1
|
Pimentel AC, Cesar CS, Martins AHB, Martins M, Cogni R. Wolbachia Offers Protection Against Two Common Natural Viruses of Drosophila. MICROBIAL ECOLOGY 2025; 88:24. [PMID: 40202691 PMCID: PMC11982076 DOI: 10.1007/s00248-025-02518-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025]
Abstract
Wolbachia pipientis is a maternally transmitted endosymbiont infecting more than half of terrestrial arthropod species. Wolbachia can express parasitic phenotypes such as manipulation of host reproduction and mutualist phenotypes such as protection against RNA virus infections. Because Wolbachia can invade populations by reproductive manipulation and block virus infection, it is used to modify natural insect populations. However, the ecological importance of virus protection is not yet clear, especially due to scarce information on Wolbachia protection against viruses that are common in nature. We used systemic infection to investigate whether Wolbachia protects its host by suppressing the titer of DMELDAV and DMelNora virus, two viruses that commonly infect Drosophila melanogaster flies in natural populations. Antiviral protection was tested in three systems to assess the impact of Wolbachia strains across species: (1) a panel of Wolbachia strains transfected into Drosophila simulans, (2) two Wolbachia strains introgressed into the natural host D. melanogaster, and (3) two native Wolbachia strains in their natural hosts Drosophila baimaii and Drosophila tropicalis. We showed that certain Wolbachia strains provide protection against DMelNora virus and DMELDAV, and this protection is correlated with Wolbachia density, which is consistent with what has been observed in protection against other RNA viruses. Additionally, we found that Wolbachia does not protect its original host, D. melanogaster, from DMELDAV infection. While native Wolbachia can reduce DMELDAV titers in D. baimaii, this effect was not detected in D. tropicalis. Although the Wolbachia protection-induced phenotype seems to depend on the virus, the specific Wolbachia strain, and the host species, our findings suggest that antiviral protection may be one of the mutualistic effects that helps explain why Wolbachia is so widespread in arthropod populations.
Collapse
Affiliation(s)
- André C Pimentel
- Department of Ecology, University of São Paulo, São Paulo, Brazil
| | - Cássia S Cesar
- Department of Ecology, University of São Paulo, São Paulo, Brazil
| | | | - Marcos Martins
- Department of Ecology, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Cogni
- Department of Ecology, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Yan T, Lu R. Shared and unique mechanisms of RNAi-mediated antiviral immunity in C. elegans. Virology 2025; 605:110459. [PMID: 40022946 PMCID: PMC11970214 DOI: 10.1016/j.virol.2025.110459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Small interfering RNAs (siRNAs), generated by Dicer proteins, play a pivotal role in antiviral immunity in eukaryotes. Dicer proteins also produce microRNAs (miRNAs), a class of endogenous small non-coding RNAs that regulate essential cellular functions through post-transcriptional mechanisms. In plants and insects, multiple Dicer proteins are produced and deployed to separately manage the biogenesis of antiviral siRNAs and miRNAs. This separation ensures that viral infections, especially the production of viral RNAi suppressors, do not severely compromise host growth or development. In contrast, nematode worms, such as Caenorhabditis elegans, rely on a single Dicer protein to produce both types of small RNAs. Probably as a strategy to mitigate the potential disruption of miRNA production by viral infections, nematodes have evolved distinct strategies for generating primary and secondary siRNAs for antiviral defense. This review explores the shared and unique features of siRNA-mediated antiviral immunity in Caenorhabditis elegans, shedding light on the specialized adaptations that enable robust antiviral defenses without compromising miRNA-mediated function.
Collapse
Affiliation(s)
- Teng Yan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA; Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Lu
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
3
|
Gupta AK, Chennuri PR, Monfardini RD, Myles KM. Exploiting attP landing sites and gypsy retrovirus insulators to identify and study viral suppressors of RNA silencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637972. [PMID: 39990464 PMCID: PMC11844480 DOI: 10.1101/2025.02.12.637972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
RNA interference (RNAi) pathways are crucial for regulating viral infections in both animals and plants, acting as defense mechanisms that limit pathogen replication. This has led to the evolution of viral suppressors of RNA silencing (VSRs) across various plant and insect viruses, with potential analogs in arthropod-borne human pathogens. However, while functionally similar, VSRs often lack genetic conservation due to convergent evolution. Research on VSRs typically involves analyzing individual proteins expressed in host cells with secondary reporter constructs, but the lack of a standardized system can lead to inconsistent findings. Our study examined how genomic insertion sites affect VSR activity using a transgenic Drosophila melanogaster reporter system. We integrated the VSR protein DCV-1A into three different attP sites and assessed silencing. The results showed significant variation in VSR activity across loci due to position effects. However, by flanking the transgenes with gypsy retrovirus insulators, we achieved consistent high-level silencing across all sites. These findings suggest the potential for establishing a standardized reporter system in Drosophila , facilitating the identification, study and comparison of VSR proteins. However, our results also highlight the limitations of using isolated proteins in reporter systems, emphasizing the need for a comprehensive holistic approach to definitively determine VSR functions.
