. Compared with their single exposure, the combined exposure of FQs and metals elicited less ROS overproduction but higher genotoxicity, suggesting other toxicity mechanisms may also act in addition to oxidation stress. The upregulation of nucleic acid metabolites and the dysregulation of proteins confirmed the occurrence of DNA damage and apoptosis, and further revealed the inhibition of DNA repair by Cd and binding of DNA or DNA topoisomerase by FQs. This study deepens the knowledge on the responses of zebrafish embryos to exposure of multiple pollutants, and highlights the genotoxicity of FQs and heavy metals to aquatic organisms.
Collapse
Affiliation(s)
- Dantong Jia
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Xiuqi You
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Moran Tang
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Yitao Lyu
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Jingrun Hu
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
33
|
Yang C, Wu T. A comprehensive review on quinolone contamination in environments: current research progress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48778-48792. [PMID: 36879093 DOI: 10.1007/s11356-023-26263-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/27/2023] [Indexed: 04/16/2023]
Abstract
Quinolone (QN) antibiotics are a kind of broad-spectrum antibiotics commonly used in the treatment of human and animal diseases. They have the characteristics of strong antibacterial activity, stable metabolism, low production cost, and no cross-resistance with other antibacterial drugs. They are widely used in the world. QN antibiotics cannot be completely digested and absorbed in organisms and are often excreted in urine and feces in the form of original drugs or metabolites, which are widely occurring in surface water, groundwater, aquaculture wastewater, sewage treatment plants, sediments, and soil environment, thus causing environmental pollution. In this paper, the pollution status, biological toxicity, and removal methods of QN antibiotics at home and abroad were reviewed. Literature data showed that QNs and its metabolites had serious ecotoxicity. Meanwhile, the spread of drug resistance induced by continuous emission of QNs should not be ignored. In addition, adsorption, chemical oxidation, photocatalysis, and microbial removal of QNs are often affected by a variety of experimental conditions, and the removal is not complete, so it is necessary to combine a variety of processes to efficiently remove QNs in the future.
Collapse
Affiliation(s)
- Chendong Yang
- Water Source Exploration Team, Guizhou Bureau of Coal Geological Exploration, Guiyang, 550000, China
- Guizhou Coal Mine Geological Engineering Consultant and Geological Environmental Monitoring Center, Guiyang, 550000, China
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| | - Tianyu Wu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| |
Collapse
|
34
|
Wu J, Ge Y, Li J, Lai X, Chen R. A PMF-SSD based approach for the source apportionment and source-specific ecological risk assessment of Le'an river in Jiangxi Province, China. ENVIRONMENTAL RESEARCH 2023; 219:115027. [PMID: 36502912 DOI: 10.1016/j.envres.2022.115027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Identifying the contamination characteristics of trace metals in river and targeting their corresponding potential contamination sources and source-specific ecological risk are of very importance for putting forward effective river environment protection strategies. Here, a detailed investigation was conducted to recognize the contamination and ecological risk characteristics of trace metals in Le'an River. To attain this objective, a PMF-SSD model (Positive Matrix Factorization-Species Sensitivity Distribution) was proposed to evaluate the ecological risk of trace metals in Le'an River. The positive matrix factorization (PMF) was employed to identify the potential source of trace metals in surface water and their corresponding contributions. The ecological risks of the sources were quantitatively calculated by PMF-SSD. In addition, the spatial dissimilarity analysis of the source contribution distributions was also conducted in this study. Results showed that the water environment in Jiangxi were considerably contaminated by trace metals (Cd, Cr, Co, Al, Mn, Cu, Zn and Ni). The concentrations of these trace metals in surface water demonstrated significant spatial variations and the ecological risk lay in high level. Mining activities were identified as the main anthropogenic sources, which should to be strictly regulated.
