1
|
Satyam S, Patra S. Xanthine oxidase driven bio-Fenton system for advanced pollutant degradation in sustainable wastewater treatment. Int J Biol Macromol 2025; 313:144323. [PMID: 40383322 DOI: 10.1016/j.ijbiomac.2025.144323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Advanced oxidation processes such as the Fenton reaction are critical for degrading recalcitrant pollutants in wastewater but face operational bottlenecks. The classical Fenton process relies on hazardous exogenous H₂O₂, inefficient Fe2+/Fe3+ cycling, and stringent acidic pH, limiting scalability. To address these limitations, this study introduces a sustainable hybrid system integrating human xanthine oxidase (Hu-XO) with Fenton chemistry, enabling self-sufficient H₂O₂ generation, Fe redox cycling, and pH modulation. The Hu-XO-driven hypoxanthine/xanthine oxidation produced H₂O₂ and superoxide radicals, synergizing with Fe2+ to amplify hydroxyl radical generation. When optimized via response surface methodology (95 % model accuracy), the system achieved 91.8 % biochemical oxygen demand (BOD) and 86.0 % chemical oxygen demand (COD) reduction in tannery wastewater. The antimicrobial assay using Escherichia coli and Bacillus subtilis demonstrated a removal rate of up to 106 CFU/mL. Posttreatment toxicity assays revealed an 80 % decrease in Aliivibrio fischeri luminescence inhibition and restored seed germination rates for Vigna mungo, Vigna radiata, and Cicer arietinum. This work establishes a self-sustaining Fenton-based system that eliminates exogenous H₂O₂ dependence and strict pH requirements and integrates pollutant degradation with antimicrobial action, offering a scalable, eco-friendly strategy for industrial wastewater remediation.
Collapse
Affiliation(s)
- Satyam Satyam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
2
|
Castañeda-Juárez M, Linares-Hernández I, Martínez-Miranda V, Teutli-Sequeira EA, de Los Ángeles Mier-Quiroga M, Castillo-Suárez LA. Commercial dexamethasone degradation by heterogeneous sono/photo-Fenton process using iron zeolite catalyst by an electrodeposition method. ENVIRONMENTAL TECHNOLOGY 2025; 46:2376-2393. [PMID: 39581571 DOI: 10.1080/09593330.2024.2430801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
Dexamethasone (DXM) was the first drug used to treat COVID-19, only a small part is metabolized and has been identified in wastewater and surface water, conventional treatments do not remove these compounds, therefore new technologies must be developed. A commercially injectable solution containing dexamethasone (DXM) was removed by heterogeneous sono/photo-Fenton (SPF) process using clinoptilolite zeolite (CZ) modified with Fe (CZ-Fe) by an electrodeposition method. The effect of initial concentration (1.2, 3, 5.5, 8, 9.7 mg/L), H2O2 dose (9.8, 15, 22.5, 30, 35.1 mg/L) and hydraulic retention time (HRT, 39.5, 60, 90, 120, 140 min) were evaluated through central composite design (CCD). The frequency of the ultrasound was 140 kHz. The optimal conditions were 5.5 mg/L DXM, 22.5 mg/L H2O2 and 140 min obtaining an 85.4% DXM by UV-Vis, 99% by high-performance liquid chromatography (HPLC) and 76% by chemical oxygen demand (COD) removal. The systems generated 12, 25, 40.5 and 45.5 mg/L of total oxidant at 20, 60, 100 and 140 kHz, respectively. In individual effects, UV radiation removed 23.6%, ultrasound 18.1% and H2O2 14% of DXM. In kinetic studies, the best fit was obtained for the Behnajady-Modirshahla-Ghanbery (BMG) model. SPF improved the mass transfer within the reaction media, the oxidation rate and the consumption of H2O2, and no sludge was generated. Finally, another oxidant formed during the process (H•, HO2•, O2-•) contributed to DXM removal.
Collapse
Affiliation(s)
- Monserrat Castañeda-Juárez
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Toluca, México
| | - Ivonne Linares-Hernández
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Toluca, México
| | - Verónica Martínez-Miranda
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Toluca, México
| | - Elia Alejandra Teutli-Sequeira
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Toluca, México
| | | | - Luis Antonio Castillo-Suárez
- Subdirección de Apoyo y Desarrollo Académico/Tecnológico Nacional de México/Tecnológico de Estudios Superiores de Tianguistenco, Carretera Tenango, Santiago Tilapa, México
| |
Collapse
|
3
|
García-Espinoza JD, Treviño-Reséndez J, Robles I, Acosta-Santoyo G, Godínez LA. A review of electro-Fenton and ultrasound processes: towards a novel integrated technology for wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10530-10552. [PMID: 37737947 DOI: 10.1007/s11356-023-29877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
Nowadays, the presence of persistent dissolved pollutants in water has received increasing attention due to their toxic effects on living organisms. Considering the limitations of conventional wastewater treatment processes for the degradation of these compounds, advanced oxidation processes such as electro-Fenton and sono-chemical process, as well as their combination, appear as potentially effective options for the treatment of wastewater contaminated with bio-recalcitrant pollutants. In view of the importance of the development of processes using real effluents, this review aims to provide a comprehensive perspective of sono-electro-Fenton-related processes applied for real wastewater treatment. In the first section, the fundamentals and effectiveness of both homogeneous and heterogeneous electro-Fenton approaches for the treatment of real wastewater are presented. While the second part of this work describes the fundamentals of ultrasound-based processes, the last section focuses on the coupling of the two methods for real wastewater treatment and on the effect of the main operational parameters of the process. On the basis of the information presented, it is suggested that sono-electro-Fenton processes substantially increase the efficiency of the treatment as well as the biodegradability of the treated wastewater. The combined effect results from mass transfer improvement, electrode cleaning and activation, water electrolysis, and the electro-Fenton-induced production of hydroxyl radicals. The information presented in this work is expected to be useful for closing the gap between laboratory-scale assays and the development of novel wastewater technologies.
Collapse
Affiliation(s)
- Josué D García-Espinoza
- Centro de Investigación en Química para la Economía Circular, CIQEC, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Querétaro, Mexico
| | - José Treviño-Reséndez
- Centro de Investigación en Química para la Economía Circular, CIQEC, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Querétaro, Mexico
| | - Irma Robles
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C. Parque Tecnológico Querétaro Sanfandila SN, Pedro Escobedo, 76703, Querétaro, Mexico
| | - Gustavo Acosta-Santoyo
- Centro de Investigación en Química para la Economía Circular, CIQEC, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Querétaro, Mexico
| | - Luis A Godínez
- Centro de Investigación en Química para la Economía Circular, CIQEC, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Querétaro, Mexico.
| |
Collapse
|
4
|
Guo H, Luo X, Wang L, Yang C, Li S, Liu S, Li J, Chen Z. Lignin-Assisted Photoreactions: Unveiling New Frontiers in Light-Induced Chemistry. CHEMSUSCHEM 2025; 18:e202402117. [PMID: 39551701 DOI: 10.1002/cssc.202402117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Lignin, the most abundant aromatic biopolymer, is emerging as a mainstay of the upcoming revolution in sustainable materials processing. Despite the inherent challenges associated with the heterogeneous structure of lignin, significant progress has recently been made in developing innovative strategies to valorize this fascinating aromatic biopolymer to deliver industry-demanded products via photoreactions. The purpose of this concept article is to unravel insights into these creative approaches in lignin-assisted photoreactions, focusing on photopolymerization to construct functional polymeric materials and photoreduction to provide valuable chemicals, wherein lignin serves as a macromolecular photoinitiator and a reductive photocatalyst, respectively. The existing strategies for improving the photochemical quantum yield of lignin in photopolymerization and harnessing lignin macromolecules as photoresponsive polymers to facilitate electron transfer in photocatalytic reactions are also summarized. In the future, such photochemical lignin valorization concepts could potentially provide new possibilities for achieving a profitable value chain for integrated biorefinery processes.
Collapse
Affiliation(s)
- Hongda Guo
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Xiongfei Luo
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Luyao Wang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Chenhui Yang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| |
Collapse
|
5
|
Zheng Z, Man JHK, Wang X, Kwan ASK, Yim KT, Lo IMC. Enhanced micropollutant degradation over catalyst-free synergistic activation of periodate and persulfate under solar light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36020-3. [PMID: 39912828 DOI: 10.1007/s11356-025-36020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Micropollutants are ubiquitous in water sources, posing threats to both human health and ecosystems. Conventional water and wastewater treatment processes are inefficient in micropollutant removal. In this study, the energy-effective and environmentally friendly solar light-driven periodate (PI) and peroxydisulfate (PDS) synergistic activation process (PI/PDS/solar light) is developed for efficient micropollutant decontamination. The PI/PDS/solar light process (0.5 mM PI and 0.25 mM PDS) achieves 100% degradation of 2 ppm CBZ in 15 min with a CBZ degradation rate constant of 0.31 min-1, which is 6.6 and 13.2 times that of PI/solar light (0.046 min-1, 0.5 mM PI) and PDS/solar light (0.023 min-1, 0.5 mM PDS). Mechanistic studies reveal that the enhanced solar light utilization and charge transfer between PI and PDS lead to the synergistic activation of the dual oxidants in the PI/PDS/solar light process, thus promoting micropollutant degradation. Additionally, the scavenging tests demonstrate that •OH and SO4•- are the dominant radicals for CBZ degradation. Furthermore, the PI/PDS/solar light process exhibits excellent applicability in different types of water sources, where several water components (pH, natural organic matter, and anions) pose insignificant impacts on CBZ degradation. Nonetheless, the developed process still has a disadvantage in that the degradation intermediates of PPCPs may bring potential toxicity. The study offers valuable mechanistic insights into the novel synergistic PI and PDS coactivation process under solar light and highlights the practicability of the developed technique as an efficient strategy for micropollutant decontamination.