Collapse
|
4
|
Wu Y, Liu P, Zhou J, Fu M, Wang C, Xiong N, Ji W, Wang Z, Lin J, Yang Q. Virus-derived siRNA: Coronavirus and influenza virus trigger antiviral RNAi immunity in birds. Nucleic Acids Res 2025; 53:gkaf116. [PMID: 39988316 PMCID: PMC11840554 DOI: 10.1093/nar/gkaf116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025] Open
Abstract
RNA interference (RNAi) is a key antiviral immune mechanism in eukaryotes. However, antiviral RNAi in vertebrates has only been observed in cells with poor interferon systems or in viral suppressors of RNAi (VSR) deficiency virus infections. Our research discovered that infecting macrophages with wild-type coronavirus (Infectious bronchitis virus, IBV) and influenza viruses (Avian influenza virus, AIV) can trigger RNAi antiviral immunity and produce a certain amount of virus-derived siRNA (vsiRNA). These vsiRNAs have an inhibitory effect on the virus and carry out targeted silencing along the Dicer-Ago2-vsiRNA axis. Notably, these vsiRNAs are distributed throughout the virus's entire genome, with a predilection for A/U at the 5' and 3' termini of vsiRNA. In addition, Dicer cleavage produces vsiRNA based on the RWM motif, where R represents A/G, W represents A/C, and M represents A/U. We also discovered that avian LGP2 and MDA5 proteins positively impact the expression of the Dicer protein and the Dicer subtype "DicerM." Most importantly, the PS-vsiRNA plasmid combined with nanomaterial polyetherimide (PEI) showed excellent anti-virus activity in specific-pathogen-free (SPF) chickens. These findings show that RNA viruses trigger the production of the vsiRNA in avian somatic cells, which is of great significance for the application of therapeutic vaccines.
Collapse
Affiliation(s)
- Yaotang Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Peng Liu
- College of Veterinary Medicine, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China
| | - Jie Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Mei Fu
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Chenlu Wang
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Ningna Xiong
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Wenxin Ji
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Zhisheng Wang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Jian Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
5
|
Zhang L, Liang Y, Qin J, Liu C, Shang M, Sun X. CDK12 antagonizes a viral suppressor of RNAi to modulate antiviral RNAi in Drosophila. mBio 2025; 16:e0286824. [PMID: 39601580 PMCID: PMC11708023 DOI: 10.1128/mbio.02868-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
The primary antiviral immunity in insects is mediated by the RNA interference (RNAi) pathway. To counteract this antiviral RNAi response, viruses employ virulence factors known as viral suppressors of RNAi (VSR). The question of whether host factors can activate a counter-counter-defense mechanism to cope with VSR-mediated RNA silencing suppression remains unanswered. In this study, cyclin-dependent kinase 12 (CDK12) was identified to interact with B2, a VSR of Flock House virus (FHV), and the critical amino acids responsible for dsRNA binding and dimerization in B2 were essential for this interaction. Silencing of CDK12 facilitated FHV RNA accumulation only in the context of B2, not for FHVΔB2. Notably, CDK12 abrogated the RNAi suppression exerted by B2. Furthermore, the knockdown of CDK12 inhibited the production of vsiRNAs in FHV-infected Drosophila cells. This study revealed that CDK12 mediated a counter-counter-defense strategy against VSR, thereby enhancing antiviral RNAi immunity in Drosophila.IMPORTANCEThe arms race between virus and host immunity is never-ending. This study enhances our understanding of antiviral defenses in insects by uncovering a novel counter-counter-defense mechanism against viral suppressors of RNA interference (VSRs). The RNA interference (RNAi) pathway serves as a primary antiviral response in insects, but viruses, such as Flock House virus (FHV), have evolved VSRs like B2 to disrupt this defense. Our research identifies cyclin-dependent kinase 12 (CDK12) as a critical host factor that interacts with the VSR B2. The discovery that CDK12 can counteract B2-mediated RNAi suppression and stimulate the production of viral small interfering RNAs (vsiRNAs) in FHV-infected Drosophila cells highlights its pivotal role in enhancing antiviral RNAi immunity. This study not only reveals a new dimension of host-virus interactions but also opens avenues for developing strategies to strengthen RNAi-based antiviral defenses.