Collapse
Affiliation(s)
- Jin Wu
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Yinxin Ge
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jiao Li
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| | - Xiaoying Lai
- College of Management and Economics, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Ruihui Chen
- Beijing Water Science and Technology Institute, Beijing, 100048, China.
| |
Collapse
|
35
|
Zhou L, Li S, Li F. Damage and elimination of soil and water antibiotic and heavy metal pollution caused by livestock husbandry. ENVIRONMENTAL RESEARCH 2022; 215:114188. [PMID: 36030917 DOI: 10.1016/j.envres.2022.114188] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The combination of antibiotics and heavy metals (HMs) increases the toxicity range of influence and requires additional research attention. This article analyzed the toxicity mechanisms and damage of combined pollution. Cross-resistance, co-resistance, and co-regulation are the primary toxicity mechanisms. Combined pollution increases antibiotic resistance genes (ARGs), increases bacterial resistance, and promotes the horizontal transfer of ARGs, affecting the types and distribution of microorganisms. The hazard of combined pollution varies with concentration and composition. The physicochemical and biological technologies for eliminating combined pollution are primarily elaborated. Adsorption, photocatalytic degradation, and microbial treatment show high removal rates and good recyclability, indicating good application potential. This review provides a basis and reference for the further study the elimination of combined antibiotic and HM pollution.
Collapse
Affiliation(s)
- Lu Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shengnan Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
36
|
Chu L, Wang H, Su D, Zhang H, Yimingniyazi B, Aili D, Luo T, Zhang Z, Dai J, Jiang Q. Urinary Antibiotics and Dietary Determinants in Adults in Xinjiang, West China. Nutrients 2022; 14:nu14224748. [PMID: 36432435 PMCID: PMC9692989 DOI: 10.3390/nu14224748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The Xinjiang autonomous region, located in west China, has a unique ethnic structure and a well-developed livestock industry. People in this region have a high risk of exposure to antibiotics, but the exposure level to antibiotics in relation to dietary determinants is unknown. In this study, 18 antibiotics, including four human antibiotics (HAs), four veterinary antibiotics (VAs), and 10 preferred veterinary antibiotics (PVAs) were detected in the urine of approximately half of the 873 adults in Xinjiang, including Han Chinese (24.6%), Hui (25.1%), Uighur (24.6%), and Kazakh (25.7%). Logistic regression was used to analyze the association between antibiotic exposure levels and adult diet and water intake. The detection percentage of antibiotics in the urine of adults in Xinjiang ranged from 0.1% to 30.1%, with a total detection percentage of all antibiotics of 49.8%. HAs, VAs and PVAs were detected in 12.3%, 10.3%, and 40.5%, respectively. Fluoroquinolones were the antibiotics with the highest detection percentage (30.1%) and tetracyclines were the antibiotics with the highest detected concentration (17 ng/mL). Adults who regularly ate pork, consumed fruit daily, and did not prefer a plant-based diet were associated with thiamphenicol, norfloxacin, and fluoroquinolones, respectively. These results indicated that adults in the Xinjiang autonomous region were extensively exposed to multiple antibiotics, and some types of food were potential sources of exposure. Special attention should be paid to the health effects of antibiotic exposure in humans in the future.
Collapse
Affiliation(s)
- Lei Chu
- School of Public Health, Xinjiang Medical University, 567 Shangde North Road, Urumqi 830000, China
| | - Hexing Wang
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Deqi Su
- School of Public Health, Xinjiang Medical University, 567 Shangde North Road, Urumqi 830000, China
| | - Huanwen Zhang
- School of Public Health, Xinjiang Medical University, 567 Shangde North Road, Urumqi 830000, China
| | - Bahegu Yimingniyazi
- School of Public Health, Xinjiang Medical University, 567 Shangde North Road, Urumqi 830000, China
| | - Dilihumaer Aili
- School of Public Health, Xinjiang Medical University, 567 Shangde North Road, Urumqi 830000, China
| | - Tao Luo
- School of Public Health, Xinjiang Medical University, 567 Shangde North Road, Urumqi 830000, China
| | - Zewen Zhang
- School of Public Health, Xinjiang Medical University, 567 Shangde North Road, Urumqi 830000, China
| | - Jianghong Dai
- School of Public Health, Xinjiang Medical University, 567 Shangde North Road, Urumqi 830000, China
- Correspondence: (J.D.); (Q.J.)
| | - Qingwu Jiang
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
- Correspondence: (J.D.); (Q.J.)
