1
|
Zhang Q, Chen S, Chen H, Hu Y, Lin Q. A novel oxidized hierarchical porous carbon with vesicule-like ultrathin graphitic walls for efficient removal of anionic and cationic dyes. ENVIRONMENTAL RESEARCH 2025; 267:120702. [PMID: 39732422 DOI: 10.1016/j.envres.2024.120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
This work developed a novel oxidized hierarchical porous carbon (OHPC) with vesicule-like ultrathin graphitic walls via a method of air oxidation and used as an efficient adsorbent for Congo red (CR) and Malachite green (MG) removal. Results show that the OHPC2 oxidized at 400 °C possesses three-dimensional hierarchical pores with vesicule-like ultrathin graphitic walls. The prepared OHPC2 not only has a large specific surface area of 1020 m2 g-1 with a high pore volume, but also has abundant oxygen-containing functional groups. These unique structural features endow the OHPC2 with high adsorption capacities for CR (2729.5 mg g-1) and MG (1697.3 mg g-1) removal. The adsorption processes of CR and MG are in accordance with the Langmuir isotherm and Quasi-second-order kinetic models. The thermodynamic studies illustrate that the adsorption processes were thermodynamically feasible and spontaneous. Various characterization analysis explained that the adsorption mechanism may involve pore-filling effect, π-π conjugation, hydrogen bonding, and electrostatic attraction. Moreover, the OHPC2 exhibits good cycling stability and is identified as a desirable adsorbent for actual wastewater treatment.
Collapse
Affiliation(s)
- Qiyun Zhang
- College of Advanced Manufacturing, Fuzhou University, Jinjiang, 362251, PR China
| | - Shunda Chen
- College of Advanced Manufacturing, Fuzhou University, Jinjiang, 362251, PR China
| | - Haobin Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Yixiao Hu
- College of Advanced Manufacturing, Fuzhou University, Jinjiang, 362251, PR China
| | - Qilang Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China.
| |
Collapse
|
2
|
Gutierrez Reyes CD, Onigbinde S, Amarasekara AS, Adeniyi M, Solomon J, Gonzalez Ponce HA, Mechref Y. MS-Based Characterization of Biomass-Derived Materials: Activated Carbons and Solvent Liquefaction Products. Polymers (Basel) 2025; 17:258. [PMID: 39940460 PMCID: PMC11820658 DOI: 10.3390/polym17030258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Mass spectrometry (MS) is a powerful analytical technique that is widely used to characterize a variety of analytes across diverse fields. In the area of biomass conversion, which is essential for producing sustainable materials and energy, the role of MS is pivotal. Biomass conversion processes, such as solvent liquefaction and pyrolysis, generate a wide range of industrially valuable materials including bio-based polymers, fuels, and activated carbons. However, the inherent complexity and heterogeneity of biomass and its transformation products pose significant analytical challenges. Advanced MS techniques, such as GC-MS, LC-MS, ICP-MS and MALDI-MS, are essential for a comprehensive analysis, providing detailed insights into the compositions, impurities, and potential inhibitors that influence process optimization and product quality. This review systematically explores recent advancements in MS-based methods for the analysis of biomass-derived products. We discuss fundamental innovations in biomass conversion processes and highlight the applications of various MS techniques in assessing the chemical complexity of these materials. The insights provided by MS techniques not only facilitate process optimization but also support the sustainable production of high-value materials from biomass, aligning with ongoing efforts to enhance environmental sustainability and resource efficiency.
Collapse
Affiliation(s)
- Cristian D. Gutierrez Reyes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (C.D.G.R.); (S.O.); (M.A.); (J.S.)
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (C.D.G.R.); (S.O.); (M.A.); (J.S.)
| | - Ananda S. Amarasekara
- Department of Chemistry, Prairie View A & M University, Prairie View, TX 77446, USA;
| | - Moyinoluwa Adeniyi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (C.D.G.R.); (S.O.); (M.A.); (J.S.)
| | - Joy Solomon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (C.D.G.R.); (S.O.); (M.A.); (J.S.)
| | - Herson A. Gonzalez Ponce
- Division of Graduate Studies and Research, Instituto Tecnológico de Aguascalientes, Tecnológico Nacional de México, Aguascalientes 20255, Mexico;
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (C.D.G.R.); (S.O.); (M.A.); (J.S.)
| |
Collapse
|
3
|
Zhao J, Ji C, Peng C, Wang Y, Yang S, Li Y, Tao E. Interfacial interaction mechanism between Mn doped highly conjugated biochar and berberine hydrochloride. J Colloid Interface Sci 2025; 677:108-119. [PMID: 39083888 DOI: 10.1016/j.jcis.2024.07.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
MnSO4-modified biochar (Mn-BC) was synthesized to remove berberine hydrochloride (BH) from wastewater by utilizing tea waste as raw material and MnSO4 as modifier. Brunel Emmett Taylor (BET) analysis reveals that the specific surface area (SSA) and average pore size (Dave) of Mn-BC are 1.4 and 7 times higher than those of pristine biochar apart, attributing to the dissociation effect can promote the dispersion of MnSO4 in the pores of the biochar. Meanwhile, the doping of Mn not only introduces additional oxygen-containing functional groups (OCFGs), but also modulates the π electron density. Furthermore, Response surface method (RSM) analysis reveals that Mn-BC dosage has the most significant effect on BH removal, followed by BH concentration and pH value. Kinetic and isothermal studies reveal that the BH adsorption process of Mn-BC was mainly dominated by chemical and monolayer adsorption. Meanwhile, density functional theory (DFT) calculations confirm the contribution of Mn doping to the conjugation effect in the adsorption system. Originally proposed Mn-BC is one potentially propitious material to eliminate BH from wastewater, meanwhile this also provides a newfangled conception over the sustainable utilization of tea waste resources.
Collapse
Affiliation(s)
- Jiangmei Zhao
- Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Cheng Ji
- Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Yuanfei Wang
- Liaoning Huadian Environmental Testing Co., LTD, Jinzhou 121013, Liaoning, China
| | - Shuyi Yang
- Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| | - Yun Li
- Chemistry & Chemical Engineering of College, Yantai University, Yantai 264005, China.
| | - E Tao
- Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| |
Collapse
|
4
|
Liu C, Balasubramanian P, Li F, Huang H. Machine learning prediction of dye adsorption by hydrochar: Parameter optimization and experimental validation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135853. [PMID: 39288523 DOI: 10.1016/j.jhazmat.2024.135853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024]
Abstract
In response to escalating global wastewater issues, particularly from dye contaminants, many studies have begun using hydrochar to adsorb dye from wastewater. However, the relationship between the preparation conditions of hydrochar, the properties of hydrochar, experimental conditions, types of dyes, and equilibrium adsorption capacity (Q) has not yet been fully explored. This study conducted a comprehensive assessment using twelve distinct ML models. The Gradient Boosting Regressor (GBR) model exhibited superior performance with R² (0.9629) and RMSE (0.1166) in the test dataset, marking it as the most effective among the evaluated models. Moreover, this study also proved the feasibility of the GBR model through stability testing and residual analysis. A feature importance analysis prioritized the variables as follows: experimental conditions (41.5 %), properties of hydrochar (26.0 %), preparation conditions (18.1 %), and type of dye (14.4 %). Meanwhile, experimental conditions (C0 > 30 mmol/g, pH > 8, and higher solvent temperatures) and hydrochar properties (the BET surface area > 2000 m²/g, an (O+N)/C molar ratio < 0.6, and an H/C molar ratio of approximately 0.06) show higher Q for dyes. Experimental validation of the GBR model confirmed its practical utility with a suitable predictive accuracy (R² = 0.8704). Moreover, the study developed a Python-based GUI that has integrated the best GBR models to facilitate researchers' ongoing application and improvement of this predictive model. This study not only underscores the efficacy of ML in enhancing the understanding of dye adsorption by hydrochar but also sets a precedent for future research on sustainable contaminants removal through bio-based adsorbents.
Collapse
Affiliation(s)
- Chong Liu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; Department of Chemical & Materials Engineering, University of Auckland, 0926, New Zealand
| | | | - Fayong Li
- College of Water Resources and Architectural Engineering, Tarim University, Xinjiang 843300, China
| | - Haiming Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
5
|
Bingöl MS. Efficient removal of congo red and cytotoxicity evaluation of biosorbents prepared from chitosan-added watermelon pulp. Sci Rep 2024; 14:23170. [PMID: 39369008 PMCID: PMC11455919 DOI: 10.1038/s41598-024-74010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
The development of environmentally friendly adsorbents has become increasingly important for treating waste generated by the growing global industry. In this study, new biosorbents were synthesized from an all-natural chitosan and watermelon pulp for the treatment of congo red textile dye from water. Biosorbents were prepared by lyophilizing chitosan-added watermelon pulp (AC-WPC). The prepared biosorbents were characterized by BET, SEM, Zeta Potential and FT-IR analysews. Accordingly, the BET surface area of AC-WPC was 120.92 m2/g. SEM analysis showed that the structures were porous and the results were consistent with the BET analysis. FT-IR analysis confirmed the chemical structures. The isoelectric points of the biosorbents were determined by zeta potential analysis. The AC-WPC biosorbent demonstrated 86% cell viability with cytotoxicity testing. For this reason, it was determined that the AC-WPC biosorbents produced does not cause any serious damage to the cell. Following this, adsorption study of congo red textile dye in water was carried out with these biosorbents. Langmuir and Freundlich isotherms were studied in adsorption experiments, and it was found that the Freundlich isotherms were compatible. Pseudo first and second kinetic models were also studied and found to be compatible with Pseudo Second Kinetic Model. The highest adsorption capacity was observed at 100 mg/l congo red concentration with 98.02% removal and 490.1 mg/g adsorption capacity using AC-WPC. It is thought that these results will potentially contribute to the literature on the removal of textile dyes or other pollutants using chitosan-added watermelon pulp.
Collapse
Affiliation(s)
- Mehmet Semih Bingöl
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, Erzurum, 25240, Turkey.
| |
Collapse
|
6
|
Mbuyazi TB, Ajibade PA. Magnetic iron oxides nanocomposites: synthetic techniques and environmental applications for wastewater treatment. DISCOVER NANO 2024; 19:158. [PMID: 39342049 PMCID: PMC11438764 DOI: 10.1186/s11671-024-04102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Nanomaterials are an emerging class of compounds with potential to advance technology for wastewater treatment. There are many toxic substances in industrial wastewater that are dangerous to the aquatic ecosystem and public health. These pollutants require the development of novel techniques to remove them from the environment. Iron oxide nanoparticles are being studied and develop as new technology to address the problem of environmental pollution due to their unique properties and effectiveness against different kind of pollutants. A variety of modified iron oxide nanoparticles have been developed through extensive research that mitigates the shortcomings of aggregation or oxidation and enhances their efficiency as novel remediator against environmental pollutants. In this review, we present synthetic approaches used for the preparation of iron oxide nanoparticles and their corresponding nanocomposites, along with the processes in which the materials are used as adsorbent/photocatalysts for environmental remediation. Applications explored includes adsorption of dyes, photocatalytic degradation of dyes, and adsorption of heavy metal ions. The use of iron oxides nanocomposite in real wastewater samples and recyclability of adsorbents and photocatalysts were also explored.
