1
|
Gao Y, Liu Y, Zhao X, Liu X, Sun Q, Jiao T. Three-Dimensional Porous Artemia Cyst Shell Biochar-Supported Iron Oxide Nanoparticles for Efficient Removal of Chromium from Wastewater. Molecules 2025; 30:1743. [PMID: 40333761 PMCID: PMC12029975 DOI: 10.3390/molecules30081743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025] Open
Abstract
Chromium-containing wastewater poses severe threats to ecosystems and human health due to the high toxicity of hexavalent chromium (Cr(VI)). Although iron oxide nanoparticles (IONPs) show promise for Cr(VI) removal, their practical application is hindered by challenges in recovery and reuse. Herein, a novel three-dimensional porous nanocomposite, Artemia cyst shell biochar-supported iron oxide nanoparticles (ACSC@ IONP), was synthesized via synchronous pyrolysis of Fe3+-impregnated Artemia cyst shells (ACSs) and in situ reduction of iron. The optimized composite C@Fe-3, prepared with 1 mol/L Fe3+ and pyrolyzed at 450 °C for 5 h, exhibited rapid removal equilibrium within 5-10 min for both Cr(VI) and total chromium (Cr(total)), attributed to synergistic reduction of Cr(VI) to Cr(III) and adsorption of Cr(VI) and Cr(III). The maximum Cr(total) adsorption capacity was 110.1 mg/g at pH 2, as determined by the Sips isothermal model for heterogeneous adsorption. Competitive experiments demonstrated robust selectivity for Cr(VI) removal even under a 64-fold excess of competing anions, with an interference order of SO42- > NO3- > Cl-. Remarkably, C@Fe-3 retained 65% Cr(VI) removal efficiency after four adsorption-desorption cycles. This study provides a scalable and eco-friendly strategy for fabricating reusable adsorbents with dual functionality for chromium remediation.
Collapse
Affiliation(s)
| | | | | | | | - Qina Sun
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.G.); (Y.L.); (X.Z.); (X.L.)
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.G.); (Y.L.); (X.Z.); (X.L.)
| |
Collapse
|
2
|
Juturu R, Vinayagam R, Murugesan G, Selvaraj R. Mesoporous hydrochar from Acacia falcata leaves by hydrothermal process for hexavalent chromium adsorption. Sci Rep 2025; 15:12670. [PMID: 40221469 PMCID: PMC11993668 DOI: 10.1038/s41598-025-96439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
This study evaluates mesoporous-hydrochar derived from Acacia falcata leaves via a single-step hydrothermal treatment for Cr(VI) adsorption. Material characterization indicated that the adsorbent has a rough and porous structure. FTIR analysis confirmed Cr(VI) adsorption through functional group interactions, evidenced by peak intensity changes and the emergence of a Cr-O bond vibration at 669 cm-1. Two new peaks were observed in XPS spectra, corresponding to Cr 2p at 577.04 eV (Cr 2p3/2) and 586.67 eV (Cr 2p1/2) after adsorption, further substantiating the adsorption and Cr(VI) reduction. Batch experiments showed an improved adsorption capacity of 30.47 mg/g. Kinetic investigation adhered to the pseudo-second-order model, whereas the equilibrium dataset satisfied the Freundlich model, indicating a heterogeneous adsorption mechanism involving physisorption and chemisorption. The thermodynamic evaluation confirmed spontaneous and endothermic adsorption. Regeneration studies showed reduced Cr(VI) removal performance after four cycles, attributed to pore blockage and loss of functional groups while maintaining effective reuse potential. Spiked studies in various water matrices showed a slight decrease in Cr(VI) removal efficiency, yet it maintained over 95% efficiency, demonstrating its potential for real-world water treatment applications.
