1
|
Lane JDE, Shiels G, Ramamurthi P, Müllner M, Jolliffe KA. Water-Soluble Squaramide-Functionalized Copolymers for Anion Recognition. Macromol Rapid Commun 2025; 46:e2300406. [PMID: 37726120 PMCID: PMC12004901 DOI: 10.1002/marc.202300406] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Indexed: 09/21/2023]
Abstract
A series of ethylene glycol-based squaramide-containing copolymers are synthesized via a post-polymerization functionalization strategy. Conversion of polymeric amines to squaramides is found to proceed in good yields, representing a versatile method of incorporating squaramides into polymers for anion recognition. Analysis of the polymers by UV-Vis and fluorescence spectroscopy revealed that anion binding takes place similarly to that of small-molecule squaramides. The presence of a fluorescent sensing group on polymer-bound squaramides allowed for a fluorescent sensing mechanism for anions that followed a similar trend in selectivity in aqueous DMSO solution, with selectivity observed for H2PO4 -, AcO- and SO4 2- over other common anions tested. The anion response and selectivity towards anions is similar to that of analogous small-molecule squaramides, however polymeric squaramides exhibited a greater resistance to deprotonation by more basic anions, which is attributed to the closer proximity of individual squaramides on a macromolecule. The squaramide-containing polymers exhibited good water solubility, overcoming a common problem for anion sensors which are typically not sufficiently soluble in water to function in many required applications. Despite no anion binding being observed in water, this study represents a simple and effective method of creating fully water-soluble anion receptors which may be adapted to give improved binding affinity and selectivity depending on the anion binding moiety.
Collapse
Affiliation(s)
| | - Gabrielle Shiels
- School of ChemistryThe University of SydneyNSW2006Australia
- Key Centre for Polymers and ColloidsSchool of ChemistryThe University of SydneyNSW2006Australia
| | - Parathan Ramamurthi
- Key Centre for Polymers and ColloidsSchool of ChemistryThe University of SydneyNSW2006Australia
| | - Markus Müllner
- Key Centre for Polymers and ColloidsSchool of ChemistryThe University of SydneyNSW2006Australia
- The University of Sydney Nano Institute (Sydney Nano)The University of SydneyNSW2006Australia
| | - Katrina A. Jolliffe
- School of ChemistryThe University of SydneyNSW2006Australia
- The University of Sydney Nano Institute (Sydney Nano)The University of SydneyNSW2006Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneyNSW2006Australia
| |
Collapse
|
2
|
Huang W, Jia C, Ren C. Artificial Ion Transporters as Potent Therapeutics for Channelopathies. ChemMedChem 2025; 20:e202400811. [PMID: 39572385 DOI: 10.1002/cmdc.202400811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/21/2024] [Indexed: 12/10/2024]
Abstract
Ion channels are essential for the selective transport of ions, playing a fundamental role in critical physiological processes. Dysfunctions in these channels, often arising from genetic mutations or environmental factors, give rise to a class of disorders collectively known as channelopathies. In recent years, artificial ion transporters have been developed to mimic the essential function of natural channels, offering potential therapeutic approaches for these conditions. Although significant progress has been made in improving the activity and selectivity of these synthetic transporters, their application in treating diseases associated with ion transport dysregulation remains in its infancy. This concept provides an overview of recent advancements in artificial ion transporters for treating channelopathies, while highlighting the key challenges and prospects in translating these developments into practical therapies.
Collapse
Affiliation(s)
- Wei Huang
- Department of Respiratory Medicine, The People's Hospital of Gongan County, Gongan, Hubei, 434300, China
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chunyan Jia
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Changliang Ren
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| |
Collapse
|
3
|
Brennan LE, Luo X, Mohammed FA, Kavanagh K, Elmes RBP. Uncovering the potent antimicrobial activity of squaramide based anionophores - chloride transport and membrane disruption. Chem Sci 2025; 16:4075-4084. [PMID: 39906384 PMCID: PMC11788822 DOI: 10.1039/d4sc01693a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Antimicrobial resistance (AMR) - often referred to as a silent pandemic, is at present the most serious threat to medicine, and with constantly emerging resistance to novel drugs, combined with the paucity of their development, is likely to worsen. To circumvent this, supramolecular chemists have proposed the applicability of synthetic anion transporters in the fight against AMR. In this article we discuss the synthesis, supramolecular characterisation and biological profiling of six structurally simple squaramide anion transporters. Through a combination of spectroscopic techniques, and cellular assays we have deduced the mode of action of these antimicrobial agents to be as a result of both anion transport and membrane disruption. Furthermore, through the synthesis of two fluorescent analogues we verified this membrane-localised activity using Super-Resolution nanoscopy methods. These compounds represent particularly active antimicrobial anionophores and compliment similar reports showing the applicability of agents such as these in the fight against AMR.
Collapse
Affiliation(s)
- Luke E Brennan
- Department of Chemistry, Maynooth University Maynooth Co. Kildare Ireland
- Synthesis and Solid-State Pharmaceutical Centre (SSPC) Ireland
| | - Xuanyang Luo
- Department of Chemistry, Maynooth University Maynooth Co. Kildare Ireland
| | | | - Kevin Kavanagh
- Synthesis and Solid-State Pharmaceutical Centre (SSPC) Ireland
- Department of Biology, Maynooth University Maynooth Co. Kildare Ireland
| | - Robert B P Elmes
- Department of Chemistry, Maynooth University Maynooth Co. Kildare Ireland
- Synthesis and Solid-State Pharmaceutical Centre (SSPC) Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University Maynooth Co. Kildare Ireland
| |
Collapse
|
4
|
Kiefer R, Otero TF, Harjo M, Le QB. Chemically Polymerized Polypyrrole on Glucose-Porcine Skin Gelatin Nanofiber as Multifunctional Electrochemical Actuator-Sensor-Capacitor. Polymers (Basel) 2025; 17:631. [PMID: 40076123 PMCID: PMC11902419 DOI: 10.3390/polym17050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Multifunctional materials requiring low functional voltages are the main goal of new industrial smart technologies. Polypyrrole (PPy) was chemically synthesized by a simple dip-coating process on glucose-porcine skin gelatin nanofibers, accelerating mass production, here shown on nanofiber scaffolds (NFs) with those consisting of composites. The isometric and isotonic characterizations by electro-chemo-mechanical deformation (ECMD) of NFS-PPy are obtained from cyclic voltammetric and chronoamperometric responses in lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium triflouromethanesulfonate (LiTF) and sodium perchlorate (NaClO4) in propylene carbonate (PC). The results indicate a prevalent anion-driven actuation of the linear actuator (expansion by oxidation and contraction by reduction). Different stress (4-2 kPa) and strain (0.7-0.4%) gradients are a function of the anion Van der Waals volume. During reversible actuation (expansion/contraction), the material stores/releases energy, obtaining greater specific capacitance, 68 F g-1, in LiTFSI solutions, keeping 82% of this capacity after 2000 cycles. The sensitivity (the slope of the linear sensing equation) is a characteristic of the exchanged anion. The reaction of the PPy-coated nanofiber is multifunctional, developing simultaneous actuation, sensing, and energy storage. The materials were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, and Fourier transform infrared (FTIR) spectroscopy.
Collapse
Affiliation(s)
- Rudolf Kiefer
- Conducting Polymers in Composites and Applications Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Toribio F. Otero
- Centre for Electrochemistry and Intelligent Materials (CEMI), Universidad Politécnica de Cartagena, Aulario II, Paseo Alfonso XIII, E-30203 Cartagena, Murcia, Spain;
| | - Madis Harjo
- Intelligent Materials and Systems Lab, Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia;
| | - Quoc Bao Le
- Conducting Polymers in Composites and Applications Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS 66762, USA
| |
Collapse
|
5
|
Konopka M, Halgreen L, Dascalu AE, Chvojka M, Valkenier H. Controlling the transmembrane transport of chloride by dynamic covalent chemistry with azines. Chem Sci 2025; 16:3509-3515. [PMID: 39877820 PMCID: PMC11770589 DOI: 10.1039/d4sc08580a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025] Open
Abstract
Stimuli-responsive transmembrane ion transport has become a prominent area of research due to its fundamental importance in cellular processes and potential therapeutic applications. Commonly used stimuli include pH, light, and reduction or oxidation agents. This paper presents the use of dynamic covalent chemistry to activate and modulate the transmembrane transport of chloride in liposomes. An active chloride transporter was obtained in situ within the lipid bilayer by dynamic azine metathesis. The transport activity was further tuned by changing the structure of the added azines, while the dynamic covalent chemistry could be activated by lowering the pH. This dynamic covalent chemistry opens a new approach towards controlling transmembrane transport.