Collapse
Affiliation(s)
- Thandi B Mbuyazi
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa
| | - Peter A Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
7
|
Liao Z, Choi K, Ullah Z, Son M, Ahn Y, Khan MA, Prabhu SM, Jeon BH. Artificial neural network modeling for the oxidation kinetics of divalent manganese ions during chlorination and the role of arsenite ions in the binary/ternary systems. WATER RESEARCH 2024; 259:121876. [PMID: 38852391 DOI: 10.1016/j.watres.2024.121876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
This study investigated the coexistence and contamination of manganese (Mn(II)) and arsenite (As(III)) in groundwater and examined their oxidation behavior under different equilibrating parameters, including varying pH, bicarbonate (HCO3-) concentrations, and sodium hypochlorite (NaClO) oxidant concentrations. Results showed that if the molar ratio of NaClO: As(III) was >1, the oxidation of As(III) could be achieved within a minute with an extremely high oxidation rate of 99.7 %. In the binary system, the removal of As(III) prevailed over Mn(II). The As(III) oxidation efficiency increased from 59.8 ± 0.6 % to 70.8 ± 1.9 % when pH rose from 5.7 to 8.0. The oxidation reaction between As(III) and NaClO releases H+ ions, decreasing the pH from 6.77 to 6.19 and reducing the removal efficiency of Mn(II). The presence of HCO3- reduced the oxidation rate of Mn(II) from 63.2 % to 13.9 % within four hours. Instead, the final oxidation rate of Mn(II) increased from 68.1 % to 87.7 %. This increase can be attributed to HCO3- ions competing with the free Mn(II) for the adsorption sites on the sediments, inhibiting the formation of H+. Moreover, kinetic studies revealed that the oxidation reaction between Mn(II) and NaClO followed first-order kinetics based on their R2 values. The significant factors affecting the Mn(II) oxidation efficiency were the initial concentration of NaClO and pH. Applying an artificial neural network (ANN) model for data analysis proved to be an effective tool for predicting Mn(II) oxidation rates under different experimental conditions. The actual Mn(II) oxidation data and the predicted values obtained from the ANN model showed significant consistency. The training and validation data sets yielded R2 values of 0.995 and 0.992, respectively. Moreover, the ANN model highlights the importance of pH and NaClO concentrations in influencing the oxidation rate of Mn(II).
Collapse
Affiliation(s)
- Ziqiao Liao
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - KungWon Choi
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Zahid Ullah
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Moon Son
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yongtae Ahn
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, Republic of Korea
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Subbaiah Muthu Prabhu
- Department of Chemistry, School of Advanced Science, VIT-AP University, Amaravati 522237, Andhra Pradesh, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
8
|
Nikoo MR, Zamani MG, Zadeh MM, Al-Rawas G, Al-Wardy M, Gandomi AH. Mapping reservoir water quality from Sentinel-2 satellite data based on a new approach of weighted averaging: Application of Bayesian maximum entropy. Sci Rep 2024; 14:16438. [PMID: 39013941 PMCID: PMC11252294 DOI: 10.1038/s41598-024-66699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
In regions like Oman, which are characterized by aridity, enhancing the water quality discharged from reservoirs poses considerable challenges. This predicament is notably pronounced at Wadi Dayqah Dam (WDD), where meeting the demand for ample, superior water downstream proves to be a formidable task. Thus, accurately estimating and mapping water quality indicators (WQIs) is paramount for sustainable planning of inland in the study area. Since traditional procedures to collect water quality data are time-consuming, labor-intensive, and costly, water resources management has shifted from gathering field measurement data to utilizing remote sensing (RS) data. WDD has been threatened by various driving forces in recent years, such as contamination from different sources, sedimentation, nutrient runoff, salinity intrusion, temperature fluctuations, and microbial contamination. Therefore, this study aimed to retrieve and map WQIs, namely dissolved oxygen (DO) and chlorophyll-a (Chl-a) of the Wadi Dayqah Dam (WDD) reservoir from Sentinel-2 (S2) satellite data using a new procedure of weighted averaging, namely Bayesian Maximum Entropy-based Fusion (BMEF). To do so, the outputs of four Machine Learning (ML) algorithms, namely Multilayer Regression (MLR), Random Forest Regression (RFR), Support Vector Regression (SVRs), and XGBoost, were combined using this approach together, considering uncertainty. Water samples from 254 systematic plots were obtained for temperature (T), electrical conductivity (EC), chlorophyll-a (Chl-a), pH, oxidation-reduction potential (ORP), and dissolved oxygen (DO) in WDD. The findings indicated that, throughout both the training and testing phases, the BMEF model outperformed individual machine learning models. Considering Chl-a, as WQI, and R-squared, as evaluation indices, BMEF outperformed MLR, SVR, RFR, and XGBoost by 6%, 9%, 2%, and 7%, respectively. Furthermore, the results were significantly enhanced when the best combination of various spectral bands was considered to estimate specific WQIs instead of using all S2 bands as input variables of the ML algorithms.
Collapse
Affiliation(s)
- Mohammad Reza Nikoo
- Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Mohammad G Zamani
- Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman
| | - Mahshid Mohammad Zadeh
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, USA
| | - Ghazi Al-Rawas
- Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman
| | - Malik Al-Wardy
- Department of Soils, Water, and Agricultural Engineering, Sultan Qaboos University, Muscat, Oman
| | - Amir H Gandomi
- Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- University Research and Innovation Center (EKIK), Óbuda University, 1034, Budapest, Hungary.
| |
Collapse
|
9
|
Vijeata A, Chaudhary GR, Chaudhary S, Ibrahim AA, Umar A. Recent advancements and prospects in carbon-based nanomaterials derived from biomass for environmental remediation applications. CHEMOSPHERE 2024; 357:141935. [PMID: 38636909 DOI: 10.1016/j.chemosphere.2024.141935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
The conversion of waste biomass into a value-added carbonaceous nanomaterial highlights the appealing power of biomass valorization. The advantages of using sustainable and cheap biomass precursors exhibit the tremendous opportunity for boosting energy production and their application in environmental remediation processes. This review emphasis the development and production of carbon-based nanomaterials derived from biomass, which possess favourable characteristics such as biocompatibility and photoluminescence. The advantages and limitations of various nanomaterials synthesised from different precursors were also discussed with insights into their physicochemical properties. The surface morphology of the porous nanomaterials is also explored along with their characteristic properties like regenerative nature, non-toxicity, ecofriendly nature, unique surface area, etc. The incorporation of various functional groups confers superiority of these materials, resulting in unique and advanced functional properties. Further, the use of these biomass derived nanomaterials was also explored in different applications like adsorption, photocatalysis and sensing of hazardous pollutants, etc. The challenges and outcomes obtained from different carbon-based nanomaterials are briefly outlined and discussed in this review.
Collapse
Affiliation(s)
- Anjali Vijeata
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Savita Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| | - Ahmed A Ibrahim
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA.
| |
Collapse
|
10
|
Hu X, Ma Z. Reviving the Potential of Vermiculite-Based Adsorbents: Exceptional Ibuprofen Removal on Novel Amide-Containing Gemini Surfactants. ACS OMEGA 2024; 9:4841-4848. [PMID: 38313536 PMCID: PMC10831837 DOI: 10.1021/acsomega.3c08363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 02/06/2024]
Abstract
In this study, we introduce a novel series of gemini surfactants with amide groups (HDAB, HDAHD, and HDAPX) and use these surfactants to decorate sodium vermiculite (Na-Vt) for the adsorption of Ibuprofen (IBP) from wastewater. Exceptional IBP uptake on organo-vermiculites (organo-Vts) is obtained, with maximum adsorption capacities reaching 249.87, 342.21, and 460.15 mg/g for HDAB-Vt, HDAHD-Vt, and HDAPX-Vt (C0 = 500 mg/L, modifier dosage = 0.2 CEC), respectively. The adsorption of IBP is well fitted by pseudo-second-order, intraparticle diffusion, and Freundlich isotherm models, verifying chemical adsorption processes with multilayer arrangement of IBP in organo-Vts. Thermodynamically, the removal of IBP on HDAHD-Vt is exothermic, while the endothermic nature aptly describes the adsorption process of HDAB-Vt and HDAPX-Vt. Moreover, organo-Vts can be stably regenerated in three cycles. Outstanding adsorption performance of organo-Vts is attributed to synergistic effects of the partition process and functional interaction, which are influenced by the steric hindrance and chain configuration of the modifier. A combined evaluation of adsorption tests and fitting calculations is employed to reveal the adsorption mechanism: (i) the incorporation of amides into the alkyl chain significantly enhances the utilization of the interlayer space in organo-Vts. (ii) Smaller steric hindrance and higher rigidity of the modifier spacer contribute to improved adsorption performance. The findings in this study rekindle interest in Vt-based adsorbents, which demonstrate comparable potential to other emerging adsorbents that are yet to be fully explored.
Collapse
Affiliation(s)
- Xianqi Hu
- Department of Chemical Engineering, Hebei Petroleum University of Technology, Hebei 067000, P. R. China
| | - Zhuang Ma
- Department of Chemical Engineering, Hebei Petroleum University of Technology, Hebei 067000, P. R. China
| |
Collapse
|
11
|
Patel J, Singh KR, Singh AK, Singh J, Singh AK. Multifunctional Cu:ZnS quantum dots for degradation of Amoxicillin and Dye Sulphon Fast Black-F and efficient determination of urea for assessing environmental aspects. ENVIRONMENTAL RESEARCH 2023; 235:116674. [PMID: 37459950 DOI: 10.1016/j.envres.2023.116674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
This work is particularly aimed at the preparation of ZnS and Cu doped ZnS (Cu:ZnS) QDs by facile and easy technique, chemical precipitation method for the degradation of water pollutants and a simple scheme was proposed to prepare the urea-sensing system. The morphological and optical properties of the synthesized QDs was studied using high resolution transmission and scanning electron microscopes, X-ray diffraction, energy dispersive X-ray analysis, fluorescence and ultraviolet-visible spectroscopy, differential thermal and thermogravimetric analyses, Brunauer-Emmett-Teller analysis. The photocatalytic performance was systematically assessed by the photodegradation of an important pharmaceutical water pollutant, Amoxicillin (AMX) and a dye Fast Sulphon Black F (SFBF) in aqueous medium under UV light irradiation. Also, a very sensitive system was prepared by depositing the dots over an indium-tin-oxide (ITO) glass substrate for the sensing of biologically active molecule urea as it is an important monitor of public health in water and soil productivity. The results illustrated excellent photocatalytic efficiency (86.46% for AMX and 99.41% for SFBF) with stability up to four cycles of degradation reaction. The optimal photocatalyst dosage for achieving maximum removal of AMX was found to be 70 mg at a pH of 9.5, with a treatment time of 40 min. Similarly, for SFBF, the optimal photocatalyst dosage was determined to be 60 mg at pH 9, with a treatment time of 60 min. Further, the electrochemical analysis was done by fabricating Urease enzyme (UR)/Cu:ZnS QDs/ITO bioelectrode and then the fabricated bioelectrode, was utilized to determine the different concentrations of urea by cyclic voltammetry. Thus, the obtained limit of detection and sensitivity of the fabricated biosensing device for urea detection was obtained to be 0.0092 μM and 12 μA μM-1cm-2, respectively; under the optimized experimental conditions. Hence, it is anticipated that Cu:ZnS QDs can also successfully be applied as a promising material for fabrication of novel bioelectrode for urea determination and the biosensing platform is desirable and viable.