Collapse
Affiliation(s)
- Zexiao Zheng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Justin H K Man
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaoying Wang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Alvin S K Kwan
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Kwan To Yim
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Irene M C Lo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
6
|
Chen Y, Xue Y, Liu Z, Wang Y, Ren H, Xu K. Enhanced treatment of multiphase extraction wastewater from contaminated sites with Cu-Ce modified GAC three-dimensional electrodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123979. [PMID: 39756277 DOI: 10.1016/j.jenvman.2024.123979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/06/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
A three-dimensional (3D) electrode system is widely recognized as an effective technology for enhancing electrocatalytic effect. In this study, Cu-Ce modified granular activated carbon (GAC) particle electrodes were prepared using the impregnation method and applied to handle multiphase extraction wastewater. Structural and electrochemical characterization revealed that while the specific surface area of Cu-Ce/GAC decreased by 13.94%, the active area was 2.6 times greater than that of GAC. In addition, the influences of distinct impregnation concentrations, calcination temperatures, and calcination times on the performance of Cu-Ce/GAC electrodes were investigated. The results suggested the optimal preparation conditions of 15 mmol/L, 500 °C and 2 h. Under these conditions, the Cu-Ce/GAC electrode achieved a 92.39% removal of chemical oxygen demand (COD) from a multi-extract of groundwater, with an energy consumption of 13.44 kWh/(kg∙COD). The degradation efficiency improved by 62% compared to the conventional 2D system, while energy consumption decreased by 60%. The main organic pollutants in the multiple extracts, including benzene, toluene, dichloromethane, trichloromethane, were removed at rates exceeding 90% after 60 min treatment. This study yields a methodological and engineering approach for treating multiple extracts wastewater from contaminated groundwater.
Collapse
Affiliation(s)
- Yongsheng Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yi Xue
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Zhengqing Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
7
|
He M, Zhao L, Hu H, Yao L, Guo Y, Hou C, Gao S, Li R. Multifunctional property of N,N-bis (carboxymethyl) glutamic acid modified biomass material: adsorption and degradation removals of cationic dyes in wastewater. ENVIRONMENTAL RESEARCH 2024; 263:120193. [PMID: 39427942 DOI: 10.1016/j.envres.2024.120193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
As a common type of pollutants in industrial wastewater, cationic dyes have attracted great attentions. Using biodegradable N,N-di (carboxymethyl) glutamic acid (GLDA) as ligand and corn stalk (CS) as matrix, a novel and green biomass modified material GLDA-CS was successfully prepared. The multifunctional property of GLDA-CS for removing methylene blue (MB), malachite green (MG) and alkaline red 46 (R-46) from wastewater was evaluated. The dyes were removed by the electrostatic adsorption based on the cationic adsorption properties of GLDA-CS. The removal rates of MB, MG and R-46 can quickly reach 90.4%, 96.8% and 94.8% in short time. especially for MG and R-46 even only 20 min. The adsorption capacities of the dyes still remain more than 86.5% of the initial values after 5 cycles. In a heterogeneous system, the dyes were removed by Fenton-like degradation based on the metal chelating property of GLDA-CS. 100% degradation rates of the dyes can be achieved in 35 min under the acidic region. Even if at pH 7, degradation rates are 44.1%, 47.1% and 56.6% higher than those under the conventional homogeneous system, and the degradation rate remained at 83.7% after 5 cycles. Regardless of the adsorption or degradation, GLDA-CS shows strong anti-anion interference ability. The potential mechanisms of adsorption and degradation for the dyes by GLDA-CS were deduced by quantization calculation. It is concluded that the adsorption removal of the dyes by GLDA-CS follows MG > R-46 > MB, and mainly depends on the electrostatic interaction between -COOH in GLDA-CS and -N- in the dye molecules. Based on the degradation mechanism of Fenton-like reaction, the possible active sites of the dyes attacked by free radicals and their possible degradation intermediates were predicted by the calculations of Fukui function.
Collapse
Affiliation(s)
- Min He
- School of Chemical Engineering, Northwest University, No. 1 Xuefu Street, Guodu Education and Technology Industrial Zone, Chang'an District, Xi'an, Shaanxi Province, 710127, PR China
| | - Lang Zhao
- School of Chemical Engineering, Northwest University, No. 1 Xuefu Street, Guodu Education and Technology Industrial Zone, Chang'an District, Xi'an, Shaanxi Province, 710127, PR China
| | - Hongbin Hu
- School of Chemical Engineering, Northwest University, No. 1 Xuefu Street, Guodu Education and Technology Industrial Zone, Chang'an District, Xi'an, Shaanxi Province, 710127, PR China
| | - Lu Yao
- School of Chemical Engineering, Northwest University, No. 1 Xuefu Street, Guodu Education and Technology Industrial Zone, Chang'an District, Xi'an, Shaanxi Province, 710127, PR China
| | - Yinghuai Guo
- Sanmenxia Chaoyang Technology Co., LTD., Hubin Industrial Park, Sanmenxia City, Henan Province, 472000, PR China
| | - Chunjiang Hou
- Sanmenxia Chaoyang Technology Co., LTD., Hubin Industrial Park, Sanmenxia City, Henan Province, 472000, PR China
| | - Shaokun Gao
- Sanmenxia Chaoyang Technology Co., LTD., Hubin Industrial Park, Sanmenxia City, Henan Province, 472000, PR China
| | - Rong Li
- School of Chemical Engineering, Northwest University, No. 1 Xuefu Street, Guodu Education and Technology Industrial Zone, Chang'an District, Xi'an, Shaanxi Province, 710127, PR China.
| |
Collapse
|
8
|
Oliveira WV, Silva MCF, Araújo BR, Romão LPC. Assessment of homogeneous electro-Fenton process coupled with microbial fuel cell utilizing Serratia sp. AC-11 for glyphosate degradation in aqueous phase. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122797. [PMID: 39383744 DOI: 10.1016/j.jenvman.2024.122797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/07/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Glyphosate (GLY), a globally-used organophosphate herbicide, is frequently detected in various environmental matrices, including water, prompting significant attention due to its persistence and potential ecological impacts. In light of this environmental concern, innovative remediation strategies are warranted. This study utilized Serratia sp. AC-11 isolated from a tropical peatland as a biocatalyst in a microbial fuel cell (MFC) coupled with a homogeneous electron-Fenton (EF) process to degrade glyphosate in aqueous medium. After coupling the processes with a resistance of 100 Ω, an output voltage value of 0.64 V was obtained and maintained stable throughout the experiment. A bacterial biofilm of Serratia sp. AC-11 was formed on the carbon felt electrode, confirmed by attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). In the anodic chamber, the GLY biodegradation rate was 100% after 48 h of experimentation, with aminomethylphosphonic acid (AMPA) remaining in the solution. In the cathodic chamber, the GLY degradation rate for the EF process was 69.5% after 48 h experimentation, with almost all of the AMPA degraded by the in situ generated hydroxyl radicals. In conclusion, the results demonstrated that Serratia sp. AC-11 not only catalyzed the biodegradation of glyphosate but also facilitated the generation of electrons for subsequent transfer to initiate the EF reaction to degrade glyphosate. This dual functionality emphasizes the unique capabilities of Serratia sp. AC-11, it as an electrogenic microorganism with application in innovative bioelectrochemical processes, and highlighting its role in sustainable strategies for environmental remediation.
Collapse
Affiliation(s)
- Weverton V Oliveira
- Laboratory of Natural Organic Matter, Department of Chemistry, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Mércia C F Silva
- Laboratory of Natural Organic Matter, Department of Chemistry, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Bruno R Araújo
- Laboratory of Forensic Chemistry, Scientific Police, Secretary of Public Security, 49107-230, São Cristóvão, SE, Brazil
| | - Luciane P C Romão
- Laboratory of Natural Organic Matter, Department of Chemistry, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, UNESP, P.O. Box 355, Araraquara, SP, 14800-900, Brazil.
| |
Collapse
|
9
|
Alkahtani MQ, Morabet RE, Khan RA, Khan AR. Pharmaceuticals removal from hospital wastewater by fluidized aerobic bioreactor in combination with tubesettler. Sci Rep 2024; 14:24052. [PMID: 39402097 PMCID: PMC11473777 DOI: 10.1038/s41598-024-73494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/18/2024] [Indexed: 10/17/2024] Open
Abstract
Micropollutants, especially pharmaceutical compounds, are of significant concern owing to their ngL- 1 to µgL- 1 concentration, making them difficult for conventional treatment plants to remove from wastewater. Despite municipal wastewater treatment plant being a primary source of these compounds to be released into the wastewater, on comparison little attention has been given to hospital wastewater. The major focus of studies addressing pharmaceutical compounds is based on synthetic wastewater. This study addresses this research gap by treating wastewater to remove micropollutants (Fluvastatin, ketoprofen, paracetamol, ciprofloxacin, carbamazepine, sulfamethoxazole, and lorazepam) by employing a fluidized aerobic bioreactor. Tubesettler was attached to a fluidized-bed bioreactor to see if it could be used as a polishing unit rather than a secondary clarifier. The environmental risk from the effluent discharge into the environment was assessed regarding the hazard quotient. The paracetamol and ketoprofen were removed at an efficiency of 51% and 60%, respectively, followed by carbamazepine at 50%, ciprofloxacin at 40%, fluvastatin at 47%, sulfamethoxazole at 31%, and lorazepam at 20%. The influent posed moderate environmental risk with (Hazard Quotient) HQ > 0.5, while in effluent the risk was reduced with HQ value 0.4. For effluent from fluidized bed bioreactors (HQ 0.13) and tube setters (HQ 0.15). The associated tube settler was found suitable for polishing units with additional removal efficiencies of 15-43% for all the targeted pharmaceutical compounds. Further studies are required to explore disinfectants' effect on the reactor's biodegradation efficiency. Also, further modification and a hybrid version of the fluidized bed bioreactor can be used.