| |
Collapse
|
37
|
Wang N, Shen W, Zhang S, Cheng J, Qi D, Hua J, Kang G, Qiu H. Occurrence and distribution of antibiotics in coastal water of the Taizhou Bay, China: impacts of industrial activities and marine aquaculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81670-81684. [PMID: 35737266 DOI: 10.1007/s11356-022-21412-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The occurrence, spatial distribution, and source analysis of antibiotics in global coastal waters and estuaries are not well documented or understood. Therefore, the distribution of 14 antibiotics in inflowing river and bay water of Taizhou Bay, East China Sea, was studied. Thirteen antibiotics, excluding roxithromycin (ROM), were all detected in inflowing river and bay water. The total antibiotic concentrations in bay water ranged from 3126.62 to 26,531.48 ng/L, which were significantly higher than those in the inflowing river (17.20-25,090.25 ng/L). Macrolides (MAs) and sulfonamides (SAs) were dominant in inflowing river (accounting for 24.40% and 74.9% of the total antibiotic concentrations, respectively), while SAs in bay water (93.6% of the total concentrations). Among them, clindamycin (CLI) (concentration range: ND-8414 ng/L, mean 1437.59 ng/L) and sulfadimidine (SMX) (ND-25,184.00 ng/L, mean concentrations: 9107.88 ng/L) were the highest in those surface water samples. Source analysis showed that MAs and SAs in the inflowing river mainly came from the wastewater discharge of the surrounding residents and pharmaceutical companies, while SAs in the bay water mainly came from surrounding industrial activities and mariculture. However, the contribution of the inflowing river to the bay water cannot be ignored. The risk assessment showed that SMX and ofloxacin (OFX) have potential ecological risks. These data will support the various sectors of the environment in developing management strategies and to prevent antibiotic pollution.
Collapse
Affiliation(s)
- Ning Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Weitao Shen
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - ShengHu Zhang
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China.
| | - Jie Cheng
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Dan Qi
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Jing Hua
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Guodong Kang
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Hui Qiu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
| |
Collapse
|
38
|
Ding N, Jin C, Zhao N, Zhao Y, Guo L, Gao M, She Z, Ji J. Removal effect of enrofloxacin from mariculture sediments by bioelectrochemical system and analysis of microbial community structure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119641. [PMID: 35787425 DOI: 10.1016/j.envpol.2022.119641] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Based on the application of sediment microbial fuel cell (SMFC) in the bioremediation of sediment, this study used the sediment microbial fuel cell technology as the leading reactor. Modification of anode carbon felts (CF) by synthesis of PANI/MnO2 composited to improve the electrical performance of the sediment microbial fuel cell. This study investigated the degradation effects, degradation pathways of the specific contaminant enrofloxacin and microbial community structure in sediment microbial fuel cell systems. The results showed that the sediment microbial fuel cell system with modified anode carbon felt (PANI-MnO2/CF) prepared by in-situ chemical polymerization had the best power production performance. The maximum output voltage was 602 mV and the maximum power density was 165.09 mW m-2. The low concentrations of enrofloxacin (12.81 ng g-1) were effectively degraded by the sediment microbial fuel cell system with a removal rate of 59.52%.
Collapse
Affiliation(s)
- Nan Ding
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Nannan Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Junyuan Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
39
|
Ohore OE, Wei Y, Wang Y, Nwankwegu AS, Wang Z. Tracking the influence of antibiotics, antibiotic resistomes, and salinity gradient in modulating microbial community assemblage of surface water and the ecological consequences. CHEMOSPHERE 2022; 305:135428. [PMID: 35760129 DOI: 10.1016/j.chemosphere.2022.135428] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The ecological impacts of antibiotics and antibiotic resistance genes (ARGs) on water ecology remain elusive in natural environments. We investigated the influence of antibiotics, ARGs and salinity gradient on the surface water ecosystem. Cefquinome (104.2 ± 43.6 ng/L) and cefminox (16.2 ± 7.50 ng/L) cephalosporins were predominant in all sites. Antibiotic contamination was increased in the estuary ecosystems compared to the freshwater ecosystems by 6%. Bacterial diversity could resist changes in salinity, but the relative abundance of some bacterial genera; Pseudoalteromonas, Glaciecola, norank_f__Arcobacteraceae, and Pseudohongiella was increased in the estuary zone (salinity>0.2%). The eukaryotic composition was increased in the subsaline environments (<0.2%), but the higher salinity in the saline zone inhibited the eukaryotic diversity. The relative abundance of ARGs was significantly higher in the estuary than in freshwater ecosystems, and ARGs interactions and mobile elements (aac(6')-Ib(aka_aacA4)-01, tetR-02, aacC, intI1, intI-1(clinic), qacEdelta1-01, and strB) were the predominant factors responsible for the ARGs propagation. Antibiotics associated with corresponding and non-corresponding ARGs and potentially created an adverse environment that increased the predation and pathogenicity of the aquatic food web and inhibited the metabolic functions. Surface water are first-line-ecosystems receiving antibiotics and ARGs hence our findings provided vital insights into understanding their ecological consequences on surface water ecosystems.