Collapse
Affiliation(s)
- Marcin Konopka
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
| | - Lau Halgreen
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
| | - Anca-Elena Dascalu
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
| | - Matúš Chvojka
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
- Department of Chemistry and RECETOX Faculty of Science, Masaryk University Brno 62500 Czech Republic
| | - Hennie Valkenier
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
| |
Collapse
|
6
|
Nieuwland C, van Dam AN, Bickelhaupt FM, Fonseca Guerra C. Urea hydrogen-bond donor strengths: bigger is not always better. Phys Chem Chem Phys 2025; 27:4099-4108. [PMID: 39660363 PMCID: PMC11632590 DOI: 10.1039/d4cp04042b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
The hydrogen-bond donor strength of ureas, widely used in hydrogen-bond donor catalysis, molecular recognition, and self-assembly, can be enhanced by increasing the size of the chalcogen X in the CX bond from O to S to Se and by introducing more electron-withdrawing substituents because both modifications increase the positive charge on the NH groups which become better hydrogen-bond donors. However, in 1,3-diaryl X-ureas, a steric mechanism disrupts the positive additivity of these two tuning factors, as revealed by our quantum-chemical analyses. This leads to an enhanced hydrogen-bond donor strength, despite a lower NH acidity, for 1,3-diaryl substituted O-ureas compared to the S- and Se-urea analogs. In addition, we provide a strategy to overcome this steric limitation using a predistorted urea-type hydrogen-bond donor featuring group 14 elements in the CX bond so that the hydrogen-bond donor strength of X-urea derivatives bearing two aryl substituents can be enhanced upon varying X down group 14.
Collapse
Affiliation(s)
- Celine Nieuwland
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - Angelina N van Dam
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - F Matthias Bickelhaupt
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Célia Fonseca Guerra
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Hunter NH, Gabbaï FP. Bismuthenium Cations for the Transport of Chloride Anions via Pnictogen Bonding. Angew Chem Int Ed Engl 2025; 64:e202414699. [PMID: 39179513 DOI: 10.1002/anie.202414699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Our interest in the design of heavy pnictogen-based Lewis acids for anion trafficking across biological membrane mimics has led us to investigate trivalent bismuthenium cations as chloride anion transporters. Here, we describe two chlorodiarylbismuthines, elaborated on a peri-substituted naphthalene backbone and stabilized by an adjacent thio- or seleno-ether functionality that engages the bismuth center in a Ch→Bi interaction (Ch=chalcogen). These new derivatives are stable in aqueous environment and readiliy transport chloride anions across the membrane of phospholipid-based vesicles loaded with KCl. In addition to establishing the use of such motifs in anion transport, this investigation shows that the Lewis acidity, lipophilicity, and thus chloride transport properties depend on the nature of the chalcogen.
Collapse
Affiliation(s)
- Nathanael H Hunter
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA)n
| | - François P Gabbaï
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA)n
| |
Collapse
|
8
|
Ren X, Flint AJ, Austin D, Davis AP. Polyanionic Receptors for Carboxylates in Water. Angew Chem Int Ed Engl 2025; 64:e202413505. [PMID: 39163169 DOI: 10.1002/anie.202413505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024]
Abstract
Receptors for carboxylate anions have many possible biomedical applications, including mimicry of the vancomycin group of antibiotics. However, binding carboxylates in water, the biological solvent, is highly challenging due to the hydrophilicity of these polar anions. Here we report, for the first time, the recognition of simple carboxylates such as acetate and formate in water by synthetic receptors with charge-neutral binding sites. The receptors are solubilised by polyanionic side-chains which, remarkably, do not preclude anion binding. The tricyclic structures feature two identical binding sites linked by polyaromatic bridges, capable of folding into closed, twisted conformations. This folding is hypothesised to preorganise the structures for anion recognition, mimicking the process which generates many protein binding sites. The architecture is suitable for elaboration into enclosed structures with potential for selective recognition of biologically relevant carboxylates.
Collapse
Affiliation(s)
- Xudong Ren
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
| | - Alister J Flint
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
| | - Daniel Austin
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
| | - Anthony P Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
9
|
Zayene O, Hu J, Damond A, Roc C, Marrot J, Gaucher A, Salpin J, Prim D. Cooperative Anion-π and C-H-Cl Interactions in Multifunctional Naphthalene-Based Receptors for Chloride Recognition: Cage-Size Modulation Through Substitution Patterns. Chempluschem 2024; 89:e202400380. [PMID: 39136597 PMCID: PMC11639634 DOI: 10.1002/cplu.202400380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Indexed: 10/22/2024]
Abstract
This study introduces a novel approach for chloride recognition utilizing multifunctional naphthalene-based receptors. By strategically modifying the substitution patterns on tetrafluoropyridines, a series of new receptors with customized cavities and enhanced binding capabilities were developed. Density functional theory (DFT) calculations and experimental studies combining NMR spectroscopy and mass spectrometry confirmed the efficacy of these receptors in capturing chloride ions. The relative chloride affinity order determined experimentally is in agreement with DFT predictions. The synergistic effect of anion-π and C-H…Cl interactions, mediated by the TFP groups, played a crucial role in achieving high binding affinity. This work provides valuable insights for designing future anion receptors with improved performance.
Collapse
Affiliation(s)
- Olfa Zayene
- Université Paris-SaclayUVSQCNRSInstitut Lavoisier de Versailles78035Versailles cedexFrance
| | - Jun Hu
- Université Paris-SaclayUVSQCNRSInstitut Lavoisier de Versailles78035Versailles cedexFrance
- Université Paris-SaclayUniv EvryCY Cergy Paris UniversitéCNRSLAMBE91025Evry-CourcouronnesFrance
| | - Aurélie Damond
- Université Paris-SaclayUVSQCNRSInstitut Lavoisier de Versailles78035Versailles cedexFrance
| | - Chantal Roc
- Université Paris-SaclayUniv EvryCY Cergy Paris UniversitéCNRSLAMBE91025Evry-CourcouronnesFrance
| | - Jérôme Marrot
- Université Paris-SaclayUVSQCNRSInstitut Lavoisier de Versailles78035Versailles cedexFrance
| | - Anne Gaucher
- Université Paris-SaclayUVSQCNRSInstitut Lavoisier de Versailles78035Versailles cedexFrance
| | - Jean‐Yves Salpin
- Université Paris-SaclayUniv EvryCY Cergy Paris UniversitéCNRSLAMBE91025Evry-CourcouronnesFrance
| | - Damien Prim
- Université Paris-SaclayUVSQCNRSInstitut Lavoisier de Versailles78035Versailles cedexFrance
| |
Collapse
|
10
|
Zhang D, Chang W, Shen J, Zeng H. Aromatic foldamer-derived transmembrane transporters. Chem Commun (Camb) 2024; 60:13468-13491. [PMID: 39466066 DOI: 10.1039/d4cc04388j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
This review is the first to focus on transmembrane transporters derived from aromatic foldamers, with most studies reported over the past decade. These foldamers have made significant strides in mimicking the essential functions of natural ion channel proteins. With their aromatic backbones rigidified by intramolecular hydrogen bonds or differential repulsive forces, this innovative family of molecules stands out for its structural diversity and functional adaptability. They achieve efficient and selective ion and molecule transport across lipid bilayers via carefully designed helical structures and tunable large cavities. Recent developments in this field highlight the transformative potential of foldamers in therapeutic applications and biomaterial engineering. Key advances include innovative molecular engineering strategies that enable highly selective ion transport by fine-tuning structural and functional attributes. Specific modifications to macrocyclic or helical foldamer structures have allowed precise control over ion selectivity and transport efficiency, with notable selectivity for K+, Li+, H+ and water molecules. Although challenges remain, future directions may focus on more innovative molecular designs, optimizing synthetic methods, improving membrane transport properties, integrating responsive designs that adapt to environmental stimuli, and fostering interdisciplinary collaborations. By emphasizing the pivotal role of aromatic foldamers in modern chemistry, this review aims to inspire further development, offering new molecular toolboxes and strategies to address technological and biological challenges in chemistry, biology, medicine, and materials science.
Collapse
Affiliation(s)
- Danyang Zhang
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| | - Wenju Chang
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| | - Jie Shen
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| |
Collapse
|
11
|
Mohammed FA, Xiao T, Wang L, Elmes RBP. Macrocyclic receptors for anion recognition. Chem Commun (Camb) 2024; 60:11812-11836. [PMID: 39323234 DOI: 10.1039/d4cc04521a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Macrocyclic receptors have emerged as versatile and efficient molecular tools for the recognition and sensing of anions, playing a pivotal role in molecular recognition and supramolecular chemistry. The following review provides an overview of the recent advances in the design, synthesis, and applications of macrocyclic receptors specifically tailored for anion recognition. The unique structural features of macrocycles, such as their well-defined structures and pre-organised binding sites, contribute to their exceptional anion-binding capabilities that have led to their application across a broad range of the chemical and biological sciences.
Collapse
Affiliation(s)
- Farhad Ali Mohammed
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Co, Kildare, Ireland.
- SSPC - the Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick, V94 T9PX Limerick, Ireland
| | - Tangxin Xiao
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Leyong Wang
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Robert B P Elmes
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Co, Kildare, Ireland.