Collapse
Affiliation(s)
- Rajesh Juturu
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gokulakrishnan Murugesan
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bengaluru, Karnataka, 560054, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Zhang C, Luo J, Song W, Chen H, Zhang S. Influence of biochar on the partitioning of iron and arsenic from paddy soil contaminated by acid mine drainage. Sci Rep 2025; 15:4852. [PMID: 39924621 PMCID: PMC11808101 DOI: 10.1038/s41598-025-89728-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/07/2025] [Indexed: 02/11/2025] Open
Abstract
Paddy fields contaminated by arsenic-containing acid mine drainage (AMD) may also have rich iron in soil. Whether this iron can be loaded onto biochar to passivate the dissolved arsenic is worth further exploration. Soil was mixed with biochar prepared at 400, 550, and 700 °C and incubated under alternating anaerobic and aerobic conditions. Soil, soil solution and biochar samples were analysed using ICP-MS, FTIR, SEM, XPS, etc. The results showed that biochar prepared at lower pyrolysis temperatures contained a higher number of functional groups. Under the combined action of microorganisms, primarily from the Firmicutes phylum, biochar promoted the dissolution of arsenic-containing iron oxides in soil, with the residual arsenic also undergoing transformation. The biochar rapidly loaded dissolved iron onto its surface, likely in the form of Fe3O4 and FeOOH, and adsorbed arsenic primarily as As(III). Although the iron oxides detached over time, they were more stable on the biochar prepared at 400 °C compared to those prepared at higher pyrolysis temperatures. Meanwhile, the arsenic content on the biochar increased, raising the As/Fe molar ratio to above that of the soil. This study lays the foundation for further exploring the long-term use of biochar in AMD-contaminated paddy fields.
Collapse
Affiliation(s)
- Chipeng Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Jianglan Luo
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Wansheng Song
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Han Chen
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Shunyuan Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
4
|
Hidayat E, Mohamad Sarbani NM, Samitsu S, Situngkir YV, Lahiri SK, Yonemura S, Mitoma Y, Harada H. Simultaneous removal of ammonium, phosphate, and phenol via self-assembled biochar composites CBCZrOFe 3O 4 and its utilization as soil acidity amelioration. ENVIRONMENTAL TECHNOLOGY 2025; 46:581-600. [PMID: 38853669 DOI: 10.1080/09593330.2024.2362993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/19/2024] [Indexed: 06/11/2024]
Abstract
ABSTRACTHigh concentrations of ammonium, phosphate, and phenol are recognized as water pollutants that contribute to the degradation of soil acidity. In contrast, small quantities of these nutrients are essential for soil nutrient cycling and plant growth. Here, we reported composite materials comprising biochar, chitosan, ZrO, and Fe3O4, which were employed to mitigate ammonium, phosphate, and phenol contamination in water and to lessen soil acidity. Batch adsorption experiments were conducted to assess the efficacy of the adsorbents. Initially, comparative studies on the simultaneous removal of NH4, PO4, and phenol using CB (biochar), CBC (biochar + chitosan), CBCZrO (biochar + chitosan + ZrO), and CBCZrOFe3O4 (biochar + chitosan + ZrO + Fe3O4) were conducted. The results discovered that CBCZrOFe3O4 exhibited the highest removal percentage among the adsorbents (P < 0.05). Adsorption data for CBCZrOFe3O4 were well fitted to the second-order kinetic and Freundlich isotherm models, with maximum adsorption capacities of 112.65 mg/g for NH4, 94.68 mg/g for PO4 and 112.63 mg/g for phenol. Subsequently, the effect of CBCZrOFe3O4-loaded NH4, PO4, and phenol (CBCZrOFe3O4-APP) on soil acidity was studied over a 60-day incubation period. The findings showed no significant changes (P < 0.05) in soil exchangeable acidity, H+, Mg, K, and Na. However, there was a substantial increase in the soil pH, EC, available P, CEC, N-NH4, and N-NO3. A significant reduction was also observed in the available soil exchangeable Al and Fe (P < 0.05). This technique demonstrated multi-functionality in remediating water pollutants and enhancing soil acidity.