Collapse
Affiliation(s)
- Okugbe Ebiotubo Ohore
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, And Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Address: 243 Daxue Road, Shantou, Guangdong, 515063, China
| | - Yunjie Wei
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, And Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Address: 243 Daxue Road, Shantou, Guangdong, 515063, China
| | - Yuwen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, And Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Address: 243 Daxue Road, Shantou, Guangdong, 515063, China
| | - Amechi S Nwankwegu
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, And Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Address: 243 Daxue Road, Shantou, Guangdong, 515063, China.
| |
Collapse
|
40
|
Mao L, Ren W, Liu X, Lin C, Wang Z, Wang B, Xin M, He M, Ouyang W. Occurrence, allocation and geochemical controls for mercury in a typical estuarine ecosystem: Implications for the predictability of mercury species. MARINE POLLUTION BULLETIN 2022; 183:114052. [PMID: 35998525 DOI: 10.1016/j.marpolbul.2022.114052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
In this study, surface seawater, bottom seawater and surface sediments were collected from the Yellow River Estuary Area (YREA) and the Laizhou Bay (LB) to investigate the occurrence, spatial distribution and geochemical control factors for total mercury (THg) and methylmercury (MeHg) in different phases. The geochemical characteristics of seawater and sediments suggested significant variances in the YREA and the LB. The high contamination of Hg in the YREA showed the discharge of the Yellow River (YR) contributed significantly to the Hg contamination in the LB. The partial least squares regression (PLSR) model was utilized to explore the complicated interactions between geochemical controls and methylation potentials in different phases. Although the ecological risk (ER) of Hg was not significant in this study area, the higher values of ER in the YREA suggested that the YR was the primary Hg contributor to LB. Therefore, the potential Hg risk should not be ignored.
Collapse
Affiliation(s)
- Lulu Mao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wenbo Ren
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zongxing Wang
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Baodong Wang
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ming Xin
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
41
|
Hu Y, Sun S, Guo J, Cheng F, Li Z. In situ anchoring strategy to enhance dual nonradical degradation of sulfamethoxazole with high loading manganese doped carbon nitride. CHEMOSPHERE 2022; 303:135035. [PMID: 35609659 DOI: 10.1016/j.chemosphere.2022.135035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
A low-cost catalyst with high metal loading and unique catalytic activities is highly desired for peroxymonosulfate (PMS) activation in environmental remediation. Herein, in situ anchoring strategy using 1,10-phenanthroline is reported to construct manganese doped carbon nitride (PMCN) with 8.2 wt% manganese loading and dramatically enhanced PMS adsorption and sulfamethoxazole (SMX) removal efficiency. Our study revealed that the PMCN/PMS system readily reacted with contaminants with electron-rich groups, where complete degradation of sulfamethoxazole (SMX) was achieved within 60 min. Combining quenching experiments, EPR tests, and electrochemical analysis, we proposed a dual nonradical pathway dominated by high-valent manganese oxygen species (Mn(V) = O) and electron transfer. Systematic investigation elucidated that the introduction of 1,10-phenanthroline constructed denser catalyst active sites, and identified the manganese center and pyridine nitrogen as the active sites for PMS activation. Furthermore, PMCN exhibited excellent pH anti-interference ability and good reusability, achieving more than 90% SMX degradation efficiency after four cycles. This study provides new insights into the regulation of Mn-N active sites and promotes the mechanistic understanding of the synergistic effect of manganese and pyridine nitrogen in PMS activation.
