1
|
Eierman LE, Landis J. Exposure to plastic debris alters expression of biomineralization, immune, and stress-related genes in the eastern oyster (Crassostrea virginica). PLoS One 2025; 20:e0319165. [PMID: 40299807 PMCID: PMC12040131 DOI: 10.1371/journal.pone.0319165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 01/24/2025] [Indexed: 05/01/2025] Open
Abstract
The degradation of marine plastic debris poses a threat to organisms by fragmenting into micro- and nano-scale pieces and releasing a complex chemical leachate into the water. Numerous studies have investigated harms from plastic pollution such as microplastic ingestion and exposure to single chemicals. However, few studies have examined the holistic threat of plastic exposure and the synergistic impacts of chemical mixtures. The objective of this study was to measure changes in gene expression of gill and gonadal tissue of the eastern oyster (Crassostrea virginica) in response to plastic debris exposure during their first year, using RNA-seq to explore multiple types of physiological responses. Shell and polyethylene terephthalate plastic were used as substrate for the metamorphosis of larval oysters in a settlement tank. Substrate pieces were then transferred to metal cages and outplanted in pairs - shell cage and plastic cage - onto restoration reefs in the St. Mary's River, Maryland, USA. After 10 months of growth, the oysters were collected, gill and gonadal tissue removed, and sex identified. The tissues of six oysters from each sex and substrate type were then analyzed in RNA-seq. Both gill and gonadal tissue samples had altered expression of immune and stress-response genes in response to plastic exposure. Genes upregulated in response to plastic were enriched for gene ontology functions of proteolysis and fibrinolysis. Downregulated genes were involved in shell biomineralization and growth. One male oyster exposed to plastic had "feminized" gene expression patterns despite developing mature sperm, suggesting plastic leachate can alter gene expression and shift protandric individuals to develop as females. Plastic pollution may therefore reduce shell growth, initiate immune and stress responses, alter sex differentiation, and impact reproductive output of eastern oysters through changes in transcription.
Collapse
Affiliation(s)
- Laura E. Eierman
- Biological Sciences Department, SUNY Cortland, Cortland, New York, United States of America
| | - Jacob Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
2
|
Uguen M, Cozzolino L. Location-dependent effect of microplastic leachates on the respiration rate of two engineering mussel species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10195-10202. [PMID: 39538076 DOI: 10.1007/s11356-024-35495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Microplastics are ubiquitous in the world's oceans and pose serious environmental concerns, including their ingestion and the release of potentially toxic mixtures of intrinsic and extrinsic chemical compounds (i.e. leachates; MPLs). Mussels, as key intertidal bioengineers and filter-feeders are particularly susceptible to both exposure pathways. While the effects of microplastic ingestion have been widely investigated, research on the impacts of MPLs has only recently begun. This study examined the influence of MPLs derived from beached pellets collected in two separate regions, namely France and Portugal, on the respiration rates of two key ecosystem engineers, Mytilus edulis and Mytilus galloprovincialis. Possibly due to distinct mixtures of leached chemicals, unlike Portuguese-MPLs, exposure to French-MPLs significantly decreased the respiration rate of both mussel species. This research provides new insights into the physiological impacts of MPLs on bioengineer species, highlighting the importance of MP source and potential cascading effects at the ecosystem level. While we reported significant effects on mussel respiration after acute MPL exposure, future research should investigate long-term impacts and potential detoxification mechanisms to clarify the effects of MPs on mussel physiological performance and their potential consequences on specie fitness.