Collapse
Affiliation(s)
- Endar Hidayat
- Graduate School of Comprehensive Scientific Research, Program in Biological System Sciences, Prefectural University of Hiroshima, Shobara, Japan
- Department of Life System Science, Faculty of Bioresources Science, Prefectural University of Hiroshima, Shobara, Japan
- Data-Driven Polymer Design Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Japan
| | - Nur Maisarah Mohamad Sarbani
- Graduate School of Comprehensive Scientific Research, Program in Biological System Sciences, Prefectural University of Hiroshima, Shobara, Japan
- Department of Life System Science, Faculty of Bioresources Science, Prefectural University of Hiroshima, Shobara, Japan
| | - Sadaki Samitsu
- Data-Driven Polymer Design Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Japan
| | - Yaressa Vaskah Situngkir
- Department of Life System Science, Faculty of Bioresources Science, Prefectural University of Hiroshima, Shobara, Japan
- Department of Agricultural Engineering, Politeknik Negeri Jember, Jember, Indonesia
| | - Sudip Kumar Lahiri
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Seiichiro Yonemura
- Graduate School of Comprehensive Scientific Research, Program in Biological System Sciences, Prefectural University of Hiroshima, Shobara, Japan
- Department of Life System Science, Faculty of Bioresources Science, Prefectural University of Hiroshima, Shobara, Japan
| | - Yoshiharu Mitoma
- Department of Integrated Science and Engineering for Sustainable Societies, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Hiroyuki Harada
- Graduate School of Comprehensive Scientific Research, Program in Biological System Sciences, Prefectural University of Hiroshima, Shobara, Japan
- Department of Life System Science, Faculty of Bioresources Science, Prefectural University of Hiroshima, Shobara, Japan
| |
Collapse
|
5
|
Granja HS, Silva JDOS, Andrade YB, Farrapeira RO, Sussuchi EM, Freitas LS. Emerging carbonaceous material based on residual grape seed applied in selective and sensitive electrochemical detection of fenamiphos. Talanta 2025; 281:126784. [PMID: 39245008 DOI: 10.1016/j.talanta.2024.126784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Fenamiphos (FNP) is a pesticide applied for soil pest control, particularly nematodes, and sucking insects, including aphids and thrips. Despite its use being banned in several countries due to its highly toxic nature for living beings, including mammals, because of its acetylcholine-inhibiting action, it is still marketed for use in agriculture. Therefore, a carbon paste electrode modified with residual grape seed biochar (bSU), served as an electrochemical sensor (E-bSU) for the quantification of fenamiphos in grape juice, tap water, and river water samples. The bSU underwent comprehensive characterization employing elemental, morphological, and spectroscopic analysis techniques. The impact of electrode modification and the electrochemical behavior of the FNP were systematically assessed through cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry. The biochar manifested a microporous surface adorned with dispersed functional groups, enhancing its affinity for organic compounds, particularly the investigated pesticide. Electrode modification and the optimization of analysis parameters resulted in a notable 6-fold amplification of the electrochemical signal of FNP relative to initial conditions, underscoring the efficacy of the E-bSU. The developed methodology attained limits of detection and quantification of 0.3 and 0.9 nmol L⁻1, respectively. Repeatability and reproducibility assays demonstrated relative standard deviations below 5%, underscoring the reliability of the applied electrode. The sensor showcased recoveries ranging from 99.75% to 109.9% across the analyzed samples, highlighting the utility of this selective, stable, and reproducible sensor for fenamiphos determination.
Collapse
Affiliation(s)
- Honnara S Granja
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe, Av. Marcelo Déda Chagas, S/n - Rosa Elze, São Cristóvão, SE, 49107-230, Brazil.
| | - Jonatas de Oliveira S Silva
- Programa de Pós-Graduação Em Química, Instituto de Química, Universidade Federal da Bahia, R. Barão de Jeremoabo, S/n - Ondina, Salvador, BA, 40170-280, Brazil.
| | - Yasmine B Andrade
- Programa de Pós-Graduação Em Biotecnologia Industrial, Universidade Tiradentes, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil.
| | - Rafael O Farrapeira
- NUESC - Núcleo de Estudos Em Sistemas Coloidais - ITP, Universidade Tiradentes, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil.