Collapse
Affiliation(s)
- Meshel Qablan Alkahtani
- Department of Civil Engineering, King Khalid University, Al Faraa Campus, Abha, Saudi Arabia
| | - Rachida El Morabet
- Department of Geogprahy, LADES Lab. FLSH-M, Hassan II University of Casablanca, Mohammedia, Morocco
| | - Roohul Abad Khan
- Department of Civil Engineering, King Khalid University, Al Faraa Campus, Abha, Saudi Arabia.
| | - Amadur Rahman Khan
- Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
10
|
Kumar D, Gupta SK. Sustainable approach for the treatment of dye-containing wastewater – a critical review. REV CHEM ENG 2024; 40:723-763. [DOI: 10.1515/revce-2023-0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
In the world’s rapidly expanding economy, textile industries are recognized as a substantial contributor to economic growth, but they are one of the most significant polluting industrial sectors. Dye-contaminated water sources can pose serious public health concerns, including toxicity, mutagenicity, and carcinogenicity among other adverse health effects. Despite a limited understanding of efficacious decolorization methodologies, the pursuit of a sustainable strategy for the treatment of a wide spectrum of dyes remains a formidable challenge. This article conducted an exhaustive review of extant literature pertaining to diverse physical, chemical, biological, and hybrid processes with the aim of ascertaining their efficacy. It also elucidates the advantages and disadvantages, cost considerations, as well as scalability impediments of the treatment methodologies, thereby facilitating the identification of optimal strategies for establishing techno-economically efficient processes in the sustainable handling of these effluents. The hybrid configuration exhibited superior efficiency and was documented to surmount the limitations and constraints inherent to individual techniques. The study also revealed that most of the proven and established dye removal techniques share a common limitation viz., the generation of secondary pollution (i.e., sludge generation, toxic intermediates, etc.) to the ecosystem.
Collapse
Affiliation(s)
- Diwakar Kumar
- Department of Environmental Science and Engineering , Indian Institute of Technology (Indian School of Mines) Dhanbad , Dhanbad , 826004 Jharkhand , India
| | - Sunil Kumar Gupta
- Department of Environmental Science and Engineering , Indian Institute of Technology (Indian School of Mines) Dhanbad , Dhanbad , 826004 Jharkhand , India
| |
Collapse
|
11
|
Kongkoed P, Lertna N, Athikaphan P, Neramittagapong A, Neramittagapong S. Enhancing catalyst stability: Immobilization of Cu-Fe catalyst in sodium alginate matrix for methyl orange removal via Fenton-like reaction. Heliyon 2024; 10:e33789. [PMID: 39040388 PMCID: PMC11261880 DOI: 10.1016/j.heliyon.2024.e33789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
This study aims to enhance the stability and effectiveness of heterogeneous catalysts in Fenton-like reactions, explicitly addressing the acidity limitations inherent in traditional Fenton processes. Copper-iron was synthesized through co-precipitation, and a catalyst bead was produced from hydrogel formation. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) confirm phases in the bimetallic Copper-iron, aligning with the intended composition. Modification with alginate led to reduced metal leaching compared to the bare bimetallic counterpart, as confirmed by atomic absorption spectroscopy (AAS). Additionally, Fourier-transform infrared spectroscopy (FTIR) revealed the deactivation of alginate through the disappearance of carboxyl groups, indicating the depolymerization of the catalyst bead. Under the suggested conditions (Methyl Orange concentration of 25 mg/L, initial solution pH of 7, 2 g/L catalyst loading, concentration of hydrogen peroxide 100 mM in a 120-min reaction time), the catalyst demonstrated remarkable decolorization efficiency of Methyl Orange, achieving 97.67 %. Further highlighting its practicality, the catalyst exhibited outstanding reusability over four cycles under identical conditions, showcasing robust immobilization capabilities and sustained performance. Notably, the catalyst's magnetic properties facilitated easy separation using an external magnet. In conclusion, the developed catalyst beads offer a solution with high reusability, magnetic separability, and reduced iron leaching. The advantageous characteristics underscore its potential as a heterogeneous catalyst for wastewater treatment applications, warranting further exploration under practical conditions.
Collapse
Affiliation(s)
- Pongpanit Kongkoed
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Natthaphong Lertna
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pakpoom Athikaphan
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Athit Neramittagapong
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sutasinee Neramittagapong
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
12
|
Zhou P, Hou J, Zhang D, Liao Z, Yang L, Yang W, Ru X, Dai Z. Selective Heterogeneous Fenton Degradation of Formaldehyde Using the Fe-ZSM-5 Catalyst. Molecules 2024; 29:2911. [PMID: 38930975 PMCID: PMC11206745 DOI: 10.3390/molecules29122911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
As a toxic Volatile Organic Pollutant (TVOC), formaldehyde has a toxic effect on microorganisms, consequently inhibiting the biochemical process of formaldehyde wastewater treatment. Therefore, the selective degradation of formaldehyde is of great significance in achieving high-efficiency and low-cost formaldehyde wastewater treatment. This study constructed a heterogeneous Fe-ZSM-5/H2O2 Fenton system f or the selective degradation of target compounds. By immobilizing Fe3+ onto the surface of a ZSM-5 molecular sieve, Fe-ZSM-5 was prepared successfully. XRD, BET and FT-IR spectral studies showed that Fe-ZSM-5 was mainly composed of micropores. The influences of different variables on formaldehyde-selective heterogeneous Fenton degradation performance were studied. The 93.7% formaldehyde degradation and 98.2% selectivity of formaldehyde compared with glucose were demonstrated in the optimized Fenton system after 360 min. Notably, the resultant selective Fenton oxidation system had a wide range of pH suitability, from 3.0 to 10.0. Also, the Fe-ZSM-5 was used in five consecutive cycles without a significant drop in formaldehyde degradation efficiency. The use of reactive oxygen species scavengers indicated that the hydroxyl radical was the primary active species responsible for degrading formaldehyde. Furthermore, great degradation performance was acquired with high concentrations of formaldehyde for this system, and the degradation efficiency was more than 95.0%.
Collapse
Affiliation(s)
- Peiguo Zhou
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; (J.H.); (D.Z.); (Z.L.); (L.Y.); (W.Y.); (X.R.); (Z.D.)
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Yaashikaa PR, Karishma S, Kamalesh R, A S, Vickram AS, Anbarasu K. A systematic review on enhancement strategies in biochar-based remediation of polycyclic aromatic hydrocarbons. CHEMOSPHERE 2024; 355:141796. [PMID: 38537711 DOI: 10.1016/j.chemosphere.2024.141796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/25/2023] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive ecological pollutants produced essentially during the inadequate burning of organic materials. PAHs are a group of different organic compounds that are made out of various aromatic rings. PAHs pose a serious risk to humans and aquatic ecosystems because of their mutagenic and carcinogenic properties. In this way, there is a critical prerequisite to utilizing successful remediation strategies and methods to limit the dangerous effect of these pollutants on the ecosystem. Biochar has believed of intriguing properties such as simple manufacturing operations and more affordable and more productive materials. Biochar is a sustainable carbonaceous material that has an enormous surface area with bountiful functional groups and pore structure, which has huge potential for the remediation of toxic pollutants. This review emphasizes the occurrence, development, and fate of toxic PAHs in the environment. In the present review, the properties and role of biochar in the removal of PAHs were illustrated, and the influencing factors and an efficient key mechanism of biochar for the remediation of PAHs were discussed in detail. Various surface modification methods can be utilized to improve the biochar properties with the magnetization process; the advancements of modified biochar are pointed out in this review. Finally, the constraints and prospects for the large-scale application of biochar in the remediation of toxic pollutants are highlighted.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Saravanan A
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - K Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
14
|
Ioannidi AA, Bampos G, Antonopoulou M, Oulego P, Boczkaj G, Mantzavinos D, Frontistis Z. Sonocatalytic degradation of Bisphenol A from aquatic matrices over Pd/CeO 2 nanoparticles: Kinetics study, transformation products, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170820. [PMID: 38340814 DOI: 10.1016/j.scitotenv.2024.170820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
In this work, different ratios of palladium - cerium oxide (Pd/CeO2) catalyst were synthesized and characterized, while their sonocatalytic activity was evaluated for the degradation of the xenobiotic Bisphenol A (BPA) from aqueous solutions. Sonocatalytic activity expressed as BPA decomposition exhibited a volcano-type behavior in relation to the Pd loading, and the 0.25Pd/CeO2 catalyst characterized by the maximum Pd dispersion and lower crystallite size demonstrated the higher activity. Using 500 mg/L of 0.25 % Pd/CeO2 increased the kinetic constant for BPA destruction by more than two times compared to sonolysis alone (20 kHz at 71 W/L). Meanwhile, the simultaneous use of ultrasound and a catalyst enhanced the efficiency by 50.1 % compared to the sum of the individual processes, resulting in 95 % BPA degradation in 60 min. The sonocatalytic degradation of BPA followed pseudo-first-order kinetics, and the apparent kinetic constant was increased with ultrasound power and catalyst loading, while the efficiency was decreased in bottled water and secondary effluent. From the experiments that were conducted using appropriate scavengers, it was revealed that the degradation mainly occurred on the bubble/liquid interface of the formed cavities, while the reactive species produced from the thermal or light excitation of the prepared semiconductor also participated in the reaction. Five first-stage and four late-stage transformation products were identified using UHPLC/TOF-MS, and a pathway for the sonocatalytic degradation of BPA was proposed. According to ECOSAR software prediction, most transformation by-products (TBPs) present lower ecotoxicity than the parent compound, although some remain toxic to the indicators chosen.
