1
|
Li J, Zheng W, Li J, Askari K, Tian Z, Han A, Liu R. Chitosan-oligosaccharide alleviates chlorpyrifos-induced biochemical and developmental toxicity and reduces its accumulation in wheat (Triticum aestivum L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118146. [PMID: 40194362 DOI: 10.1016/j.ecoenv.2025.118146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/17/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
Chlorpyrifos (CHP) contamination affects agricultural land and poses significant risks to plants and humans. Chitosan-oligosaccharide (COS) enhances plant resilience under stress and boosts the activity of enzymes metabolizing exogenous substances. This study aimed to explore the potential and mechanism of COS in mitigating CHP phytotoxicity and reducing CHP accumulation through both pot and field experiments. The results indicated that CHP exposure caused oxidative stress and decreased photosynthesis by 18.5 % in wheat. COS up-regulated the expression of antioxidant enzyme genes in CHP-stressed plants, resulting in a 12.1 %-29.4 % increase in antioxidant enzyme activity, which resulted in an 11.3 %-12.8 % reduction in reactive oxygen species (ROS) and an 11.5 %-14.7 % reduction in malondialdehyde (MDA) content in leaves and roots, respectively. Additionally, COS increased chlorophyll content by 6.6 % by regulating genes related to chlorophyll metabolism, enhancing photosynthesis by 13.6 %. COS also reduced CHP uptake and accelerated its metabolism by upregulating CYP450, GST, and lignin biosynthesis-related genes. Wheat treated with COS exhibited a 26.7 %-28.7 % reduction in grains' CHP content, resulting in a lower health risk index (HRI). These findings provide novel insights into the potential of COS in alleviating CHP phytotoxicity and reducing its accumulation.
Collapse
Affiliation(s)
- Jingchong Li
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wende Zheng
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jingkun Li
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Komelle Askari
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhixiang Tian
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Aohui Han
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Runqiang Liu
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| |
Collapse
|
2
|
Nand S, Singh PP, Verma S, Mishra S, Patel A, Shukla S, Srivastava PK. Biochar for mitigating pharmaceutical pollution in wastewater: A sustainable solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178743. [PMID: 39923470 DOI: 10.1016/j.scitotenv.2025.178743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Pharmaceutical contaminants (PCs), including antibiotics, analgesics, and other medications, pose a growing threat to aquatic ecosystems and human health due to their persistence and bioaccumulation potential. Biochar, a carbonaceous material derived from biomass pyrolysis, has emerged as a sustainable adsorbent for removing PCs from wastewater. Biochar is reported to remove PCs from water with an average range of 58 to 91 %, depending on the nature of feedstock, pyrolysis conditions, and characteristics of the pharmaceuticals. Biochar's effectiveness is attributed to its unique properties, including high porosity, large surface area and diverse functional groups, which enable the adsorption of various pharmaceutical compounds through physical and chemical interactions. Common PCs such as tetracycline, ciprofloxacin, ibuprofen, paracetamol, sulfamethoxazole, and cephalexin can be effectively removed using biochar. The adsorption process involves different mechanisms such as Van der Waals forces, electrostatic interactions, hydrogen bonding, and surface complexation. This review summarizes the current state of knowledge on biochar-based adsorption mechanisms, highlights successful applications in wastewater treatment, and identifies areas for future research. While promising, a deeper understanding of adsorption mechanisms, optimization of biochar production, and the development of effective regeneration methods are crucial for maximizing biochar's efficacy and ensuring its sustainable implementation in wastewater treatment systems.
Collapse
Affiliation(s)
- Sampurna Nand
- Environmental Technologies Division, CSIR-NBRI, Lucknow 226001, India; Department Environmental Sciences, Dr. RML Avadh University, Ayodhya 224001, India
| | - Prem Prakash Singh
- Plant Ecology and Climate Change Science Division CSIR-NBRI, Lucknow 226001, India
| | - Swati Verma
- Environmental Technologies Division, CSIR-NBRI, Lucknow 226001, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Sandhya Mishra
- The Environmental Information, Awareness, Capacity Building and Livelihood Programme (EIACP) centre, CSIR-NBRI, Lucknow 226001, India
| | - Anju Patel
- Environmental Technologies Division, CSIR-NBRI, Lucknow 226001, India.