- SSPC - the Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick, V94 T9PX Limerick, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, Co. Kildare, W23 F2H6 Maynooth, Ireland
| |
Collapse
|
12
|
Soldatova NS, Radzhabov AD, Ivanov DM, Burguera S, Frontera A, Abramov PA, Postnikov PS, Kukushkin VY. Key-to-lock halogen bond-based tetragonal pyramidal association of iodonium cations with the lacune rims of beta-octamolybdate. Chem Sci 2024; 15:12459-12472. [PMID: 39118643 PMCID: PMC11304769 DOI: 10.1039/d4sc01695e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/16/2024] [Indexed: 08/10/2024] Open
Abstract
The structure-directing "key-to-lock" interaction of double σ-(IIII)-hole donating iodonium cations with the O-flanked pseudo-lacune rims of [β-Mo8O26]4- gives halogen-bonded iodonium-beta-octamolybate supramolecular associates. In the occurrence of their tetragonal pyramidal motifs, deep and broad σ-(IIII)-holes of a cation recognize the molybdate backbone, which provides an electronic pool localized around the two lacunae. The halogen-bonded I⋯O linkages in the structures were thoroughly studied computationally and classified as two-center, three-center bifurcated, and unconventional "orthogonal" I⋯O halogen bonds. In the latter, the O-atom approaches orthogonally the C-IIII-C plane of an iodonium cation and this geometry diverge from the IUPAC criteria for the identification of the halogen bond.
Collapse
Affiliation(s)
- Natalia S Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634050 Russian Federation
| | - Amirbek D Radzhabov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634050 Russian Federation
| | - Daniil M Ivanov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634050 Russian Federation
- Institute of Chemistry, Saint Petersburg State University Universitetskaya Nab. 7/9 Saint Petersburg 199034 Russian Federation
| | - Sergi Burguera
- Department of Chemistry, Universitat de les Illes Balears Crta. de Valldemossa km 7.5 Palma de Mallorca (Baleares) 07122 Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears Crta. de Valldemossa km 7.5 Palma de Mallorca (Baleares) 07122 Spain
| | - Pavel A Abramov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634050 Russian Federation
- Nikolaev Institute of Inorganic Chemistry SB RAS 3 Acad. Lavrentiev Av. Novosibirsk 630090 Russian Federation
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634050 Russian Federation
- Department of Solid State Engineering, University of Chemical Technology Prague 16628 Czech Republic
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University Universitetskaya Nab. 7/9 Saint Petersburg 199034 Russian Federation
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University Barnaul 656049 Russian Federation
| |
Collapse
|
13
|
Guajardo-Maturana R, Rodríguez-Kessler PL, Muñoz-Castro A. On the halide aggregation into the [Au 4(PPh 3) 4] 4+ cluster core. Insights from structural, optical and interaction energy analysis in [(Ph 3PAu) 4X 2] 2+ and [(Ph 3PAu) 4X] 3+ species (X = Cl -, Br -, I -). Phys Chem Chem Phys 2024; 26:18828-18836. [PMID: 38940752 DOI: 10.1039/d4cp01467g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The aggregation of halide atoms into gold clusters offers an interesting scenario for the development of novel metal-based cavities for anion recognition and sensing applications. Thus, further understanding of the different contributing terms leading to efficient cluster-halide aggregation is relevant to guide their synthetic design. In this report, we evaluate the formation of [(Ph3PAu)4X2]2+ and [(Ph3PAu)4X]3+ species (X = Cl-, Br-, I-) in terms of different energy contributions underlying the stabilization of the cluster-halide interaction, and the expected UV-vis absorption profiles as a result of the variation in frontier orbital arrangements. Our results denote that a non-planar Au4 core shape enables enhanced halide aggregation, which is similar for Cl-, Br-, and I-, in comparison to the hypothetical planar Au4 counterparts. The electrostatic nature of the interaction involves a decreasing ion-dipole term along with the series, and for iodine species, higher-order electrostatic contributions become more relevant. Hence, the obtained results help in gaining further understanding of the different stabilizing and destabilizing contributions to suitable cluster-based cavities for the incorporation of different monoatomic anions.
Collapse
Affiliation(s)
- Raul Guajardo-Maturana
- Universidad SEK, Facultad de Ciencias de la Salud, Instituto de Investigación Interdisciplinar en Ciencias Biomédicas SEK (I3CBSEK) Chile, Fernando Manterola 0789, Providencia, Santiago, Chile
| | - Peter L Rodríguez-Kessler
- Centro de Investigaciones en Óptica A.C., Loma del Bosque 115, Col. Lomas del Campestre, León, Guanajuato, 37150, Mexico
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile.
| |
Collapse
|
14
|
Pramanik S, Islam ASM, Ghosh I, Ghosh P. Supramolecular chemistry of liquid-liquid extraction. Chem Sci 2024; 15:7824-7847. [PMID: 38817569 PMCID: PMC11134359 DOI: 10.1039/d4sc00933a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/27/2024] [Indexed: 06/01/2024] Open
Abstract
Liquid-Liquid Extraction (LLE) is a venerable and widely used method for the separation of a targeted solute between two immiscible liquids. In recent years, this method has gained popularity in the supramolecular chemistry community due to the development of various types of synthetic receptors that effectively and selectively bind specific guests in an aqueous medium through different supramolecular interactions. This has eventually led to the development of state-of-the-art extraction technologies for the removal and purification of anions, cations, ion pairs, and small molecules from one liquid phase to another liquid phase, which is an industrially viable method. The focus of this perspective is to furnish a vivid picture of the current understanding of supramolecular interaction-based LLE chemistry. This will not only help to improve separation technology in the chemical, mining, nuclear waste treatment, and medicinal chemistry sectors but is also useful to address the purity issue of the extractable species, which is otherwise difficult. Thus, up-to-date knowledge on this subject will eventually provide opportunities to develop large-scale waste remediation processes and metallurgy applications that can address important real-life problems.
Collapse
Affiliation(s)
- Sourav Pramanik
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Abu S M Islam
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Iti Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata 700032 India
| |
Collapse
|
15
|
Pang S, Yu Y, Wu W, Wu M, You J, Wu C, Zu P. Synthesis and Application of 1,8-Naphthalimide Derivatives Fluorescent Probe for Sequential Recognition of Cu 2+ and H 2PO 4. J Fluoresc 2024:10.1007/s10895-024-03692-y. [PMID: 38613712 DOI: 10.1007/s10895-024-03692-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Abstract
A naphthalimide Schiff base fluorescent probe (BSS) was designed and synthesized from 4-bromo-1,8-naphthalic anhydride, and its structure was characterized by 1HNMR, 13CNMR, FTIR, and MS. Fluorescence emission spectra showed that probe BSS could realize the "turn-off" detection of Cu2+ in acetonitrile solution, detection process with strong specificity and excellent anti-interference of other metal ions. In the fluorescence titration experiments, fluorescence intensity of BSS showed a good linear relationship with the Cu2+ concentration (0-10 µmol/L), and the detection limit was up to 7.0 × 10- 8 mol/L. Meanwhile, BSS and Cu2+ could form a 1:1 complex (BSS-Cu2+) during the reaction process. Under the same detection conditions, complex BSS-Cu2+ had specific fluorescence recovery properties for H2PO4- and the whole process was not only fast (6 s) but also free of interference from other anions, with a detection limit was as low as 5.7 × 10- 8 mol/L. In addition, complex BSS-Cu2+ could be successfully applied to the detection of H2PO4- in actual water samples, which with excellent application prospects.
Collapse
Affiliation(s)
- Shukui Pang
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Yanchao Yu
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China.
| | - Wenju Wu
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China.
| | - Mianyuan Wu
- Institute of Petrochemistry, Heilongjiang Academy of Sciences, Harbin, 150040, P. R. China
| | - Jun You
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Canyao Wu
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Panru Zu
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| |
Collapse
|
16
|
Murphy B, Gabbaï FP. Tunable Pnictogen Bonding at the Service of Hydroxide Transport across Phospholipid Bilayers. J Am Chem Soc 2024; 146:7146-7151. [PMID: 38466939 PMCID: PMC10958499 DOI: 10.1021/jacs.4c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Our growing interest in the design of pnictogen-based strategies for anion transport has prompted an investigation into the properties of three simple triarylcatecholatostiboranes (1-3) of the general formula (o-C6Cl4O2)SbAr3 with Ar = Ph (1), o-tolyl (2), and o-xylyl (3) for the complexation and transport of hydroxide across phospholipid bilayers. A modified hydroxypyrene-1,3,6-trisulfonic acid (HPTS) assay carried out in artificial liposomes shows that 1 and 2 are potent hydroxide transporters while 3 is inactive. These results indicate that the steric hindrance imposed by the three o-xylyl groups prevents access by the hydroxide anion to the antimony center. Supporting this interpretation, 1 and 2 quickly react with TBAOH·30 H2O ([TBA]+ = [nBu4N]+) to form the corresponding hydroxoantimonate salts [nBu4N][1-OH] and [nBu4N][2-OH], whereas 3 resists hydroxide coordination and remains unperturbed. Moreover, the hydroxide transport activities of 1 and 2 are correlated to the +V oxidation state of the antimony atom as the parent trivalent stibines show no hydroxide transport activity.