| | - Eliana M Sussuchi
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe, Av. Marcelo Déda Chagas, S/n - Rosa Elze, São Cristóvão, SE, 49107-230, Brazil.
| | - Lisiane S Freitas
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe, Av. Marcelo Déda Chagas, S/n - Rosa Elze, São Cristóvão, SE, 49107-230, Brazil.
| |
Collapse
|
6
|
Bian P, Shao Q. Efficient adsorption of hexavalent chromium in water by torrefaction biochar from lignin-rich kiwifruit branches: The combination of experiment, 2D-COS and DFT calculation. Int J Biol Macromol 2024; 273:133116. [PMID: 38889832 DOI: 10.1016/j.ijbiomac.2024.133116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
A biochar (KBC) enriched with O functional groups was prepared by torrefaction using lignin-rich kiwifruit branches (KBM) as a raw material, which was characterized, and then KBC was used to adsorb hexavalent chromium (Cr6+) from water. The results showed that KBC contained more functional groups compared to KBM. The maximum adsorption of Cr6+ by KBC could reach 143.64 mg·g-1 and also had better adsorption performance than other adsorbents reported in some other reports. Cr6+ absorption by KBC was mainly a mechanism of electrostatic interaction and adsorption-reduction coupling. FTIR and XPS revealed that -OH, -COOH, CO and CC on KBC participated in Cr6+ adsorption and new groups (C=O) were generated during the process of adsorption, which implied that a redox reaction occurred. 2D-COS and DFT calculations showed that the order of functional groups on KBC interacting with Cr6+ was -OCH3 > -COOH > -OH > phenolic hydroxyl, and the binding tightness of the different functional groups to Cr6+ was -OCH3 (the shortest displacement of both groups after the adsorption) > -COOH > -OH > phenolic hydroxyl. KBC has good regeneration performance, and it is a good adsorbent for Cr6+.
Collapse
Affiliation(s)
- Pengyang Bian
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qinqin Shao
- School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, PR China.
| |
Collapse
|
7
|
Ke Q, Ren J, Feng K, Zhang Z, Huang W, Xu X, Zhao L, Qiu H, Cao X. Crucial roles of soil inherent Fe-bearing minerals in enhanced Cr(VI) reduction by biochar: The electronegativity neutralization and electron transfer mediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124014. [PMID: 38642792 DOI: 10.1016/j.envpol.2024.124014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Biochar has been used for soil Cr(VI) remediation in the last decade due to its enriched redox functional groups and good electrochemical properties. However, the role of soil inherent Fe-bearing minerals during the reduction of Cr(VI) has been largely overlooked. In this study, biochar with different electron-donating capacities (EDCs) was produced at 400 °C (BC400) and 700 °C (BC700), and their performance for Cr(VI) reduction in soils with varied properties (e.g., Fe content) was investigated. The addition of BC400 caused around 14.2-36.0 mg g-1 Cr(VI) reduction after two weeks of incubation in red soil, paddy soil, loess soil, and fluvo-aquic soil, while a less Cr(VI) was reduced by BC700 (2.57-16.7 mg g-1) with smaller EDCs. The Cr(VI) reduction by both biochars in different soils was closely related to Fe content (R2 = 0.93-0.98), so red soil with the richest Fe (14.8% > 1.79-3.49%) showed the best reduction capability, and the removal of soil free Fe oxides (e.g., hematite) resulted in 71.9% decrease of Cr(VI) reduction by BC400. On one hand, Fe-bearing minerals could increase the soil acidity, neutralize the surface negative charge of biochar, enhance the contact between Cr(VI) and biochar, and thus facilitate the direct Cr(VI) reduction by biochar in soils. On the other hand, Fe-bearing minerals could also facilitate the indirect Cr(VI) reduction by mediating the electron from biochar to Cr(VI) with the cyclic transformation of Fe(II)/Fe(III). This study demonstrates the key role of soil Fe-bearing minerals in Cr(VI) reduction by biochar, which advances our understanding on the biochar-based remediation mechanism of Cr(VI)-contaminated soils.