Collapse
Affiliation(s)
- Liqin Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yu Liang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiayu Qin
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Mengwei Shang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaoming Sun
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Sato Y, Kondo H, Suzuki N. Argonaute-independent, Dicer-dependent antiviral defense against RNA viruses. Proc Natl Acad Sci U S A 2024; 121:e2322765121. [PMID: 38865263 PMCID: PMC11194562 DOI: 10.1073/pnas.2322765121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024] Open
Abstract
Antiviral RNA interference (RNAi) is conserved from yeasts to mammals. Dicer recognizes and cleaves virus-derived double-stranded RNA (dsRNA) and/or structured single-stranded RNA (ssRNA) into small-interfering RNAs, which guide effector Argonaute to homologous viral RNAs for digestion and inhibit virus replication. Thus, Argonaute is believed to be essential for antiviral RNAi. Here, we show Argonaute-independent, Dicer-dependent antiviral defense against dsRNA viruses using Cryphonectria parasitica (chestnut blight fungus), which is a model filamentous ascomycetous fungus and hosts a variety of viruses. The fungus has two dicer-like genes (dcl1 and dcl2) and four argonaute-like genes (agl1 to agl4). We prepared a suite of single to quadruple agl knockout mutants with or without dcl disruption. We tested these mutants for antiviral activities against diverse dsRNA viruses and ssRNA viruses. Although both DCL2 and AGL2 worked as antiviral players against some RNA viruses, DCL2 without argonaute was sufficient to block the replication of other RNA viruses. Overall, these results indicate the existence of a Dicer-alone defense and different degrees of susceptibility to it among RNA viruses. We discuss what determines the great difference in susceptibility to the Dicer-only defense.
Collapse
Affiliation(s)
- Yukiyo Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama710-0046, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama710-0046, Japan
| |
Collapse
|
7
|
Kaufholz F, Ulrich J, Hakeemi MS, Bucher G. Temporal control of RNAi reveals both robust and labile feedback loops in the segmentation clock of the red flour beetle. Proc Natl Acad Sci U S A 2024; 121:e2318229121. [PMID: 38865277 PMCID: PMC11194489 DOI: 10.1073/pnas.2318229121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/03/2024] [Indexed: 06/14/2024] Open
Abstract
Animals from all major clades have evolved a segmented trunk, reflected in the human spine or the insect segments. These units emerge during embryogenesis from a posterior segment addition zone (SAZ), where repetitive gene activity is regulated by a mechanism described by the clock and wavefront/speed gradient model. In the red flour beetle Tribolium castaneum, RNA interference (RNAi) has been used to continuously knock down the function of primary pair-rule genes (pPRGs), caudal or Wnt pathway components, which has led to the complete breakdown of segmentation. However, it has remained untested, if this breakdown was reversible by bringing the missing gene function back to the system. To fill this gap, we established a transgenic system in T. castaneum, which allows blocking an ongoing RNAi effect with temporal control by expressing a viral inhibitor of RNAi via heat shock. We show that the T. castaneum segmentation machinery was able to reestablish after RNAi targeting the pPRGs Tc-eve, Tc-odd, and Tc-runt was blocked. However, we observed no rescue after blocking RNAi targeting Wnt pathway components. We conclude that the insect segmentation system contains both robust feedback loops that can reestablish and labile feedback loops that break down irreversibly. This combination may reconcile conflicting needs of the system: Labile systems controlling initiation and maintenance of the SAZ ensure that only one SAZ is formed. Robust feedback loops confer developmental robustness toward external disturbances.