| | - Siddharth Shukla
- Department Environmental Sciences, Dr. RML Avadh University, Ayodhya 224001, India
| | | |
Collapse
|
3
|
Wasilewska M, Gubernat S, Gil-Kulik P. Preparation and Study of Physicochemical and Adsorption Properties of Alginate Composites. MATERIALS (BASEL, SWITZERLAND) 2025; 18:629. [PMID: 39942295 PMCID: PMC11818849 DOI: 10.3390/ma18030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025]
Abstract
This paper presents the preparation and study of the properties of alginate materials, which were obtained on the basis of sodium alginate, activated carbon, cellulose, and calcium chloride. Alginate-carbon (AlgCa + C) and alginate-cellulose (AlgCa + Cel) composites, as well as pure calcium alginate (AlgCa) for comparative purposes, were obtained. Their textural (nitrogen adsorption/desorption isotherms), morphological (scanning electron microscopy), thermal (thermal analysis), and acid-base (pH drift method) properties, as well as the swelling index, were investigated. Additionally, to determine the adsorption properties, comprehensive equilibrium and kinetic studies of the adsorption of sodium salts of ibuprofen (IBP), diclofenac (D), and naproxen (NPX) from aqueous solutions on biocomposities were carried out. Adsorption isotherms were fitted using the Marczewski-Jaroniec isotherm equation (R2 = 0.941-0.988). Data on the adsorption rate were analyzed using simple kinetic equations, of which the best quality of fit was obtained using the multi-exponential equation (R2 - 1 = (3.9 × 10-4)-(6.9 × 10-4)). The highest obtained adsorption values were reached in systems with alginate-carbon composite and were 1.23 mmol/g for NPX, 0.81 mmol/g for D, and 0.43 mmol/g for IBP. The AlgCa + C material was characterized by a large specific surface area (1151 m2/g), a high degree of swelling (300%) and high resistance to high temperatures.
Collapse
Affiliation(s)
- Małgorzata Wasilewska
- Department of Physical Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Sylwia Gubernat
- Inżynieria Rzeszów S.A., ul. Podkarpacka 59A, 35-082 Rzeszów, Poland;
| | - Paulina Gil-Kulik
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland;
| |
Collapse
|
4
|
Samanth A, Vinayagam R, Varadavenkatesan T, Selvaraj R. Fixed bed column adsorption systems to remove 2,4-Dichlorophenoxyacetic acid herbicide from aqueous solutions using magnetic activated carbon. ENVIRONMENTAL RESEARCH 2024; 261:119696. [PMID: 39068970 DOI: 10.1016/j.envres.2024.119696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
The widespread use of 2,4-Dichlorophenoxyacetic acid (2,4-D) as a weedkiller has resulted in its persistence in the environment, leading to surface and groundwater pollution. In this study, the fixed bed column experiments were performed to remove 2,4-D from aqueous solutions using magnetic activated carbon derived from Peltophorum pterocarpum tree pods. The evaluation was done on effects of operating parameters such as bed depth (2-4 cm), influent flow rate (4.6-11.4 mL/min), and 2,4-D concentration (25-100 mg/L) on the breakthrough curves. The data fit well with the Yoon-Nelson and Thomas models, exhibiting high R2 values. Results indicated that lower flow rates, lower 2,4-D concentrations, and greater bed depths enhanced adsorption capacity, achieving up to 196.31 mg/g. Reusability studies demonstrated the material's potential for repeated use, while toxicity studies with Vigna radiata seeds confirmed the effectiveness of Fe3O4-CPAC in removing 2,4-D. This investigation highlights the promising application of Fe3O4-CPAC in fixed bed adsorption systems for efficient 2,4-D removal.
Collapse
Affiliation(s)
- Adithya Samanth
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
5
|
Varshan GSA, Namasivayam SKR. A Green Chemistry Principle for the Biotransformation of Fungal Biomass Derived Chitosan Into Versatile Nano Scale Materials with High Biocompatibility and Potential Biological Activities—A Review. BIONANOSCIENCE 2024; 14:4145-4166. [DOI: 10.1007/s12668-024-01564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/05/2025]
|
6
|
Gonçalves JO, Strieder MM, Silva LFO, Dos Reis GS, Dotto GL. Advanced technologies in water treatment: Chitosan and its modifications as effective agents in the adsorption of contaminants. Int J Biol Macromol 2024; 270:132307. [PMID: 38740151 DOI: 10.1016/j.ijbiomac.2024.132307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Chitosan, derived from the abundant biopolymer chitin, has emerged as a promising option for water treatment due to its intrinsic bioavailability. This review emphasizes the notable characteristics of chitosan, which allow for various modifications, expanding its applications. The polymer's effectiveness in adsorbing contaminants, particularly in advanced water treatment technologies, is highlighted. The review underscores the potential of chitosan-based hybrid materials, including nanocomposites, hydrogels, membranes, films, sponges, nanoparticles, microspheres, and flakes, as innovative alternatives to traditional chemical-based adsorbents. The advantages of using these materials in wastewater treatment, especially in removing heavy metals, dyes, and emerging compounds, are explored. The study delves into the mechanisms involved in wastewater treatment with chitosan, emphasizing the interactions between the polymer and various contaminants. Additionally, the application of chitosan as a contaminant removal agent in a post-pandemic context is addressed, considering the challenges related to waste management and environmental preservation. The analysis highlights the potential contribution of chitosan in mitigating environmental impacts post-pandemic, offering practical solutions for treating contaminated effluents and promoting sustainability. The study addresses current obstacles and prospects for chitosan-based wastewater treatment, emphasizing its promising role in sustainable water management.
