1
|
Rastegari F, Asghari S, Mohammadpoor-Baltork I, Sabzyan H, Tangestaninejad S, Moghadam M, Mirkhani V. A pH-dependent and charge selective covalent organic framework for removal of dyes from aqueous solutions. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135075. [PMID: 38986412 DOI: 10.1016/j.jhazmat.2024.135075] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
A novel imine-linked COF is synthesized by the condensation of 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) and 2-hydroxy-5-methoxyisophthalaldehyde (HMIPA) under solvothermal conditions. This COF adsorbs preferentially the neutral dye Neutral Red (NR) over the positively charged dye Methylene Blue (MB) at pH 7, and the negatively charged Methyl Orange (MO) over the positively charged Methylene Blue (MB) at pH 3. The maximum adsorption capacities (qe) obtained within very short times (11-60 min) under optimized conditions were 108, 185 and 429 mg.g-1 for the MB, MO, and NR dyes, respectively. These adsorptions obey the Langmuir isotherm and pseudo-second-order kinetics. The prepared TAPT-HMIPA-COF is used successfully for the removal of the dyes from real water and treated wastewater samples. The adsorption data, BET, FTIR, and zeta potential measurements show that the electrostatic, π-π stacking and hydrogen bond interactions are responsible for the adsorption of organic dyes on the surface of the prepared COF. Due to recyclability, high capacity and efficiency for the adsorption of positive, negative and neutral organic dyes, this COF can be considered promising for simultaneous removal of various dyes from aqueous solutions at adjusted pHs.
Collapse
Affiliation(s)
- Forouz Rastegari
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran
| | - Saeid Asghari
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran
| | | | - Hassan Sabzyan
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Shahram Tangestaninejad
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran
| | - Majid Moghadam
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran
| | - Valiollah Mirkhani
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
2
|
Kim HJ, Kim H, Lee U, Oh HS, Kim HW, Lee J. Removal of tetramethylammonium hydroxide (TMAH) by cold plasma treatment combined with periodate oxidation: Degradation, kinetics, and toxicity study. CHEMOSPHERE 2024; 362:142704. [PMID: 38925518 DOI: 10.1016/j.chemosphere.2024.142704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Tetramethylammonium hydroxide (TMAH), which is a chemical used in the electronic industry, is classified as a hazardous material (HAZMAT class 8) that threatens aquatic ecosystems and human health. Consequently, numerous studies have attempted to remove TMAH using various treatment methods, including advanced oxidation processes such as ozone, UV, or Fenton oxidation. However, prior research has indicated a low kinetic rate of TMAH removal. In this context, we proposed an alternative to TMAH degradation by combining a cold plasma (CP) process with periodate oxidation. As for the kinetics of TMAH removal, the kinetic constant was improved by 5 times (0.1661 and 0.0301 for 40.56 and 2.2 W, respectively) as the electric power of a CP system increased from 2.2 to 40.56 W. The kinetic constant of a 40.56 W CP system further increased by 54 times (1.6250) than a 2 W CP system when 4 mM periodate was used simultaneously. As a result, the integrated CP/periodate system represented 2 times higher TMAH removal efficiency (29.5%) than a 2 W CP system (14.4%). This excellent TMAH degradation capability of the integrated CP/periodate system became pronounced at pH 10 and 25 °C. Overall, the integrated CP/periodate system is expected to be a viable management option for effectively controlling hazardous TMAH chemicals.