Collapse
Affiliation(s)
- Marine Uguen
- UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, Station Marine de Wimereux, 59000, Lille, France.
| | - Lorenzo Cozzolino
- CCMAR-Centro de Ciencias do Mar, CIMAR Laboratório Associado, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
3
|
Uguen M, Gaudron SM, Seuront L. Plastic pollution and marine mussels: Unravelling disparities in research efforts, biological effects and influences of global warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178078. [PMID: 39709840 DOI: 10.1016/j.scitotenv.2024.178078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
The ever-growing contamination of the environment by plastics is a major scientific and societal concern. Specifically, the study of microplastics (1 μm to 5 mm), nanoplastics (< 1 μm), and their leachates is a critical research area as they have the potential to cause detrimental effects, especially when they impact key ecological species. Marine mussels, as ecosystem engineers and filter feeders, are particularly vulnerable to this type of pollution. In this study, we reviewed the 106 articles that focus on the impacts of plastic pollution on marine mussels. First, we examined the research efforts in terms of plastic characteristics (size, polymer, shape, and leachates) and exposure conditions (concentration, duration, species, life stages, and internal factors), their disparities, and their environmental relevance. Then, we provided an overview of the effects of plastics on mussels at each organisational levels, from the smaller scales (molecular, cellular, tissue and organ impacts) to the organism level (functional, physiological, and behavioural impacts) as well as larger-scale implications (associated community impacts). We finally discussed the limited research available on multi-stressor studies involving plastics, particularly in relation to temperature stress. We identified temperature as an underestimated factor that could shape the impacts of plastics, and proposed a roadmap for future research to address their combined effects. This review also highlights the impact of plastic pollution on mussels at multiple levels and emphasises the strong disparities in research effort and the need for more holistic research, notably through the consideration of multiple stressors, with a specific focus on temperature which is likely to become an increasingly relevant forcing factor in an era of global warming. By identifying critical gaps in current knowledge, we advocate for more coordinated interdisciplinary and international collaborations and raise awareness of the need for environmental coherence in the choice and implementation of experimental protocols.
Collapse
Affiliation(s)
- Marine Uguen
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France.
| | - Sylvie M Gaudron
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France; Sorbonne Université, UFR 927, F-75005 Paris, France
| | - Laurent Seuront
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
4
|
Vilke JM, Fonseca TG, Alkimin GD, Gonçalves JM, Edo C, Errico GD, Seilitz FS, Rotander A, Benedetti M, Regoli F, Lüchmann KH, Bebianno MJ. Looking beyond the obvious: The ecotoxicological impact of the leachate from fishing nets and cables in the marine mussel Mytilus galloprovincialis. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134479. [PMID: 38762985 DOI: 10.1016/j.jhazmat.2024.134479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/21/2024]
Abstract
Once in the marine environment, fishing nets and cables undergo weathering, breaking down into micro and nano-size particles and leaching plastic additives, which negatively affect marine biota. This study aims to unravel the ecotoxicological impact of different concentrations of leachate obtained from abandoned or lost fishing nets and cables in the mussel Mytilus galloprovincialis under long-term exposure (28 days). Biochemical biomarkers linked to antioxidant defense system, xenobiotic biotransformation, oxidative damage, genotoxicity, and neurotoxicity were evaluated in different mussel tissues. The chemical nature of the fishing nets and cables and the chemical composition of the leachate were assessed and metals, plasticizers, UV stabilizers, flame retardants, antioxidants, dyes, flavoring agents, preservatives, intermediates and photo initiators were detected. The leachate severely affected the antioxidant and biotransformation systems in mussels' tissues. Following exposure to 1 mg·L-1 of leachate, mussels' defense system was enhanced to prevent oxidative damage. In contrast, in mussels exposed to 10 and 100 mg·L-1 of leachate, defenses failed to overcome pro-oxidant molecules, resulting in genotoxicity and oxidative damage. Principal component analysis (PCA) and Weight of Evidence (WOE) evaluation confirmed that mussels were significantly affected by the leachate being the hazard of the leachate concentrations of 10 mg·L-1 ranked as major, while 1 and 100 mg·L-1 was moderate. These results highlighted that the leachate from fishing nets and cables can be a threat to the heath of the mussel M. galloprovincialis.