Collapse
Affiliation(s)
- Jyoti Patel
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
| | - Kshitij Rb Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India; Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Akhilesh Kumar Singh
- School of Material Science and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ajaya K Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India; School of Chemistry & Physics, University of KwaZulu-Natal, Durban 4000, South Africa.
| |
Collapse
|
12
|
Hou J, Shen S, Wang L. Preparation of SnO 2-Sb/attapulgite (AP) clay particulate electrode for efficient phenol electrochemical oxidation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102363-102373. [PMID: 37665437 DOI: 10.1007/s11356-023-29619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
A novel SnO2-Sb/AP (attapulgite) particle electrode was prepared for three-dimensional electrocatalytic oxidation (3D/EO) of organic pollutants using a co-sintering method. The electrochemical properties and micromorphology were determined using polarization, cyclic voltammetry (CV), and field emission scanning electron microscope (FE-SEM), and compared with activated carbon (AC), AP, and TiO2/AP particle electrodes. Besides, their potential application in the electrochemical degradation of phenol was investigated. The SnO2-Sb/AP particle electrode exhibited higher electrochemical activity than other particle electrodes due to its large number of active sites, low transfer coefficient (α, 0.12), and high-volt ampere charge (q*, 1.18 C·cm-2). The electrochemical CODCr degradation efficiency (100%) of phenol on SnO2-Sb/AP particle electrodes is much higher than for other particle electrodes. Moreover, an excellent stability of the SnO2-Sb/AP particle electrode is also verified by repeated experiments. These results indicate that the SnO2-Sb/AP particle electrodes broaden the application area of clays and are expected to be a promising method for 3D/EO.
Collapse
Affiliation(s)
- Jing Hou
- Environmental Energy Engineering (E3) Workgroup,School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Siyu Shen
- Environmental Energy Engineering (E3) Workgroup,School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Lizhang Wang
- Environmental Energy Engineering (E3) Workgroup,School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| |
Collapse
|
13
|
Shen T, Ji Y, Mao S, Han T, Zhao Q, Wang H, Gao M. "Functional connector" strategy on tunable organo-vermiculites: The superb adsorption towards Congo Red. CHEMOSPHERE 2023; 339:139658. [PMID: 37506892 DOI: 10.1016/j.chemosphere.2023.139658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
With the increasingly worldwide concentration of environmental pollution, exploiting cost-effective adsorbents has been a research hotspot. Here we introduce novel "functional connector" amide-containing gemini surfactants (LDAB, LDAPP, LDAMP and LDABP) and apply to modify Na-vermiculite (Na-Vt) for Congo red (CR) removal. Chain amide as the functional connector in the modifier, increases 6.9 times of CR uptake than traditional organo-Vts, which is further enhanced by tunning the functional group of modifier spacers. Superb uptake of CR on organo-Vts reaches 1214.05, 1375.47 and 1449.80 mg/g, and the removal efficiencies achieve 80.94%, 91.70% and 96.65% on LDAB-Vt, LDAPP-Vt and LDAMP-Vt, respectively. Notably, the maximum experimental adsorption capacity of LDAPP-Vt is 1759.64 mg/g. These experimental values are among the highest reported CR adsorbents. A combination experimental and theoretical analysis is conducted to unveil the structure-adsorptivity relationship: (i) Adsorptivity enhancement of organo-Vts is more effectively by regulating functional chains than the functional spacer. (ii) para-substituted aromatic spacers own the best adsorptive configuration and strongest stability for π-π interaction. (iii) π-π interaction provided by isolated aromatic ring is stronger than biphenyl, whose steric hindrance depresses the adsorptivity. Results in this study not only explain a new "functional connector" strategy to Vt-based adsorbents, but also provide a practical designing strategy for organic adsorbents characterized with high uptake capacity.
Collapse
Affiliation(s)
- Tao Shen
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, PR China; Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, PR China
| | - Yaxiong Ji
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, PR China
| | - Shanshan Mao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, PR China; Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, PR China
| | - Tong Han
- PetroChina North East Chemical & Marketing Company, Shenyang, 110033, PR China
| | - Qing Zhao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, PR China
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, PR China.
| | - Manglai Gao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, PR China.
| |
Collapse
|
14
|
Kulkarni K, Kurhade S, Chendake Y, Kulkarni A, Satpute S. Utilization of Low Cost Biofertilizers for Adsorptive Removal of Congo Red Dye. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:33. [PMID: 37667101 DOI: 10.1007/s00128-023-03784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/01/2023] [Indexed: 09/06/2023]
Abstract
Presence of colors, organic surface finishing agents and surfactants in textile industry effluent makes it highly detrimental for surrounding environment. Hence the effluent from textile industry needs treatment for removal of these colors, organic and inorganic components before its disposal. Hence applicability of low cost and environmental friendly biosorbents, Azospirillium biofertilizer and Rhizobium biofertilizer were investigated for removal of Congo red dye. Batch experimentation was carried out to check operating parameters like, temperature, dose of adsorbent, pH, agitation speed, contact time and initial concentration. The biosorption capacity for Congo red dye was 67.114 and 101.01 mg/g, for Azospirillium biofertilizer and Rhizobium biofertilizer, respectively at optimized parameters. RL factor was 0.558 and 0.568 for Azospirillium biofertilizer and Rhizobium biofertilizer. The data showed combination of interaction-based separation through better fitting of Langmuir isotherm compared to Freundlich. Its separation is well described by Pseudo-second order and intraparticle diffusion model. Adsorption was favorable at lower temperature suggesting exothermic and spontaneous nature. Reusability for Azospirillium biofertilizer and Rhizobium biofertilizer was checked for 25 mg/land. While the biological nature of Azospirillium and Rhizobium biofertilizer makes removal of Congo red dye environmentally benign.
Collapse
Affiliation(s)
- Kavita Kulkarni
- Department of Chemical Engineering, College of Engineering, Bharati Vidyapeeth (Deemed To Be University), Pune, India.
| | - Sunny Kurhade
- Department of Chemical Engineering, College of Engineering, Bharati Vidyapeeth (Deemed To Be University), Pune, India
| | - Yogesh Chendake
- Department of Chemical Engineering, College of Engineering, Bharati Vidyapeeth (Deemed To Be University), Pune, India
| | - Anand Kulkarni
- Department of Chemical Engineering, College of Engineering, Bharati Vidyapeeth (Deemed To Be University), Pune, India
| | - Satchidanand Satpute
- Department of Chemical Engineering, Vishwakarma Institute of Technology, Pune, India
| |
Collapse
|
15
|
Xing T, Wu Y, Wang Q, Sadrnia A, Behmaneshfar A, Dragoi EN. Adsorption of ibuprofen using waste coffee derived carbon architecture: Experimental, kinetic modeling, statistical and bio-inspired optimization. ENVIRONMENTAL RESEARCH 2023; 231:116223. [PMID: 37245577 DOI: 10.1016/j.envres.2023.116223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Pharmaceuticals in water are a growing environmental concern, as they can harm aquatic life and human health. To address this issue, an adsorbent made from coffee waste that effectively removes ibuprofen (a common pharmaceutical pollutant) from wastewater was developed. The experimental adsorption phase was planned using a Design of Experiments approach with Box-Behnken strategy. The relation between the ibuprofen removal efficiency and various independent variables, including adsorbent weight (0.01-0.1 g) and pH (3-9), was evaluated via a regression model with 3-level and 4-factors using the Response surface methodology (RSM) . The optimal ibuprofen removal was achieved after 15 min using 0.1 g adsorbent at 32.4 °C and pH = 6.9. Moreover, the process was optimized using two powerful bio-inspired metaheuristics (Bacterial Foraging Optimization and Virus Optimization Algorithm). The adsorption kinetics, equilibrium, and thermodynamics of ibuprofen onto waste coffee-derived activated carbon were modeled at the identified optimal conditions. The Langmuir and Freundlich adsorption isotherms were implemented to investigate adsorption equilibrium, and thermodynamic parameters were also calculated. According to the Langmuir isotherm model, the adsorbent's maximum adsorption capacity was 350.00 mg g-1 at 35 °C. The findings revealed that the ibuprofen adsorption was well-matched with the Freundlich isotherm model, indicating multilayer adsorption on heterogeneous sites. The computed positive enthalpy value showed the endothermic nature of ibuprofen adsorption at the adsorbate interface.
Collapse
Affiliation(s)
- Tao Xing
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Yingji Wu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Quanliang Wang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, 150040, China.
| | - Abdolhossein Sadrnia
- Department of Industrial Engineering, Quchan University of Technology, Quchan, Iran.
| | - Ali Behmaneshfar
- Department of Industrial Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld D. Mangeron No 73, 700050, Iasi, Romania.
| |
Collapse
|
16
|
do Nascimento BF, de Araújo CMB, Del Carmen Pinto Osorio D, Silva LFO, Dotto GL, Cavalcanti JVFL, da Motta Sobrinho MA. Adsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85344-85358. [PMID: 37382818 DOI: 10.1007/s11356-023-28242-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/10/2023] [Indexed: 06/30/2023]
Abstract
The work proposes the application of a nanocomposite formed by graphene oxide and magnetite to remove chloroquine, propranolol, and metformin from water. Tests related to adsorption kinetics, equilibrium isotherms and adsorbent reuse were studied, and optimization parameters related to the initial pH of the solution and the adsorbent dosage were defined. For all pharmaceuticals, adsorption tests indicated that removal efficiency was independent of initial pH at adsorbent dosages of 0.4 g L-1 for chloroquine, 1.2 g L-1 for propranolol, and 1.6 g L-1 for metformin. Adsorption equilibrium was reached within the first few minutes, and the pseudo-second-order model represented the experimental data well. While the equilibrium data fit the Sips isotherm model at 298 K, the predicted maximum adsorption capacities for chloroquine, propranolol, and metformin were 44.01, 16.82, and 12.23 mg g-1, respectively. The magnetic nanocomposite can be reused for three consecutive cycles of adsorption-desorption for all pharmaceuticals, being a promising alternative for the removal of different classes of pharmaceuticals in water.