Collapse
Affiliation(s)
- Alexandra A Ioannidi
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Georgios Bampos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, c/ Julián Claverías, E-33071 Oviedo, Spain
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, GR-50132 Kozani, Greece.
| |
Collapse
|
15
|
Xie H, Mu M, Lu G, Zhang Y. Ferrocene crosslinked and functionalized chitosan microspheres towards bio-based Fenton-like system for the removal of organic pollutants. Int J Biol Macromol 2024; 261:129699. [PMID: 38281517 DOI: 10.1016/j.ijbiomac.2024.129699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Dye-containing wastewater treatment has been a major long-term global challenge. For this purpose, a novel bio-based microspheres (CS-FC) with high specific surface area (63.24 m2·g-1) and nano-channels (17.95 nm) was prepared using chitosan as the framework and ferrocene as a crosslinking active group. CS-FC not only has the ability to rapidly enrich methyl orange (MO) through hydrogen-bonding and electrostatic attraction, but also almost completely degrades it in the presence of H2O2/K2S2O8 through a synergistic radical/non-radical mechanism under the activating effect of ferrocene. Without H2O2/K2S2O8, the maximum MO adsorption capacity of CS-FC is in the range 871-1050 mg·g-1, and conforms to a Langmuir isothermal model with pseudo-second-order kinetics. In the presence of H2O2/K2S2O8, the removal of MO dramatically increased from 32 % to nearly 100 % after incubation for 60 min, due to the simultaneous formation of highly reactive 1O2 and ·OH. The significant contribution from 1O2 endowed CS-FC/H2O2/K2S2O8 with high universality for degrading various organic pollutants (including azo dyes and antibiotics), a wide pH window (2-8), and low sensitivity to co-existing ions. Such cost-effective, recyclable porous bio-based microspheres are suitable for heterogeneous Fenton-like catalysis in organic wastewater treatment that rely on synergistic radical/non-radical reaction pathways.
Collapse
Affiliation(s)
- Huan Xie
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Meng Mu
- Shengli Oilfeld Company, SINOPEC, Dongying City, Shandong Province 257001, PR China
| | - Guoqiang Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Yongmin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, PR China.
| |
Collapse
|
16
|
Zhao Y, Kong L, Li S, Zhao Z, Wang N, Pang Y. Research progress on composite material of bismuth vanadate catalyzing the decomposition of Quinolone antibiotics. Sci Rep 2024; 14:1591. [PMID: 38238361 PMCID: PMC10796960 DOI: 10.1038/s41598-024-51485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
Since quinolone is a kind of synthetic broad-spectrum antibacterial drugs, with the widespread use of this class of antibiotics, the risk and harm to human health have been attendant to the sewage containing quinolones which are discharged into the environment. Photocatalysis is considered as a promising technology for antibiotic degradation for its strong redox properties and reaction rate. As a metal oxidizing substance, Bismuth vanadate (BiVO4) is such a popular and hot material for the degradation of organic pollutants recently due to its good photocatalytic activity and chemical stability. Numerous studies have confirmed that BiVO4 composites can overcome the shortcomings of pure BiVO4 and cleave the main structure of quinolone under photocatalytic conditions. This paper mainly outlines the research progress on the preparation of BiVO4 composites and the degradation of quinolone antibiotics from the perspective of improving the catalysis and degrading the efficiency mechanism of BiVO4 composites.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu, People's Republic of China
| | - Lingyuan Kong
- School of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu, People's Republic of China
| | - Shangdong Li
- School of Clinical Medicine Gansu University Of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, People's Republic of China
| | - Zhirui Zhao
- School of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu, People's Republic of China
| | - Na Wang
- School of Clinical Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu, People's Republic of China
| | - Yunqing Pang
- School of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
17
|
Ratchnashree SR, Karmegam N, Selvam M, Manikandan S, Deena SR, Subbaiya R, Vickram AS, Kim W, Govarthanan M. Advanced technologies for the determination of quantitative structure-activity relationships and degradation efficiency of micropollutants and their removal in water - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166563. [PMID: 37647970 DOI: 10.1016/j.scitotenv.2023.166563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/05/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
The growing concentrations of micropollutants in aquatic ecosystems are a global water quality issue. Understanding micropollutants varied chemical composition and potency is essential to solving this complex issue. Micropollutants management requires identifying contaminants to reduce, optimal reduction targets, and the best wastewater recycling locations. Management requires appropriate technological measures. Pharmaceuticals, antibiotics, hormones, and other micropollutants can enter the aquatic environment from point and diffuse sources, with wastewater treatment plants (WWTPs) distributing them in urban areas. Micropollutants like pharmaceuticals and hormones may not be removed by conventional WWTPs. Micropollutants affect the EU, especially in densely populated areas where surface water is consumed. This review examines several technological options that can be integrated into existing treatment methods to address this issue. In this work, oxidation, activated carbon, and their combinations as potential solutions, considering their efficacy and cost were evaluated. This study illuminates micropollutants origin and physico-chemical properties, which affect distribution, persistence, and environmental impacts. Understanding these factors helps us develop targeted micropollutant mitigation strategies to protect water quality. This review can inform policy and decision-making to reduce micropollutant impacts on aquatic ecosystems and human health.
Collapse
Affiliation(s)
- S R Ratchnashree
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai 600 095, Tamil Nadu, India
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636007, Tamil Nadu, India
| | - Masilamani Selvam
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai 600 095, Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India.
| | - Santhana Raj Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia.
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
18
|
Dai N, Yang L, Liu X, Gao L, Zheng J, Zhang K, Song D, Sun T, Luo S, Liu X, Tang S, Zhang Y. Enhanced photo-Fenton-like performance of biotemplated manganese-doped cobalt silicate catalysts. J Colloid Interface Sci 2023; 652:1812-1824. [PMID: 37683409 DOI: 10.1016/j.jcis.2023.08.188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Cobalt-based catalysts are one of the preferred materials for effective activation of hydrogen peroxide, and metal element doping and active site dispersion are effective methods to enhance their catalytic activity. In this work, manganese-doped cobalt silicate@diatomite composites with enhanced photo-Fenton-like oxidation performance were prepared and used for degradation of methyl orange (MO) dyes. Experiments showed that manganese doping increased the specific surface area of the samples and decreased the band gap energy of the materials. Moreover, the samples doped with manganese elements had better photo-Fenton-like properties. The degradation of methyl orange by Co0.25MnSi@DE/H2O2-UV reached more than 95%. In addition, density-functional theory (DFT) calculations showed that the Mn-doped samples were more prone to activate H2O2 than non-manganese-doped samples, and the synergistic effect from using a bimetallic catalyst increased the photo-Fenton oxidation activity in the system. ESR spectroscopy and bursting tests indicated that the possible degradation mechanism consisted of hydroxyl radicals and superoxide radicals generated by the synergistic effect of cobalt ions and manganese under UV radiation. This study thus presents a feasible idea for the preparation of cobalt-based photo-Fenton catalysts that also provides a basis for understanding the catalytic mechanism analysis of other types of bimetallic catalysts.