Collapse
Affiliation(s)
- Juliano M Vilke
- Centre for Marine and Environmental Research - CIMA/ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, Faro 8000-139, Portugal; Multicenter Program in Postgraduate in Biochemistry and Molecular Biology - PMBqBM, Santa Catarina State University, Lages 88520-000, Brazil
| | - Tainá G Fonseca
- Centre for Marine and Environmental Research - CIMA/ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, Faro 8000-139, Portugal
| | - Gilberto D Alkimin
- Centre for Marine and Environmental Research - CIMA/ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, Faro 8000-139, Portugal
| | - Joanna M Gonçalves
- Centre for Marine and Environmental Research - CIMA/ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, Faro 8000-139, Portugal
| | - Carlos Edo
- Centre for Marine and Environmental Research - CIMA/ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, Faro 8000-139, Portugal; Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| | - Giuseppe d' Errico
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, Ancona, Italy
| | | | - Anna Rotander
- Man-Technology-Environment (MTM) Research Centre, Örebro University, SE-701 82 Örebro, Sweden
| | - Maura Benedetti
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, Ancona, Italy
| | - Francesco Regoli
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, Ancona, Italy
| | - Karim H Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, Florianopolis 88035-001, Brazil
| | - Maria João Bebianno
- Centre for Marine and Environmental Research - CIMA/ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, Faro 8000-139, Portugal.
| |
Collapse
|
5
|
Uguen M, Gaudron SM, Nicastro KR, Zardi GI, Spilmont N, Henry S, Seuront L. The tolerance of a keystone ecosystem engineer to extreme heat stress is hampered by microplastic leachates. Biol Lett 2024; 20:20230457. [PMID: 38531416 PMCID: PMC10965334 DOI: 10.1098/rsbl.2023.0457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Plastic pollution and ongoing climatic changes exert considerable pressure on coastal ecosystems. Unravelling the combined effects of these two threats is essential to management and conservation actions to reduce the overall environmental risks. We assessed the capacity of a coastal ecosystem engineer, the blue mussel Mytilus edulis, to cope with various levels of aerial heat stress (20, 25, 30 and 35°C) after an exposure to substances leached from beached and virgin low-density polyethylene pellets. Our results revealed a significant interaction between temperature and plastic leachates on mussel survival rates. Specifically, microplastic leachates had no effect on mussel survival at 20, 25 and 30°C. In turn, mussel survival rates significantly decreased at 35°C, and this decrease was even more significant following an exposure to leachates from beached pellets; these pellets had a higher concentration of additives compared to the virgin ones, potentially causing a bioenergetic imbalance. Our results stress the importance of adopting integrated approaches combining the effects of multiple environmental threats on key marine species to understand and mitigate their potential synergistic effects on ecosystem dynamics and resilience in the face of the changing environment.
Collapse
Affiliation(s)
- Marine Uguen
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, 59000 Lille, France
| | - Sylvie M. Gaudron
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, 59000 Lille, France
- Sorbonne Université, UFR 927, 75005 Paris, France
| | - Katy R. Nicastro
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, 59000 Lille, France
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
- CCMAR–Centro de Ciencias do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | - Gerardo I. Zardi
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen-Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la paix, 14032 Caen Cedex, France
| | - Nicolas Spilmont
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, 59000 Lille, France
| | - Solène Henry
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, 59000 Lille, France
| | - Laurent Seuront
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, 59000 Lille, France
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
- Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
6
|
Zardi GI, Nicastro KR, Truong SL, Decorse P, Nozak S, Chevillot-Biraud A, Froneman PW, Akoueson F, Duflos G, Seuront L. Microplastic leachates inhibit small-scale self-organization in mussel beds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169816. [PMID: 38181965 DOI: 10.1016/j.scitotenv.2023.169816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Self-organized spatial patterns are increasingly recognized for their contribution to ecosystem functioning. They can improve the ecosystem's ability to respond to perturbation and thus increase its resilience to environmental stress. Plastic pollution has now emerged as major threat to aquatic and terrestrial biota. Under laboratory conditions, we tested whether plastic leachates from pellets collected in the intertidal can impair small-scale, spatial self-organization and byssal threads production of intertidal mussels and whether the effect varied depending on where the pellets come from. Specifically, leachates originating from plastic pellets collected from relatively pristine and polluted areas respectively impaired and inhibited the ability of mussels to self-organize at small-scale and to produce byssal threads compared to control conditions (i.e., seawater without leaching solution). Limitations to natural self-organizing processes and threads formation may translate to a declined capacity of natural ecosystems to avoid tipping points and to a reduced restoration success of disturbed ecosystems.