Collapse
Affiliation(s)
- Bruna Figueiredo do Nascimento
- Department of Chemical Engineering, Federal University of Pernambuco, Av. Prof. Arthur de Sá, S/N, Recife-PE, 50.740-521, Brazil.
| | - Caroline Maria Bezerra de Araújo
- Department of Chemical Engineering, Faculty of Engineering of the University of Porto, s/n, R. Dr. Roberto Frias, 4200-465, Porto, Portugal
| | | | | | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | | | - Maurício Alves da Motta Sobrinho
- Department of Chemical Engineering, Federal University of Pernambuco, Av. Prof. Arthur de Sá, S/N, Recife-PE, 50.740-521, Brazil
| |
Collapse
|
17
|
Al-Qahtani KM, Abd Elkarim MS, Al-Fawzan FF, Al-Afify ADG, Ali MHH. Biosorption of hexavalent chromium and molybdenum ions using extremophilic cyanobacterial mats: efficiency, isothermal, and kinetic studies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:228-240. [PMID: 37431240 DOI: 10.1080/15226514.2023.2232878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Two extremophilic cyanobacterial-bacterial consortiums naturally grow in extreme habitats of high temperature and hypersaline were used to remediate hexavalent chromium and molybdenum ions. Extremophilic cyanobacterial-bacterial biomasses were collected from Zeiton and Aghormi Lakes in the Western Desert, Egypt, and were applied as novel and promising natural adsorbents for hexavalent chromium and molybdenum. Some physical characterizations of biosorbent surfaces were described using scanning electron microscope, energy-dispersive X-ray spectroscopy, Fourier transformation infrared spectroscopy, and surface area measure. The maximum removal efficiencies of both biosorbents were 15.62-22.72 mg/g for Cr(VI) and 42.15-46.29 mg/g for Mo(VI) at optimum conditions of pH 5, adsorbent biomass of 2.5-3.0 g/L, and 150 min contact time. Langmuir and Freundlich adsorption models were better fit for Cr(VI), whereas Langmuir model was better fit than the Freundlich model for Mo(VI) biosorption. The kinetic results revealed that the adsorption reaction obeyed the pseudo-second-order model confirming a chemisorption interaction between microbial films and the adsorbed metals. Zeiton biomass exhibited a relatively higher affinity for removing Cr(VI) than Aghormi biomass but a lower affinity for Mo(VI) removal. The results showed that these extremophiles are novel and promising candidates for toxic metal remediation.
Collapse
Affiliation(s)
- Khairia M Al-Qahtani
- Chemistry Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamad S Abd Elkarim
- Hydrobiology Department, National Institute of Oceanography & Fisheries, Cairo, Egypt
| | - Foziah F Al-Fawzan
- Chemistry Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Afify D G Al-Afify
- Chemistry Department, National Institute of Oceanography & Fisheries, Cairo, Egypt
| | - Mohamed H H Ali
- Chemistry Department, National Institute of Oceanography & Fisheries, Cairo, Egypt
| |
Collapse
|
18
|
Ameen F, Mostafazadeh R, Hamidian Y, Erk N, Sanati AL, Karaman C, Ayati A. Modeling of adsorptive removal of azithromycin from aquatic media by CoFe 2O 4/NiO anchored microalgae-derived nitrogen-doped porous activated carbon adsorbent and colorimetric quantifying of azithromycin in pharmaceutical products. CHEMOSPHERE 2023; 329:138635. [PMID: 37068612 DOI: 10.1016/j.chemosphere.2023.138635] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Herein, it was aimed to optimize the removal process of Azithromycin (Azi) from the aquatic environment via CoFe2O4/NiO nanoparticles anchored onto the microalgae-derived nitrogen-doped porous activated carbon (N-PAC), besides developing a colorimetric method for the swift monitoring of Azi in pharmaceutical products. In this study, the Spirulina platensis (Sp) was used as a biomass resource for fabricating CoFe2O4/NiO@N-PAC adsorbent. The pores of N-PAC mainly entail mesoporous structures with a mean pore diameter of 21.546 nm and total cavity volume (Vtotal) of 0.033578 cm3. g-1. The adsorption studies offered that 98.5% of Azi in aqueous media could remove by CoFe2O4/NiO@N-PAC. For the cyclic stability analysis, the adsorbent was separated magnetically and assessed at the end of five adsorption-desorption cycles with a negligible decrease in adsorption. The kinetic modeling revealed that the adsorption of Azi onto the CoFe2O4/NiO@N-PAC was well-fitted to the second-order reaction kinetics, and the highest adsorption capacity was found as 2000 mg. g-1 at 25 °C based on the Langmuir adsorption isotherm model at 0.8 g. L-1 adsorbent concentration. The Freundlich isotherm model had the best agreement with the experimental data. Thermodynamic modeling indicated the spontaneous and exothermic nature of the adsorption process. Moreover, the effects of pH, temperature, and operating time were also optimized in the colorimetric Azi detection. The blue ion-pair complexes between Azi and Coomassie Brilliant Blue G-250 (CBBG-250) reagent followed Beer's law at wavelengths of 640 nm in the concentration range of 1.0 μM to 1.0 mM with a 0.94 μM limit of detection (LOD). In addition, the selectivity of Azi determination was verified in presence of various species. Furthermore, the applicability of CBBG-250 dye for quantifying Azi was evaluated in Azi capsules as real samples, which revealed the acceptable recovery percentage (98.72-101.27%). This work paves the way for engineering advanced nanomaterials for the removal and monitoring of Azi and assures the sustainability of environmental protection and public health.
Collapse
Affiliation(s)
- Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Reza Mostafazadeh
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Yasamin Hamidian
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| | - Afsaneh L Sanati
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Polo II, 3030-290, Coimbra, Portugal
| | - Ceren Karaman
- Akdeniz University, Vocational School of Technical Sciences, Department of Electricity and Energy, Antalya, 07070, Turkey.
| | - Ali Ayati
- ChemBio Cluster, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| |
Collapse
|
19
|
Li M, Fu L, Deng L, Hu Y, Yuan Y, Wu C. A tailored and rapid approach for ozonation catalyst design. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 15:100244. [PMID: 36820151 PMCID: PMC9938169 DOI: 10.1016/j.ese.2023.100244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Catalytic ozonation is widely employed in advanced wastewater treatment owing to its high mineralization of refractory organics. The key to high mineralization is the compatibility between catalyst formulation and wastewater quality. Machine learning can greatly improve experimental efficiency, while fluorescence data can provide additional wastewater quality information on the composition and concentration of organics, which is conducive to optimizing catalyst formulation. In this study, machine learning combined with fluorescence spectroscopy was applied to develop ozonation catalysts (Mn/γ-Al2O3 catalyst was used as an example). Based on the data collected from 52 different catalysts, a machine-learning model was established to predict catalyst performance. The correlation coefficient between the experimental and model-predicted values was 0.9659, demonstrating the robustness and good generalization ability of the model. The range of the catalyst formulations was preliminarily screened by fluorescence spectroscopy. When the wastewater was dominated by tryptophan-like and soluble microbial products, the impregnation concentration and time of Mn(NO3)2 were less than 0.3 mol L-1 and 10 h, respectively. Furthermore, the optimized Mn/γ-Al2O3 formulation obtained by the model was impregnation with 0.155 mol L-1 Mn(NO3)2 solution for 8.5 h and calcination at 600 °C for 3.5 h. The model-predicted and experimental values for total organic carbon removal were 54.48% and 53.96%, respectively. Finally, the improved catalytic performance was attributed to the synergistic effect of oxidation (•OH and 1O2) and the Mn/γ-Al2O3 catalyst. This study provides a rapid approach to catalyst design based on the characteristics of wastewater quality using machine learning combined with fluorescence spectroscopy.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Liya Fu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Liyan Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Yingming Hu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
- College of Urban and Environment Science, Northwest University, Xi'an, 710127, China
| | - Yue Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Changyong Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| |
Collapse
|
20
|
Umejuru EC, Mashifana T, Kandjou V, Amani-Beni M, Sadeghifar H, Fayazi M, Karimi-Maleh H, Sithole T. Application of zeolite based nanocomposites for wastewater remediation: Evaluating newer and environmentally benign approaches. ENVIRONMENTAL RESEARCH 2023; 231:116073. [PMID: 37164282 DOI: 10.1016/j.envres.2023.116073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
The presence of heavy metal ions and emerging pollutants in water poses a great risk to various biological ecosystems as a result of their high toxicity. Consequently, devising efficient and environmentally friendly methods to decontaminate these waters is of high interest to many researchers around the world. Among the varied water treatment and desalination means, adsorption and photocatalysis have been widely employed. However, the discussion and analysis of the use of zeolite-based composites as adsorbents are somehow minimal. The porous aluminosilicates (zeolites) are excellent candidates in wastewater treatment owing to various mechanisms of pollutants removal that they possess. The purpose of this review is thus to provide a synopsis of the current developments in the fabrication and application of nanocomposites based on zeolite as adsorbents and photocatalysts for the extraction of heavy metals, dyes and emerging pollutants from wastewaters. The review goes on to look into the effect of weight ratio on photocatalyst, photodegradation pathways, and various factors that influence photocatalysis and adsorption.
Collapse
Affiliation(s)
- Emmanuel Christopher Umejuru
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa
| | - Tebogo Mashifana
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa
| | - Vepika Kandjou
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa; Department of Chemical Materials and Metallurgical Engineering (CMME), Faculty of Engineering and Technology (FET), Botswana International University of Science and Technology (BIUST), P/Bag 16, Palapye, Botswana
| | - Majid Amani-Beni
- School of Architecture, Southwest Jiaotong University, 611756, Chengdu, China
| | - Hasan Sadeghifar
- R&D Laboratory, Hollingsworth & Vose (H&V) Company, West Groton, MA, 01452, USA
| | - Mahsa Fayazi
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Thandiwe Sithole
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa.
| |
Collapse
|
21
|
Habtamu A, Ujihara M. The mechanism of water pollutant photodegradation by mixed and core-shell WO 3/TiO 2 nanocomposites. RSC Adv 2023; 13:12926-12940. [PMID: 37114017 PMCID: PMC10128107 DOI: 10.1039/d3ra01582c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Environmental pollution is one of the biggest concerns in the world today, and solar energy-driven photocatalysis is a promising method for decomposing pollutants in aqueous systems. In this study, the photocatalytic efficiency and catalytic mechanism of WO3-loaded TiO2 nanocomposites of various structures were analyzed. The nanocomposites were synthesized via sol-gel reactions using mixtures of precursors at various ratios (5%, 8%, and 10 wt% WO3 in the nanocomposites) and via core-shell approaches (TiO2@WO3 and WO3@TiO2 in a 9 : 1 ratio of TiO2 : WO3). After calcination at 450 °C, the nanocomposites were characterized and used as photocatalysts. The kinetics of photocatalysis with these nanocomposites for the degradation of methylene blue (MB+) and methyl orange (MO-) under UV light (365 nm) were analyzed as pseudo-first-order reactions. The decomposition rate of MB+ was much higher than that of MO-, and the adsorption behavior of the dyes in the dark suggested that the negatively charged surface of WO3 played an important role in adsorbing the cationic dye. Scavengers were used to quench the active species (superoxide, hole, and hydroxyl radicals), and the results indicated that hydroxyl radicals were the most active species; however, the active species were generated more evenly on the mixed surfaces of WO3 and TiO2 than on the core-shell structures. This finding shows that the photoreaction mechanisms could be controlled through adjustments to the nanocomposite structure. These results can guide the design and preparation of photocatalysts with improved and controlled activities for environmental remediation.