Collapse
Affiliation(s)
- Brendan
L. Murphy
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843-3255, United States
| | - François P. Gabbaï
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843-3255, United States
| |
Collapse
|
17
|
Lu N, Wang L, Zheng TF, Peng Y, Liu SJ, Wen HR. A dinuclear Cd II cluster-based stable luminescent metal-organic framework for the consecutive and visual detection of H 2PO 4- and OCN . Dalton Trans 2024; 53:5160-5166. [PMID: 38380950 DOI: 10.1039/d3dt03523a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Due to their hazard to biological systems, it is urgent to develop materials that can rapidly and sensitively detect the concentration of H2PO4- and OCN- ions. In this work, a new CdII-based luminescent metal-organic framework with the formula [Cd(BTDB)(2,6-BBIP)]n (JXUST-47, H2BTDB = (benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic acid, 2,6-BBIP = 2,6-bis(benzimidazol-1-yl)pyridine) and sql topology was successfully synthesized using a mixed-ligand strategy. JXUST-47 shows good chemical and thermal stability. It also exhibits weak quenching and fluorescence blue shift for H2PO4- and red shift for OCN-, with the detection limits of 0.106 and 0.128 mM, respectively. In addition, considering the demand for H2PO4- and OCN- ion detection, by combining this with the functions of a smartphone, the chroma of photographs have been used to realize the consecutive visual detection of the concentration of these ions.
Collapse
Affiliation(s)
- Na Lu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Li Wang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| |
Collapse
|
18
|
Jing L, Deplazes E, Clegg JK, Wu X. A charge-neutral organic cage selectively binds strongly hydrated sulfate anions in water. Nat Chem 2024; 16:335-342. [PMID: 38351381 DOI: 10.1038/s41557-024-01457-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
In biological systems, enzymes and transport proteins can bind anions in aqueous media solely by forming hydrogen bonds with charge-neutral motifs. Reproducing this functionality in synthetic systems presents challenges and incurs high costs, particularly when targeting strongly hydrated anions such as sulfate. Here we report a [2.2.2]urea cryptand (cage), synthesized in one pot, that selectively binds sulfate in a mixture of dimethyl sulfoxide and water and in water with affinities in the micromolar to millimolar range. The neutral cage bearing six urea groups donates 12 strong hydrogen bonds to encapsulate a sulfate anion, showing favourable enthalpy even in pure water. Sulfate binding can be further enhanced by using micelles to provide a low-polarity microenvironment. The cage finds utility in analysing divalent anions in water and beverage samples or in removing sulfate. The work demonstrates the achievability of robust and selective anion binding in water with minimal synthetic efforts, by using neutral NH hydrogen bonds akin to those found in biology.
Collapse
Affiliation(s)
- Liuyang Jing
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Evelyne Deplazes
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Xin Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| |
Collapse
|
19
|
Deng S, Li Z, Yuan L, Zeng H. An Exceptionally Active and Highly Selective Perchlorate Transporter Containing a Trimesic Amide Scaffold. Molecules 2024; 29:1118. [PMID: 38474632 DOI: 10.3390/molecules29051118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
We report here a series of alkyl group-modified trimesic amide molecules (TAs) with excellent anion transport activities. Among them, TA6, with the highest ion transport activity and excellent selectivity, efficiently transports anions across the membrane in the order of ClO4- > I- > NO3- > Br- > Cl-, with an EC50 value as low as 17.6 nM (0.022 mol% relative to lipid molecules) for ClO4-, which outperforms other anions by 5- to 22-folds and manifests as the best perchlorate transporter ever reported.
Collapse
Affiliation(s)
- Shaowen Deng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Zhongyan Li
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Lin Yuan
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Huaqiang Zeng
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
20
|
Salvadori K, Onali A, Mathez G, Eigner V, Dendisová M, Matějka P, Mullerová M, Brancale A, Cuřínová P. An Insight into Anion Extraction by Amphiphiles: Hydrophobic Microenvironments as a Requirement for the Extractant Selectivity. ACS OMEGA 2023; 8:44221-44228. [PMID: 38027376 PMCID: PMC10666219 DOI: 10.1021/acsomega.3c06767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Coupling of electron-deficient urea units with aliphatic chains gives rise to amphiphilic compounds that bind to phosphate and benzoate anions in the hydrogen bonding competitive solvent (DMSO) with KAss = 6 580 M-1 and KAss = 4 100 M-1, respectively. The anchoring of these receptor moieties to the dendritic support does not result in a loss of anion binding and enables new applications. Due to the formation of a microenvironment in the dendrimer, the high selectivity of the prepared compound toward benzoate is maintained even in the presence of aqueous media during extraction experiments. In the presence of binding sites at 5 mM concentration, the amount of benzoate corresponding to the full binding site occupancy is transferred into the chloroform phase from its 10 mM aqueous solution. A thorough investigation of the extraction behavior of the dendrimer reported here, supported by a series of molecular dynamics simulations, provides new insight into the fundamental principles of extraction of inorganic anions by amphiphiles.
Collapse
Affiliation(s)
- Karolína Salvadori
- Department
of Physical Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
- Department
of Bioorganic Chemistry and Biomaterials, Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, Prague 6 16502, Czech Republic
| | - Alessia Onali
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Gregory Mathez
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Václav Eigner
- Department
of Solid-State Chemistry, University of
Chemistry and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Marcela Dendisová
- Department
of Physical Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Pavel Matějka
- Department
of Physical Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Monika Mullerová
- Department
of Bioorganic Chemistry and Biomaterials, Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, Prague 6 16502, Czech Republic
| | - Andrea Brancale
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Petra Cuřínová
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| |
Collapse
|
21
|
Rigid macrocycles with multiple hydrogen-bond donors for effective anion binding and transport. Nat Chem 2023; 15:1501-1502. [PMID: 37814115 DOI: 10.1038/s41557-023-01316-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
|
22
|
Cao R, Rossdeutcher RB, Zhong Y, Shen Y, Miller DP, Sobiech TA, Wu X, Buitrago LS, Ramcharan K, Gutay MI, Figueira MF, Luthra P, Zurek E, Szyperski T, Button B, Shao Z, Gong B. Aromatic pentaamide macrocycles bind anions with high affinity for transport across biomembranes. Nat Chem 2023; 15:1559-1568. [PMID: 37814114 DOI: 10.1038/s41557-023-01315-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 08/08/2023] [Indexed: 10/11/2023]
Abstract
The convergent positioning of functional groups in biomacromolecules leads to good binding, catalytic and transport capabilities. Synthetic frameworks capable of convergently locking functional groups with minimized conformational uncertainty-leading to similar properties-are highly desirable but rare. Here we report C5-symmetric aromatic pentaamide macrocycles synthesized in one pot from the corresponding monomers. Their crystal structures reveal a star-shaped, fully constrained backbone that causes ten alternating NH/CH hydrogen-bond donors and five large amide dipoles to orient towards the centre of the macrocycle. With a highly electropositive cavity in a high-energy unbound state, the macrocycles bind anions in a 1:1 stoichiometry in solution, with high affinity for halides and very high affinity for oxoanions. We demonstrate that such macrocycles are able to transport anions across lipid bilayers with a high chloride selectivity and restore the depleted airway surface liquid of cystic fibrosis airway cell cultures.
Collapse
Affiliation(s)
- Ruikai Cao
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Robert B Rossdeutcher
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Yulong Zhong
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Yi Shen
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Daniel P Miller
- Department of Chemistry, Hofstra University, Hempstead, NY, USA
| | - Thomas A Sobiech
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Xiangxiang Wu
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | | | | | - Mark I Gutay
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Pia Luthra
- Department of Chemistry, Hofstra University, Hempstead, NY, USA
| | - Eva Zurek
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Thomas Szyperski
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Brian Button
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Zhifeng Shao
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Bing Gong
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
23
|
Xiong S, Zhang Y, Jiang Y, Wang F, Zhou W, Li A, Zhang Q, Wang Q, He Q. Photo-controllable binding and release of HP 2O 73- using an azobenzene based smart macrocycle. Chem Commun (Camb) 2023; 59:12994-12997. [PMID: 37830230 DOI: 10.1039/d3cc03608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Herein, we describe the design and synthesis of an unusual azobenzene-bearing macrocycle 1, whose trans isomer was found able to 100% transform into its cis configuration under photoirradiation, for selectively recognizing HP2O73- with reversibly photo-controllable binding and release properties.
Collapse
Affiliation(s)
- Shenglun Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, P. R. China.
| | - Yi Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, P. R. China.
| | - Yunqi Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, P. R. China.
| | - Fei Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, P. R. China.
| | - Wei Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, P. R. China.
| | - Aimin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, P. R. China.
| | - Qinpeng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, P. R. China.
| | - Qiuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, P. R. China.
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, P. R. China.
| |
Collapse
|
24
|
Wagay SA, Ali R. Facile synthesis and anion binding studies of fluorescein/benzo-12-crown-4 ether based bis-dipyrromethane (DPM) receptors. RSC Adv 2023; 13:30420-30428. [PMID: 37849701 PMCID: PMC10578460 DOI: 10.1039/d3ra05171d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
Two novel fluorescein as well as benzo-12-crown-4 ether functionalized dipyrromethane receptors (DPM3 and DPM4) have successfully been synthesized. The anion (used as their TBA salts) binding studies of thus prepared DPM3 and DPM4 receptors were evaluated by the UV-visible spectrophotometric titrations. Binding affinities as well as the stoichiometry were determined through the UV-visible titrations data with the involvement of the BindFit (v0.5) package available online at https://supramolecular.org. Moreover, binding events were validated by means of the comparison of the partial 1H-NMR spectrum of the simple host molecule with that of the host-guest complex, and the 1 : 1 stoichiometry were further confirmed by the Job's method of continuous variation. From the results, we observed the binding constant (Ka) values of DPM3/DPM4 with various tested anions in the range of 516.07 M-1 to 63789.81 M-1, depending upon the nature/shape/size of the anions. Moreover, the anion-π interactions were confirmed by the partial 1H-NMR spectral data, and further supported by the literature reported systems. The authors hope that such types of valued receptors will be benefitted in future for the recognizing/binding of a variety of biologically important anions.