Collapse
Affiliation(s)
- Hee-Jun Kim
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Hyeok Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Uje Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Hyun-Suk Oh
- Department of Environmental Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Hyun-Woo Kim
- Department of Environmental Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Jaewoo Lee
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
3
|
Kim HJ, Lee TH, Hong Y, Lee JC, Kim HW. Enhanced oxidation of parabens in an aqueous solution by air-assisted cold plasma. CHEMOSPHERE 2024; 361:142570. [PMID: 38852636 DOI: 10.1016/j.chemosphere.2024.142570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/25/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Various contaminants of emerging concern (CECs) including pharmaceuticals and personal care products (PPCPs) have been known to threaten the aquatic ecosystem and human health even at low levels in surface water. Among them, the wide variety use of parabens as preservatives may pose potential threat to human because parabens may present estrogenic activity. Various advanced oxidation processes have been attempted to reduce parabens, but challenges using cold plasma (CP) are very rare. CP is worth paying attention to in reducing parabens because it has the advantage of generating radical ions, including reactive oxygen/nitrogen species and various ions. Accordingly, this study demonstrates how CP can be utilized and how CP competes with other advanced oxidation processes in energy requirements. Quantified ethyl-, propyl-, and butyl-paraben indicate that CP can effectively degrade them up to 99.1% within 3 h. Regression reveals that the kinetic coefficients of degradation can be increased to as high as 0.0328 min-1, comparable to other advanced oxidation processes. Many by-products generated from the oxidation of parabens provide evidence of the potential degradation pathway through CP treatment. In addition, we found that the electrical energy consumption per order of CP (39-95 kWh/m3/order) is superior to other advanced oxidation processes (69∼31,716 kWh/m3/order). Overall, these results suggest that CP may be a viable option to prevent adverse health-related consequences associated with parabens in receiving water.
Collapse
Affiliation(s)
- Hee-Jun Kim
- Division of Civil, Environmental, Mineral Resource and Energy Engineering, Department of Environmental Engineering, Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Environmental Fate and Exposure Research Group, Korea Institute of Toxicology, Jinju, Republic of Korea.
| | - Tae-Hun Lee
- Groon., Ltd., 109, Wonmanseong-ro, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Youngpyo Hong
- Groon., Ltd., 109, Wonmanseong-ro, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Jae-Cheol Lee
- Department of Environmental Engineering, School of Architecture, Civil and Environmental Engineering, Mokpo National University, Mokpo, 58554, Republic of Korea.
| | - Hyun-Woo Kim
- Division of Civil, Environmental, Mineral Resource and Energy Engineering, Department of Environmental Engineering, Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of Environment and Energy (BK21 Four), Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea.
| |
Collapse
|
4
|
Kandel DR, Poudel MB, Radoor S, Chang S, Lee J. Decoration of dandelion-like manganese-doped iron oxide microflowers on plasma-treated biochar for alleviation of heavy metal pollution in water. CHEMOSPHERE 2024; 357:141757. [PMID: 38583537 DOI: 10.1016/j.chemosphere.2024.141757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024]
Abstract
Carbon-based biowaste incorporated with inorganic oxides as a composite is an enticing option to mitigate heavy metal pollution in water resources due to its more economical and efficient performance. With this in mind, we constructed manganese-doped iron oxide microflowers resembling the dandelion-like structure on the surface of cold plasma-treated carbonized rice husk (MnFe2O3/PCRH). The prepared composite exhibited 45% and 19% higher removal rates for Cu2+ and Cd2+, respectively than the pristine CRH. The MnFe2O3/PCRH composite was characterized using XRD, FTIR, FESEM, EDX, HR-TEM, XPS, BET, TGA, and zeta potential, while the adsorption capacities were investigated as a function of pH, time, and initial concentration in batch trials. As for the kinetics, the pseudo-second-order was the rate-limiting over the pseudo-first-order and Elovich model, demonstrating that the chemisorption process governed the adsorption of Cu2+ and Cd2+. Additionally, the maximum adsorption capacities of the MnFe2O3/PCRH were found to be 122.8 and 102.5 mg/g for Cu2+ and Cd2+, respectively. Based on thorough examinations by FESEM-EDS, FTIR, and XPS, the possible mechanisms for the adsorption can be ascribed to surface complexation by oxygen-containing groups, a dissolution-precipitation of the ions with -OH groups, electrostatic attraction between metal ions and the adsorbent's partially charged surface, coordination of Cu2+ and Cd2+ with π electrons by aromatic/graphitic carbon in the MnFe2O3/PCRH, and pore filling and diffusion. Lastly, the adsorption efficiencies were maintained at about 70% of its initial adsorption even after five adsorption-desorption cycles, displaying its remarkable stability and reusability.