Collapse
Affiliation(s)
- Abdisa Habtamu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology 43 Keelung Road 10607 Taipei Taiwan
| | - Masaki Ujihara
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology 43 Keelung Road 10607 Taipei Taiwan
| |
Collapse
|
22
|
Putra Hidayat AR, Zulfa LL, Widyanto AR, Abdullah R, Kusumawati Y, Ediati R. Selective adsorption of anionic and cationic dyes on mesoporous UiO-66 synthesized using a template-free sonochemistry method: kinetic, isotherm and thermodynamic studies. RSC Adv 2023; 13:12320-12343. [PMID: 37091612 PMCID: PMC10116191 DOI: 10.1039/d2ra06947d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/10/2023] [Indexed: 04/25/2023] Open
Abstract
In this study, template-free mesoporous UiO-66(U) has been successfully synthesized in shortened time by sonochemical methods and provided energy savings. The synthesized mesoporous UiO-66(U) demonstrated irregular morphology particle around 43.5 nm according to the SEM image. The N2 adsorption-desorption isotherm indicated an irregular, 8.88 nm pore width mesoporous structure. Ultrasonic irradiation waves greatly altered mesoporous materials. A mechanism for mesoporous UiO-66(U) formation has been proposed based on the present findings. Sonochemical-solvent heat saves 97% more energy than solvothermal. Mesoporous UiO-66(U) outperformed solvothermal-synthesized UiO-66(S) in adsorption. These studies exhibited that mesopores in UiO-66 promote dye molecule mass transfer (MO, CR, and MB). According to kinetics and adsorption isotherms, the pseudo-second-order kinetic and Langmuir isotherm models matched experimental results. Thermodynamic studies demonstrated that dye adsorption is spontaneous and exothermically governed by entropy, not enthalpy. Mesoporous UiO-66(U) also showed good anionic dye selectivity in mixed dye adsorption. Mesoporous UiO-66(U) may be regenerated four times while maintaining strong adsorption capability.
Collapse
Affiliation(s)
- Alvin Romadhoni Putra Hidayat
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Sukolilo Surabaya 60111 Indonesia
| | - Liyana Labiba Zulfa
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Sukolilo Surabaya 60111 Indonesia
| | - Alvin Rahmad Widyanto
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Sukolilo Surabaya 60111 Indonesia
| | - Romario Abdullah
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Sukolilo Surabaya 60111 Indonesia
| | - Yuly Kusumawati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Sukolilo Surabaya 60111 Indonesia
| | - Ratna Ediati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Sukolilo Surabaya 60111 Indonesia
| |
Collapse
|
23
|
Safari S, Amiri A, Badiei A. Selective detection of aspartic acid in human serum by a fluorescent probe based on CuInS 2@ZnS quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122294. [PMID: 36630810 DOI: 10.1016/j.saa.2022.122294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The importance of amino acids identification in biological systems has created expectation to develop a sensitive method for their detection. In this work, an efficient core-shell fluorescent quantum dots (QDs) probe based on CuInS2 (CIS) core and ZnS shell with the formula of CIS@ZnS QDs were synthesised and characterised by FT-IR, UV-Vis, TEM and DLS techniques. The probe was used for detection of Aspartic Acid (Asp) in an aqueous media. The probe shows a remarkable fluorescence response toward Asp over the other amino acids such as valine (Val), glycine (Gly), phenylalanine (Phe), leucine (Leu), alanine (Ala), serine (Ser), isoleucine (Iso), threonine (Thr), methionine (Met), Glutamic acid (Glu), histidine (His), arginine (Arg), cysteine (Cys), asparagine (Asn), glutamine (Gln), citrolline (Cit), sarcosine (Sar) and ornithine (Orn) the fluorescence intensity quenches significantly upon addition of Asp in an aqueous media. The CIS@ZnS QDs probe showed a selective and sensitive response by fluorescence quenching toward Asp in the concentration range of 8.3 × 10-7 M to 3.3 × 10-4 M with the detection limit of 7.8 × 10-8 M. The application of the sensor in determination of Asp in real human serum sample was also investigated. Based on our library search, the all reported fluorescent sensors for detection of Asp, either show a remarkable sensitivity to Glu acid. Luckily, this is the first presented optical probe able to detect just Asp from the solutions containing various amino acids.
Collapse
Affiliation(s)
- Sara Safari
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Ahmad Amiri
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
24
|
Musajan Z, Xiao P. Facile fabrication of mesoporous carbon-anchored cobalt ferrite nanoparticles as a heterogeneous activator of peroxymonosulfate for efficient degradation of Congo red. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48088-48106. [PMID: 36750515 DOI: 10.1007/s11356-023-25758-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Herein, mesoporous carbon-anchored cobalt ferrite nanocomposites (nano-CoFe2O4@MC) were fabricated using a hydrothermal method for application as heterogeneous catalysts to activate peroxymonosulfate (PMS), in order to solve the problems of low activation performance and secondary pollution caused by the inter-particle agglomeration, metal ion leaching, and difficult recovery of nano metal catalysts. Analysis techniques such as SEM, TEM, XRD, BET, FTIR, VSM, TGA, and Raman spectroscopy indicated that the prepared nanocomposites have excellent surface properties, structural stability, and magnetic properties. The performance of nano-CoFe2O4@MC for Congo red (CR) degradation was evaluated by comparison with other treatment systems and study of the influence of experimental parameters, including the anchoring ratios, catalyst dosage, PMS concentration, initial pH, CR concentration, coexisting anions, and humic acid. Both radical and nonradical pathways were observed in the activation process of PMS by nano-CoFe2O4@MC. The analysis results of the element composition and ionic state of the catalyst show that the redox cycle of two ion pairs, Co3+/Co2+ and Fe2+/Fe3+, could enhance the multipath electron transfer on the catalyst surface to promote the generation of reactive oxygen species. Identification of the intermediate products revealed CR was transformed into 12 intermediates through two branch pathways in the nano-CoFe2O4@MC/PMS system. After five cycles of use, the catalytic efficiency of the catalyst did not decrease significantly. Nanocomposites with high catalytic performance, stability, recyclability, and a low ion leaching rate have broad application prospects in the treatment of antibiotic wastewater.
Collapse
Affiliation(s)
- Zulhumar Musajan
- College of Forestry, Northeast Forestry University, Hexing Road 26, Harbin, 150040, China
| | - Pengfei Xiao
- College of Forestry, Northeast Forestry University, Hexing Road 26, Harbin, 150040, China.
| |
Collapse
|
25
|
Bhattu M, Singh J. Recent advances in nanomaterials based sustainable approaches for mitigation of emerging organic pollutants. CHEMOSPHERE 2023; 321:138072. [PMID: 36773680 DOI: 10.1016/j.chemosphere.2023.138072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Emerging organic pollutants (EOPs) are a category of pollutants that are relatively new to the environment and recently garnered a lot of attention. The majority of EOPs includes endocrine-disrupting chemicals (EDCs), antibiotic resistance genes (ARGs), pesticides, dyes and pharmaceutical and personal care products (PPCPs). Exposure to contaminated water has been linked to an increase in incidences of malnutrition, intrauterine growth retardation, respiratory illnesses, liver malfunctions, eye and skin diseases, and fatalities. Consequently, there is a critical need for wastewater remediation technologies which are effective, reliable, and economical. Conventional wastewater treatment methods have several shortcomings that can be addressed with the help of nanotechnology. Unique characteristics of nanomaterials (NMs) make them intriguing and efficient alternative in wastewater treatment strategies. This review emphasis on the occurrence of divers emerging organic pollutants (EOPs) in water and their effective elimination via different NMs based methods with in-depth mechanisms. Furthermore, it also delves the toxicity assessment of NMs and critical challenges, which are crucial steps for practical implementations.
Collapse
Affiliation(s)
- Monika Bhattu
- Department of Chemistry, Chandigarh University, Mohali, 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Jagpreet Singh
- University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India.
| |
Collapse
|
26
|
Raza S, Hameed MU, Ghasali E, Hayat A, Orooji Y, Lin H, Karaman C, Karimi F, Erk N. Algae extract delamination of molybdenum disulfide and surface modification with glycidyl methacrylate and polyaniline for the elimination of metal ions from wastewater. ENVIRONMENTAL RESEARCH 2023; 221:115213. [PMID: 36610540 DOI: 10.1016/j.envres.2023.115213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/22/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
A special type of two-dimensional (2D) material based conducting polymer was constructed by green synthesis and in-situ polymerization techniques. The 2D Molybdenum Disulfide (MoS2) were first synthesized with the combination of, ammonium tetrathiomolybdate dissolved in 20 mL algae extract under stirring. After stirring for about 2 h, and then finally sulfurization was initiated using sulfur powder in 20 mL of sulfuric solution and stirred for 8 h. The resulting black precipitates of MoS2 were collected by centrifugation at 5000 rpm. Moreover, the prepared MoS2 was functionalized with glycidyl methacrylate (GMA) and form the MoS2@PGMA. Further, the MoS2@PGMA is combined with polyaniline (PANI) to form conducting polymer grafted thin film nanosheets named MoS2@PGMA/PANI with a thickness in micrometer size through grafting method. The prepared materials were characterized by SEM, FTIR, XRD, XPS and EDX techniques. To check the performance of materials the adsorption study was performed. Moreover, the adsorption study toward Cu2+ and Cd2+ showed a tremendous results and the maximum adsorption was 307.7 mg/g and 214.7 mg/g respectively. In addition, the pseudo-first and second order models as well as the adsorption isotherm were investigated using the Langmuir and Freundlich model. The results were best fitted with the pseudo-second order and Langmuir models. The regeneration study was also conducted and MoS2@PGMA/PANI nanosheets can be easily recycled and restored after five successful recycling. The established methodology for preparing the 2D materials and conducting polymer based MoS2@PGMA/PANI nanosheets is expected to be applicable for other multiple applications.