Collapse
Affiliation(s)
- Shafieq Ahmad Wagay
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry Jamia Millia Islamia, Okhla New Delhi 110025 India +91-7011867613
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry Jamia Millia Islamia, Okhla New Delhi 110025 India +91-7011867613
| |
Collapse
|
25
|
Shen J, R D, Li Z, Oh H, Behera H, Joshi H, Kumar M, Aksimentiev A, Zeng H. Sulfur-Containing Foldamer-Based Artificial Lithium Channels. Angew Chem Int Ed Engl 2023; 62:e202305623. [PMID: 37539755 DOI: 10.1002/anie.202305623] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Unlike many other biologically relevant ions (Na+ , K+ , Ca2+ , Cl- , etc) and protons, whose cellular concentrations are closely regulated by highly selective channel proteins, Li+ ion is unusual in that its concentration is well tolerated over many orders of magnitude and that no lithium-specific channel proteins have so far been identified. While one naturally evolved primary pathway for Li+ ions to traverse across the cell membrane is through sodium channels by competing with Na+ ions, highly sought-after artificial lithium-transporting channels remain a major challenge to develop. Here we show that sulfur-containing organic nanotubes derived from intramolecularly H-bonded helically folded aromatic foldamers of 3.6 Å in hollow cavity diameter could facilitate highly selective and efficient transmembrane transport of Li+ ions, with high transport selectivity factors of 15.3 and 19.9 over Na+ and K+ ions, respectively.
Collapse
Affiliation(s)
- Jie Shen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Deepa R
- Department of BioTechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Zhongyan Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Hyeonji Oh
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Harekrushna Behera
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Himanshu Joshi
- Department of BioTechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Manish Kumar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Huaqiang Zeng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| |
Collapse
|
26
|
Murphy B, Gabbaï FP. Binding, Sensing, And Transporting Anions with Pnictogen Bonds: The Case of Organoantimony Lewis Acids. J Am Chem Soc 2023; 145:19458-19477. [PMID: 37647531 PMCID: PMC10863067 DOI: 10.1021/jacs.3c06991] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Indexed: 09/01/2023]
Abstract
Motivated by the discovery of main group Lewis acids that could compete or possibly outperform the ubiquitous organoboranes, several groups, including ours, have engaged in the chemistry of Lewis acidic organoantimony compounds as new platforms for anion capture, sensing, and transport. Principal to this approach are the intrinsically elevated Lewis acidic properties of antimony, which greatly favor the addition of halide anions to this group 15 element. The introduction of organic substituents to the antimony center and its oxidation from the + III to the + V state provide for tunable Lewis acidity and a breadth of applications in supramolecular chemistry and catalysis. The performances of these antimony-based Lewis acids in the domain of anion sensing in aqueous media illustrate the favorable attributes of antimony as a central element. At the same time, recent advances in anion binding catalysis and anion transport across phospholipid membranes speak to the numerous opportunities that lie ahead in the chemistry of these unique main group compounds.
Collapse
Affiliation(s)
- Brendan
L. Murphy
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843-3255, United States
| | - François P. Gabbaï
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843-3255, United States
| |
Collapse
|
27
|
Sasaki Y, Ohshiro K, Okabe K, Lyu X, Tsuchiya K, Matsumoto A, Takizawa SY, Minami T. Zn(II)-Dipicolylamine-Attached Amphiphilic Polythiophene for Quantitative Pattern Recognition of Oxyanions in Mixtures. Chem Asian J 2023; 18:e202300372. [PMID: 37309739 DOI: 10.1002/asia.202300372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Herein, we propose a novel amphiphilic polythiophene-based chemosensor functionalized with a Zn(II)-dipicolylamine side chain (1poly ⋅ Zn) for the pattern recognition of oxyanions. Optical changes in amphiphilic 1poly ⋅ Zn can be induced by the formation of a random coil from a backbone-planarized structure upon the addition of target oxyanions, which results in blueshifts in the UV-vis absorption spectra and turn-on-type fluorescence responses. Dynamic behavior in a polythiophene wire and/or among wires could be a driving force for obtaining visible color changes, while the molecular wire effect is dominant in obtaining fluorescence sensor responses. Notably, the magnitude of optical changes in 1poly ⋅ Zn has depended on differences in properties of oxyanions, such as their binding affinity, hydrophilicity, and molecular geometry. Thus, various colorimetric and fluorescence response patterns of 1poly ⋅ Zn to oxyanions were obtained, albeit using a single chemosensor. A constructed information-rich dataset was applied to pattern recognition for the simultaneous group categorization of phosphate and carboxylate groups and the prediction of similar structural oxyanions at a different order of concentrations in their mixture solutions.
Collapse
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505, Tokyo, Japan
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505, Tokyo, Japan
| | - Kiyosumi Okabe
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505, Tokyo, Japan
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505, Tokyo, Japan
| | - Kazuhiko Tsuchiya
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505, Tokyo, Japan
| | - Akira Matsumoto
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505, Tokyo, Japan
| | - Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, 153-8902, Tokyo, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505, Tokyo, Japan
| |
Collapse
|
28
|
Ong WSY, Ji K, Pathiranage V, Maydew C, Baek K, Villones RLE, Meloni G, Walker AR, Dodani SC. Rational Design of the β-Bulge Gate in a Green Fluorescent Protein Accelerates the Kinetics of Sulfate Sensing. Angew Chem Int Ed Engl 2023; 62:e202302304. [PMID: 37059690 PMCID: PMC10330437 DOI: 10.1002/anie.202302304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Detection of anions in complex aqueous media is a fundamental challenge with practical utility that can be addressed by supramolecular chemistry. Biomolecular hosts such as proteins can be used and adapted as an alternative to synthetic hosts. Here, we report how the mutagenesis of the β-bulge residues (D137 and W138) in mNeonGreen, a bright, monomeric fluorescent protein, unlocks and tunes the anion preference at physiological pH for sulfate, resulting in the turn-off sensor SulfOFF-1. This unprecedented sensing arises from an enhancement in the kinetics of binding, largely driven by position 138. In line with these data, molecular dynamics (MD) simulations capture how the coordinated entry and gating of sulfate into the β-barrel is eliminated upon mutagenesis to facilitate binding and fluorescence quenching.
Collapse
Affiliation(s)
- Whitney S. Y. Ong
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Ke Ji
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Vishaka Pathiranage
- Department of Chemistry, Wayne State University, 42 W. Warren Ave. Detroit, MI 48202, USA
| | - Caden Maydew
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Kiheon Baek
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Rhiza Lyne E. Villones
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Alice R. Walker
- Department of Chemistry, Wayne State University, 42 W. Warren Ave. Detroit, MI 48202, USA
| | - Sheel C. Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| |
Collapse
|
29
|
Meng QW, Wu S, Liu M, Guo Q, Xian W, Zuo X, Wang S, Yin H, Ma S, Sun Q. Guanidinium-based covalent organic framework membrane for single-acid recovery. SCIENCE ADVANCES 2023; 9:eadh0207. [PMID: 37343103 DOI: 10.1126/sciadv.adh0207] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Acids are extensively used in contemporary industries. However, time-consuming and environmentally unfriendly processes hinder single-acid recovery from wastes containing various ionic species. Although membrane technology can overcome these challenges by efficiently extracting analytes of interest, the associated processes typically exhibit inadequate ion-specific selectivity. In this regard, we rationally designed a membrane with uniform angstrom-sized pore channels and built-in charge-assisted hydrogen bond donors that preferentially conducted HCl while exhibiting negligible conductance for other compounds. The selectivity originates from the size-screening ability of angstrom-sized channels between protons and other hydrated cations. The built-in charge-assisted hydrogen bond donor enables the screening of acids by exerting host-guest interactions to varying extents, thus acting as an anion filter. The resulting membrane exhibited exceptional permeation for protons over other cations and for Cl- over SO42- and HnPO4(3-n)- with selectivities up to 4334 and 183, respectively, demonstrating prospects for HCl extraction from waste streams. These findings will aid in designing advanced multifunctional membranes for sophisticated separation.
Collapse
Affiliation(s)
- Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shaochun Wu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mingjie Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Qing Guo
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weipeng Xian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiuhui Zuo
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hong Yin
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
30
|
Yang Z, Zhang W, Liu X, Zhao S, Yang Z, Jia X. Chloride Salt of Oligourea Ligand: Synthesis, Crystal Structure, Thermal Analyses, and Chloride Anion Binding Properties. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
31
|
Alexander C, Thom JA, Kenwright AM, Christensen KE, Sørensen TJ, Faulkner S. Chelating chloride using binuclear lanthanide complexes in water. Chem Sci 2023; 14:1194-1204. [PMID: 36756316 PMCID: PMC9891377 DOI: 10.1039/d2sc05417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/27/2022] [Indexed: 12/28/2022] Open
Abstract
Halide recognition by supramolecular receptors and coordination complexes in water is a long-standing challenge. In this work, we report chloride binding in water and in competing media by pre-organised binuclear kinetically inert lanthanide complexes, bridged by flexible -(CH2)2- and -(CH2)3- spacers, forming [Ln2(DO3A)2C-2] and [Ln2(DO3A)2C-3], respectively. These hydrophilic, neutral lanthanide coordination complexes are shown to bind chloride with apparent association constants of up to 105 M-1 in water and in buffered systems. Hydroxide bridging was observed in these complexes at basic pH, which was proven to be overcome by chloride. Thus, these lanthanide complexes show promise towards chloride recognition in biology and beyond. The results described here have clearly identified a new area of anion coordination chemistry that is ripe for detailed exploration.