Collapse
Affiliation(s)
- Dharma Raj Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Milan Babu Poudel
- Department of Convergence Technology Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Sabarish Radoor
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Seungwon Chang
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Jaewoo Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
5
|
Lee U, Park K, Chang S, Cho M, Lee J. Feasibility evaluation of near dissolved organic matter microfiltration (NDOM MF) for the efficient removal of microplastics in the water treatment process. CHEMOSPHERE 2024; 356:141882. [PMID: 38582163 DOI: 10.1016/j.chemosphere.2024.141882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/25/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Microfiltration (MF) using membranes with a mean pore size smaller than 0.45 μm has generally been used for particle removal from water, given that materials larger and smaller than 0.45 μm are regarded as particulates and dissolved organic matter (DOM), respectively. It is also the case for removing small-size microplastics (MPs). However, given their sizes (ca. 1 μm), there is room for further improvement of the productivity (i.e., water flux) in the pore size range of 0.45-1 μm on the condition that the removal rate is maintained. With this in mind, MF's water flux and removal rate were tested using seven different MF membranes, and the right pore, with the size of 0.8 μm, was found for MP removal, which is called near DOM (NDOM) MF. In the filtration test using polystyrene surrogate beads with an average particle diameter of 1.20 μm, NDOM MF exhibited a 1.7 to 13 times higher permeate flux than the conventional MF using 0.1, 0.2, and 0.45 μm membranes while maintaining a higher removal rate than 2 log. The excellent removal rate of the NDOM MF was attributable to the following three factors: (1) smaller mean pore size than the average particle diameter, (2) particle screening effect enhanced by the secondary layer formed by surface deposition, and (3) 3D mesh sublayer structure favorable for capturing penetrated particles. Furthermore, the outstanding filtration performance also appeared in a low-temperature (< 10°C) process, demonstrating that NDOM MF is feasible independently of temperature. Additionally, in constant flux filtration, NDOM MF demonstrated the long-term feasibility by lowering the transmembrane pressure and specific filtration energy by more than 2 times.
Collapse
Affiliation(s)
- Uje Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Kyeongyeon Park
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Seungwon Chang
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Min Cho
- Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| | - Jaewoo Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of Polymer-Nano Science and Technology, Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
6
|
Ghimire U, Jang SR, Adhikari JR, Kandel R, Song JH, Park CH. Conducting biointerface of spider-net-like chitosan-adorned polyurethane/SPIONs@SrO 2-fMWCNTs for bone tissue engineering and antibacterial efficacy. Int J Biol Macromol 2024; 264:130602. [PMID: 38447824 DOI: 10.1016/j.ijbiomac.2024.130602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
In pursuit of enhancing bone cell proliferation, this study delves into the fabrication of porous scaffolds through the integration of nanomaterials. Specifically, we present the development of highly conductive chitosan (CS) nanonets on fibro-porous polyurethane (PU) bio-membranes. These nanofibers comprise functionalized multiwall carbon nanotubes (fMWCNTs), well-dispersed superparamagnetic iron oxide (SPIONs), and strontium oxide (SrO2) nanoparticles. The resulting porous scaffold exhibits remarkable interfacial biocompatibility, antibacterial properties, and load-bearing capability. Through meticulous in vitro investigations, the CS-PU/SPIONs/SrO2-fMWCNTs nanofibrous scaffolds have demonstrated a propensity to promote bone cell regeneration. Notably, the integration of these nanomaterials has been found to upregulate crucial bone-related markers, including ALP, ARS, COL-I, RUNX2, and SPP-I. The evaluation of these markers, conducted through quantitative real-time polymerase chain reaction (qRT-PCR) and immunocytochemistry, substantiates the improved cell survival and enhanced osteogenic differentiation facilitated by the integrated nanomaterials. This comprehensive analysis underscores the efficacy of CS-PU/SPIONs/SrO2-fMWCNTs bioscaffolds in promoting MC3T3-E1 cell regeneration within, thereby holding promise for advancements in bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Upasana Ghimire
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Se Rim Jang
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jhalak Raj Adhikari
- Department of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Rupesh Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Department of IT Convergence Mechatronics Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea.
| | - Jun Hee Song
- Department of IT Convergence Mechatronics Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea.