Collapse
Affiliation(s)
- Gerardo I Zardi
- Normandie Université, UNICAEN, Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), 14000 Caen, France; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; CCMAR-CIMAR Laboratório Associado, Universidade do Algarve, Campus Gambelas, Faro 8005-139, Portugal
| | - Katy R Nicastro
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; CCMAR-CIMAR Laboratório Associado, Universidade do Algarve, Campus Gambelas, Faro 8005-139, Portugal; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 LOG, F-59000 Lille, France.
| | - Stéphanie Lau Truong
- Laboratoire ITODYS CNRS UMR7086, Université Paris Diderot, Bâtiment Lavoisier, 75205, France
| | - Philippe Decorse
- Laboratoire ITODYS CNRS UMR7086, Université Paris Diderot, Bâtiment Lavoisier, 75205, France
| | - Sophie Nozak
- Laboratoire ITODYS CNRS UMR7086, Université Paris Diderot, Bâtiment Lavoisier, 75205, France
| | | | | | - Fleurine Akoueson
- Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, EA 7394, Institut Charles Viollette, USC ANSES, INRAe, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Uni. Liège, F-62200 Boulogne-sur-Mer, France; ANSES - Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, F-62200 Boulogne-sur-Mer, France
| | - Guillaume Duflos
- ANSES - Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, F-62200 Boulogne-sur-Mer, France
| | - Laurent Seuront
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 LOG, F-59000 Lille, France; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
7
|
Cozzolino L, Nicastro KR, Hubbard PC, Seuront L, McQuaid CD, Zardi GI. Intraspecific genetic lineages of a marine mussel show behavioural divergence when exposed to microplastic leachates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122779. [PMID: 37863252 DOI: 10.1016/j.envpol.2023.122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Worldwide, microplastic pollution has numerous negative implications for marine biota, exacerbating the effects of other forms of global anthropogenic disturbance. Mounting evidence shows that microplastics (MPs) not only cause physical damage through their ingestion, but also act as vectors for hazardous compounds by leaching absorbed and adsorbed chemicals. Research on the effects of plastic pollution has, however, largely assumed that species respond uniformly, while ignoring intraspecific diversity (i.e., variation within a single species). We investigated the effects of plastic leachates derived from factory-fresh (virgin) and beached microplastics on the behavioural responses of two genetic lineages of the Mediterranean mussel Mytilus galloprovincialis. Through laboratory behavioural experiments, we found that during exposure to leachates from beached microplastics (beached MPLs), Atlantic specimens moved significantly less than Mediterranean individuals in terms of both (i) proportion of individuals responding through movement and (ii) net and gross distances crawled. In contrast, no significant intraspecific differences were observed in the behaviour of either adults or recruits when exposed to MPLs from virgin microplastics (virgin MPLs). Additionally, the reception of cues from three amino acids (L-cysteine, proline and L-leucine) at increasing concentrations (10-5 M to 10-3 M in charcoal-filtered seawater) was tested by electrophysiological analysis using mussels exposed to beached MPLs or control seawater. We found significant intraspecific differences in response to 10-3 M L-cysteine (regardless of treatment) and 10-4 M L-cysteine (in mussels exposed to beached MPLs) and to 10-3 M proline (in mussels exposed to beached MPLs) and 10-5 M L-leucine. Our study suggests that intraspecific variation in a marine mussel may prompt different responses to plastic pollution, potentially triggered by local adaptation and physiological variability between lineages. Our work highlights the importance of assessing the effects of intraspecific variation, especially in environmental sentinel species as this level of diversity could modulate responses to plastic pollution.