Collapse
Affiliation(s)
- Youyou Hu
- School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China
| | - Siyu Sun
- School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China
| | - Jialin Guo
- School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China
| | - Fan Cheng
- School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China
| | - Zhengkui Li
- School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
42
|
Shen W, Chen Y, Wang N, Wan P, Peng Z, Zhao H, Wang W, Xiong L, Zhang S, Liu R. Seasonal variability of the correlation network of antibiotics, antibiotic resistance determinants, and bacteria in a wastewater treatment plant and receiving water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115362. [PMID: 35642820 DOI: 10.1016/j.jenvman.2022.115362] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Sewage treatment plants are an essential source of antibiotics, antibiotic resistance determinants, and bacteria in environmental waters. However, it is still unclear whether they can maintain a relatively stable relationship in wastewater and environmental waters. This study analyzed the removal capacity of the above three pollutants in the sewage treatment plant in summer and their impact on environmental waters, and then examines the relationship between the three contaminants in the wastewater and environmental waters in summer and winter based on our previous study. The results found that the removal capacity of bacteria in summer was poor, the concentration of fluoroquinolone in the effluent was higher than that in influent, and the abundance of intI1, tetW, qnrB, and ermB increased after wastewater treatment. Proteobacteria and Bacteroides were the main bacteria that constitute the correlation network between bacteria, and they existed stably in summer and winter. However, fluoroquinolones occupied a significant position in the determinant network of antibiotics and antibiotic resistance in summer and winter. There are fewer correlation between antibiotics and antibiotics resistance determinants in winter. Interestingly, the relationship between bacteria, antibiotics, and antibiotic resistance determinants was a mainly positive correlation in summer and negative correlation in winter. This study analyzed the relationship between bacteria, antibiotics, and antibiotic resistance determinants that were stable in the wastewater and environmental waters and pointed out the direction for subsequent targeted seasonal control of novel pollutants in wastewater and environmental waters.
Collapse
Affiliation(s)
- Weitao Shen
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Yu Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ning Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Ping Wan
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Zhenyan Peng
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Huajin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Wei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Lilin Xiong
- Department of Environmental Hygiene, Nanjing Center for Disease Control and Prevention, Nanjing, 210042, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Ran Liu
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
43
|
Synthesis of coconut fiber activated carbon for chloramphenicol wastewater adsorption. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
44
|
Liu Z, Xu C, Johnson AC, Sun X, Wang M, Xiong J, Chen C, Wan X, Ding X, Ding M. Exploring the source, migration and environmental risk of perfluoroalkyl acids and novel alternatives in groundwater beneath fluorochemical industries along the Yangtze River, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154413. [PMID: 35276179 DOI: 10.1016/j.scitotenv.2022.154413] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/14/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The widely used legacy perfluoroalkyl acids (PFAAs) with serious environmental hazards are gradually restricted and being replaced by novel alternatives. Here, for an efficient control of emerging environmental risks in groundwater, we systematically studied the source apportionment, spatial attenuation, composition change and risk zoning of 12 PFAAs and five novel alternatives within a region of ~200 km2 around a mega fluorochemical industrial park (FIP) along the Yangtze River, and in-depth explored potential association between groundwater and soil pollution as well as influencing factors on contaminant migration and risk distribution in the aquifer. Short-chain PFAAs and novel alternatives together accounted for over 70% in groundwater, revealing their prevalence in replacing legacy perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Novel alternatives for PFOA were mainly hexafluoropropylene oxide dimer acid (GenX) and hexafluoropropylene oxide trimer acid (HFPO-TA), while those for PFOS were 6:2 chlorinated polyfluorinated ether sulfonic acid (6:2 Cl-PFESA) and 6:2 fluorotelomer sulfonic acid (6:2 FTS). PFAAs (maximum total: 1339 ng/L) and novel alternatives (maximum total: 208 ng/L) in groundwater were mostly derived from the FIP, and exhibited an exponentially decreasing trend with increasing distance. Compared with those in groundwater, more diverse sources of PFAAs and novel alternatives in surface soil were identified. The transport of these chemicals may be retarded by clayed surface soils with high organic matter contents. High aquifer permeability could generally promote the dilution and migration of PFAAs and novel alternatives in groundwater, as well as reduce the differences in their spatial distribution. Shorter-chain components with smaller molecules and higher hydrophilicity exhibited greater migration capacities in the aquifer. In addition, different levels of health risk from PFOS and PFOA were zoned based on drinking groundwater, and high risks tended to be distributed in areas with relatively poor aquifer water yield due to higher pollutant accumulation.