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
7
|
Radoor S, Kandel DR, Park K, Jayakumar A, Karayil J, Lee J. Low-cost and eco-friendly PVA/carrageenan membrane to efficiently remove cationic dyes from water: Isotherms, kinetics, thermodynamics, and regeneration study. CHEMOSPHERE 2024; 350:140990. [PMID: 38141681 DOI: 10.1016/j.chemosphere.2023.140990] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Methylene blue (MB), a common dye in the textile industry, has a multitude of detrimental consequences on humans and the environment. Accordingly, it is necessary to remove dyes from water to guarantee our health and sustainable ecosystem. In this study, we developed polyvinyl alcohol (PVA)-based hydrogel adsorbents with high adsorption capacity by adding three types of carrageenan (kappa, iota, and lambda) to remove MB from water. Thanks to the functional groups, the PVA/carrageenan membranes dramatically increased the removal efficiency (kappa, 98.8%; iota, 97.0%; lambda, 95.4%) compared to the pure PVA membrane (6.3%). Among the three types of PVA/carrageenan membranes, the PVA/kappa-carrageenan membrane exhibited the best adsorption capacity of 147.8 mg/g. This result implies that steric hindrance was considerably significant, given that kappa carrageenan has only one sulfate group in the repeating unit, whereas iota and lambda carrageenan composite PVA membranes possess two and three sulfate groups. Apart from the maximum adsorption capacity, this study addressed a variety of characteristics of PVA/carrageenan membranes such as the effects of initial MB concentration, kappa carrageenan weight percentage, contact time, adsorbent dosage, and temperature on the adsorption performance. In addition, the kinetic and thermodynamic studies were also carried out. Lastly, the reusability of the PVA/carrageenan membrane was verified by the 98% removal efficiency maintained after five adsorption-desorption cycles.
Collapse
Affiliation(s)
- Sabarish Radoor
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Dharma Raj Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Kyeongyeon Park
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Aswathy Jayakumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jasila Karayil
- Department of Applied Science, Government Engineering College West Hill, Kozhikode, Kerala, India
| | - Jaewoo Lee
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
8
|
Sharma KP, Shin M, Kim K, Woo K, Awasthi GP, Yu C. Copper nanoparticles/polyaniline/molybdenum disulfide composite as a nonenzymatic electrochemical glucose sensor. Heliyon 2023; 9:e21272. [PMID: 38076125 PMCID: PMC10709213 DOI: 10.1016/j.heliyon.2023.e21272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/16/2024] Open
Abstract
A Cu@Pani/MoS2 nanocomposite was successfully synthesized via combined in-situ oxidative polymerization and hydrothermal reaction and applied to an electrochemical nonenzymatic glucose sensor. The morphology of the prepared Cu@Pani/MoS2 nanocomposite was characterized using FE-SEM and Cs-STEM, and electrochemical analysis was performed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry techniques. Electrostatic interaction between Cu@Pani and MoS2 greatly enhanced the charge dispersion, electrical conductivity, and stability, resulting in excellent electrochemical performance. The Cu@Pani/MoS2 was used as an electrocatalyst to detect glucose in an alkaline medium. The proposed glucose sensor exhibited a sensitivity, detection limit, and wide linear range of 69.82 μAmM-1cm-2, 1.78 μM, and 0.1-11 mM, respectively. The stability and selectivity of the Cu@Pani/MoS2 composite for glucose compared to that of the potential interfering species, as well as its ability to determine the glucose concentration in diluted human serum samples at a high recovery percentage, demonstrated its viability as a nonenzymatic glucose sensor.
Collapse
Affiliation(s)
- Krishna Prasad Sharma
- Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Miyeon Shin
- Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Kyong Kim
- Department of Rehabilitation Engineering, Daegu Hanny University, Gyeongsan, Gyeongsangbuk-do, 38609, Republic of Korea
| | - Kyungmin Woo
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Ganesh Prasad Awasthi
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Changho Yu
- Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
9
|
Cho SH, Jung S, Park J, Lee S, Kim Y, Lee J, Fai Tsang Y, Kwon EE. Strategic use of crop residue biochars for removal of hazardous compounds in wastewater. BIORESOURCE TECHNOLOGY 2023; 387:129658. [PMID: 37591466 DOI: 10.1016/j.biortech.2023.129658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Crop residues are affordable lignocellulosic waste in the world, and a large portion of the waste has been burned, releasing toxic pollutants into the environment. Since the crop residue is a carbon and ingredient rich material, it can be strategically used as a sorptive material for (in)organic pollutants in the wastewater after thermo-chemical valorization (i.e., biochar production). In this review, applications of crop residue biochars to adsorption of non-degradable synthetic dyes, antibiotics, herbicides, and inorganic heavy metals in wastewater were discussed. Properties (porosity, functional groups, heteroatom, and metal(oxide)s, etc.) and adsorption capacity relationships were comprehensively reviewed. The current challenges of crop residue biochars and guidelines for development of efficient adsorbents were also provided. In the last part, the future research directions for practical applications of the crop residue biochars in wastewater treatment plants have been suggested.