Collapse
Affiliation(s)
- Saleem Raza
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Muhammad Usman Hameed
- Department of Chemistry University of Poonch Rawalakot, 12350, Azad Kashmir, Pakistan
| | - Ehsan Ghasali
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Yasin Orooji
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Hongjun Lin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Fatemeh Karimi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| |
Collapse
|
27
|
Buledi JA, Shaikh H, Solangi AR, Mallah A, Shah ZUH, Khan MM, Sanati AL, Karimi-Maleh H, Karaman C, Camarada MB, Niculina DE. Synthesis of NiO-Doped ZnO Nanoparticle-Decorated Reduced Graphene Oxide Nanohybrid for Highly Sensitive and Selective Electrochemical Sensing of Bisphenol A in Aqueous Samples. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Jamil A. Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Huma Shaikh
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Amber R. Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Arfana Mallah
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Zia-ul-Hassan Shah
- Department of Soil Science, Sindh Agriculture University, Tandojam 70050, Pakistan
| | - Mir Mehran Khan
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Afsaneh L. Sanati
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Polo II, 3030-290 Coimbra, Portugal
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Avenue, 611731 Chengdu, P.R. China
- Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Ceren Karaman
- Vocational School of Technical Sciences, Department of Electricity and Energy, Akdeniz University, Antalya 07070, Turkey
- School of Engineering, Lebanese American University, 1526 Byblos, Lebanon
| | - María Belén Camarada
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro Investigación en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Dragoi Elena Niculina
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bld. D Mangeron no 73, 700050 Iasi, Romania
| |
Collapse
|
28
|
Ali F, Mehmood S, Ashraf A, Saleem A, Younas U, Ahmad A, Bhatti MP, Eldesoky GE, Aljuwayid AM, Habila MA, Bokhari A, Mubashir M, Chuah LF, Chong JWR, Show PL. Ag–Cu Embedded SDS Nanoparticles for Efficient Removal of Toxic Organic Dyes from Water Medium. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Faisal Ali
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Saira Mehmood
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Adnan Ashraf
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Aimon Saleem
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Umer Younas
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Awais Ahmad
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain
| | | | - Gaber E. Eldesoky
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed Muteb Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed A. Habila
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Awais Bokhari
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Punjab 54000 Pakistan
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia
| | - Lai Fatt Chuah
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Jun Wei Roy Chong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, India 602105
| |
Collapse
|
29
|
Mirsalari SA, Nezamzadeh-Ejhieh A, Massah AR. A Z-scheme CdS/Ag 3PO 4 catalyst: Characterization, experimental design and mechanism consideration for methylene blue. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122139. [PMID: 36446172 DOI: 10.1016/j.saa.2022.122139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Due to the explosive use of Azo dyes in various industries such as textiles, discharging these industrial effluents into the environment critically polluted water supplies. Accordingly, constructing/developing novel binary catalysts to diminish the pollution extent of such effluents before discharging into environment is an excellent issue in environmental chemistry. Here, a binary CdS/ Ag3PO4 was constructed, and its boosted photocatalytic activity was proven against methylene blue (MB), as a model dye pollutant. The Wurtzite CdS and Ag3PO4 cubic crystal nanoparticles were synthesized and coupled mechanically. The binary sample's lowest photoluminescence (PL) results confirm a higher e/h separation. DRS results confirmed a decreased energy gap for the coupled system. The semiconductors' VB and CV potentials were calculated and used for constructing of Z-scheme mechanism. The photocatalytic activity was followed via an experimental design approach. The model F-value of 89.75 > F0.05,14,13 = 2.42 and LOF F-value of 6.57 < F0.05,10, 3 = 8.79 reveal that the model well processed data. The optimal run conditions were CMB: 5 ppm, Catalyst dose: 1 g/L, pH: 3.25, and irradiation time: 139 min, at which 85% of MB molecules were degraded. Based on the trend of ascorbic acid > isopropanol > formic acid ≈ nitrate obtained for the scavengers' importance in decreasing the photocatalyst activity, superoxide radicals had the highest effect in MB degradation and then •OH. The results showed the direct Z-scheme has the main effect on MB degradation by the binary sample.
Collapse
Affiliation(s)
- Seyyedeh Atefeh Mirsalari
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| | - Ahmad Reza Massah
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| |
Collapse
|
30
|
Functionalization of sodium magnesium silicate hydroxide/sodium magnesium silicate hydrate nanostructures by chitosan as a novel nanocomposite for efficient removal of methylene blue and crystal violet dyes from aqueous media. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
31
|
Jeyaraman A, Karuppaiah B, Chen SM, Huang YC. Development of Mixed Spinel Metal Oxide (Co-Mn-O) Integrated Functionalized Boron Nitride: Nanomolar Electrochemical Detection of Herbicide Diuron. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
32
|
Raza S, Ghasali E, Raza M, Chen C, Li B, Orooji Y, Lin H, Karaman C, Karimi Maleh H, Erk N. Advances in technology and utilization of natural resources for achieving carbon neutrality and a sustainable solution to neutral environment. ENVIRONMENTAL RESEARCH 2023; 220:115135. [PMID: 36566962 DOI: 10.1016/j.envres.2022.115135] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/19/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The greatest environmental issue of the twenty-first century is climate change. Human-caused greenhouse gas emissions are increasing the frequency of extreme weather. Carbon dioxide (CO2) accounts for 80% of human greenhouse gas emissions. However, CO2 emissions and global temperature have risen steadily from pre-industrial times. Emissions data are crucial for most carbon emission policymaking and goal-setting. Sustainable and carbon-neutral sources must be used to create green energy and fossil-based alternatives to reduce our reliance on fossil fuels. Near-real-time monitoring of carbon emissions is a critical national concern and cutting-edge science. This review article provides an overview of the many carbon accounting systems that are now in use and are based on an annual time frame. The primary emphasis of the study is on the recently created carbon emission and eliminating sources and technology, as well as the current application trends for carbon neutrality. We also propose a framework for the most advanced naturally available carbon neutral accounting sources capable of being implemented on a large scale. Forming relevant data and procedures will help the "carbon neutrality" plan decision-making process. The formation of pertinent data and methodologies will give robust database support to the decision-making process for the "carbon neutrality" plan for the globe. In conclusion, this article offers some opinions, opportunities, challenges and future perspectives related to carbon neutrality and carbon emission monitoring and eliminating resources and technologies.
Collapse
Affiliation(s)
- Saleem Raza
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Ehsan Ghasali
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Muslim Raza
- Department of Chemistry Bacha Khan University, Charsada, Khyber Pakhtunkhwa, Pakistan; Department of Chemistry, University of Massachusetts Boston, MA, 02125, USA
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China; Research & Development Department, Shandong Advanced Materials Industry Association, Jinan 250200, Shandong, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, AkdenizUniversity, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Hassan Karimi Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| |
Collapse
|
33
|
Dried Leaves Powder of Adiantum capillus-veneris as an Efficient Biosorbent for Hazardous Crystal Violet Dye from Water Resources. SEPARATIONS 2023. [DOI: 10.3390/separations10030165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
The dyeing industry uses many chemicals and dyes. After the dying process is completed, they release a significant amount of dyes in wastewater. The dyes’ color emissions are extremely poisonous and dangerous for aquatic and terrestrial life. Due to the toxic nature of dyes, the current study was carried out to evaluate whether it would be effective to employ an adsorption procedure with leaves from the Adiantum capillus-veneris plant as an adsorbent to remove commonly used textile dyes from an aqueous dye solution and wastewater. The effect of pH, concentration, time and the adsorbent dose on the adsorption process was studied in order to determine the maximum adsorption under ideal conditions. The selected pH was 3; the optimum concentration was 30 ppm with a contact time of 90 min and the optimized adsorbent dose was 60 mg. The absorbent under study showed excellent results when compared with commercial adsorbents i.e., animal charcoal and silica gel. The leaves of the Adiantum capillus-veneris plant revealed a maximum removal of 90.36 percent crystal violet dye (adsorption capacity (Qe) 9.05 mg/g) without any treatment to activate or alter the surface chemistry of the biosorbent. Its effectiveness was also tested with water gathered from several sources, including canal water, tap water, distilled water, and saline water, to determine whether it was practical. In both the canal and the tap water, the adsorbent displayed good removal efficiency. From the results of the current study, it can be inferred that the leaves of the Adiantum capillus-veneris plant are a reasonably priced biosorbent that can be used to remove toxic dyes from wastewater to protect water bodies from toxic pollution and can be used to treat industrial wastewater directly.
Collapse
|
34
|
Mousavi SZ, Shadman HR, Habibi M, Didandeh M, Nikzad A, Golmohammadi M, Maleki R, Suwaileh WA, Khataee A, Zargar M, Razmjou A. Elucidating the Sorption Mechanisms of Environmental Pollutants Using Molecular Simulation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c02333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Seyedeh Zahra Mousavi
- Department of Chemical Engineering, Tarbiat Modares University, Tehran, 1411944961, Iran
| | - Hamid Reza Shadman
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, 6351713178, Iran
| | - Meysam Habibi
- Department of Chemical Engineering, University of Tehran, Tehran, 6718773654, Iran
| | - Mohsen Didandeh
- Department of Chemical Engineering, Tarbiat Modares University, Tehran, 1411944961, Iran
| | - Arash Nikzad
- Mechanical Engineering Department, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mahsa Golmohammadi
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, 6351713178, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, 3313193685, Iran
| | - Wafa Ali Suwaileh
- Chemical Engineering Program, Texas A&M University at Qatar, Education City, Doha 23874, Qatar
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Mersin 10 Turkey
| | - Masoumeh Zargar
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth WA 6027, Australia
| | - Amir Razmjou
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth WA 6027, Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
35
|
Raza S, Ghasali E, Orooji Y, Lin H, Karaman C, Dragoi EN, Erk N. Two dimensional (2D) materials and biomaterials for water desalination; structure, properties, and recent advances. ENVIRONMENTAL RESEARCH 2023; 219:114998. [PMID: 36481367 DOI: 10.1016/j.envres.2022.114998] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND An efficient solution to the global freshwater dilemma is desalination. MXene, Molybdenum Disulfide (MoS2), Graphene Oxide, Hexagonal Boron Nitride, and Phosphorene are just a few examples of two-dimensional (2D) materials that have shown considerable promise in the development of 2D materials for water desalination. However, other promising materials for desalinating water are biomaterials. The benefits of bio-materials are their wide distribution, lack of toxicity, and superior capacity for water desalination. METHODS For the rational use of water and the advancement of sustainable development, it is of the utmost importance to research 2D-dimensional materials and biomaterials that are effective for water desalination. The scientific community has concentrated on wastewater remediation using bio-derived materials, such as nanocellulose, chitosan, bio-char, bark, and activated charcoal generated from plant sources, among the various endeavors to enhance access to clean water. Moreover, the 2D-materials and biomaterials may have ushered in a new age in the production of desalination materials and created a promising future. RESULTS The present review article focuses on and reviews the progress of 2D materials and biomaterials for water desalination. Their properties, surface, and structure, combined with water desalination applications, are highlighted. Further, the practicability and potential future directions of 2D materials and biomaterials are proposed. Thus, the current work provides information and discernments for developing novel 2D materials and biomaterials for wastewater desalination. Moreover, it aims to promote the contribution and advancement of materials for water desalination, fabrication, and industrial production.
Collapse
Affiliation(s)
- Saleem Raza
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Ehsan Ghasali
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Yasin Orooji
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China.
| | - Hongjun Lin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Ceren Karaman
- Departmen of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld. D. Mangeron No 73, 700050, Iasi, Romania.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| |
Collapse
|
36
|
Deng Z, Wu Z, Alizadeh M, Zhang H, Chen Y, Karaman C. Electrochemical monitoring of 4-chlorophenol as a water pollutant via carbon paste electrode amplified with Fe 3O 4 incorporated cellulose nanofibers (CNF). ENVIRONMENTAL RESEARCH 2023; 219:114995. [PMID: 36529324 DOI: 10.1016/j.envres.2022.114995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
A crucial problem that needs to be resolved is the sensitive and selective monitoring of chlorophenol compounds, especifically 4-chlorophenol (4-CP), one of the most frequently used organic industrial chemicals. In light of this, the goal of this study was to synthesize Fe3O4 incorporated cellulose nanofiber composite (Fe3O4/CNF) as an amplifier in the development of a modified carbon paste electrode (CPE) for 4-CP detection. Transmission electron microscopy (TEM) was used to evaluate the morphology of the synthesized nanocatalyst, while differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) techniques were implemented to illuminate the electrochemical characteristics of the fabricated sensor. The ultimate electrochemical sensor (Fe3O4/CNF/CPE) was used as a potent electrochemical sensor for monitoring 4-CP in the concentration range of 1.0 nM-170 μM with a limit of detection value of 0.5 nM. As a result of optimization studies, 8.0 mg Fe3O4/CNF was found to be the ideal catalyst concentration, whereas pH = 6.0 was chosen as the ideal pH. The 4-CP's oxidation current was found to be over 1.67 times greater at ideal operating conditions than it was at the surface of bare CPE, and its oxidation potential decreased by about 120 mV. By using the standard addition procedure on samples of drinking water and wastewater, the suggested capability of Fe3O4/CNF/CPE to detect 4-CP was further investigated. The recovery range was found to be 98.52-103.66%. This study paves the way for the customization of advanced nanostructure for the application in electrochemical sensors resulting in beneficial environmental impact and enhancing human health.