Collapse
Affiliation(s)
- Nan Dai
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Lei Yang
- Department of Chemistry, Fudan University, Shanghai 200438, PR China.
| | - Xinyi Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Lihong Gao
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China
| | - Jishu Zheng
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China
| | - Kai Zhang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China
| | - Dan Song
- Chongqing Academy of Eco-Environmental Sciences, Chongqing 401147, PR China
| | - Tao Sun
- Military Installations Department, Army Logistics Academy of PLA, Chongqing 401331, PR China
| | - Shaoyue Luo
- Agricultural Technology Service Center of Liangping District, Chongqing 405200, PR China
| | - Xiaoying Liu
- Military Installations Department, Army Logistics Academy of PLA, Chongqing 401331, PR China.
| | - Song Tang
- Agricultural Products Brand Development Center of Liangping District, Chongqing, PR China
| | - Yuxin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
19
|
Li N, Chen F, Xu S, Zhu S, Bu L, Deng L, Shi Z, Zhou S. Removal of Microcystis aeruginosa by manganese activated sodium percarbonate: Performance and role of the in-situ formed MnO 2. CHEMOSPHERE 2023; 341:140054. [PMID: 37669718 DOI: 10.1016/j.chemosphere.2023.140054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/07/2023]
Abstract
Previous studies have found that pre-oxidation of manganese salts such as potassium permanganate and potassium manganate can remove algae in water, while existing problems such as excessive oxidation and appearance of chromaticity. In this study, our objective was to induce a Fenton-like reaction by activating sodium percarbonate (SPC) with divalent manganese (Mn(II)) to pre-oxidize algae-contaminated water. The optimal dosage of Mn(II)/SPC was determined by assessing the zeta potential of the algae and the residual Mn(II) in the solution. Moreover, we conducted a characterization of the cells post-reaction and assessed the levels of dissolved organic carbon (DOC). The disinfection by-products (DBPs) (sodium hypochlorite disinfection)of the algae-containing water subsequent to Mn(II)/SPC treatment were measured. Experiments show that Mn(II)/SPC pre-oxidation at optimal dosage acquired 88% removal of algae and less damage to the cell membrane. Moreover, the Mn(II) acted not only as a catalyst but also formed MnO2 which adsorbed onto the cell surface and facilitated sedimentation. Furthermore, this technology exhibits the capability to effectively manage algal organic matters present in water, thereby mitigating the formation of nitrogen-containing DBPs. These results highlight the potential of Mn(II)/SPC treatment for treating water contaminated with algae, thus ensuring the safety and quality of water resources.
Collapse
Affiliation(s)
- Nan Li
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Fan Chen
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Shunkai Xu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Shumin Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China.
| | - Lingjun Bu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Lin Deng
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Zhou Shi
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
20
|
Zhou Y, Chai Y, Sun H, Li X, Liu X, Liang Y, Gong X, Wu Z, Liu C, Qin P. Design strategies and mechanisms of g-C 3N 4-based photoanodes for photoelectrocatalytic degradation of organic pollutants in water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118545. [PMID: 37418928 DOI: 10.1016/j.jenvman.2023.118545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
Emerging photoelectrocatalytic (PEC) systems integrate the advantages of photocatalysis and electrocatalysis and are considered as a promising technology for solving the global organic pollution problem in water environments. Among the photoelectrocatalytic materials applied for organic pollutant degradation, graphitic carbon nitride (CN) has the combined advantages of environmental compatibility, stability, low cost, and visible light response. However, pristine CN has disadvantages such as low specific surface area, low electrical conductivity, and high charge complexation rate, and how to improve the degradation efficiency of PEC reaction and the mineralization rate of organic matter is the main problem faced in this field. Therefore, this paper reviews the progress of various functionalized CN used for PEC reaction in recent years, and the degradation efficiency of these CN-based materials is critically evaluated. First, the basic principles of PEC degradation of organic pollutants are outlined. Then, engineering strategies to enhance the PEC activity of CN (including morphology control, elemental doping, and heterojunction construction) are focused on, and the structure-activity relationships between these engineering strategies and PEC activity are discussed. In addition, the important role of influencing factors on the PEC system is summarized in terms of mechanism, to provide guidance for the subsequent research. Finally, suggestions and perspectives are provided for the preparation of efficient and stable CN-based photoelectrocatalysts for practical wastewater treatment applications.
Collapse
Affiliation(s)
- Yunfei Zhou
- College of Resources and Environment, Xiangtan University, Xiangtan, 411105, PR China; College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Youzheng Chai
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Haibo Sun
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Xueying Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Xingwang Liu
- College of Resources and Environment, Xiangtan University, Xiangtan, 411105, PR China.
| | - Yunshan Liang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Xiaomin Gong
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China.
| | - Chao Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Pufeng Qin
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China.
| |
Collapse
|
21
|
Erkurt FE, Mert A. Eco-friendly oxidation of a reactive textile dye by CaO 2: effects of specific independent parameters. ENVIRONMENTAL TECHNOLOGY 2023; 44:3294-3315. [PMID: 37376879 DOI: 10.1080/09593330.2023.2229943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Textile wastewater containing dyes poses significant risks to the environment. Advanced oxidation processes (AOPs) effectively eliminate dyes by converting them into harmless substances. However, AOPs have drawbacks such as sludge formation, metal toxicity, and high cost. As an alternative to AOPs, calcium peroxide (CaO2) offers an eco-friendly and potent oxidant for dye removal. Unlike certain AOPs that generate sludge, CaO2 can be directly employed without resulting in sludge formation. This study examines the use of CaO2 for oxidizing Reactive Black 5 (RB5) in textile wastewater without any activator. Various independent factors-pH, CaO2 dosage, temperature, and certain anions-were investigated for their influence on the oxidation process. The effects of these factors on dye oxidation were analyzed using the Multiple Linear Regression Method (MLR). CaO2 dosage was determined to be the most influential parameter for RB5 oxidation, while the optimal pH for oxidation with CaO2 was found to be 10. The study determined that 0.5 g of CaO2 achieved approximately 99% efficiency in oxidizing 100 mg/L of RB5. Additionally, the study revealed that the oxidation process is endothermic, with an activation energy (Ea) and standard enthalpy (ΔH°) for RB5 oxidation by CaO2 determined as 31.135 kJ mol-1 and 110.4 kJ mol-1, respectively. The presence of anions decreased RB5 oxidation, with decreasing effectiveness observed in the order of PO43-, SO42-, HCO3-, Cl-, CO32-, and NO3-. Overall, this research highlights CaO2 as an effective, easy-to-use, eco-friendly, and cost-efficient method for removing RB5 from textile wastewater.
Collapse
Affiliation(s)
- F Elcin Erkurt
- Department of Environmental Engineering, Cukurova University, Adana, Turkey
| | - Aslı Mert
- Department of Environmental Engineering, Cukurova University, Adana, Turkey
| |
Collapse
|
22
|
Hu D, Sun Z, Han Y, Meng H, Zhang X. Interface synthesis of Cu-BTC/PVDF hybrid membranes and their selective adsorption activity toward Congo red. Dalton Trans 2023; 52:11441-11450. [PMID: 37547961 DOI: 10.1039/d3dt02042h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Considering the surface affinity of MOFs and separation advantages of polymer membranes, herein, a one-step interface synthesis strategy is used in the construction of Cu-BTC/PVDF hybrid membranes, in which Cu2+ ions and 1,3,5-benzenetricarboxylic acid (H3BTC) were dissolved in ionized water and n-octanol separately, and polyvinylidene fluoride (PVDF) films were laid at the interface of two immiscible solvents. As a result, Cu-BTC was generated and readily self-assembled inside the PVDF films. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA) and the Brunauer-Emmett-Teller (BET) method were used to characterize Cu-BTC/PVDF hybrid membranes, and Congo red (CR) was selected as the target dye to evaluate the surface adsorption activity of the hybrid membranes. Batch adsorption tests under various conditions were conducted to optimize the adsorption capacity, adsorption kinetics, isotherms and thermodynamics, which were analyzed to further explore the adsorption behavior. Based on this, the adsorption mechanism was discussed. It is worth noting that because of the π-π stacking interaction and hydrogen bonding, an extraordinary adsorption capacity of CR was achieved, and the good separation advantage and the cyclic adsorption performances endow the resulting Cu-BTC/PVDF hybrid membranes with promising applications in the removal of organic dyes from practical wastewater.
Collapse
Affiliation(s)
- Defeng Hu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Zhongqiao Sun
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Yide Han
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Hao Meng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Xia Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| |
Collapse
|
23
|
Tatarchuk T, Shyichuk A, Danyliuk N, Naushad M, Kotsyubynsky V, Boychuk V. Cobalt ferrite as an electromagnetically boosted metal oxide hetero-Fenton catalyst for water treatment. CHEMOSPHERE 2023; 326:138364. [PMID: 36933839 DOI: 10.1016/j.chemosphere.2023.138364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The cobalt ferrite Fenton catalysts were obtained by the flow co-precipitation method. FTIR, XRD, and Mössbauer spectroscopy confirmed the spinel structure. The crystallite size of the as-synthesized sample is 12 nm, while the samples annealed at 400 and 600 °C have crystallite sizes of 16 and 18 nm, respectively. The as-synthesized sample has a grain size of 0.1-5.0 μm in size, while the annealed samples have grain sizes of 0.5 μm-15 μm. The degree of structure inversion ranges from 0.87 to 0.97. The catalytic activity of cobalt ferrites has been tested in the decomposition of hydrogen peroxide and the oxidation of caffeine. The annealing of the CoFe2O4 increases its catalytic activity in both model reactions, with the optimal annealing temperature being 400 °C. The reaction order has been found to increase with increasing H2O2 concentration. Electromagnetic heating accelerates the catalytic reaction more than 2 times. As a result, the degree of caffeine decomposition increases from 40% to 85%. The used catalysts have insignificant changes in crystallite size and distribution of cations. Thus, the electromagnetically heated cobalt ferrite can be a controlled catalyst in water purification technology.