Collapse
Affiliation(s)
- Seong-Heon Cho
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sungyup Jung
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - JongHyun Park
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sangyoon Lee
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Youkwan Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jechan Lee
- Department of Global Smart City, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
10
|
Guo H, Deng Y, Yin H, Liu J, Zou S. Fabricating BiOCl Nanoflake/FeOCl Nanospindle Heterostructures for Efficient Visible-Light Photocatalysis. Molecules 2023; 28:6949. [PMID: 37836792 PMCID: PMC10574461 DOI: 10.3390/molecules28196949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Fabricating heterostructures with abundant interfaces and delicate nanoarchitectures is an attractive approach for optimizing photocatalysts. Herein, we report the facile synthesis of BiOCl nanoflake/FeOCl nanospindle heterostructures through a solution chemistry method at room temperature. Characterizations, including XRD, SEM, TEM, EDS, and XPS, were employed to investigate the synthesized materials. The results demonstrate that the in situ reaction between the Bi precursors and the surface Cl- of FeOCl enabled the bounded nucleation and growth of BiOCl on the surface of FeOCl nanospindles. Stable interfacial structures were established between BiOCl nanoflakes and FeOCl nanospindles using Cl- as the bridge. Regulating the Bi-to-Fe ratios allowed for the optimization of the BiOCl/FeOCl interface, thereby facilitating the separation of photogenerated carriers and accelerating the photocatalytic degradation of RhB. The BiOCl/FeOCl heterostructures with an optimal composition of 15% BiOCl exhibited ~90 times higher visible-light photocatalytic activity than FeOCl. Based on an analysis of the band structures and reactive oxygen species, we propose an S-scheme mechanism to elucidate the significantly enhanced photocatalytic performance observed in the BiOCl/FeOCl heterostructures.
Collapse
Affiliation(s)
- Heng Guo
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310036, China; (H.G.); (Y.D.); (H.Y.)
| | - Yangzhou Deng
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310036, China; (H.G.); (Y.D.); (H.Y.)
| | - Haoyong Yin
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310036, China; (H.G.); (Y.D.); (H.Y.)
| | - Juanjuan Liu
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310036, China; (H.G.); (Y.D.); (H.Y.)
| | - Shihui Zou
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
11
|
Li L, Guo W, Zhang S, Guo R, Zhang L. Electrospun Nanofiber Membrane: An Efficient and Environmentally Friendly Material for the Removal of Metals and Dyes. Molecules 2023; 28:molecules28083288. [PMID: 37110521 PMCID: PMC10144585 DOI: 10.3390/molecules28083288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
With the rapid development of nanotechnology, electrospun nanofiber membranes (ENM) application and preparation methods have attracted attention. With many advantages such as high specific surface area, obvious interconnected structure, and high porosity, ENM has been widely used in many fields, especially in water treatment, with more advantages. ENM solves the shortcomings of traditional means, such as low efficiency, high energy consumption, and difficulty in recycling, and it is suitable for recycling and treatment of industrial wastewater. This review begins with a description of electrospinning technology, describing the structure, preparation methods, and factors of common ENMs. At the same time, the removal of heavy metal ions and dyes by ENMs is introduced. The mechanism of ENM adsorption on heavy metal ions and dyes is chelation or electrostatic attraction, which has excellent adsorption and filtration ability for heavy metal ions and dyes, and the adsorption capacity of ENMs for heavy metal ions and dyes can be improved by increasing the metal chelation sites. Therefore, this technology and mechanism can be exploited to develop new, better, and more effective separation methods for the removal of harmful pollutants to cope with the gradually increasing water scarcity and pollution. Finally, it is hoped that this review will provide some guidance and direction for research on wastewater treatment and industrial production.