Collapse
Affiliation(s)
- Janaína Oliveira Gonçalves
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia.
| | - Monique Martins Strieder
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), Universidade Estadual de Campinas, Rua Pedro Zaccaria 1300, Limeira, São Paulo 13484-350, Brazil
| | | | - Glaydson Simões Dos Reis
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
7
|
Yaashikaa PR, Palanivelu J, Hemavathy RV. Sustainable approaches for removing toxic heavy metal from contaminated water: A comprehensive review of bioremediation and biosorption techniques. CHEMOSPHERE 2024; 357:141933. [PMID: 38615953 DOI: 10.1016/j.chemosphere.2024.141933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
In this comprehensive study, highlights emerging environmentally friendly methods to eliminating hazardous heavy metals from contaminated water, with an emphasis on bioremediation and biosorption. Breakthroughs, such as the combination of biological remediation and nanotechnology to improve the elimination of metals effectiveness and the use of genetically modified microbes for targeted pollutant breakdown. Developing biosorption materials made from agricultural waste and biochar, this indicates interesting areas for future research and emphasizes the necessity of sustainable practices in tackling heavy metal contamination in water systems. There seems to be a surge in enthusiasm for the utilization of biological remediation and biosorption methods as sustainable and viable options for eliminating heavy metals from contaminated water in the past couple of decades. The present review intends to offer an in-depth review of the latest understanding and advances in the discipline of biological remediation methods like bioaccumulation, biofiltration, bio-slurping, and bio-venting. Biosorption is specifically explained and includes waste biomass as biosorbent with the removal mechanisms and the hindrances caused in the process are detailed. Advances in biosorption like microbes as biosorbents and the mechanism involved in it. Additionally, novel enhancement techniques like immobilization, genetic modification, and ultrasound-assisted treatment in microbial sorbent are clarified. However, the review extended with analyzing the future advances in the overall biological methods and consequences of heavy metal pollution.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India 602105.
| | - Jeyanthi Palanivelu
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India 602105
| | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| |
Collapse
|
8
|
Dar A, Rehman R, Hafeez M, Ul-Ain N, Yaseen G, Anwar J, Uz-Zaman W, T Al-Thagafi Z, E Al-Hazemi M, Akram M, Sillanpaa M. Sequestration of cyanide ions from aqueous medium by physio-chemically fabricated biochar of peels of banana and grape fruit in ecofriendly way. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1701-1715. [PMID: 38755758 DOI: 10.1080/15226514.2024.2349721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Pakistan is an agricultural country producing plenty of fruits, like: mango, banana, apple, peaches, grapes, plums, variety of citrus fruits including lemon, grapefruit, and oranges. So far the peels of most of the fruits are usually wasted and not properly utilized anywhere. In this work, the peels of banana and grapefruit are converted into biochar by slow pyrolysis under controlled supply of air and used for sequestering cyanide ions from aqueous medium after chemical modification with ZnCl2 and sodium dodecyl sulfate (SDS). The modified biochar was characterized by various instrumental techniques, like: SEM, FTIR, TGA, and CHNS. Different parameters, like: time, temperature, pH, and dose of adsorbent affecting the adsorption of cyanide ions, onto prepared biochar were optimized and to understand the adsorption phenomenon, kinetic and thermodynamic studies were performed. Concentration of cyanide ions was estimated by employing standard ion selective electrode system and it is found that Sodium Dodecyl Sulfate treated biochar of banana peels shown more adsorption capacity, i.e.,: 17.080 mg/g as compared to all samples. Present work revealed that the biochar produced from the fruit waste has sufficient potential to eliminate trace quantities of cyanide from water, especially after treatment with sodium dodecyl sulfate.