Collapse
Affiliation(s)
- Lorenzo Cozzolino
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.
| | - Katy R Nicastro
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000, Lille, France; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Peter C Hubbard
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Laurent Seuront
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000, Lille, France; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108- 8477, Japan
| | - Christopher D McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Gerardo I Zardi
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa; Normandie Université, UNICAEN, Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), CS 14032, 14000, Caen, France
| |
Collapse
|
8
|
Chen L, Qi H, Yu K, Gao B. Increased bio-toxicity of leachates from polyvinyl chloride microplastics during the photo-aging process in the presence of dissolved organic matter. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2465-2472. [PMID: 37966195 PMCID: wst_2023_339 DOI: 10.2166/wst.2023.339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The pollution caused by microplastics (MPs) has gained global attention due to their potential risks to organisms and human health. The process of photo-aging, which plays a crucial role in the transformation of MPs in aquatic environments, has the potential to influence the ecological risk posed by these particles. Dissolved organic matter (DOM) is a prevalent photosensitizer in surface waters that has been shown to facilitate the transformation of various organic compounds by generating reactive oxygen species under light irradiation. The present study investigated the influence of humic acid (HA), a typical component of DOM, on the photo-aging process of polyvinyl chloride MPs (PVC-MPs), using Fourier transform infrared spectroscopy, as well as assessing the resulting ecological risk through bioassays. The results revealed that the presence of HA enhanced the photo-aging of PVC-MP. Moreover, the leachate exhibited higher acute and genetic toxicity under light irradiation when compared to dark conditions. Notably, the presence of HA significantly increased the toxicity of the leachate, emphasizing the need to consider the impact of DOM when assessing the ecological risk of MPs in surface waters. These findings contribute to a more comprehensive understanding of the potential risks associated with microplastic pollution in natural environments.
Collapse
Affiliation(s)
- Lei Chen
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China E-mail:
| | - Hangyu Qi
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ke Yu
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Buhong Gao
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Svigruha R, Prikler B, Farkas A, Ács A, Fodor I, Tapolczai K, Schmidt J, Bordós G, Háhn J, Harkai P, Kaszab E, Szoboszlay S, Pirger Z. Presence, variation, and potential ecological impact of microplastics in the largest shallow lake of Central Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163537. [PMID: 37075990 DOI: 10.1016/j.scitotenv.2023.163537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
The presence of microplastics (MPs) in the global ecosystem has generated a rapidly growing concern worldwide. Although their presence in the marine environment has been well-studied, much less data are available on their abundance in freshwaters. MPs alone and in combination with different chemicals has been shown to cause acute and chronic effects on algae and aquatic invertebrate and vertebrate species at different biological levels. However, the combined ecotoxicological effects of MPs with different chemicals on aquatic organisms are still understudied in many species and the reported data are often controversial. In the present study, we investigated, for the first time, the presence of MPs in Lake Balaton, which is the largest shallow lake of Central Europe and an important summer holiday destination. Moreover, we exposed neonates of the well-established ecotoxicological model organism Daphnia magna to different MPs (polystyrene [3 μm] or polyethylene [≤ 100 μm]) alone and in combination with three progestogen compounds (progesterone, drospirenone, levonorgestrel) at an environmentally relevant concentration (10 ng L-1) for 21 days. The presence of 7 polymer types of MPs in the size range of 50-100 μm was detected in Lake Balaton. Similarly to the global trends, polypropylene and polyethylene MPs were the most common types of polymer. The calculated polymer-independent average particle number was 5.5 particles m-3 (size range: 50 μm - 100 μm) which represents the values detected in other European lakes. Our ecotoxicological experiments confirmed that MPs and progestogens can affect D. magna at the behavioral (body size and reproduction) and biochemical (detoxification-related enzyme activity) levels. The joint effects were negligible. The presence of MPs may lead to reduced fitness in the aquatic biota in freshwaters such as Lake Balaton, however, the potential threat of MPs as vectors for progestogens may be limited.