Collapse
Affiliation(s)
- Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chang Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrew C Johnson
- Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford Wallingford, Oxon OX 10 8BB, UK
| | - Xiaoyan Sun
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Microbe, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xiong
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang Chen
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Wan
- Hubei Geological Survey, Wuhan 430034, China
| | - Xiaoyan Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muyang Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
45
|
Recovery of the Structure and Function of the Pig Manure Bacterial Community after Enrofloxacin Exposure. Microbiol Spectr 2022; 10:e0200421. [PMID: 35604139 PMCID: PMC9241743 DOI: 10.1128/spectrum.02004-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A stable intestinal bacterial community balance is beneficial for animal health. Enrofloxacin is widely used in animal husbandry as a therapeutic drug, but it can cause intestinal environmental imbalance.
Collapse
|
46
|
Lu S, Wang B, Xin M, Wang J, Gu X, Lian M, Li Y, Lin C, Ouyang W, Liu X, He M. Insights into the spatiotemporal occurrence and mixture risk assessment of household and personal care products in the waters from rivers to Laizhou Bay, southern Bohai Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152290. [PMID: 34902407 DOI: 10.1016/j.scitotenv.2021.152290] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/21/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Household and personal care products (HPCPs) are a kind of contaminants closely related to daily life, capturing worldwide concern. To our knowledge, this is the first attempt focusing on the spatiotemporal occurrence and mixture risk of HPCPs in the waters from rivers to Laizhou Bay. Nine HPCPs were quantitated in 216 water samples gathered from Laizhou Bay and its adjacent rivers in 2018, 2019, and 2021 to reveal the spatiotemporal occurrence and mixture ecological risks in Laizhou Bay. Eight HPCPs were detected with detection frequencies ranging from 74% to 100%. The total concentrations were in the ranges 105-721 ng L-1 in river water and 51.3-332 ng L-1 in seawater. The HPCPs were dominated by p-hydroxybenzoic and triclosan, which together contributed over 75% of the total HPCPs. The average level of the total HPCP concentration in the summer of 2018 (96.1 ng L-1) was slightly exceed that in the spring of 2019 (91.6 ng L-1), which is associated with the higher usage of HPCPs and enhanced tourism during summer. However, the highest total concentrations were found in spring of 2021 (124 ng L-1 in average), which was attribute to a higher level of methylparaben, a predominant paraben used as preservatives in commercial pharmaceuticals of China. Influenced by riverine inputs and ocean currents, higher HPCP concentrations in Laizhou Bay were found nearby the estuary of Yellow River and the southern part of the bay. Triclosan should be given constant concern considering its medium to high risks (RQ > 0.1) in nearly 80% of the water samples. The cumulative risk assessment in two approaches revealed that HPCP mixtures generally elicit medium or high risk to three main aquatic taxa. Considering the worldwide outbreak of COVID-19, the levels and risks of multiple HPCPs in natural waters requires constant attention in future studies.
Collapse
Affiliation(s)
- Shuang Lu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baodong Wang
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ming Xin
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jing Wang
- College of Water Science, Beijing Normal University, Beijing 100875, China.