Collapse
Affiliation(s)
- Tetiana Tatarchuk
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland; Educational and Scientific Center of Material Science and Nanotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76018, Ukraine.
| | - Alexander Shyichuk
- Educational and Scientific Center of Material Science and Nanotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76018, Ukraine; Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326, Bydgoszcz, Poland
| | - Nazarii Danyliuk
- Educational and Scientific Center of Material Science and Nanotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76018, Ukraine
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Volodymyr Kotsyubynsky
- Department of Material Science and New Technology, Vasyl Stefanyk Precarpathian National University, 76018, Ivano-Frankivsk, Ukraine
| | - Volodymyra Boychuk
- Department of Material Science and New Technology, Vasyl Stefanyk Precarpathian National University, 76018, Ivano-Frankivsk, Ukraine
| |
Collapse
|
24
|
Ji X, Liang H, Hu S, Yang B, Xiao K, Yu G. Highly efficient decomplexation of chelated nickel and copper effluent through CuO-CeO 2-Co 3O 4 nanocatalyst loaded on ceramic membrane. CHEMOSPHERE 2023; 334:138981. [PMID: 37209848 DOI: 10.1016/j.chemosphere.2023.138981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
A novel CuO-CeO2-Co3O4 nanocatalyst loaded on Al2O3 ceramic composite membrane (CCM-S) was synthesized through spraying-calcination method, which can be beneficial to the engineering application of scattered granular catalyst. BET and FESEM-EDX testing revealed that CCM-S possessed a porous character with high BET surface area of 22.4 m2/g and flat modified surface with extremely fine particle aggregation. The CCM-S calcined above 500 °C presented excellent anti-dissolution effect due to the formation of crystals. XPS indicated that the composite nanocatalyst possessed the variable valence states, which were conducive to exert the catalytic effect of Fenton-like reaction. Subsequently, the effects of experimental parameters including fabricate method, calcination temperature, H2O2 dosage, initial pH value, and CCM-S amount were further investigated considering the removal efficiency of Ni(II)-complex and COD after decomplexation and precipitation (pH = 10.5) treatment within 90 min. Under the optimal reaction condition, the residual Ni(II)-complex and Cu(II)-complex concentration from actual wastewater was all lower than 0.18 mg/L and 0.27 mg/L, respectively; meanwhile, the removal efficiency of COD was all higher than 50% in the mixed electroless plating effluent. Besides, the CCM-S could still maintain high catalytic activity after a six-cycle test, and the removal efficiency was slightly declined from 99.82% to 88.11%. These outcomes indicated that CCM-S/H2O2 system was provided with a potential applicability on treatment of real chelated metal wastewater.
Collapse
Affiliation(s)
- Xianhua Ji
- Jiangsu Jingyuan Environmental Protection Co., Ltd, Nantong, 226000, PR China; School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Huiyu Liang
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Sukai Hu
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Bo Yang
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| | - Ke Xiao
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environmental Ecology, Beijing Normal University, Zhuhai, 519085, PR China.
| |
Collapse
|
25
|
Xu X, Zhu D, Jian Q, Wang X, Zheng X, Xue G, Liu Y, Li X, Hassan GK. Treatment of industrial ferric sludge through a facile acid-assisted hydrothermal reaction: Focusing on dry mass reduction and hydrochar recyclability performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161879. [PMID: 36716871 DOI: 10.1016/j.scitotenv.2023.161879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Large amounts of Fenton sludge and waste activated sludge (WAS) are mixed as ferric sludge (FS) in most industrial wastewater treatment plants. The treatment of such waste represents a challenge and quantity-dependent cost, so that a reliable way for FS waste reduction is required. In this study, we develop a facile acid-assisted hydrothermal treatment (HT) for the cost-efficient treatment of hazardous FS waste. Sulfuric acid was dosed at 0.25 mL/g dry solid (DS) to the HT process, which significantly increased the total solid mass reduction (TMR) by 25.1 % and dry mass reduction (DMR) by 104.4 %. The participation of sulfuric acid during the HT process changed the HT reaction pathway from dehydration to demethylation based on the analysis of the derivative thermogravimetric and Van Krevelen diagram. The addition of sulfuric acid improved the release of Fe from FS by 52.9 %, which contributed to the DMR. During the acid-assisted HT, Fe(III) was effectively reduced to Fe(II) within the produced hydrochar, which can be recycled for the Fenton reaction during the degradation of actual industrial wastewater such as pharmaceutical wastewater. Moreover, Sulfuric acid facilitated the generation of sulfonated hydrochar, which was efficient as an adsorbent for the complete removal of some metals such as Cu(II) - cation metal (98.8 %) and Cr(VI) - anion metal (99.9 %). This study firstly provides a novel and reliable approach for hazardous FS reduction and pointed out the recycling of hydrochar as the supplement for the Fenton reaction and adsorbents for some hazardous heavy metals.
Collapse
Affiliation(s)
- Xianbao Xu
- College of Environmental Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Daan Zhu
- College of Environmental Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Qiwei Jian
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xiaonuan Wang
- College of Environmental Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiaohu Zheng
- Institute of Artificial Intelligence, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiang Li
- College of Environmental Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Gamal Kamel Hassan
- Water Pollution Research Department, National Research Centre, 33El-Bohouth St. (Former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
26
|
Lei S, Du Z, Song Y, Zhang T, Wang B, Zhou C, Sun L. Performance and mechanisms of iron/copper-doped zirconium-based catalyst containing hydroxyl radicals for enhanced removal of gaseous benzene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56594-56607. [PMID: 36920609 DOI: 10.1007/s11356-023-26276-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In the present study, novel copper-doped zirconium-based MOF (UIO-66) and copper-doped iron-based UIO-66 catalysts were prepared by hydrothermal synthesis method to improve the removal performance of gaseous benzene. The characteristics of the catalysts were analyzed by means of XRD, SEM, XPS, BET, and EPR. The copper loading catalyst had high crystallinity and irregular globular. The three kinds of catalysts with different Cu/Fe ratios had regular cubic shape. Compared with the catalyst supported with single copper, the bimetal Cu/Fe modification had a certain adjustment effect on the morphology, which specifically reflected in the uniform size and shape of catalyst particles with better dispersibility. The factors of different metal loading, dose of H2O2, and reaction temperature on benzene removal have been studied. It has been observed that in heterogeneous advanced oxidation removal of benzene, 3-Cu@UIO-66 and Cu1.5/Fe1.5@UIO-66 achieved the highest benzene removal efficiency of 81.2% and 94.6%, respectively. EPR results showed that the increase of Cu loading and different Cu/Fe ratios promoted the yield of hydroxyl radicals, thus promoted the benzene removal efficiency. The efficiency of heterogeneous oxidation removal of benzene first increased and then decreased with the increase of temperature due to H2O2 instability. DFT calculations exhibited that the Feoct-Cu-O site was a more effective activation site than the single Feoct-O site. Dissociative adsorption occurred with the O-O bond of H2O2 cracked, and the formed hydroxyls parallel adsorbed on the benzene surface. The combination of benzene and hydroxyls was strong chemisorption with the torsion angle of benzene ring obviously turned. The work was of great importance for identifying the roles of the novel catalyst for the removal of benzene pollutant from waste gases.
Collapse
Affiliation(s)
- Siyuan Lei
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- Xi'an Thermal Power Research Institute Co. Ltd. (Suzhou Branch), Suzhou, 215153, Jiangsu, China
| | - Zhaohui Du
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yujia Song
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Tingting Zhang
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Ben Wang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Changsong Zhou
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Lushi Sun
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
27
|
Han J, Guan J. Heteronuclear dual-metal atom catalysts for nanocatalytic tumor therapy. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
28
|
Ahmed N, Vione D, Rivoira L, Castiglioni M, Beldean-Galea MS, Bruzzoniti MC. Feasibility of a Heterogeneous Nanoscale Zero-Valent Iron Fenton-like Process for the Removal of Glyphosate from Water. Molecules 2023; 28:molecules28052214. [PMID: 36903460 PMCID: PMC10005206 DOI: 10.3390/molecules28052214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Glyphosate is a widely used herbicide, and it is an important environmental pollutant that can have adverse effects on human health. Therefore, remediation and reclamation of contaminated streams and aqueous environments polluted by glyphosate is currently a worldwide priority. Here, we show that the heterogeneous nZVI-Fenton process (nZVI + H2O2; nZVI: nanoscale zero-valent iron) can achieve the effective removal of glyphosate under different operational conditions. Removal of glyphosate can also take place in the presence of excess nZVI, without H2O2, but the high amount of nZVI needed to remove glyphosate from water matrices on its own would make the process very costly. Glyphosate removal via nZVI--Fenton was investigated in the pH range of 3-6, with different H2O2 concentrations and nZVI loadings. We observed significant removal of glyphosate at pH values of 3 and 4; however, due to a loss in efficiency of Fenton systems with increasing pH values, glyphosate removal was no longer effective at pH values of 5 or 6. Glyphosate removal also occurred at pH values of 3 and 4 in tap water, despite the occurrence of several potentially interfering inorganic ions. Relatively low reagent costs, a limited increase in water conductivity (mostly due to pH adjustments before and after treatment), and low iron leaching make nZVI-Fenton treatment at pH 4 a promising technique for eliminating glyphosate from environmental aqueous matrices.