Collapse
Affiliation(s)
- Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Zixuan Wu
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Marzieh Alizadeh
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hongcai Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yaobang Chen
- Sibang Environmental Protection Technology Co., Ltd., Yichun, 336000, China
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
37
|
SefidSiahbandi M, Moradi O, Akbari-Adergani B, Aberoomand Azar P, Sabar Tehrani M. The effect of Fe-Zn mole ratio (2:1) bimetallic nanoparticles supported by hydroxyethyl cellulose/graphene oxide for high-efficiency removal of doxycycline. ENVIRONMENTAL RESEARCH 2023; 218:114925. [PMID: 36462691 DOI: 10.1016/j.envres.2022.114925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/28/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
In this research, Hydroxyethyl cellulose - graphene oxide HEC-GO and HEC-GO/Fe-Zn mole ratio (2:1) nanocomposite as adsorbents were fabricated by crosslinking ethylene glycol dimethacrylate (EGDMA) to study the thermodynamic, kinetic and isotherm of doxycycline antibiotic adsorption. The morphology and structure of the adsorbents were analyzed by Fourier transform infrared spectroscopy (FT-IR), Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (FE-SEM- EDX), and Transmission electron microscopy (TEM). The adsorption behavior of doxycycline (DOX) was studied with different parameters including doxycycline concentration, pH, the dose of adsorbent (HEC-GO and HEC-GO/Fe-Zn, mole ratio (2:1)), contact time, and temperature. The optimal conditions for the removal of DOX are pH = 3.0, contact time 100 min, and 20 min for HEC-GO and HEC-GO/Fe-Zn mole ratio (2:1). The removal percentage for HEC-GO and HEC-GO/Fe-Zn mole ratio (2:1) was 97% and 95.5%, respectively. Equilibrium adsorption isotherms such as the Langmuir, Freundlich, and Temkin models were analyzed according to the experimental data. Also, four adsorption kinetics were investigated for removing DOX. The Langmuir isotherm and pseudo-second-order kinetic models provided the best fit for experimental data for HEC-GO and HEC-GO/Fe-Zn mole ratio (2:1). Thermodynamic data showed that negative values of Gibbs free energy (ΔG°) and the negative value of enthalpy (ΔH°) of the adsorption process for adsorbents. It means that DOX removal was a spontaneous and exothermic reaction.
Collapse
Affiliation(s)
- Minoo SefidSiahbandi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr -e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Behrouz Akbari-Adergani
- Water Safety Research Center, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Parviz Aberoomand Azar
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Sabar Tehrani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
38
|
Adsorption Data Modeling and Analysis Under Scrutiny: A Clarion Call to Redress Recently Found Troubling Flaws. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
39
|
Mostafazadeh R, Karimi-Maleh H, Ghaffarinejad A, Tajabadi F, Hamidian Y. Highly sensitive electrochemical sensor based on carbon paste electrode modified with graphene nanoribbon-CoFe 2O 4@NiO and ionic liquid for azithromycin antibiotic monitoring in biological and pharmaceutical samples. APPLIED NANOSCIENCE 2023; 13:1-10. [PMID: 36710715 PMCID: PMC9870783 DOI: 10.1007/s13204-023-02773-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
In this report, Azithromycin (Azi) antibiotic was measured by carbon paste electrode (CPE) improved by graphene nanoribbon-CoFe2O4@NiO nanocomposite and 1-hexyl-3 methylimidazolium hexafluorophosphate (HMIM PF6) as an ionic liquid binder. The electrochemical behavior of Azi on the graphene nanoribbon-CoFe2O4@NiO/HMIM PF6/CPE is investigated by voltammetric methods, and the results showed that the modifiers improve the conductivity and electrochemical activity of the CPE. According to obtained data, the electrochemical behavior of Azi is related to pH. under optimum conditions, the sensor has linear ranges from 10 µM to 2 mM with a LOD of 0.66 µM. The effect of scan rate and chronoamperometry were studied, which showed that the Azi electro-oxidation is diffusion controlled with the diffusion coefficient of 9.22 × 10-6 cm2/s. The reproducibility (3.15%), repeatability (2.5%), selectivity, and stability (for 30 days) tests were investigated, which results were acceptable. The actual sample analysis confirmed that the proposed sensor is an appropriate electrochemical tool for Azi determination in urine and Azi capsule.
Collapse
Affiliation(s)
- Reza Mostafazadeh
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114 Iran
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, PO Box 31787-316, Karaj, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, P.O. Box 611731, Chengdu, People’s Republic of China
| | - Ali Ghaffarinejad
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114 Iran
- Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114 Iran
| | - Fariba Tajabadi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, PO Box 31787-316, Karaj, Iran
| | - Yasamin Hamidian
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, 16315-1618 Iran
| |
Collapse
|
40
|
Reddy CV, Kakarla RR, Shim J, Zairov RR, Aminabhavi TM. Hydrothermally derived Cr-doped SnO 2 nanoflakes for enhanced photocatalytic and photoelectrochemical water oxidation performance under visible light irradiation. ENVIRONMENTAL RESEARCH 2023; 217:114672. [PMID: 36356664 DOI: 10.1016/j.envres.2022.114672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Photocatalytic dye degradation is a method of environmental degradation that is commonly used to eliminate various pollutants produced by pharmaceutical and textile industries. Herein, pure and chromium (Cr)-doped SnO2 nanoflakes were synthesized using a simple facile hydrothermal method and photocatalytic properties were studied under visible light illumination. In addition, photoelectrochemical (PEC) water oxidation properties were also studied using the prepared samples. Doping of transition metal ions introduces structural defects, which narrow the band gap of host sample, resulting in high catalytic activity. The synthesized doped SnO2 displayed a rutile tetragonal crystal phase with a nanoflakes-like surface morphology having no other contaminations. The optical band gap of Cr-doped SnO2 nanoflakes was significantly reduced (2.48 eV) over the pure sample (3.32 eV), due to successful incorporation of Cr ions into the host lattice. Furthermore, the dye removal efficiency of these nanoflakes was investigated for methyl orange (MO) and tetracycline (TC) organic contaminations. The Cr-doped SnO2 nanoflakes exhibited superior photodegradation with 87.8% and 90.6% dye removal efficiency, within 90 min of light illumination. PEC water oxidation analysis showed that the doped photoelectrode achieved enhanced photocurrent density and showed a higher photocurrent density (1.08 mA cm-2) over that of the undoped electrode (0.60 mA cm-2). Electrochemical impedance spectroscopy (EIS) showed that doped electrodes exhibited lesser charge resistance than the pure electrode. The synthesized Cr-doped SnO2 nanoflakes are suitable for water oxidation and photodegradation of organic pollutants. Thus, we strongly believe that the obtained results in this report will continue to provide new opportunities for the improvement of effective visible light photocatalysts for industrial wastewater treatment and water splitting for H2 generation.
Collapse
Affiliation(s)
- Ch Venkata Reddy
- School of Engineering, Yeungnam University, Gyeongsan, 712749, South Korea
| | - Raghava Reddy Kakarla
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jaesool Shim
- School of Engineering, Yeungnam University, Gyeongsan, 712749, South Korea
| | - Rustem R Zairov
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, 420008, 1/29 Lobachevskogo Str, Russian Federation
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, 580031, Karnataka, India; School of Engineering, UPES, Bidholi, Dehradun, 248 007, Uttarakhand, India.
| |
Collapse
|
41
|
Günay MG, Kemerli U, Karaman C, Karaman O, Güngör A, Karimi-Maleh H. Review of functionalized nano porous membranes for desalination and water purification: MD simulations perspective. ENVIRONMENTAL RESEARCH 2023; 217:114785. [PMID: 36395866 DOI: 10.1016/j.envres.2022.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Today, it is known that most of the water sources in the world are either drying out or contaminated. With the increasing population, the water demand is increasing drastically almost in every sector each year, which makes processes like water treatment and desalination one of the most critical environmental subjects of the future. Therefore, developing energy-efficient and faster methods are a must for the industry. Using functional groups on the membranes is known to be an effective way to develop shorter routes for water treatment. Accordingly, a review of nano-porous structures having functional groups used or designed for desalination and water treatment is presented in this study. A systematic scan has been conducted in the literature for the studies performed by molecular dynamics simulations. The selected studies have been classified according to membrane geometry, actuation mechanism, functionalized groups, and contaminant materials. Permeability, rejection rate, pressure, and temperature ranges are compiled for all of the studies examined. It has been observed that the pore size of a well-designed membrane should be small enough to reject contaminant molecules, atoms, or ions but wide enough to allow high water permeation. Adding functional groups to membranes is observed to affect the permeability and the rejection rate. In general, hydrophilic functional groups around the pores increase membrane permeability. In contrast, hydrophobic ones decrease the permeability. Besides affecting water permeation, the usage of charged functional groups mainly affects the rejection rate of ions and charged molecules.
Collapse
Affiliation(s)
- M Gökhan Günay
- Mechanical Engineering Department, Akdeniz University, Antalya, Turkey
| | - Ubade Kemerli
- Mechanical Engineering Department, Trakya University, Edirne, Turkey
| | - Ceren Karaman
- Vocational School of Technical Sciences, Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Onur Karaman
- Vocational School of Health Services, Department of Medical Services and Techniques, Akdeniz University, Antalya, 07070, Turkey.
| | - Afşin Güngör
- Mechanical Engineering Department, Akdeniz University, Antalya, Turkey.
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
42
|
Buledi JA, Solangi AR, Mallah A, Hassan SS, Ameen S, Karaman C, Karimi-Maleh H. A Reusable Nickel Oxide Reduced Graphene Oxide Modified Platinum Electrode for the Detection of Linezolid Drug. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jamil A. Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro76080, Pakistan
| | - Amber R. Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro76080, Pakistan
| | - Arfana Mallah
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491Trondheim, Norway
- M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro76080, Pakistan
| | - Syeda Sara Hassan
- U. S. Pakistan Centre for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro76080, Pakistan
| | - Sidra Ameen
- Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Sindh67450, Pakistan
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya07070, Turkey
- School of Engineering, Lebanese American University, Byblos1102 2801, Lebanon
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu611731, People’s Republic of China
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, India602105
| |
Collapse
|
43
|
Celik S. A Green Biocomposite Produced by Passive Cell Immobilization onto Waste Biomass Support for Biodecolorization of Reactive Dye Contamination. ChemistrySelect 2023. [DOI: 10.1002/slct.202203253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sema Celik
- Department of Chemistry Eskisehir Osmangazi University Faculty of Science TR-26040 Eskisehir Turkey
| |
Collapse
|
44
|
Biju LM, K VG, Senthil Kumar P, Kavitha R, Rajagopal R, Rangasamy G. Application of Salvinia sps. in remediation of reactive mixed azo dyes and Cr (VI) - Its pathway elucidation. ENVIRONMENTAL RESEARCH 2023; 216:114635. [PMID: 36309215 DOI: 10.1016/j.envres.2022.114635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The emerging industrialization has resulted in the rapid growth of textile industries across the globe. The presence of xenobiotic pollutants in textile wastewater threatens the ecosystem. Applying different microbes (bacteria, fungi & algae) has paved the way for phytoremediation - the eco-friendly, cost-effective method. The present study focuses on the phytoremediation of reactive dyes - Reactive red, Reactive Brown & Reactive Black and Cr (VI) in synthetic textile wastewater using Salvinia sps. The mixed azo dyes of each 100 mg/L showed decolourization of 75 ± 0.5% and 82 ± 0.5% of removal of 20 mg/L of Cr (VI) after eight days of incubation in a phytoreactor setup. Chlorophyll analysis revealed the gradual decrease in the photosynthetic pigments during the remediation. The degraded metabolites were analyzed using FT-IR and showed the presence of aromatic amines on day zero, which were converted to aliphatic amines on day four. The GC-MS analysis revealed the disruption of -NN- bond, rupture of -CN- bond, scission of -N-N-bond, and loss of -SO3H from the Reactive Black dye leading to the formation of an intermediate p-Hydroxy phenylhydrazinyl. The rupture of Reactive red dye resulted in the formation of p-Hydrazinyl toluene sulphonic acid, Naphthyl amine -3,6-disulphonic acid and 8-Hydroxy Naphthyl amine -3,6-disulphonic acid. Decarboxylation, desulphonation, deoxygenation and deamination of Reactive Brown dye showed the presence of different metabolites and metabolic pathways were proposed for the reactive azo dyes which were phytoremediated.