| | - Xiang Gu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Maoshan Lian
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yun Li
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Xitao Liu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
47
|
Liu Z, Li N, Liu P, Qin Z, Jiao T. Highly Sensitive Detection of Iron Ions in Aqueous Solutions Using Fluorescent Chitosan Nanoparticles Functionalized by Rhodamine B. ACS OMEGA 2022; 7:5570-5577. [PMID: 35187371 PMCID: PMC8851898 DOI: 10.1021/acsomega.1c07071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 05/04/2023]
Abstract
Detection of iron ions in aqueous solutions is of significant importance because of their important role in the environment and the human body. Herein, a fluorescent rhodamine B-functionalized chitosan nanoparticles probe is reported for the efficient detection of iron ions. The chitosan nanospheres-rhodamine B (CREN) was prepared by grafting rhodamine B onto the surface of chitosan nanospheres through an amidation reaction. The as-prepared CREN fluorescent probes exhibit high fluorescence intensity under ultraviolet light. When iron ions are added to the CREN solution, they can be coordinated with weak-field ligands such as N and O on the surface of chitosan nanoparticles (CSNP) by a high-spin method. The self-assembly of Fe3+ on the surface of the CREN led to the generation of single electrons and the presence of high paramagnetism, resulting in fluorescence quenching. The quenching effect of Fe3+ on the CREN fluorescent probe can achieve the efficient detection of Fe3+, and the detection limit reaches 10-5 mol/mL. Moreover, this fluorescence quenching effect of Fe3+ on the CREN fluorescent probe is specific, which could not be disturbed by other metal ions and counteranions.
Collapse
Affiliation(s)
- Zhiwei Liu
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Na Li
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Ping Liu
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhihui Qin
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
48
|
Lu S, Lin C, Lei K, Xin M, Gu X, Lian M, Wang B, Liu X, Ouyang W, He M. Profiling of the spatiotemporal distribution, risks, and prioritization of antibiotics in the waters of Laizhou Bay, northern China. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127487. [PMID: 34655873 DOI: 10.1016/j.jhazmat.2021.127487] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
We investigated the spatiotemporal distributions, risks, and prioritization of 15 widely used antibiotics in Laizhou Bay (LZB). Water samples (145) were collected from LZB and its estuaries and analyzed. Twelve antibiotics, with total concentrations of 241-1450 and 69-289 ng L-1 in estuarine water and seawater, respectively, were detected, with the contributions of norfloxacin, ciprofloxacin, and amoxicillin exceeding 70%. Amoxicillin was firstly determined, which contributed to 20% and 46% of the total antibiotics during summer and spring, respectively. Higher antibiotic concentrations were observed in the sea located adjacent to aquaculture bases and the Yellow River Estuary, which are significantly influenced by mariculture and riverine inputs, respectively. Veterinary antibiotics showed higher total concentrations in summer compared to spring, indicating a higher degree of their usage in mariculture in summer. The antibiotic mixtures posed high risk to algae and low to medium risks to crustaceans and fish. Amoxicillin and norfloxacin were identified as high-risk pollutants. Additionally, amoxicillin and ciprofloxacin showed medium to high resistance development risks. Previous studies on antibiotics in the LZB did not determined amoxicillin and thus underestimated antibiotic contamination, ecological risk, and resistance development risk. Amoxicillin, norfloxacin, and ciprofloxacin should be prioritized in risk management.
Collapse
Affiliation(s)
- Shuang Lu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Kai Lei
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Ming Xin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xiang Gu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Maoshan Lian
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baodong Wang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xitao Liu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Mengchang He
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
49
|
Liu J, Lin H, Dong Y, He Y, Liu C. MoS 2 nanosheets loaded on collapsed structure zeolite as a hydrophilic and efficient photocatalyst for tetracycline degradation and synergistic mechanism. CHEMOSPHERE 2022; 287:132211. [PMID: 34826913 DOI: 10.1016/j.chemosphere.2021.132211] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 05/14/2023]
Abstract
In this study, MoS2@Z photocatalysts were synthesized by combining ultrasonic and hydrothermal methods, and used for the degradation of tetracycline. The structure characteristics and photocatalytic degradation mechanism of photocatalysts were also systematically investigated. The obtained MoS2@Z-5 exhibits the highest photo-degradation efficiency of tetracycline (87.23%), which is 3.58 times more than alkali-modified zeolite (24.34%) and 1.80 times more than pure MoS2 (48.53%). Furthermore, the MoS2@Z-5 showed significant stability in three times photocatalytic recycles and the removal efficiency only decrease by 9.03%. Crystal structure and micromorphology analysis show modified zeolite with collapsed structure can regulate the morphology of nano-MoS2 and make MoS2 appear fault structure, which can expose more active sites. In addition, low Si/Al ratio zeolite increases the hydrophilia of MoS2@Z-5. Reactive-species-trapping experiments show that the hole is the main reactive oxidizing species. The superior photo-degradation efficiency is mainly attributed to outstanding hydrophilia, exposure of the edge active sites, and efficient separation of photogenerated charge and holes. A possible photocatalytic mechanism and degradation pathways of tetracycline were proposed. The results indicate that MoS2@Z-5 may become an efficient, stable, and promising photocatalyst in tetracycline wastewater treatment.