Collapse
Affiliation(s)
- Li Li
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Wei Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730070, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
12
|
Ibrahim AH, Lyu X, ElDeeb AB. Synthesized Zeolite Based on Egyptian Boiler Ash Residue and Kaolin for the Effective Removal of Heavy Metal Ions from Industrial Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1091. [PMID: 36985985 PMCID: PMC10052068 DOI: 10.3390/nano13061091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The increase of global environmental restrictions concerning solid and liquid industrial waste, in addition to the problem of climate change, which leads to a shortage of clean water resources, has raised interest in developing alternative and eco-friendly technologies for recycling and reducing the amount of these wastes. This study aims to utilize Sulfuric acid solid residue (SASR), which is produced as a useless waste in the multi-processing of Egyptian boiler ash. A modified mixture of SASR and kaolin was used as the basic component for synthesizing cost-effective zeolite using the alkaline fusion-hydrothermal method for the removal of heavy metal ions from industrial wastewater. The factors affecting the synthesis of zeolite, including the fusion temperature and SASR: kaolin mixing ratios, were investigated. The synthesized zeolite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), particle size analysis (PSD) and N2 adsorption-desorption. The SASR: kaolin weight ratio of 1:1.5 yields faujasite and sodalite zeolite with 85.21% crystallinity, which then shows the best composition and characteristics of the synthesized zeolite. The factors affecting the adsorption of Zn2+, Pb2+, Cu2+, and Cd2+ ions from wastewater on synthesized zeolite surfaces, including the effect of pH, adsorbent dosage, contact time, initial concentration, and temperature, have been investigated. The obtained results indicate that a pseudo-second-order kinetic model and Langmuir isotherm model describe the adsorption process. The maximum adsorption capacities of Zn2+, Pb2+, Cu2+, and Cd2+ ions onto zeolite at 20 °C were 12.025, 15.96, 12.247, and 16.17 mg·g-1, respectively. The main mechanisms controlling the removal of these metal ions from aqueous solution by synthesized zeolite were proposed to be either surface adsorption, precipitation, or ion exchange. The quality of the wastewater sample obtained from the Egyptian General Petroleum Corporation (Eastern Desert, Egypt) was highly improved using the synthesized zeolite and the content of heavy metal ions was significantly reduced, which enhances the utilization of the treated water in agriculture.
Collapse
Affiliation(s)
- Ahmed H. Ibrahim
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Mining and Petroleum Department, Faculty of Engineering, Al-Azhar University, Cairo 11884, Egypt
| | - Xianjun Lyu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Amr B. ElDeeb
- Mining and Petroleum Department, Faculty of Engineering, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
13
|
Benedoue S, Benedet M, Gasparotto A, Gauquelin N, Orekhov A, Verbeeck J, Seraglia R, Pagot G, Rizzi GA, Balzano V, Gavioli L, Noto VD, Barreca D, Maccato C. Insights into the Photoelectrocatalytic Behavior of gCN-Based Anode Materials Supported on Ni Foams. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061035. [PMID: 36985929 PMCID: PMC10057045 DOI: 10.3390/nano13061035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 05/27/2023]
Abstract
Graphitic carbon nitride (gCN) is a promising n-type semiconductor widely investigated for photo-assisted water splitting, but less studied for the (photo)electrochemical degradation of aqueous organic pollutants. In these fields, attractive perspectives for advancements are offered by a proper engineering of the material properties, e.g., by depositing gCN onto conductive and porous scaffolds, tailoring its nanoscale morphology, and functionalizing it with suitable cocatalysts. The present study reports on a simple and easily controllable synthesis of gCN flakes on Ni foam substrates by electrophoretic deposition (EPD), and on their eventual decoration with Co-based cocatalysts [CoO, CoFe2O4, cobalt phosphate (CoPi)] via radio frequency (RF)-sputtering or electrodeposition. After examining the influence of processing conditions on the material characteristics, the developed systems are comparatively investigated as (photo)anodes for water splitting and photoelectrocatalysts for the degradation of a recalcitrant water pollutant [potassium hydrogen phthalate (KHP)]. The obtained results highlight that while gCN decoration with Co-based cocatalysts boosts water splitting performances, bare gCN as such is more efficient in KHP abatement, due to the occurrence of a different reaction mechanism. The related insights, provided by a multi-technique characterization, may provide valuable guidelines for the implementation of active nanomaterials in environmental remediation and sustainable solar-to-chemical energy conversion.