Collapse
Affiliation(s)
- Carlson Alexander
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - James A Thom
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Alan M Kenwright
- Department of Chemistry, University of Durham South Road Durham DH1 3LE UK
| | - Kirsten E Christensen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Thomas Just Sørensen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Nano-Science Centre and Department of Chemistry, University of Copenhagen 2100 København Ø Denmark
| | - Stephen Faulkner
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
32
|
Yang SS, Wang C, Jiang YF, Zhang H. Three-Dimensional MAX-Ti 3 AlC 2 Nanomaterials for Dual-Selective and Highly Efficient Enrichment of Phosphorylated and Glycosylated Peptides. Chempluschem 2023; 88:e202200375. [PMID: 36581565 DOI: 10.1002/cplu.202200375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Dual-selective enrichment of phosphopeptides and glycopeptides of post-translational modifications (PTMs) in the complex biological samples are challenging. In this work, considering the versatile properties including surface abundant metal sites and electrostatic attraction between Ti3 C2 -layers and Al-layers, layered ternary carbides Ti3 AlC2 nanomaterials was successfully applied for the first time as an affinity adsorbent for the dual-selective capture of phosphopeptides and glycopeptides. Especially, the Ti3 AlC2 nanomaterials had an excellent detection sensitivity for phosphopeptides (1×10-11 M) and a good selectivity for glycopeptides with a low molar ratio of 1 : 500 of HRP (horseradish peroxidase) to BSA (bovine serum albumin). Furthermore, Ti3 AlC2 nanomaterials was also applied for dual-selective enrichment of phosphopeptides and glycopeptides from mouse brain neocortex lysate and human serum lysate respectively before mass spectrometry (MS) analysis, yielding twenty-two unique phosphopeptides from thirteen phosphoproteins and fifty-three unique glycopeptides from thirty-seven glycoproteins, respectively. This work will open a new avenue and will greatly promote sample preparation for mass spectrometric analysis in phosphoproteomics and glycoproteomics research.
Collapse
Affiliation(s)
- Shi-Shu Yang
- Henan Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Chen Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yu-Fei Jiang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hua Zhang
- Henan Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| |
Collapse
|
33
|
Zhang J, Gabel D, Assaf KI, Nau WM. A Fluorescein-Substituted Perbrominated Dodecaborate Cluster as an Anchor Dye for Large Macrocyclic Hosts and Its Application in Indicator Displacement Assays. Org Lett 2022; 24:9184-9188. [PMID: 36507622 DOI: 10.1021/acs.orglett.2c03615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Perhalogenated boron clusters derived from B12Br122-, a superchaotropic dianion with a globular icosahedral shape, serve as inorganic cavity binders for cyclodextrins (CDs), in particular for large CDs (γ-CD and δ-CD), with high binding affinity (Ka > 106 M-1) in aqueous solution. This opens the door for applications of this anchoring moiety by linking it to organic residues, prominently fluorescent dyes. We report here the synthesis of a novel fluorescein-substituted perbrominated dodecaborate cluster by a copper(I)-catalyzed azide-alkyne click reaction. The formation of host-guest inclusion complexes between the dodecaborate-modified fluorescein dye and CDs can be readily followed by optical titrations, which afforded a binding constant of ∼1 × 104 M-1 with γ-CD; that is, the cluster functionalization allows binding of an otherwise nonbinding dye to the macrocycle ("anchor dye"). The formation of the 1:1 host-guest inclusion complex between the dye and γ-CD occurs over a broad range of pH values, which allows its application as a sensitive reporter pair according to the indicator displacement method, e.g., for drug detection. In addition, the substituted dye shows outer-wall binding to cucurbiturils through the dodecaborate moiety, leading to the formation of aggregates and significant fluorescence quenching of the dye.
Collapse
Affiliation(s)
- Jinling Zhang
- Jacobs University Bremen, School of Science, Campus Ring 1, 28759 Bremen, Germany
| | - Detlef Gabel
- Jacobs University Bremen, School of Science, Campus Ring 1, 28759 Bremen, Germany
| | - Khaleel I Assaf
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, 19117 Al-Salt, Jordan
| | - Werner M Nau
- Jacobs University Bremen, School of Science, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
34
|
Molecular Pincers Using a Combination of N-H and C-H Donors for Anion Binding. Int J Mol Sci 2022; 24:ijms24010163. [PMID: 36613608 PMCID: PMC9820443 DOI: 10.3390/ijms24010163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
A naphthalene imide (1) and a naphthalene (2) bearing two pyrrole units have been synthesized, respectively, as anion receptors. It was revealed by 1H NMR spectral studies carried out in CD3CN that receptors 1 and 2 bind various anions via hydrogen bonds using both C-H and N-H donors. Compared with receptor 2, receptor 1 shows higher affinity for the test anions because of the enhanced acidity of its pyrrole NH and naphthalene CH hydrogens by the electron-withdrawing imide substituent. Molecular mechanics computations demonstrate that the receptors contact the halide anions via only one of the two respective available N-H and C-H donors whereas they use all four donors for binding of the oxyanions such as dihydrogen phosphate and hydrogen pyrophosphate. Receptor 1, a push-pull conjugated system, displays a strong fluorescence centered at 625 nm, while receptor 2 exhibits an emission with a maximum peak at 408 nm. In contrast, upon exposure of receptors 1 and 2 to the anions in question, their fluorescence was noticeably quenched particularly with relatively basic anions including F-, H2PO4-, HP2O73-, and HCO3-.
Collapse
|
35
|
Varadwaj PR. Tetrel Bonding in Anion Recognition: A First Principles Investigation. Molecules 2022; 27:molecules27238449. [PMID: 36500544 PMCID: PMC9738195 DOI: 10.3390/molecules27238449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Twenty-five molecule-anion complex systems [I4Tt···X-] (Tt = C, Si, Ge, Sn and Pb; X = F, Cl, Br, I and At) were examined using density functional theory (ωB97X-D) and ab initio (MP2 and CCSD) methods to demonstrate the ability of the tetrel atoms in molecular entities, I4Tt, to recognize the halide anions when in close proximity. The tetrel bond strength for the [I4C···X-] series and [I4Tt···X-] (Tt = Si, Sn; X = I, At), was weak-to-moderate, whereas that in the remaining 16 complexes was dative tetrel bond type with very large interaction energies and short Tt···X close contact distances. The basis set superposition error corrected interaction energies calculated with the highest-level theory applied, [CCSD(T)/def2-TZVPPD], ranged from -3.0 to -112.2 kcal mol-1. The significant variation in interaction energies was realized as a result of different levels of tetrel bonding environment between the interacting partners at the equilibrium geometries of the complex systems. Although the ωB97X-D computed intermolecular geometries and interaction energies of a majority of the [I4Tt···X-] complexes were close to those predicted by the highest level of theory, the MP2 results were shown to be misleading for some of these systems. To provide insight into the nature of the intermolecular chemical bonding environment in the 25 molecule-anion complexes investigated, we discussed the charge-density-based topological and isosurface features that emanated from the application of the quantum theory of atoms in molecules and independent gradient model approaches, respectively.
Collapse
Affiliation(s)
- Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Tokyo 113-8656, Japan; or
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
36
|
Maslowska-Jarzyna K, Bąk KM, Zawada B, Chmielewski MJ. pH-Dependent transport of amino acids across lipid bilayers by simple monotopic anion carriers. Chem Sci 2022; 13:12374-12381. [PMID: 36382290 PMCID: PMC9629080 DOI: 10.1039/d2sc04346g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2023] Open
Abstract
The transport of amino acids across lipid membranes is vital for the proper functioning of every living cell. In spite of that, examples of synthetic transporters that can facilitate amino acid transport are rare. This is mainly because at physiological conditions amino acids predominantly exist as highly polar zwitterions and proper shielding of their charged termini, which is necessary for fast diffusion across lipophilic membranes, requires complex and synthetically challenging heteroditopic receptors. Here we report the first simple monotopic anion receptor, dithioamide 1, that efficiently transports a variety of natural amino acids across lipid bilayers at physiological pH. Mechanistic studies revealed that the receptor rapidly transports deprotonated amino acids, even though at pH 7.4 these forms account for less than 3% of the total amino acid concentration. We also describe a new fluorescent assay for the selective measurement of the transport of deprotonated amino acids into liposomes. The new assay allowed us to study the pH-dependence of amino acid transport and elucidate the mechanism of transport by 1, as well as to explain its exceptionally high activity. With the newly developed assay we screened also four other representative examples of monotopic anion transporters, of which two showed promising activity. Our results imply that heteroditopic receptors are not necessary for achieving high amino acid transport activities and that many of the previously reported anionophores might be active amino acid transporters. Based on these findings, we propose a new strategy for the development of artificial amino acid transporters with improved properties.