Collapse
Affiliation(s)
- Qiang Ke
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kanghong Feng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zehong Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenfeng Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
8
|
Wu W, Zhang H, Qian R, Yu K, Li R, Tang KHD, Wu X, Guo Z, Shao C, Yue F, Zhang Z. A polyfunctionalized carbon framework composite for efficient decontamination of Cr(VI) and polycyclic aromatic nitrides from acidic wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43323-43338. [PMID: 38900406 DOI: 10.1007/s11356-024-34009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Developing multifunctional engineered adsorbents is an effective strategy for decontaminating the environment from various pollutants. In this study, a polyfunctionalized carbon-framework composite, MSC-CFM, was synthesized. The composite comprises an aromatic carbon framework enriched with various functional groups, including magnetic nanoparticles, hydroxyl, and amino groups. MSC-CFM was used to decontaminate Cr(VI) and polycyclic aromatic nitrides (p-dimethylaminoazobenzene sulfonate (DAS) and diphenyl-4, 4 '-di [sodium (azo-2 -) -1-amino-naphthalene-4-sulfonate] (DANS)) from acidic wastewater. The adsorption capacities of MSC-CFM for Cr(VI), DAS and DANS, quantified using the Langmuir isotherm model, were 161.28, 310.83, and 1566.09 mg/g, respectively. Cr(VI) and PAHs (DAS and DANS) were monolayer adsorbed controlled by chemisorption. MSC-CFM could maintain good adsorption efficiency after up to 6 adsorption and desorption cycles. The presence of polycyclic aromatic nitrides promoted the adsorption of Cr(VI) in the Cr(VI)-DAS/DANS binary systems. Removal of pollutants by MSC-CFM involved a variety of unreported reaction mechanisms, such as electrostatic attraction, redox reaction, anion exchange, intermolecular hydrogen bonding, complexation reaction, π-π interaction, and anion-π interaction. MSC-CFM, enriched with a variety of functional groups, is a promising new material for environmental protection. It has good potential for practical application in treating polluted wastewater.
Collapse
Affiliation(s)
- Weilong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Han Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Rong Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Kunru Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
- Department of Environmental Science, The University of Arizona, Tucson, AZ, 85721, USA.
| | - Kuok Ho Daniel Tang
- Department of Environmental Science, The University of Arizona, Tucson, AZ, 85721, USA
- Northwest A&F University and University of Arizona Micro-Campus (NWAFU-UA), Yangling, 712100, Shaanxi, China
| | - Xuan Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Zhiqiang Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Cong Shao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Feixue Yue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
- Department of Environmental Science, The University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
9
|
Fan W, Yang T, Wu Y, Xu J, Wu D, Zhu X, Chen J, Ma Z, Li D. Sulfuric acid-assisted ball milling for the preparation of Si-O-enriched straw biochar: removal efficiency of rhodamine B and adsorption mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20651-20664. [PMID: 38383930 DOI: 10.1007/s11356-024-32466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Traditional pyrolysis biochar has been widely employed to treat dye wastewater. However, there are some problems in the pyrolysis process, such as the generation of harmful gases and the low content of silico-oxygen functional groups to promote adsorption. Straw biochar (Ac-BCbm) was prepared by sulfuric acid co-ball milling method. The adsorption performance and adsorption mechanism of rhodamine B (RhB) under different preparation conditions and factors were investigated. The results showed that the adsorption rate of Ac-BCbm on RhB was up to 94.9%, which was 60.5% and 55.8% higher than that of ball-milling straw (STbm) and biochar prepared by pyrolysis (STBC600), respectively. The Ac-BCbm had better adaptability under different pH and common interfering ions for remove RhB. Characterization and DFT simulation analysis revealed that the sulfuric acid co-ball milling process promoted the formation of Si-OH and Si-O-CH3 oxygen-containing functional groups of Si component in straw, which enhanced the hydrogen bonding interactions and effectively improved the adsorption efficiency. This study investigated a new strategy for biochar preparation by sulfuric acid co-ball milling, which provides an additional development direction for the efficient resource utilization of straw.