Collapse
Affiliation(s)
- Serge Benedoue
- Department of Chemical Sciences, Padova University and INSTM, 35131 Padova, Italy
- Laboratory of Applied Physical and Analytical Chemistry, Department of Inorganic Chemistry, Faculty of Science, University of Yaoundé, Yaoundé P.O. Box 812, Cameroon
| | - Mattia Benedet
- Department of Chemical Sciences, Padova University and INSTM, 35131 Padova, Italy
| | - Alberto Gasparotto
- Department of Chemical Sciences, Padova University and INSTM, 35131 Padova, Italy
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
| | - Nicolas Gauquelin
- EMAT and NANOlab Center of Excellence, University of Antwerp, 2020 Antwerpen, Belgium
| | - Andrey Orekhov
- EMAT and NANOlab Center of Excellence, University of Antwerp, 2020 Antwerpen, Belgium
| | - Johan Verbeeck
- EMAT and NANOlab Center of Excellence, University of Antwerp, 2020 Antwerpen, Belgium
| | - Roberta Seraglia
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
| | - Gioele Pagot
- Section of Chemistry for the Technology (ChemTech), Department of Industrial Engineering, University of Padova and INSTM, 35131 Padova, Italy
| | - Gian Andrea Rizzi
- Department of Chemical Sciences, Padova University and INSTM, 35131 Padova, Italy
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
| | - Vincenzo Balzano
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP), Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25133 Brescia, Italy
| | - Luca Gavioli
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP), Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25133 Brescia, Italy
| | - Vito Di Noto
- Section of Chemistry for the Technology (ChemTech), Department of Industrial Engineering, University of Padova and INSTM, 35131 Padova, Italy
| | - Davide Barreca
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
| | - Chiara Maccato
- Department of Chemical Sciences, Padova University and INSTM, 35131 Padova, Italy
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
| |
Collapse
|
14
|
Jayam Somasundaram A, Xiao H, Pandiyarajan S, Liao AH, Lydia S, Chuang HC. In-situ fabrication of manganese ferrite grafted polyaniline nanocomposite: A magnetically reusable visible light photocatalyst and a robust electrode material for supercapacitor. J Colloid Interface Sci 2023; 642:584-594. [PMID: 37028165 DOI: 10.1016/j.jcis.2023.03.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Herein, we reported the in-situ preparation of manganese ferrite (MnFe2O4) grafted polyaniline (Pani), a magnetic nanocomposite for the potential visible light photocatalytic material as well as electrode material for supercapacitor. The physical characterization of the prepared nanoparticle and nanocomposite was examined with various spectroscopic and microscopic analyses. The peaks observed in the X-ray diffraction study confirm the face-centered cubic phase of MnFe2O4 nanoparticles with a grain size of ∼17.6 nm. The surface morphology analysis revealed the uniform distribution of spherical-like MnFe2O4 nanoparticles on the surface of Pani. The degradation of malachite green (MG) dye under exposure to visible light was investigated using MnFe2O4/Pani nanocomposite as a photocatalyst. The results exposed the faster degradation of MG dye was accomplished by MnFe2O4/Pani nanocomposite than MnFe2O4 nanoparticles. The energy storage performance of the MnFe2O4/Pani nanocomposite was analyzed through cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy analyses. The results exposed that the MnFe2O4/Pani electrode achieved a capacitance of 287.1 F/g than the MnFe2O4 electrode (94.55 F/g). Further, the respectable capacitance of 96.92% was achieved even after 3000 repetitive cycles stability . Based on the outcomes, the MnFe2O4/Pani nanocomposite can be suggested as a promising material for both photocatalytic and supercapacitor applications.