Collapse
Affiliation(s)
- Krystyna Maslowska-Jarzyna
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 Warsaw 02-089 Poland
| | - Krzysztof M Bąk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 Warsaw 02-089 Poland
| | - Bartłomiej Zawada
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 Warsaw 02-089 Poland
| | - Michał J Chmielewski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 Warsaw 02-089 Poland
| |
Collapse
|
37
|
Lauer JC, Bhat AS, Barwig C, Fritz N, Kirschbaum T, Rominger F, Mastalerz M. [2+3] Amide Cages by Oxidation of [2+3] Imine Cages – Revisiting Molecular Hosts for Highly Efficient Nitrate Binding. Chemistry 2022; 28:e202201527. [PMID: 35699158 PMCID: PMC9544679 DOI: 10.1002/chem.202201527] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/16/2022]
Abstract
The pollution of groundwater with nitrate is a serious issue because nitrate can cause several diseases such as methemoglobinemia or cancer. Therefore, selective removal of nitrate by efficient binding to supramolecular hosts is highly desired. Here we describe how to make [2+3] amide cages in very high to quantitative yields by applying an optimized Pinnick oxidation protocol for the conversion of corresponding imine cages. By NMR titration experiments of the eight different [2+3] amide cages with nitrate, chloride and hydrogen sulfate we identified one cage with an unprecedented high selectivity towards nitrate binding vs. chloride (S=705) or hydrogensulfate (S>13500) in CD2Cl2/CD3CN (1 : 3). NMR experiments as well as single‐crystal structure comparison of host‐guest complexes give insight into structure‐property‐relationships.
Collapse
Affiliation(s)
- Jochen C. Lauer
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Avinash S. Bhat
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Chantal Barwig
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Nathalie Fritz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Tobias Kirschbaum
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
38
|
Díaz-Cabrera S, Carreira-Barral I, García-Valverde M, Quesada R. Roseophilin-inspired derivatives as transmembrane anion carriers. Supramol Chem 2022. [DOI: 10.1080/10610278.2022.2099277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | | | | | - Roberto Quesada
- Departamento de Química, Universidad de Burgos, Burgos, Spain
| |
Collapse
|
39
|
Hollstein S, Shyshov O, Hanževački M, Zhao J, Rudolf T, Jäger CM, von Delius M. Dynamic Covalent Self-Assembly of Chloride- and Ion-Pair-Templated Cryptates. Angew Chem Int Ed Engl 2022; 61:e202201831. [PMID: 35384202 PMCID: PMC9400851 DOI: 10.1002/anie.202201831] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 12/17/2022]
Abstract
While supramolecular hosts capable of binding and transporting anions and ion pairs are now widely available, self-assembled architectures are still rare, even though they offer an inherent mechanism for the release of the guest ion(s). In this work, we report the dynamic covalent self-assembly of tripodal, urea-based anion cryptates that are held together by two orthoester bridgeheads. These hosts exhibit affinity for anions such as Cl- , Br- or I- in the moderate range that is typically advantageous for applications in membrane transport. In unprecedented experiments, we were able to dissociate the Cs⋅Cl ion pair by simultaneously assembling suitably sized orthoester hosts around the Cs+ and the Cl- ion.
Collapse
Affiliation(s)
- Selina Hollstein
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Oleksandr Shyshov
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Marko Hanževački
- Department of Chemical and Environmental EngineeringUniversity of Nottingham University ParkNottinghamNG7 2RDUK
| | - Jie Zhao
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Tamara Rudolf
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Christof M. Jäger
- Department of Chemical and Environmental EngineeringUniversity of Nottingham University ParkNottinghamNG7 2RDUK
| | - Max von Delius
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
40
|
Al Isawi WA, Zeller M, Mezei G. Supramolecular Incarceration and Extraction of Tetrafluoroberyllate from Water by Nanojars. Inorg Chem 2022; 61:8611-8622. [PMID: 35617675 DOI: 10.1021/acs.inorgchem.2c01198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The previously unexplored noncovalent binding of the highly toxic tetrafluoroberyllate anion (BeF42-) and its extraction from water into organic solvents are presented. Nanojars resemble anion-binding proteins in that they also possess an inner anion binding pocket lined by a multitude of H-bond donors (OH groups), which wrap around the incarcerated anion and completely isolate it from the surrounding medium. The BeF4-binding propensity of [BeF4⊂{CuII(OH)(pz)}n]2- (pz = pyrazolate; n = 27-32) nanojars of different sizes is investigated using an array of techniques including mass spectrometry, paramagnetic 1H, 9Be, and 19F NMR spectroscopy, and X-ray crystallography, along with thermal stability studies in solution and chemical stability studies toward acidity and Ba2+ ions. The latter is found to be unable to precipitate the insoluble BaBeF4 from nanojar solutions, indicating a very strong binding of the BeF42- anion by nanojars. 9Be and 19F NMR spectroscopy allows for the unprecedented direct probing of the incarcerated anion in a nanojar and, along with 1H NMR studies, reveals the fluxional structure of nanojars and their inner anion-binding pockets. Single-crystal X-ray diffraction provides the crystal and molecular structures of (Bu4N)2[BeF4⊂{Cu(OH)(pz)}32], which contains a novel Cux-ring combination (x = 9 + 14 + 9), (Bu4N)2[BeF4⊂{Cu(OH)(pz)}8+14+9], and (Bu4N)2[BeF4⊂{Cu(OH)(pz)}6+12+10] and offers detailed structural parameters related to the supramolecular binding of BeF42- in these nanojars. The extraction of BeF42- from water into organic solvents, including the highly hydrophobic solvent n-heptane, demonstrates that nanojars are efficient binding and extracting agents not only for oxoanions but also for fluoroanions.
Collapse
Affiliation(s)
- Wisam A Al Isawi
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Gellert Mezei
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| |
Collapse
|
41
|
Singh A, Torres-Huerta A, Vanderlinden T, Renier N, Martínez-Crespo L, Tumanov N, Wouters J, Bartik K, Jabin I, Valkenier H. Calix[6]arenes with halogen bond donor groups as selective and efficient anion transporters. Chem Commun (Camb) 2022; 58:6255-6258. [PMID: 35521967 PMCID: PMC9128489 DOI: 10.1039/d2cc00847e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here we present the anion binding and anion transport properties of a series of calix[6]arenes decorated on their small rim with either halogen bond or hydrogen bond donating groups. We show that the halogen bond donating iodotriazole groups enable highly selective transport of chloride and nitrate anions, without transport of protons or hydroxide, at rates similar to those observed with thiourea or squaramide groups. A calix[6]arene with three preorganised halogen bond donating groups gives >100-fold selectivity for Cl− uniport over HCl symport, in contrast to analogous compounds with strong hydrogen bond donating groups.![]()
Collapse
Affiliation(s)
- Anurag Singh
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium.
| | - Aaron Torres-Huerta
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium.
| | - Tom Vanderlinden
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium. .,Université libre de Bruxelles (ULB), Faculty of science, Laboratoire de Chimie Organique, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium
| | - Nathan Renier
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium.
| | - Luis Martínez-Crespo
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium.
| | - Nikolay Tumanov
- Namur Institute of Structured Matter and Namur Research Institute for Life Sciences, Department of Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Johan Wouters
- Namur Institute of Structured Matter and Namur Research Institute for Life Sciences, Department of Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Kristin Bartik
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium.
| | - Ivan Jabin
- Université libre de Bruxelles (ULB), Faculty of science, Laboratoire de Chimie Organique, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium
| | - Hennie Valkenier
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium.
| |
Collapse
|
42
|
Hollstein S, Shyshov O, Hanževački M, Zhao J, Rudolf T, Jäger CM, Delius M. Dynamisch kovalente Selbstassemblierung von Chlorid‐ und Ionenpaar‐templierten Kryptaten. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Selina Hollstein
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Oleksandr Shyshov
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Marko Hanževački
- Department of Chemical and Environmental Engineering University of Nottingham University Park Nottingham NG7 2RD Großbritannien
| | - Jie Zhao
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Tamara Rudolf
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Christof M. Jäger
- Department of Chemical and Environmental Engineering University of Nottingham University Park Nottingham NG7 2RD Großbritannien
| | - Max Delius
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| |
Collapse
|
43
|
Einkauf JD, Bryantsev VS, Moyer BA, Custelcean R. A Photoresponsive Receptor with a 10
5
Magnitude of Reversible Anion‐Binding Switching. Chemistry 2022; 28:e202200719. [DOI: 10.1002/chem.202200719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Jeffrey D. Einkauf
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831-6119 USA
| | | | - Bruce A. Moyer
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831-6119 USA
| | - Radu Custelcean
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831-6119 USA
| |
Collapse
|
44
|
El‐Nahass MN, Fayed TA, El‐Daly HA, Youssif MM. Benzothiazole azo‐derivatives as colorimetric probes for optical recognition of different metal ions and anions. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marwa N. El‐Nahass
- Department of Chemistry, Faculty of Science Tanta University Tanta Egypt
| | - Tarek A. Fayed
- Department of Chemistry, Faculty of Science Tanta University Tanta Egypt
| | - Hosny A. El‐Daly
- Department of Chemistry, Faculty of Science Tanta University Tanta Egypt
| | - Mahmoud M. Youssif
- Department of Chemistry, Faculty of Science Tanta University Tanta Egypt
| |
Collapse
|
45
|
Xie H, Gunawardana VWL, Finnegan TJ, Xie W, Badjić JD. Picking on Carbonate: Kinetic Selectivity in the Encapsulation of Anions. Angew Chem Int Ed Engl 2022; 61:e202116518. [PMID: 35038355 DOI: 10.1002/anie.202116518] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 12/21/2022]
Abstract
Supramolecular hosts bind to inorganic anions at a fast rate and select them in proportion with thermodynamic stability of the corresponding [anion⊂host] complexes, forming in a reversible manner. In this study, we describe the action of hexapodal capsule 1 and its remarkable ability to select anions based on a large span of rates by which they enter this host. The thermodynamic affinity of 1 toward eighteen anions extends over eight orders of magnitude (0<Ka <108 M-1 ; 1 H NMR spectroscopy). The capsule would retain CO3 2- (Ka =107 M-1 ) for hours in the presence of eleven competing anions, including stronger binding SO4 2- , HAsO4 2- and HPO4 2- (Ka =107 -108 M-1 ). The observed selection resulted from 1 possessing narrow apertures (ca. 3×6 Å) comparable in size to anions (d=3.5-7.1 Å) slowing down the encapsulation to last from seconds to days. The unorthodox mode of action of 1 sets the stage for creating hosts that pick anions by their ability to access the host.