Collapse
Affiliation(s)
- Naveed Ahmed
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
| | - Davide Vione
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
- Correspondence: (D.V.); (M.C.B.)
| | - Luca Rivoira
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
| | - Michele Castiglioni
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
| | - Mihail S. Beldean-Galea
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 400347 Cluj-Napoca, Romania
| | - Maria Concetta Bruzzoniti
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
- Correspondence: (D.V.); (M.C.B.)
| |
Collapse
|
29
|
Fatimazahra S, Latifa M, Laila S, Monsif K. Review of hospital effluents: special emphasis on characterization, impact, and treatment of pollutants and antibiotic resistance. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:393. [PMID: 36780024 PMCID: PMC9923651 DOI: 10.1007/s10661-023-11002-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Health care institutions generate large volumes of liquid effluents from specific activities related to healthcare, analysis, and research. Their direct discharge into the environment has various negative effects on aquatic environments and human health, due to their high organic matter charges and the presence of various emerging contaminants such as disinfectants, drugs, bacteria, viruses, and parasites. Moreover, hospital effluents, by carrying antibiotics, contribute to the development of antibiotic-resistant microorganisms in the environment. This resistance has become a global issue that manifests itself variously in different countries, causing the transmission of different infections. In this respect, an effort is provided to protect water resources by current treatment methods that imply physical-chemical processes such as adsorption and advanced oxidation processes, biological processes such as activated sludge and membrane bioreactors and other hybrid techniques. The purpose of this review is to improve the knowledge on the composition and impact of hospital wastewater on man and the environment, highlighting the different treatment techniques appropriate to this type of disposal before discharge into the environment.
Collapse
Affiliation(s)
- Sayerh Fatimazahra
- Process Engineering and Environment Laboratory, Faculty of Science and Technology of Mohammedia, Hassan II University, Casablanca, Morocco
| | - Mouhir Latifa
- Process Engineering and Environment Laboratory, Faculty of Science and Technology of Mohammedia, Hassan II University, Casablanca, Morocco
| | - Saafadi Laila
- Process Engineering and Environment Laboratory, Faculty of Science and Technology of Mohammedia, Hassan II University, Casablanca, Morocco
| | - Khazraji Monsif
- Process Engineering and Environment Laboratory, Faculty of Science and Technology of Mohammedia, Hassan II University, Casablanca, Morocco
| |
Collapse
|
30
|
Li X, Yang H, Pan J, Liu T, Cao X, Ma H, Wang X, Wang YF, Wang Y, Lu S, Tian J, Gao L, Zheng X. Variation of the toxicity caused by key contaminants in industrial wastewater along the treatment train of Fenton-activated sludge-advanced oxidation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159856. [PMID: 36374753 DOI: 10.1016/j.scitotenv.2022.159856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Industrial wastewater contains a mixture of refractory and hazardous pollutants that have comprehensive toxic effects. We investigated the treatment of a long-chain industrial wastewater treatment train containing Fenton, biological anoxic/oxic (AO), and heterogeneous ozone catalytic oxidation (HOCO) processes, and evaluated their detoxification effect based on the analysis of the genic toxicity of some key contaminants. The results showed that although the effluent met the discharge standard in terms of traditional quality parameters, the long-chain treatment process could not effectively detoxify the industrial wastewater. The analysis results of summer samples showed that the Fenton process increased the total toxicity and genotoxicity of the organics, concerned metals, and non-volatile pollutants, whereas the A/O process increased the toxicity of the organics and non-volatile pollutants, and the HOCO process led to higher toxicity caused by metals and non-volatile pollutants. The outputs of the winter samples indicated that the Fenton process reduced the total toxicity and genotoxicity caused by non-volatile pollutants but increased that of the organics and concerned metals. The effect of the A/O process on the effluent toxicity in winter was the same as that in summer, whereas the HOCO process increased the total toxicity and genotoxicity of the metals in winter samples. Correlation analysis showed that various toxicity stresses were significantly correlated with the variation of these key pollutants in wastewater. Our results could provide a reference for the optimization of industrial wastewater treatment plants (IWTPs) by selecting more suitable treatment procedures to reduce the toxicity of different contaminants.
Collapse
Affiliation(s)
- Xiaolin Li
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Heyun Yang
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Jian Pan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tong Liu
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Xin Cao
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Hao Ma
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Xingliang Wang
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Yi-Fan Wang
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Yifan Wang
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Sijia Lu
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Lei Gao
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Xing Zheng
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China; Resource Recovery and Low-carbon Environmental Protection Engineering Center in Coal Chemical Industry, Yulin, Shaanxi, China.
| |
Collapse
|
31
|
Yang R, Zeng G, Zhou Z, Xu Z, Lyu S. Naphthalene degradation dominated by homogeneous reaction in Fenton-like process catalyzed by pyrite: Mechanism and application. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Wu T, Cui J, Wang C, Zhang G, Li L, Qu Y, Niu Y. Oxygen Vacancy-Mediated Activates Oxygen to Produce Reactive Oxygen Species (ROS) on Ce-Modified Activated Clay for Degradation of Organic Compounds without Hydrogen Peroxide in Strong Acid. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4410. [PMID: 36558264 PMCID: PMC9785360 DOI: 10.3390/nano12244410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The treatment of acid wastewater to remove organic matter in acid wastewater and recycle valuable resources has great significance. However, the classical advanced oxidation process (AOPs), such as the Fenton reaction, encountered a bottleneck under the conditions of strong acid. Herein, making use of the oxidation properties of CeAY (CeO2@acid clay), we built an AOPs reaction system without H2O2 under a strong acid condition that can realize the transformation of organic matter in industrial wastewater. The X-ray photoelectron spectroscopy (XPS) proved that the CeAY based on Ce3+ as an active center has abundant oxygen vacancies, which can catalyze O2 to produce reactive oxygen species (ROS). Based on the electron spin-resonance spectroscopy spectrum and radical trapping experiments, the production of •O2- and •OH can be determined, which are the essential factors of the degradation of organic compounds. In the system of pH = 1.0, when 1 mg CeAY is added to 10 mL of wastewater, the degradation efficiency of an aniline solution with a 5 mg/L effluent concentration is 100%, and that of a benzoic acid solution with a 100 mg/L effluent concentration is 50% after 10 min of reaction. This work may provide novel insights into the removal of organic pollutants in a strong acid water matrix.
Collapse
Affiliation(s)
- Tianming Wu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Jing Cui
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Changjiang Wang
- Shandong Zhengyuan Geological Resource Exploration Co. Ltd., China Metallurgical Geology Bureau, Weifang 261200, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Limin Li
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yue Qu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
- School of Tourism and Geography Science, Qingdao University, Qingdao 266071, China
| |
Collapse
|
33
|
Treatment of Wastewater from Thermal Desorption for Remediation of Oil-Contaminated Soil by the Combination of Multiple Processes. J CHEM-NY 2022. [DOI: 10.1155/2022/3616050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Thermal desorption (TD) is one of the methods commonly used to remediate contaminated soil. However, as water is the liquid adsorbent of the off-gas treatment system in the TD stage, the wastewater generated after multiple cycles in the TD stage has low biodegradability and contains complex organic pollutants. In addition to petroleum hydrocarbon, there are also a lot of ammonia, emulsified oil, phenols, aldehydes, and ketones. In this study, effective removal of contaminants was achieved using a combined process of demulsification and flocculation (DF), ammonia stripping (AS), Fenton oxidation (FO), and reverse osmosis (RO). The combined process was optimized, and the maximum chemical oxygen demand (COD), NH3-N, turbidity, and extractable petroleum hydrocarbons (EPH) removal efficiencies reached 93.3%, 79.8%, 97.6%, and 99.9%, respectively. The FO was the key process for the efficient removal of contaminants. Ultraviolet-visible (UV/Vis), excitation-emission matrix (EEM), fluorescence spectroscopy, and gas chromatography-mass spectroscopy (GC-MS) showed that refractory macromolecular organic pollutants in water were removed, especially aromatics, phenols, and conjugated aldehydes or conjugated ketones, and further ring cleavage of benzene rings and carbocycles with carbon double bonds was observed. The cost-benefit analysis of the combined process was also carried out. The operating cost was 8.73 US$/m3, indicating that the combined process involved moderate costs for recalcitrant wastewater treatment. No studies have been published on combined processes for the treatment of wastewater from TD for the remediation of oil-contaminated soils. Therefore, this study could provide fundamental information based on experimental results and guidelines for wastewater treatment in engineering applications.
Collapse
|
34
|
Fuziki MEK, Abreu E, Napoli JS, Nunes SC, Brackmann R, Machado TCS, Semianko BC, Lenzi GG. Cu/Nb 2O 5, Fe/Nb 2O 5 and Cu-Fe/Nb 2O 5 applied in salicylic acid degradation: Parameters studies and photocatalytic activity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:797-812. [PMID: 36069164 DOI: 10.1080/10934529.2022.2117525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
This study describes the synthesis of Cu/Nb2O5, Fe/Nb2O5, and Cu-Fe/Nb2O5 catalysts obtained by incorporating copper and/or iron metals into niobium pentoxide (Nb2O5). The new materials were characterized by the following techniques: Thermogravimetric Analysis (TA), surface and pore analysis, X-ray diffractometry (XRD), and Fourier Transform Infrared Spectroscopy (FT-IR). The catalyst was applied in the photocatalytic degradation of salicylic acid (SA). The influence of different parameters (calcined temperature, pH, and metal addition) on the photocatalytic reaction was evaluated. The results indicated that catalysts containing copper were more active and pH influenced the SA degradation process. SA removal results indicated that Cu/Nb2O5 photocatalyst presented a 1.5 fold higher degradation after 120 min in comparison to Cu-Fe/Nb2O5 and 4.6 fold higher than Fe/Nb2O5 catalyst, all them calcined at 400 °C. In tests carried out in the presence of formic acid, increasing the pH from about 3 to 7 allowed an almost 3.4-fold increase in SA degradation for the Cu-Fe/Nb2O5 catalyst calcined at 400 °C.