Collapse
|
15
|
Wang H, Wang S, Wang S, Fu L, Zhang L. The one-step synthesis of a novel metal-organic frameworks for efficient and selective removal of Cr(VI) and Pb(II) from wastewater: Kinetics, thermodynamics and adsorption mechanisms. J Colloid Interface Sci 2023; 640:230-245. [PMID: 36863180 DOI: 10.1016/j.jcis.2023.02.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
The removal of Cr(VI) and Pb(II) from wastewater is one of the methods to ensure water safety. However, it is still a difficult point to design efficient and selective adsorbent. In this work, Cr(VI) and Pb(II) were removed from water by a new metal-organic frameworks material (MOF-DFSA) with numerous adsorption sites. The max adsorption capacities of MOF-DFSA were 188.12 mg/g for Cr(VI) after 120 min and 349.09 mg/g for Pb(II) within 30 min. MOF-DFSA showed good selectivity and reusability after four cycles. The adsorption of MOF-DFSA was an irreversible process with multi-site coordination, and an active site adsorbed 1.798 Cr (VI) and 0.395 Pb (II). Kinetic fitting showed that the adsorption was chemisorption and surface diffusion was the main limiting step. Thermodynamic showed that Cr(VI) adsorption was enhanced at higher temperatures by spontaneous processes while Pb(II) was weakened. The chelation and electrostatic interaction of the hydroxyl and nitrogen-containing groups of MOF-DFSA with Cr(VI) and Pb(II) is the predominant mechanism, while the reduction of Cr(VI) also play an important role in adsorption. In conclusion, MOF-DFSA was a sorbent that can be used for the removal of Cr(VI) and Pb(II).
Collapse
Affiliation(s)
- Hao Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Shuai Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Shixing Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China.
| | - Likang Fu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China.
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China.
| |
Collapse
|
16
|
Giannoulia S, Triantaphyllidou IE, Tekerlekopoulou AG, Aggelopoulos CA. Mechanisms of Individual and Simultaneous Adsorption of Antibiotics and Dyes onto Halloysite Nanoclay and Regeneration of Saturated Adsorbent via Cold Plasma Bubbling. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020341. [PMID: 36678094 PMCID: PMC9862438 DOI: 10.3390/nano13020341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 05/23/2023]
Abstract
Halloysite nanoclay (HNC) was examined as an adsorbent for the individual and simultaneous removal of antibiotic enrofloxacin (ENRO) and methylene blue (MB) from aqueous solutions, alongside its regeneration via cold atmospheric plasma (CAP) bubbling. Initially, batch kinetics and isotherm studies were carried out, while the effect of several parameters was evaluated. Both ENRO and MB adsorption onto HNC was better described by Langmuir model, with its maximum adsorption capacity being 34.80 and 27.66 mg/g, respectively. A Pseudo-second order model fitted the experimental data satisfactorily, suggesting chemisorption (through electrostatic interactions) as the prevailing adsorption mechanism, whereas adsorption was also controlled by film diffusion. In the binary system, the presence of MB seemed to act antagonistically to the adsorption of ENRO. The saturated adsorbent was regenerated inside a CAP microbubble reactor and its adsorption capacity was re-tested by applying new adsorption cycles. CAP bubbling was able to efficiently regenerate saturated HNC with low energy requirements (16.67 Wh/g-adsorbent) in contrast to Fenton oxidation. Most importantly, the enhanced adsorption capacity of the CAP-regenerated HNC (compared to raw HNC), when applied in new adsorption cycles, indicated its activation during the regeneration process. The present study provides a green, sustainable and highly effective alternative for water remediation where pharmaceutical and dyes co-exist.
Collapse
Affiliation(s)
- Stefania Giannoulia
- Laboratory of Cold Plasma and Advanced Techniques for Improving Environmental Systems, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras, Greece
- Department of Sustainable Agriculture, University of Patras, 2 G. Seferi St., 30100 Agrinio, Greece
| | - Irene-Eva Triantaphyllidou
- Laboratory of Cold Plasma and Advanced Techniques for Improving Environmental Systems, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | | | - Christos A. Aggelopoulos
- Laboratory of Cold Plasma and Advanced Techniques for Improving Environmental Systems, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| |
Collapse
|