Collapse
Affiliation(s)
- Han Xie
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | | | - Tyler J Finnegan
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - William Xie
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Jovica D Badjić
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
46
|
A Simulation Model for the Non-Electrogenic Uniport Carrier-Assisted Transport of Ions across Lipid Membranes. MEMBRANES 2022; 12:membranes12030292. [PMID: 35323767 PMCID: PMC8955484 DOI: 10.3390/membranes12030292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 12/10/2022]
Abstract
Impressive work has been completed in recent decades on the transmembrane anion transport capability of small synthetic transporters from many different structural classes. However, very few predicting models have been proposed for the fast screening of compound libraries before spending time and resources on the laboratory bench for their synthesis. In this work, a new approach is presented which aims at describing the transport process by taking all the steps into explicit consideration, and includes all possible experiment-derived parameters. The algorithm is able to simulate the macroscopic experiments performed with lipid vesicles to assess the ion-transport ability of the synthetic transporters following a non-electrogenic uniport mechanism. While keeping calculation time affordable, the final goal is the curve-fitting of real experimental data—so, to obtain both an analysis and a predictive tool. The role and the relative weight of the different parameters is discussed and the agreement with the literature is shown by using the simulations of a virtual benchmark case. The fitting of real experimental curves is also shown for two transporters of different structural type.
Collapse
|
47
|
Howe ENW, Chang VVT, Wu X, Fares M, Lewis W, Macreadie LK, Gale PA. Halide-selective, proton-coupled anion transport by phenylthiosemicarbazones. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183828. [PMID: 34861222 DOI: 10.1016/j.bbamem.2021.183828] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022]
Abstract
Phenylthiosemicarbazones (PTSCs) are proton-coupled anion transporters with pH-switchable behaviour known to be regulated by an imine protonation equilibrium. Previously, chloride/nitrate exchange by PTSCs was found to be inactive at pH 7.2 due to locking of the thiourea anion binding site by an intramolecular hydrogen bond, and switched ON upon imine protonation at pH 4.5. The rate-determining process of the pH switch, however, was not examined. We here develop a new series of PTSCs and demonstrate their conformational behaviour by X-ray crystallographic analysis and pH-switchable anion transport properties by liposomal assays. We report the surprising finding that the protonated PTSCs are extremely selective for halides over oxyanions in membrane transport. Owing to the high chloride over nitrate selectivity, the pH-dependent chloride/nitrate exchange of PTSCs originates from the rate-limiting nitrate transport process being inhibited at neutral pH.
Collapse
Affiliation(s)
- Ethan N W Howe
- School of Chemistry (F11), The University of Sydney, NSW 2006, Australia
| | - Vai-Vai Tiffany Chang
- School of Chemistry (F11), The University of Sydney, NSW 2006, Australia; Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Xin Wu
- School of Chemistry (F11), The University of Sydney, NSW 2006, Australia
| | - Mohamed Fares
- School of Chemistry (F11), The University of Sydney, NSW 2006, Australia
| | - William Lewis
- School of Chemistry (F11), The University of Sydney, NSW 2006, Australia
| | - Lauren K Macreadie
- School of Chemistry (F11), The University of Sydney, NSW 2006, Australia
| | - Philip A Gale
- School of Chemistry (F11), The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute (SydneyNano), The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
48
|
Badjic JD, Xie H, Gunawardana VWL, Finnegan TJ, Xie W, Badjić JD. Picking on Carbonate: Kinetic Selectivity in the Encapsulation of Anions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jovica D Badjic
- Ohio State University Department of Chemistry 100 W. 18th Avenue 43210 Columbus UNITED STATES
| | - Han Xie
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | | | | | - William Xie
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | - Jovica D. Badjić
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| |
Collapse
|
49
|
Niedbała P, Ceborska M, Mehmet M, Ignacak W, Jurczak J, Dąbrowa K. Anion Recognition by a Pincer-Type Host Constructed from Two Polyamide Macrocyclic Frameworks Jointed by a Photo-Addressable Azobenzene Switch. MATERIALS (BASEL, SWITZERLAND) 2022; 15:692. [PMID: 35057408 PMCID: PMC8777895 DOI: 10.3390/ma15020692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 12/10/2022]
Abstract
A sterically crowded light-responsive host 1 was synthetized with a 93% yield by applying a post-functionalization protocol utilizing the double amidation of 4,4'-azodibenzoyl dichloride with a readily available 26-membered macrocyclic amine. X-ray structures of two hydrates of trans-1 demonstrate a very different alignment of the azobenzene linkage, which is involved in T-shape or parallel-displaced π⋯π stacking interactions with the pyridine-2,6-dicarboxamide moieties from the macrocyclic backbone. Despite the rigidity of the macrocyclic framework, which generates a large steric hindrance around the azobenzene chromophore, the host 1 retains the ability to undergo a reversible cis⟷trans isomerization upon irradiation with UVA (368 nm) and blue (410 nm) light. Moreover, thermal cis→trans back-isomerization (ΔG0 = 106.5 kJ∙mol-1, t½ = 141 h) is markedly slowed down as compared to the non-macrocyclic analog. 1H NMR titration experiments in DMSO-d6/0.5% water solution reveal that trans-1 exhibits a strong preference for dihydrogenphosphate (H2PO4-) over other anions (Cl-, MeCO2-, and PhCO2-), whereas the photogenerated metastable cis-1 shows lower affinity for the H2PO4- anion.
Collapse
Affiliation(s)
- Patryk Niedbała
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; (P.N.); (M.M.); (W.I.)
| | - Magdalena Ceborska
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland;
| | - Mart Mehmet
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; (P.N.); (M.M.); (W.I.)
| | - Wiktor Ignacak
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; (P.N.); (M.M.); (W.I.)
| | - Janusz Jurczak
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; (P.N.); (M.M.); (W.I.)
| | - Kajetan Dąbrowa
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; (P.N.); (M.M.); (W.I.)
| |
Collapse
|
50
|
Wezenberg SJ, Chen LJ, Bos JE, Feringa BL, Howe ENW, Wu X, Siegler MA, Gale PA. Photomodulation of Transmembrane Transport and Potential by Stiff-Stilbene Based Bis(thio)ureas. J Am Chem Soc 2022; 144:331-338. [PMID: 34932344 PMCID: PMC8759083 DOI: 10.1021/jacs.1c10034] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 12/14/2022]
Abstract
Membrane transport proteins fulfill important regulatory functions in biology with a common trait being their ability to respond to stimuli in the environment. Various small-molecule receptors, capable of mediating transmembrane transport, have been successfully developed. However, to confer stimuli-responsiveness on them poses a fundamental challenge. Here we demonstrate photocontrol of transmembrane transport and electric potential using bis(thio)ureas derived from stiff-stilbene. UV-vis and 1H NMR spectroscopy are used to monitor E-Z photoisomerization of these bis(thio)ureas and 1H NMR titrations reveal stronger binding of chloride to the (Z)-form than to the (E)-form. Additional insight into the binding properties is provided by single crystal X-ray crystallographic analysis and DFT geometry optimization. Importantly, the (Z)-isomers are much more active in transmembrane transport than the respective (E)-isomers as shown through various assays. As a result, both membrane transport and depolarization can be modulated upon irradiation, opening up new prospects toward light-based therapeutics as well as physiological and optopharmacological tools for studying anion transport-associated diseases and to stimulate neuronal activity, respectively.
Collapse
Affiliation(s)
- Sander J. Wezenberg
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Li-Jun Chen
- School
of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Jasper E. Bos
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Ben L. Feringa
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ethan N. W. Howe
- School
of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Xin Wu
- School
of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Philip A. Gale
- School
of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
- The
University of Sydney Nano Institute (SydneyNano), The University of
Sydney, Sydney NSW 2006, Australia
| |
Collapse
|