Collapse
Affiliation(s)
- Junfei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Yinhai He
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
50
|
Carrizo JC, Griboff J, Bonansea RI, Nimptsch J, Valdés ME, Wunderlin DA, Amé MV. Different antibiotic profiles in wild and farmed Chilean salmonids. Which is the main source for antibiotic in fish? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149516. [PMID: 34391145 DOI: 10.1016/j.scitotenv.2021.149516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Fish from both aquaculture and wild capture are exposed to veterinary and medicinal antibiotics (ABs). This study explored the occurrence and probable source of 46 antibiotic residues in muscle of farmed salmon and wild trout from Chile. Results showed that at least one AB was detected in all studied samples. Diverse patterns were observed between farmed and wild specimens, with higher ABs concentrations in wild fish. Considering antimicrobial resistance, detected ABs corresponded to the categories B (Restrict), C (Caution) and D (Prudence) established by Antimicrobial Advice Ad Hoc Expert Group (European Medicines Agency). Multivariate statistic was used to verify differences between farmed and wild populations, looking for the probable source of ABs as well. Principal components analysis (PCA) revealed that ciprofloxacin, moxifloxacin, enrofloxacin, amoxicillin, penicillin G, oxolinic acid, sulfamethoxazole, trimethoprim and clarithromycin were associated with wild samples, collected during the cold season. Conversely, norfloxacin, sulfaquinoxaline, sulfadimethoxine, nitrofurantoin, nalidixic acid, penicillin V, doxycycline, flumequine, oxacillin, pipemidic acid and sulfamethizole were associated with wild samples collected during the warm season. All farmed salmon samples were associated with ofloxacin, tetracycline, cephalexin, erythromycin, azithromycin, roxithromycin, sulfabenzamide, sulfamethazine, sulfapyridine, sulfisomidin, and sulfaguanidine. In addition, linear discriminant analysis showed that the AB profile in wild fish differ from farmed ones. Most samples showed ABs levels below the EU regulatory limit for edible fish, except for sulfaquinoxaline in one sample. Additionally, nitrofurantoin (banned in EU) was detected in one aquaculture sample. The differences observed between farmed and wild fish raise questions on the probable source of ABs, either aquaculture or urban anthropic activities. Further research is necessary for linking the ABs profile in wild fish with the anthropic source. However, to our knowledge, this is the first report showing differences in the ABs profile between wild and aquaculture salmonids, which could have both environmental and health consequences.
Collapse
Affiliation(s)
- Juan Cruz Carrizo
- CONICET, CIBICI and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Ciudad Universitaria, Medina Allende esq. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - Julieta Griboff
- CONICET, CIBICI and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Ciudad Universitaria, Medina Allende esq. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - Rocío Inés Bonansea
- CONICET, ICYTAC and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Química Orgánica, Ciudad Universitaria, Bv. Juan Filloy s/n, 5000 Córdoba, Argentina
| | - Jorge Nimptsch
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - María Eugenia Valdés
- CONICET, ICYTAC and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Química Orgánica, Ciudad Universitaria, Bv. Juan Filloy s/n, 5000 Córdoba, Argentina
| | - Daniel Alberto Wunderlin
- CONICET, ICYTAC and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Química Orgánica, Ciudad Universitaria, Bv. Juan Filloy s/n, 5000 Córdoba, Argentina
| | - María Valeria Amé
- CONICET, CIBICI and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Ciudad Universitaria, Medina Allende esq. Haya de la Torre s/n, 5000 Córdoba, Argentina.
| |
Collapse
|