Collapse
Affiliation(s)
- Leena Merlin Biju
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, India; Department of Microbiology, Kumararani Meena Muthiah College of Arts & Science, India
| | - Veena Gayathri K
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
| | - R Kavitha
- Department of Chemistry, Stella Maris College (Autonomous), Chennai, India; Department of Chemistry, Madras Christian College, Chennai, India
| | - Revathy Rajagopal
- Department of Chemistry, Stella Maris College (Autonomous), Chennai, India
| | - Gayathri Rangasamy
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
45
|
Bezerra de Araujo CM, Wernke G, Ghislandi MG, Diório A, Vieira MF, Bergamasco R, Alves da Motta Sobrinho M, Rodrigues AE. Continuous removal of pharmaceutical drug chloroquine and Safranin-O dye from water using agar-graphene oxide hydrogel: Selective adsorption in batch and fixed-bed experiments. ENVIRONMENTAL RESEARCH 2023; 216:114425. [PMID: 36181896 DOI: 10.1016/j.envres.2022.114425] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
In this work, Chloroquine diphosphate, and the cationic dye Safranin-O were selectively removed from water using the agar-graphene oxide (A-GO) hydrogel, produced via simple one-step jellification process. The morphology of the A-GO biocomposite was characterized and batch experiments were performed, with adsorption isotherms satisfactorily fitting (R2 > 0.98) Sips (Safranin-O) and Freundlich (Chloroquine) isotherms. Driving force models and Fick's diffusion equation were applied to the modeling of kinetic data, and a satisfactory fit was obtained. Selective adsorption carried out in batch indicated that competitive adsorption occurs when both components are mixed in water solution - the adsorptive capacities dropped ∼10 mg g-1 for each component, remaining 41 mg g-1 for safranin-O and 31 mg g-1 for chloroquine. Fixed-bed breakthrough curves obtained in an adsorption column showed adsorption capacities over 63 mg g-1 and 100 mg g-1 for chloroquine and safranin-O, respectively, also exhibiting outstanding regenerative potentials. Overall, the biocomposite produced using graphene oxide proved to be a viable and eco-friendly alternative to continuously remove both contaminants from water.
Collapse
Affiliation(s)
- Caroline Maria Bezerra de Araujo
- Department of Chemical Engineering - Federal University of Pernambuco (UFPE), Prof. Arthur de Sá St., s/n, Cidade Universitária. 50740-521, Recife, PE, Brazil.
| | - Gessica Wernke
- Department of Chemical Engineering - State University of Maringá (UEM), Colombo Av., 5790, Building D-90, 87020-900, Maringá, PR, Brazil
| | - Marcos Gomes Ghislandi
- Engineering Campus (UACSA) - Federal Rural University of Pernambuco (UFRPE), R. Cento e sessenta e Três, 300, 54518-430, Cabo de Santo Agostinho, PE, Brazil
| | - Alexandre Diório
- Department of Chemical Engineering - State University of Maringá (UEM), Colombo Av., 5790, Building D-90, 87020-900, Maringá, PR, Brazil
| | - Marcelo Fernandes Vieira
- Department of Chemical Engineering - State University of Maringá (UEM), Colombo Av., 5790, Building D-90, 87020-900, Maringá, PR, Brazil
| | - Rosângela Bergamasco
- Department of Chemical Engineering - State University of Maringá (UEM), Colombo Av., 5790, Building D-90, 87020-900, Maringá, PR, Brazil
| | - Maurício Alves da Motta Sobrinho
- Department of Chemical Engineering - Federal University of Pernambuco (UFPE), Prof. Arthur de Sá St., s/n, Cidade Universitária. 50740-521, Recife, PE, Brazil
| | - Alírio Egídio Rodrigues
- LSRE-LCM, Department of Chemical Engineering - Faculty of Engineering of the University of Porto (FEUP), R. Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| |
Collapse
|
46
|
Kumari N, Behera M, Singh R. Facile synthesis of biopolymer decorated magnetic coreshells for enhanced removal of xenobiotic azo dyes through experimental modelling. Food Chem Toxicol 2023; 171:113518. [PMID: 36436617 DOI: 10.1016/j.fct.2022.113518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Since contamination of xenobiotics in water bodies has become a global issue, their removal is gaining ample attention lately. In the present study, nZVI was synthesized using chitosan for removal of two such xenobitic dyes, Bromocresol green and (BCG) and Brilliant blue (BB), which have high prevalence in freshwater and wastewater matrices. nZVI functionalization prevents nanoparticle aggregation and oxidation, enhancing the removal of BCG and BB with an efficiency of 84.96% and 86.21%, respectively. XRD, FESEM, EDS, and FTIR have been employed to investigate the morphology, elemental composition, and functional groups of chitosan-modified nanoscale-zerovalent iron (CS@nZVI). RSM-CCD model was utilized to assess the combined effect of five independent variables and determine the best condition for maximum dye removal. The interactions between adsorbent dose (2-4 mg), pH (4-8), time (20-40 min), temperature (35-65 0C), and initial dye concentration (40-60 mg/L) was modeled to study the response, i.e., dye removal percentage. The reaction fitted well with Langmuir isotherm and pseudo-first-order kinetics, with a maximum qe value of 426.97 and 452.4 mg/g for BCG and BB, respectively. Thermodynamic analysis revealed the adsorption was spontaneous, and endothermic in nature. Moreover, CS@nZVI could be used up to five cycles of dye removal with remarkable potential for real water samples.
Collapse
Affiliation(s)
- Nisha Kumari
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Monalisha Behera
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
47
|
Rubangakene NO, Elwardany A, Fujii M, Sekiguchi H, Elkady M, Shokry H. Biosorption of Congo Red dye from aqueous solutions using pristine biochar and ZnO biochar from green pea peels. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Deng Z, Wu Z, Rokni H, Yin Z, Lin J, Zhang H, Cheraghi S. Electrochemical sensor amplified with cellulose nanofibers/Fe 3O 4 composite to the monitoring of hydrazine as a pollutant in water and wastewater samples. CHEMOSPHERE 2022; 309:136568. [PMID: 36167210 DOI: 10.1016/j.chemosphere.2022.136568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
A quite swift and sensitive analytical instrument was designed in this work to detect and monitor hydrazine in various water and wastewater samples. The glassy carbon electrode (GCE) was amplified using cellulose nanofibers/Fe3O4 composite (CNF-Fe3O4/NC) for monitoring hydrazine in the concentration range of 0.001 - 140 M with a superior detection limit of 0.5 nM. Results showed a diffusion control process for the oxidation of hydrazine at the surface of CNF-Fe3O4/NC/GCE. Under the optimum condition (pH=8.0), the oxidation current of hydrazine was improved by about 2.3 times and the oxidation potential was reduced by about 60 mV at the surface of CNF-Fe3O4/NC/GCE compare to unmodified GCE. A standard addition method was employed to assess CNF-Fe3O4/NC/GCE's capability for the detection of hydrazine in water and wastewater samples, and a recovery range of 97.6 % to 104.9 % was noted.
Collapse
Affiliation(s)
- Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zixuan Wu
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hassan Rokni
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Zihua Yin
- Shanghai Ruihe Environmental Technology Co. Ltd., Shanghai 200333, China
| | - Junzhong Lin
- Shanghai Ruihe Environmental Technology Co. Ltd., Shanghai 200333, China
| | - Hongcai Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Somaye Cheraghi
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
49
|
Nguyen LM, Nguyen NTT, Nguyen TTT, Nguyen DH, Nguyen DTC, Tran TV. Facile synthesis of CoFe 2O 4@MIL-53(Al) nanocomposite for fast dye removal: Adsorption models, optimization and recyclability. ENVIRONMENTAL RESEARCH 2022; 215:114269. [PMID: 36103925 DOI: 10.1016/j.envres.2022.114269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The global occurrence of textile dyes pollution has recently emerged, posing a serious threat to ecological systems. To abate dye contamination, we here developed a novel magnetic porous CoFe2O4@MIL-53(Al) nanocomposite by incorporating magnetic CoFe2O4 nanoparticles with MIL-53(Al) metal-organic framework. This nanocomposite possessed a surface area of 197.144 m2 g-1 and a pore volume of 0.413 cm3 g-1. The effect of contact time (5-120 min), concentration (5-50 mg L-1), dosage (0.1-1.0 g L-1), and pH (2-10) on Congo red adsorption was clarified. CoFe2O4@MIL-53(Al) could remove 95.85% of Cong red dye from water with an accelerated kinetic rate of 0.6544 min-1 within 10 min. The kinetic and isotherm models showed the predominance of Bangham and Temkin. According to Langmuir, the maximum uptake capacities of CoFe2O4@MIL-53(Al), CoFe2O4, and MIL-53(Al) adsorbents were 43.768, 17.982, and 15.295 mg g-1, respectively. CoFe2O4@MIL-53(Al) was selected to optimize Cong red treatment using Box-Behnken experimental design. The outcomes showed that CoFe2O4@MIL-53(Al) achieved the highest experimental uptake capacity of 35.919 mg g-1 at concentration (29.966 mg L-1), time (14.926 min), and dosage (0.486 g L-1). CoFe2O4@MIL-53(Al) could treat dye mixture (methylene blue, methyl orange, Congo red, malachite green, and crystal violet) with an outstanding removal efficiency of 81.24% for 30 min, and could be reused up to five cycles. Therefore, novel recyclable and stable CoFe2O4@MIL-53(Al) is recommended to integrate well with real dye treatments systems.
Collapse
Affiliation(s)
- Luan Minh Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam; Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, 70000, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
50
|
Golmohammadi M, Fatemeh Musavi S, Habibi M, Maleki R, Golgoli M, Zargar M, Dumée LF, Baroutian S, Razmjou A. Molecular mechanisms of microplastics degradation: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|