Collapse
Affiliation(s)
- Wenhao Fan
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Tianxue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yang Wu
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environ-Mental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR, 999078, People's Republic of China
| | - Jinying Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Daishe Wu
- School of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337000, China
| | - Xiaomin Zhu
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Jianxin Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Zhifei Ma
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, China.
| | - Dongyang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
10
|
Wu X, Quan W, Chen Q, Gong W, Wang A. Efficient Adsorption of Nitrogen and Phosphorus in Wastewater by Biochar. Molecules 2024; 29:1005. [PMID: 38474517 PMCID: PMC10935008 DOI: 10.3390/molecules29051005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Nitrogen and phosphorus play essential roles in ecosystems and organisms. However, with the development of industry and agriculture in recent years, excessive N and P have flowed into water bodies, leading to eutrophication, algal proliferation, and red tides, which are harmful to aquatic organisms. Biochar has a high specific surface area, abundant functional groups, and porous structure, which can effectively adsorb nitrogen and phosphorus in water, thus reducing environmental pollution, achieving the reusability of elements. This article provides an overview of the preparation of biochar, modification methods of biochar, advancements in the adsorption of nitrogen and phosphorus by biochar, factors influencing the adsorption of nitrogen and phosphorus in water by biochar, as well as reusability and adsorption mechanisms. Furthermore, the difficulties encountered and future research directions regarding the adsorption of nitrogen and phosphorus by biochar were proposed, providing references for the future application of biochar in nitrogen and phosphorus adsorption.
Collapse
Affiliation(s)
- Xichang Wu
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
| | - Wenxuan Quan
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
| | - Qi Chen
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; (Q.C.); (W.G.)
| | - Wei Gong
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; (Q.C.); (W.G.)
| | - Anping Wang
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; (Q.C.); (W.G.)
| |
Collapse
|
11
|
Ma W, Han R, Zhang W, Zhang H, Chen L, Zhu L. Magnetic biochar enhanced copper immobilization in agricultural lands: Insights from adsorption precipitation and redox. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120058. [PMID: 38219671 DOI: 10.1016/j.jenvman.2024.120058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/01/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Biochar has exceeded expectations for heavy metal immobilization and has been prepared from widely available sources and inexpensive materials. In this research, coconut shell biochar (CSB), bamboo biochar (BC), magnetic coconut shell charcoal (MCSB), and magnetic bamboo biochar (MBC) were manufactured via co-pyrolysis, and their adsorption properties were tested. The pseudo-secondary (R2 = 0.980-0.985) adsorption kinetic fittings for the four biochas were superior to the pseudo-primary kinetics (R2 = 0.969-0.982). Unmodified biochar adsorption isotherms were more consistent with the Freundlich model, while magnetic biochar fitted Langmuir models better. The maximum adsorption capacity of MCSB for Cu(Ⅱ) reached 371.50 mg g-1. The adsorption mechanisms quantitatively analysis of the biochar indicated that chemical precipitation and ion exchange contributed to the adsorption, in which the magnetic biochar metal-π complexation also enhanced the adsorption. The pot experiment revealed that MCSB (2.0 %DW) significantly enhanced the biomass of lettuce, and facilitated the immobilization of DTPA-Cu (p < 0.05). SEM-EDS, XPS, and FTIR were utilized for morphological characterization and functional group identification, and the increased active adsorption sites (-OH, -COOH, CO, and Fe-O) of MCSB enhanced chemisorption and π-π EDA complexation with Cu(Ⅱ). EEM-PARAFAC and RDA analysis further elucidated that magnetic biochar immobilized copper and reduced biotoxicity (efficiency: 76.12%) by adjusting soil pH, phosphate, and SOM release (negative correlation). The presence of iron oxides (FeOx) promoted in situ adsorption of metallic copper and offered new insights into soil remediation.
Collapse
Affiliation(s)
- Wucheng Ma
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Rui Han
- CSD Water Service Co., Ltd. Jiangsu Branch, Nanjing, 210000, China
| | - Wei Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Hao Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Lin Chen
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|