Collapse
Affiliation(s)
- Amara Dar
- Centre for Analytical Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Rabia Rehman
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Mahreen Hafeez
- Centre for Analytical Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Noor- Ul-Ain
- Chemistry Department. School of Science, University of Management and Technology, Lahore, Pakistan
| | - Ghazala Yaseen
- Chemistry Department. School of Science, University of Management and Technology, Lahore, Pakistan
| | - Jamil Anwar
- Centre for Analytical Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
- Chemistry Department. School of Science, University of Management and Technology, Lahore, Pakistan
| | - Waheed- Uz-Zaman
- Centre for Analytical Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Zahrah T Al-Thagafi
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Maha E Al-Hazemi
- Department of Chemistry, College of Science and Art at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Mehwish Akram
- Institute of Geology, University of the Punjab, Lahore, Pakistan
| | - Mika Sillanpaa
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
9
|
Leal JF, Amado PSM, Lourenço JP, Cristiano MLS. The Potential of Chitosan-Based Composites for Adsorption of Diarrheic Shellfish Toxins. Toxins (Basel) 2024; 16:200. [PMID: 38668625 PMCID: PMC11053920 DOI: 10.3390/toxins16040200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Okadaic acid (OA) is one of the most potent marine biotoxins, causing diarrheal shellfish poisoning (DSP). The proliferation of microalgae that produce OA and its analogues is frequent, threatening human health and socioeconomic development. Several methods have been tested to remove this biotoxin from aquatic systems, yet none has proven enough efficacy to solve the problem. In this work, we synthesized and characterized low-cost composites and tested their efficacy for OA adsorption in saltwater. For the synthesis of the composites, the following starting materials were considered: chitosan of low and medium molecular weight (CH-LW and CH-MW, respectively), activated carbon (AC), and montmorillonite (MMT). Characterization by vibrational spectroscopy (FTIR), X-ray diffraction (XRD), and microscopy revealed differences in the mode of interaction of CH-LW and CH-MW with AC and MMT, suggesting that the interaction of CH-MW with MMT has mainly occurred on the surface of the clay particles and no sufficient intercalation of CH-MW into the MMT interlayers took place. Among the composites tested (CH-LW/AC, CH-MW/AC, CH-MW/AC/MMT, and CH-MW/MMT), CH-MW/MMT was the one that revealed lower OA adsorption efficiency, given the findings evidenced by the structural characterization. On the contrary, the CH-MW/AC composite revealed the highest average percentage of OA adsorption (53 ± 11%). Although preliminary, the results obtained in this work open up good perspectives for the use of this type of composite material as an adsorbent in the removal of OA from marine environments.
Collapse
Affiliation(s)
- Joana F. Leal
- Centro de Ciências do Mar (CCMAR/CIMAR LA), Universidade do Algarve (UAlg), 8005-039 Faro, Portugal; (J.F.L.); (P.S.M.A.)
- Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8005-039 Faro, Portugal;
| | - Patrícia S. M. Amado
- Centro de Ciências do Mar (CCMAR/CIMAR LA), Universidade do Algarve (UAlg), 8005-039 Faro, Portugal; (J.F.L.); (P.S.M.A.)
- Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8005-039 Faro, Portugal;
| | - João P. Lourenço
- Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8005-039 Faro, Portugal;
- Centro de Química Estrutural (CQE), Instituto de Ciências Moleculares (IMS), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria L. S. Cristiano
- Centro de Ciências do Mar (CCMAR/CIMAR LA), Universidade do Algarve (UAlg), 8005-039 Faro, Portugal; (J.F.L.); (P.S.M.A.)
- Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8005-039 Faro, Portugal;
| |
Collapse
|
10
|
Nidheesh PV, Kumar M, Venkateshwaran G, Ambika S, Bhaskar S, Vinay, Ghosh P. Conversion of locally available materials to biochar and activated carbon for drinking water treatment. CHEMOSPHERE 2024; 353:141566. [PMID: 38428536 DOI: 10.1016/j.chemosphere.2024.141566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/16/2023] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
For environmental sustainability and to achieve sustainable development goals (SDGs), drinking water treatment must be done at a reasonable cost with minimal environmental impact. Therefore, treating contaminated drinking water requires materials and approaches that are inexpensive, produced locally, and effortlessly. Hence, locally available materials and their derivatives, such as biochar (BC) and activated carbon (AC) were investigated thoroughly. Several researchers and their findings show that the application of locally accessible materials and their derivatives are capable of the adsorptive removal of organic and inorganic contaminants from drinking water. The application of locally available materials such as lignocellulosic materials/waste and its thermo-chemically derived products, including BC and AC were found effective in the treatment of contaminated drinking water. Thus, this review aims to thoroughly examine the latest developments in the use of locally accessible feedstocks for tailoring BC and AC, as well as their features and applications in the treatment of drinking water. We attempted to explain facts related to the potential mechanisms of BC and AC, such as complexation, co-precipitation, electrostatic interaction, and ion exchange to treat water, thereby achieving a risk-free remediation approach to polluted water. Additionally, this research offers guidance on creating efficient household treatment units based on the health risks associated with customized adsorbents and cost-benefit analyses. Lastly, this review work discusses the current obstacles for using locally accessible materials and their thermo-chemically produced by-products to purify drinking water, as well as the necessity for technological interventions.