Collapse
Affiliation(s)
- Maria E K Fuziki
- Department of Chemical Engineering, State University of Maringá, Maringá, PR, Brazil
| | - Eduardo Abreu
- Department of Chemical Engineering, State University of Maringá, Maringá, PR, Brazil
| | - Jose S Napoli
- Department of Chemical Engineering, Federal University of Technology - Paraná, Curitiba, PR, Brazil
| | - Sabrina C Nunes
- Department of Chemical Engineering, Federal University of Technology, Pato Branco, PR, Brazil
| | - Rodrigo Brackmann
- Department of Chemical Engineering, Federal University of Technology, Pato Branco, PR, Brazil
| | - Tauani C S Machado
- Department of Chemical Engineering, Federal University of Technology - Paraná, Curitiba, PR, Brazil
| | - Betina C Semianko
- Department of Chemical Engineering, Federal University of Technology - Paraná, Curitiba, PR, Brazil
| | - Giane G Lenzi
- Department of Chemical Engineering, Federal University of Technology - Paraná, Curitiba, PR, Brazil
| |
Collapse
|
35
|
Foroutan R, Peighambardoust SJ, Boffito DC, Ramavandi B. Sono-Photocatalytic Activity of Cloisite 30B/ZnO/Ag 2O Nanocomposite for the Simultaneous Degradation of Crystal Violet and Methylene Blue Dyes in Aqueous Media. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183103. [PMID: 36144892 PMCID: PMC9501628 DOI: 10.3390/nano12183103] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 05/02/2023]
Abstract
A new nanocomposite based on Cloisite 30B clay modified with ZnO and Ag2O nanoparticles (Cloisite 30B/ZnO/Ag2O) was synthesized as an effective catalyst in the sono-photocatalytic process of crystal violet (CV) and methylene blue (MB) dyes simultaneously. The characteristics and catalytic activity of Cloisite 30B/ZnO/Ag2O nanocomposite were investigated under different conditions. The specific active surface for Cloisite 30B/ZnO/Ag2O nanocomposite was 18.29 m2/g. Additionally, the catalytic activity showed that Cloisite 30B/ZnO/Ag2O nanocomposite (CV: 99.21%, MB: 98.43%) compared to Cloisite 30B/Ag2O (CV: 85.38%, MB: 83.62%) and Ag2O (CV: 68.21%, MB: 66.41%) has more catalytic activity. The catalytic activity of Cloisite 30B/ZnO/Ag2O using the sono-photocatalytic process had the maximum efficiency (CV: 99.21%, MB: 98.43%) at pH 8, time of 50 min, amount of 40 mM H2O2, catalyst dose of 0.5 g/L, and the concentration of 'CV + MB' of 5 mg/L. The catalyst can be reused in the sono-photocatalytic process for up to six steps. According to the results, •OH and h+ were effective in the degradation of the desired dyes using the desired method. Data followed the pseudo-first-order kinetic model. The method used in this research is an efficient and promising method to remove dyes from wastewater.
Collapse
Affiliation(s)
- Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471, Iran
| | - Seyed Jamaleddin Peighambardoust
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471, Iran
- Correspondence: (S.J.P.); (D.C.B.); (B.R.)
| | - Daria Camilla Boffito
- Department of Chemical Engineering, Polytechnique Monteral, Monteral, QC H3C 3A7, Canada
- Correspondence: (S.J.P.); (D.C.B.); (B.R.)
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
- Correspondence: (S.J.P.); (D.C.B.); (B.R.)
| |
Collapse
|
36
|
Conte LO, Dominguez CM, Checa-Fernandez A, Santos A. Vis LED Photo-Fenton Degradation of 124-Trichlorobenzene at a Neutral pH Using Ferrioxalate as Catalyst. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9733. [PMID: 35955089 PMCID: PMC9367996 DOI: 10.3390/ijerph19159733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Chlorinated organic compounds (COCs) are among the more toxic organic compounds frequently found in soil and groundwater. Among these, toxic and low-degradable chlorobenzenes are commonly found in the environment. In this work, an innovative process using hydrogen peroxide as the oxidant, ferrioxalate as the catalyst and a visible light-emitting diode lamp (Vis LED) were applied to successfully oxidize 124-trichlorobenzene (124-TCB) in a saturated aqueous solution of 124-TCB (28 mg L-1) at a neutral pH. The influence of a hydrogen peroxide (HP) concentration (61.5-612 mg L-1), Fe3+ (Fe) dosage (3-10 mg L-1), and irradiation level (Rad) (I = 0.12 W cm-2 and I = 0.18 W cm-2) on 124-TCB conversion and dechlorination was studied. A D-Optimal experimental design combined with response surface methodology (RSM) was implemented to maximize the quality of the information obtained. The ANOVA test was used to assess the significance of the model and its coefficients. The maximum pollutant conversion at 180 min (98.50%) was obtained with Fe = 7 mg L-1, HP = 305 mg L-1, and I = 0.12 W cm-2. The effect of two inorganic anions usually presents in real groundwater (bicarbonate and chloride, 600 mg L-1 each) was investigated under those optimized operating conditions. A slight reduction in the 124-TCB conversion after 180 min of reaction was noticed in the presence of bicarbonate (8.31%) and chloride (7.85%). Toxicity was studied with Microtox® (Azur Environmental, Carlsbad, CA, USA) bioassay, and a remarkable toxicity decrease was found in the treated samples, with the inhibition proportional to the remaining 124-TCB concentration. That means that nontoxic byproducts are produced in agreement with the high dechlorination degrees noticed.
Collapse
Affiliation(s)
- Leandro O. Conte
- Chemical Engineering and Materials Department, Chemical Sciences Faculty, Complutense University of Madrid, 28040 Madrid, Spain
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional del Litoral (UNL), Santa Fe 3100, Argentina
| | - Carmen M. Dominguez
- Chemical Engineering and Materials Department, Chemical Sciences Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Alicia Checa-Fernandez
- Chemical Engineering and Materials Department, Chemical Sciences Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Aurora Santos
- Chemical Engineering and Materials Department, Chemical Sciences Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
37
|
Yang H, Liu Y, Zhang Y, Liu L, Xia S, Xue Q. Secondary pyrolysis oil-based drill-cutting ash for peroxymonosulfate/periodate activation to remove tetracycline: A comparative study. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Reconstruction of Electronic Structure of MOF-525 via Metalloporphyrin for Enhanced Photoelectro-Fenton Process. Catalysts 2022. [DOI: 10.3390/catal12060671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Photoelectro-Fenton (PEF) process can continuously promote the occurrence of Fenton reaction and the generation of active species, which is an advanced oxidation technology for pollutant degradation. However, the lack of bifunctional catalysts restricts the development of PEF technology. In this study, the electronic rearrangement MOF-525 modified by metalloporphyrin (named MOF-525-Fe/Zr) was prepared, to load on the carbon felt as a novel cathode catalyst, which is used in PEF process. A series of characterization and photoelectric chemical properties tests combined with DFT calculation showed that the modification of MOF-525 could not only have the large specific surface area and multistage pore structure but also co-stimulate the metal-to-ligand charge transfer (MLCT) and ligand-to-cluster charge transfer (LCCT) by photoelectric synergy. These charge transitions provide periodic electron donor-acceptor conduction paths in MOF-525-Fe/Zr, which can improve the active species formation and transfer efficiency. Owing to their favorable pore and electronic structure as well as stability, MOF-525-Fe/Zr shows great promise for the application in the catalytic process of PEF. Sulfamethoxazole (SMX) degradation was enhanced by MOF-525-Fe/Zr with the TOC removal rate above 75% both in river water and tap water. Finally, the reasonable pathway of PEF catalytic degradation of SMX was proposed by HPLC-MS analysis. In conclusion, this study provides a new idea for reconstructing the electronic structure of MOFs catalyst and broadening the practical application of PEF technology.
Collapse
|
39
|
A Weed-Derived Hierarchical Porous Carbon with a Large Specific Surface Area for Efficient Dye and Antibiotic Removal. Int J Mol Sci 2022; 23:ijms23116146. [PMID: 35682825 PMCID: PMC9181242 DOI: 10.3390/ijms23116146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Adsorption is an economical and efficient method for wastewater treatment, and its advantages are closely related to adsorbents. Herein, the Abutilon theophrasti medicus calyx (AC) was used as the precursor for producing the porous carbon adsorbent (PCAC). PCAC was prepared through carbonization and chemical activation. The product activated by potassium hydroxide exhibited a larger specific surface area, more mesopores, and a higher adsorption capacity than the product activated by sodium hydroxide. PCAC was used for adsorbing rhodamine B (RhB) and chloramphenicol (CAP) from water. Three adsorption kinetic models (the pseudo-first-order, pseudo-second-order, and intra-particle diffusion models), four adsorption isotherm models (the Langmuir, Freundlich, Sips, and Redlich–Peterson models), and thermodynamic equations were used to investigate adsorption processes. The pseudo-second kinetic and Sips isotherm models fit the experimental data well. The adsorption mechanism and the reusability of PCAC were also investigated. PCAC exhibited a large specific surface area. The maximum adsorption capacities (1883.3 mg g−1 for RhB and 1375.3 mg g−1 for CAP) of PCAC are higher than most adsorbents. Additionally, in the fixed bed experiments, PCAC exhibited good performance for the removal of RhB. These results indicated that PCAC was an adsorbent with the advantages of low-cost, a large specific surface area, and high performance.
Collapse
|