Collapse
Affiliation(s)
- Réka Svigruha
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary
| | - Bence Prikler
- Eurofins-Wessling Hungary Ltd, 1045 Budapest, Hungary; Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Anna Farkas
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary
| | - András Ács
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary
| | - István Fodor
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary
| | - Kálmán Tapolczai
- Aquatic Botany and Microbial Ecology Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary
| | - János Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Gábor Bordós
- Eurofins-Wessling Hungary Ltd, 1045 Budapest, Hungary
| | - Judit Háhn
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Péter Harkai
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Edit Kaszab
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Sándor Szoboszlay
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary.
| |
Collapse
|
10
|
Rodrigues CC, Salla RF, Rocha TL. Bioaccumulation and ecotoxicological impact of micro(nano)plastics in aquatic and land snails: Historical review, current research and emerging trends. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130382. [PMID: 36417779 DOI: 10.1016/j.jhazmat.2022.130382] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are ubiquitous emerging pollutants in the environment. Although MPs/NPs' hazardous effects have been described at different trophic levels, little attention has been given to how they can affect gastropod communities. Thus, the current study aimed to summarize and critically address data available in the scientific literature about micro(nano)plastics' ecotoxicological impact on snails. The analyzed data has evidenced MP/NP bioaccumulation in 40 gastropod species collected in the field; 15 gastropod species were used to assess the potential toxicity of MPs/NPs. Asia accounted for the highest level of MPs/NPs bioaccumulated in gastropods; it was followed by the South American, European and Antarctic continents. MPs/NPs' toxicity depends on their composition, shape and size, as well as on differences in methodological approaches adopted by different studies. Results have shown that MPs/NPs induce several impairments - such as behavioral changes, developmental toxicity, dysbiosis, histopathological alterations, oxidative stress -, generate ecological impairments, as well as act as pollutant vector and increase chiral chemicals' toxicity. Research gaps and recommendations for future research were highlighted to help better understanding MPs/NPs' toxicity in gastropods, given the extremely important role played by them in studies focused on investigating how MPs/NPs can affect invertebrate communities living in terrestrial and aquatic environments.
Collapse
Affiliation(s)
- Cândido Carvalho Rodrigues
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Raquel Fernanda Salla
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
11
|
Paramecium bursaria as a Potential Tool for Evaluation of Microplastics Toxicity. BIOLOGY 2022; 11:biology11121852. [PMID: 36552361 PMCID: PMC9775370 DOI: 10.3390/biology11121852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Microplastics (MPs) are normally defined as small plastic wastes with a size of 1 μm to 5 mm in diameter. This tiny plastic debris is abundant in aquatic systems and poses a great threat to aquatic biota. To date, toxicological assessment of MPs is predominantly dependent on metazoan animals, although their applications are sometimes limited due to the high cost, narrow ecological niche, or ethical considerations. In this regard, unicellular eukaryotes (i.e., protozoa) that are ubiquitously present in nature represent a promising alternative for evaluating the toxicity of MPs. In this study, we selected Paramecium bursaria (P. bursaria) as a representative of protozoa and further investigated behavioral and molecular changes in MPs-exposed P. bursaria. Our results showed that following MPs uptake, P. bursaria exhibited various changes, including anomalies in swimming patterns, reduction in moving speed, impairment of avoidance behavior, elevation of oxidative stress, and potential disturbance of endosymbiosis. These elicited changes in P. bursaria in response to MPs exposure were pronounced and measurable. Overall, this study demonstrated that P. bursaria could serve as a promising alternative for the toxicological assessment of MPs and may be further applied to evaluate the toxicity of other environmental contaminants.
Collapse
|