Collapse
Affiliation(s)
- P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR - National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - Manish Kumar
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - G Venkateshwaran
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, India
| | - S Ambika
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, India
| | - S Bhaskar
- Department of Civil Engineering, National Institute of Technology, Calicut, NIT Campus, P.O 673 601, Kozhikode, India
| | - Vinay
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India; Industrial Pollution Control-IV Division, Central Pollution Control Board (CPCB), Ministry of Environment, Forest and Climate Change (MoEF&CC), Parivesh Bhawan, East Arjun Nagar, Delhi, 110032, India
| | - Pooja Ghosh
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
11
|
Kamalesh R, Karishma S, Saravanan A. Progress in environmental monitoring and mitigation strategies for herbicides and insecticides: A comprehensive review. CHEMOSPHERE 2024; 352:141421. [PMID: 38360415 DOI: 10.1016/j.chemosphere.2024.141421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Herbicides and insecticides are pervasively applied in agricultural sector to increase the yield by controlling or eliminating bug vermin and weeds. Although, resistance development occurs, direct and indirect impact on human health and ecosystem is clearly visible. Normally, herbicides and pesticides are water soluble in nature; accordingly, it is hard to decrease their deadliness and to dis-appear them from the environment. They are profoundly specific, and considered as poisonous to various peoples in agricultural and industrial work places. In order to substantially reduce the harmful impacts, it is crucial to thoroughly examine the detection and mitigation measures for these compounds. The primary objective of this paper is to provide an overview of various herbicide and pesticide detection techniques and associated remedial techniques. A short summary on occurrence and harmful effects of herbicides/insecticides on ecosystem has been included to the study. The conventional and advanced, rapid techniques for the detection of insecticides and herbicides were described in detail. A detailed overview on several mitigation strategies including advanced oxidation, adsorption, electrochemical process, and bioremediation as well as the mechanism behind the strategic approaches to reduce the effects of growing pesticide pollution has been emphasized. Regardless of the detection techniques and mitigation strategies, the recent advances employed, obstacles, and perspectives have been discussed in detail.
Collapse
Affiliation(s)
- R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
12
|
Adeoye JB, Tan YH, Lau SY, Tan YY, Chiong T, Mubarak NM, Khalid M. Advanced oxidation and biological integrated processes for pharmaceutical wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120170. [PMID: 38308991 DOI: 10.1016/j.jenvman.2024.120170] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/02/2024] [Accepted: 01/20/2024] [Indexed: 02/05/2024]
Abstract
The stress of pharmaceutical and personal care products (PPCPs) discharging to water bodies and the environment due to increased industrialization has reduced the availability of clean water. This poses a potential health hazard to animals and human life because water contamination is a great issue to the climate, plants, humans, and aquatic habitats. Pharmaceutical compounds are quantified in concentrations ranging from ng/Lto μg/L in aquatic environments worldwide. According to (Alsubih et al., 2022), the concentrations of carbamazepine, sulfamethoxazole, Lutvastatin, ciprofloxacin, and lorazepam were 616-906 ng/L, 16,532-21635 ng/L, 694-2068 ng/L, 734-1178 ng/L, and 2742-3775 ng/L respectively. Protecting and preserving our environment must be well-driven by all sectors to sustain development. Various methods have been utilized to eliminate the emerging pollutants, such as adsorption and biological and advanced oxidation processes. These methods have their benefits and drawbacks in the removal of pharmaceuticals. Successful wastewater treatment can save the water bodies; integrating green initiatives into the main purposes of actor firms, combined with continually periodic awareness of the current and potential implications of environmental/water pollution, will play a major role in water conservation. This article reviews key publications on the adsorption, biological, and advanced oxidation processes used to remove pharmaceutical products from the aquatic environment. It also sheds light on the pharmaceutical adsorption capability of adsorption, biological and advanced oxidation methods, and their efficacy in pharmaceutical concentration removal. A research gap has been identified for researchers to explore in order to eliminate the problem associated with pharmaceutical wastes. Therefore, future study should focus on combining advanced oxidation and adsorption processes for an excellent way to eliminate pharmaceutical products, even at low concentrations. Biological processes should focus on ideal circumstances and microbial processes that enable the simultaneous removal of pharmaceutical compounds and the effects of diverse environments on removal efficiency.
Collapse
Affiliation(s)
- John Busayo Adeoye
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Yie Hua Tan
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Sie Yon Lau
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Yee Yong Tan
- Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Sarawak, Miri, 98009, Malaysia
| | - Tung Chiong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam; Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mohammad Khalid
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia; Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140401, India
| |
Collapse
|
13
|
Nayak A, Chaudhary P, Bhushan B, Ghai K, Singh S, Sillanpää M. Removal of emergent pollutants: A review on recent updates and future perspectives on polysaccharide-based composites vis-à-vis traditional adsorbents. Int J Biol Macromol 2024; 258:129092. [PMID: 38171444 DOI: 10.1016/j.ijbiomac.2023.129092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/16/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
There is a growing incidence in the presence of emergent pollutants like the pesticides and pharmaceuticals in water bodies. The matter of environmental concern is their synthetic and persistent nature which has resulted in induced toxicity/damaging effect to the vital functioning of the different organs in the aquatic community. Traditional adsorbents have exhibited limitations like low stability and minimum reuse ability. Composites of such adsorbents with polysaccharides have demonstrated distinct features like improved surface area, porosity, adsorptivity; improved reusability and structural integrity; improved mechanical strength, thermal stability when applied for the removal of the emergent pollutants. The biocompatibility and biodegradability of such fabricated composites is established; thereby making the water treatment process cost effective, sustainable and environmentally friendly. The present review has dealt with an in-depth, up-dated literature compilation of traditional as well as polysaccharide based composite adsorbents and addressed their performance evaluation for the removal of pharmaceuticals and pesticides from wastewater. A comparative study has revealed the merits of polysaccharide based composites and discussions have been made with a focus on future research directions in the related area.
Collapse
Affiliation(s)
- Arunima Nayak
- Department of Chemistry, Graphic Era University, 248002 Dehradun, India.
| | - Priya Chaudhary
- Department of Chemistry, Graphic Era University, 248002 Dehradun, India
| | - Brij Bhushan
- Department of Chemistry, Graphic Era University, 248002 Dehradun, India
| | - Kapil Ghai
- Department of Chemistry, Graphic Era Hill University, 248002 Dehradun, India
| | - Seema Singh
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand 248007,India
| | - Mika Sillanpää
- Sustainability Cluster, School of Advanced Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248007, India; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark
| |
Collapse
|
14
|
Rajendran HK, Das M, Chandrasekar R, Deen MA, Murugan B, Narayanasamy S, Sahoo L. UiO-66 octahedrons for adsorptive removal of direct blue-6: process optimization, interaction mechanism, and phytotoxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114264-114282. [PMID: 37861833 DOI: 10.1007/s11356-023-30296-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
The materials for water treatment have been evolving in multitude of dimensions, indicating the importance of water reuse and increasing level of water pollution around the globe. Among the various materials that are utilized in wastewater treatment, the material that has attracted the research community for the past decades is the metal organic framework (MOF). In this work one of the water stable and microporous MOF, UiO-66, and its aminated version has been employed to adsorb an anionic azo dye, direct blue-6 (DB-6), from the aqueous matrix. Performance of both the MOFs was compared to know the efficiency under varying solution conditions. The optimized parameters for DB-6 adsorption by UiO-66 was performed using response surface methodology. This numerical optimization was further extended with canonical and ridge analysis. Under optimal conditions, the materials were exhibiting a good adsorption capacity of 754.4 mg/g. The materials were analyzed in terms of morphology, crystallinity, thermal stability, and surface area using instruments like X-ray diffraction, electron microscopy, thermogravimetric analysis, and BET surface area analysis. The mechanism of interaction between UiO-66 and DB-6 molecule was elucidated with the help of XPS analysis which helps to know the main interacting group of UiO-66. This study was concluded with a phytotoxicity analysis of DB-6 and the antioxidant system of Vigna radiata assessed using pre and post adsorbed water.
Collapse
Affiliation(s)
- Harish Kumar Rajendran
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Mahesh Das
- Translational Crop Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Ragavan Chandrasekar
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Mohammed Askkar Deen
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Bharatheeswaran Murugan
- Translational Crop Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Selvaraju Narayanasamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India.
| | - Lingaraj Sahoo
- Translational Crop Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| |
Collapse
|
15
|
Kong Q, Zhang X, Ma K, Gong Y, Peng H, Qi W. PEI-modified chitosan/activated carbon composites for Cu(II) removal from simulated pyrophosphate plating rinsing wastewater. Int J Biol Macromol 2023; 251:126429. [PMID: 37604415 DOI: 10.1016/j.ijbiomac.2023.126429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
It is a challenging task to remove heavy metal ions efficiently from the wastewater containing high concentrations of complexants. In this work, a novel PEI-modified chitosan/activated carbon composite adsorbent (PCA) was prepared and applied to the removal of Cu(II) from pyrophosphate plating rinsing wastewater. The main species of Cu(II) in the pyrophosphate wastewater was [Cu(HP2O7)2]4- or [Cu(P2O7)2]6-, which were denoted as [Cu(II)-PP] anions. The maximum adsorption capacity of PCA for Cu(II) reached 1.41 mmol g-1 under the condition of pH = 8 and molar ratio of pyrophosphate to Cu(II) = 4:1. The adsorption kinetic behavior of Cu(II) on PCA followed the Elovich model best and PCA attained adsorption equilibrium within 36 h. The thermodynamic studies showed that the adsorption process of Cu(II) by PCA was endothermic and spontaneous. The PCA fixed bed column was used to remove Cu(II) from simulated pyrophosphate plating rinsing wastewater. After three consecutive adsorption-desorption cycles, the adsorption performance, hydraulic conductivity, and mechanical stability of PCA column did not decrease. The FTIR and XPS analysis results indicated that [Cu(II)-PP] anions can be adsorbed on PCA by electrostatic attraction with protonated amine groups or coordination with the amine groups of PCA via ligand substitution.
Collapse
Affiliation(s)
- Qingdi Kong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiaojie Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Kangrui Ma
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yuefa Gong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Hong Peng
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Wei Qi
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
16
|
Lee JW, Han J, Choi YK, Park S, Lee SH. Reswellable alginate/activated carbon/carboxymethyl cellulose hydrogel beads for ibuprofen adsorption from aqueous solutions. Int J Biol Macromol 2023; 249:126053. [PMID: 37517753 DOI: 10.1016/j.ijbiomac.2023.126053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
In this study, alginate (Alg) composite beads were prepared by blending with activated carbon (AC) to enhance adsorption capacity for ibuprofen and carboxymethyl cellulose (CMC) to create a reswellable hydrogel. The dried Alg/AC/CMC composite beads could be recovered to sizes and morphologies similar to the initial hydrogel states via a simple reswelling process; however, the dried Alg/AC composite beads without CMC could not be recovered to the initial hydrogel state. Following the reswelling process, the dried Alg/AC/CMC beads demonstrated an 86 % recovery (qe = 34.0 mg/g) in the adsorption capacity for ibuprofen compared to the initial hydrogel beads (qe = 39.6). In contrast, the reswelled Alg/AC beads exhibited only 18 % (qe = 8.6) of the initial adsorption capacity (qe = 48.1). We elucidated the effects of the substitution degree of CMC, AC content, and solution pH on the reswelling property and ibuprofen adsorption capacity of the Alg/AC/CMC composite beads. The adsorption kinetics and isotherms of the prepared composite beads in the hydrogel and reswelled states fit the pseudo-second-order and Langmuir models, respectively. Furthermore, the reswelled Alg composite beads exhibited high adsorption capacity (>93 %) after 10 cycles. Taken together, our findings indicate that the Alg/AC/CMC composite beads can be used as adsorbents without a considerable decrease in adsorption performance by reswelling the beads with distilled water after long-term storage in a dry state.
Collapse
Affiliation(s)
- Jeong Woo Lee
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jiwoo Han
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yong-Keun Choi
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, ChoiLab Inc., Seoul 01811, Republic of Korea
| | - Saerom Park
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, ChoiLab Inc., Seoul 01811, Republic of Korea.
| | - Sang Hyun Lee
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
17
|
Al-Qahtani KM, Abd Elkarim MS, Al-Fawzan FF, Al-Afify ADG, Ali MHH. Biosorption of hexavalent chromium and molybdenum ions using extremophilic cyanobacterial mats: efficiency, isothermal, and kinetic studies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:228-240. [PMID: 37431240 DOI: 10.1080/15226514.2023.2232878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Two extremophilic cyanobacterial-bacterial consortiums naturally grow in extreme habitats of high temperature and hypersaline were used to remediate hexavalent chromium and molybdenum ions. Extremophilic cyanobacterial-bacterial biomasses were collected from Zeiton and Aghormi Lakes in the Western Desert, Egypt, and were applied as novel and promising natural adsorbents for hexavalent chromium and molybdenum. Some physical characterizations of biosorbent surfaces were described using scanning electron microscope, energy-dispersive X-ray spectroscopy, Fourier transformation infrared spectroscopy, and surface area measure. The maximum removal efficiencies of both biosorbents were 15.62-22.72 mg/g for Cr(VI) and 42.15-46.29 mg/g for Mo(VI) at optimum conditions of pH 5, adsorbent biomass of 2.5-3.0 g/L, and 150 min contact time. Langmuir and Freundlich adsorption models were better fit for Cr(VI), whereas Langmuir model was better fit than the Freundlich model for Mo(VI) biosorption. The kinetic results revealed that the adsorption reaction obeyed the pseudo-second-order model confirming a chemisorption interaction between microbial films and the adsorbed metals. Zeiton biomass exhibited a relatively higher affinity for removing Cr(VI) than Aghormi biomass but a lower affinity for Mo(VI) removal. The results showed that these extremophiles are novel and promising candidates for toxic metal remediation.
Collapse
Affiliation(s)
- Khairia M Al-Qahtani
- Chemistry Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamad S Abd Elkarim
- Hydrobiology Department, National Institute of Oceanography & Fisheries, Cairo, Egypt
| | - Foziah F Al-Fawzan
- Chemistry Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Afify D G Al-Afify
- Chemistry Department, National Institute of Oceanography & Fisheries, Cairo, Egypt
| | - Mohamed H H Ali
- Chemistry Department, National Institute of Oceanography & Fisheries, Cairo, Egypt
| |
Collapse
|
18
|
Pournamdari E, Niknam L, Davoudi S, Khazali F. Response surface methodology, and artificial neural network model for removal of textile dye Reactive Yellow 105 from wastewater using Zeolitic Imidazolate-67 modified by Fe 3O 4 nanoparticles. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:98-113. [PMID: 37390844 DOI: 10.1080/15226514.2023.2226217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The applicability of Zeolitic Imidazolate-67, Modified by Fe3O4 Nanoparticles, was studied for removing textile dye Reactive yellow 105 from wastewater by adsorption method using response surface methodology (RSM). For the adsorption characterization of the adsorbent used in HE-4G dye adsorption, BET, FTIR, XRD, and SEM analyses were performed. The impacts of variables, including initial HE-4G dye concentration (X1), pH (X2), adsorbent dosage (X3), and sonication time (X4), the highest removal efficiency as 98%, 10 mg/L initial concentration, pH 6, 0.025 g adsorbent dosage, and 6.0 min time respectively. Adsorption equilibrium and kinetic data it, that data were for the Langmuir isotherm, pseudo-second-order kinetics, and maximum adsorption capacity (105.0 mg/g), respectively. Thermodynamic parameters indicated HE-4G dye adsorption is feasible, spontaneous and exothermic. Promising treatment capabilities of the ZIF-67-Fe3O4NPs have been during the comparative adsorption removal of HE-4G dye from DI water against spiked natural water samples and synthetic Na+, K+, Ca2+, and Mg2+ solutions. The observed outcome is the suitability of the artificial neural network model as a tool for mean square error, (MSEANN = 0.53, and R2 = 0.9926) for removing HE-4G dye. Results that ZIF-67-Fe3O4NPs, like being recyclable, and cost-efficient made it a promising absorbent for wastewater.
Collapse
Affiliation(s)
- Elham Pournamdari
- Department of Chemistry, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Leila Niknam
- Department of Chemistry, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Shahnaz Davoudi
- Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
| | - Fereydoon Khazali
- Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
| |
Collapse
|
19
|
Yadav H, Tadikonda BV, Gaurav S, Kumar S. Fate and Transport of Coronavirus Surrogate through Compacted Clays for Pathogenic Waste Disposal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:8042-8054. [PMID: 37248073 DOI: 10.1021/acs.langmuir.3c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An increased pathogenic waste post-COVID-19 pandemic forced policymakers to treat biomedical waste (BMW) similar to municipal solid waste (MSW) to dispose into dumpsites and MSW landfills across the globe. The granular bentonite of geosynthetic clay liners (GCLs) does not completely seal the macro-voids upon saturation due to the loss of osmotic potential in the salt environment from the leachate. Such behavior of GCLs can lead to advection-dominant virus migration through the liner system. A knowledge of the fate and transport of coronavirus and other viral pathogens in compacted clays is essential for safe disposal of the viral pathogens in MSW landfills. Although the attenuation and transport parameters for coronavirus have been recently evaluated theoretically, experimental backup is currently lacking. The present work uses Newcastle disease virus (NDV) as a surrogate to coronavirus due to structural similarities for studying the fate and transport in the compacted natural clays. This study also implicitly addresses the waste management facilities for waste generated from NDV outbreaks through poultry litter and carcasses. The interaction of bentonite and kaolin clays with the NDV was studied by varying the virus concentration, interaction time, and clay dose using batch sorption tests. The studied clays showed excellent attenuation efficiency for the NDV. Design parameters, viz., the diffusion coefficient and retardation factor, were evaluated, affirming the suitability of these clays for exclusive pathogenic waste disposal protocols that are discussed in this article.
Collapse
Affiliation(s)
- Himanshu Yadav
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam India, 781039
| | - Bharat Venkata Tadikonda
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam India, 781039
| | - Shubham Gaurav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam India, 781039
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam India, 781039
| |
Collapse
|
20
|
Elimination of toxic azo dye using a calcium alginate beads impregnated with NiO/activated carbon: Preparation, characterization and RSM optimization. Int J Biol Macromol 2023; 233:123582. [PMID: 36764345 DOI: 10.1016/j.ijbiomac.2023.123582] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/20/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Nickel oxide nanoparticles supported activated carbon (AC-NiO) was fabricated using thermal activation. Then, AC-NiO composite was immobilized on alginate beads to obtain 3-dimensional network structure ALG@AC-NiO nanocomposite beads for catalytic reduction of Congo red (CR) dye. The resulting nanocomposite beads were identified by various physical techniques. The crystalline nature and dispersion of NiO nanoparticles was defined by the XRD and EDS techniques, respectively. ALG@AC-NiO beads have a Ni element content of 4.65 wt% with an average NiO particle diameter of 23 nm. The statistical approach mathematically describes the catalytic reduction of the CR dye as a function of the NaBH4 concentration, the catalyst dose and the concentration of the CR dye modeled by a BBD-RSM. According to the statistical modeling and the optimization process, the catalytic optimum conditions were obtained for NaBH4 concentration of 0.05 M, catalyst dose of 11 mg and CR dye concentration of 80 ppm who permit meet 99.67 % of CR dye conversion. The adjusted coefficient of determination (R2 = 0.9957) indicates that the considered model was quite suitable with a good correlation between the experiment and predicted.
Collapse
|