Collapse
Affiliation(s)
- Felix Kaufholz
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, Göttingen37077, Germany
- Department of Evolutionary Developmental Genetics, University of Göttingen, Johann-Friedrich-Blumenbach Institute, Göttingen Center for Molecular Biosciences, Göttingen37077, Germany
| | - Julia Ulrich
- Department of Evolutionary Developmental Genetics, University of Göttingen, Johann-Friedrich-Blumenbach Institute, Göttingen Center for Molecular Biosciences, Göttingen37077, Germany
| | - Muhammad Salim Hakeemi
- Department of Evolutionary Developmental Genetics, University of Göttingen, Johann-Friedrich-Blumenbach Institute, Göttingen Center for Molecular Biosciences, Göttingen37077, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, University of Göttingen, Johann-Friedrich-Blumenbach Institute, Göttingen Center for Molecular Biosciences, Göttingen37077, Germany
| |
Collapse
|
8
|
Chen G, Han Q, Li WX, Hai R, Ding SW. Live-attenuated virus vaccine defective in RNAi suppression induces rapid protection in neonatal and adult mice lacking mature B and T cells. Proc Natl Acad Sci U S A 2024; 121:e2321170121. [PMID: 38630724 PMCID: PMC11046691 DOI: 10.1073/pnas.2321170121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Global control of infectious diseases depends on the continuous development and deployment of diverse vaccination strategies. Currently available live-attenuated and killed virus vaccines typically take a week or longer to activate specific protection by the adaptive immunity. The mosquito-transmitted Nodamura virus (NoV) is attenuated in mice by mutations that prevent expression of the B2 viral suppressor of RNA interference (VSR) and consequently, drastically enhance in vivo production of the virus-targeting small-interfering RNAs. We reported recently that 2 d after immunization with live-attenuated VSR-disabled NoV (NoVΔB2), neonatal mice become fully protected against lethal NoV challenge and develop no detectable infection. Using Rag1-/- mice that produce no mature B and T lymphocytes as a model, here we examined the hypothesis that adaptive immunity is dispensable for the RNAi-based protective immunity activated by NoVΔB2 immunization. We show that immunization of both neonatal and adult Rag1-/- mice with live but not killed NoVΔB2 induces full protection against NoV challenge at 2 or 14 d postimmunization. Moreover, NoVΔB2-induced protective antiviral immunity is virus-specific and remains effective in adult Rag1-/- mice 42 and 90 d after a single-shot immunization. We conclude that immunization with the live-attenuated VSR-disabled RNA virus vaccine activates rapid and long-lasting protective immunity against lethal challenges by a distinct mechanism independent of the adaptive immunity mediated by B and T cells. Future studies are warranted to determine whether additional animal and human viruses attenuated by VSR inactivation induce similar protective immunity in healthy and adaptive immunity-compromised individuals.
Collapse
Affiliation(s)
- Gang Chen
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA92521
| | - Qingxia Han
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA92521
| | - Wan-Xiang Li
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA92521
| | - Rong Hai
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA92521
| | - Shou-Wei Ding
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA92521
| |
Collapse
|
9
|
Hou L, Liu W, Zhang H, Li R, Liu M, Shi H, Wu L. Divergent composition and transposon-silencing activity of small RNAs in mammalian oocytes. Genome Biol 2024; 25:80. [PMID: 38532500 PMCID: PMC10964541 DOI: 10.1186/s13059-024-03214-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Small RNAs are essential for germ cell development and fertilization. However, fundamental questions remain, such as the level of conservation in small RNA composition between species and whether small RNAs control transposable elements in mammalian oocytes. RESULTS Here, we use high-throughput sequencing to profile small RNAs and poly(A)-bearing long RNAs in oocytes of 12 representative vertebrate species (including 11 mammals). The results show that miRNAs are generally expressed in the oocytes of each representative species (although at low levels), whereas endo-siRNAs are specific to mice. Notably, piRNAs are predominant in oocytes of all species (except mice) and vary widely in length. We find PIWIL3-associated piRNAs are widespread in mammals and generally lack 3'-2'-O-methylation. Additionally, sequence identity is low between homologous piRNAs in different species, even among those present in syntenic piRNA clusters. Despite the species-specific divergence, piRNAs retain the capacity to silence younger TE subfamilies in oocytes. CONCLUSIONS Collectively, our findings illustrate a high level of diversity in the small RNA populations of mammalian oocytes. Furthermore, we identify sequence features related to conserved roles of small RNAs in silencing TEs, providing a large-scale reference for future in-depth study of small RNA functions in oocytes.
Collapse
Affiliation(s)
- Li Hou
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wei Liu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hongdao Zhang
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ronghong Li
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Miao Liu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200032, China
| | - Huijuan Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200032, China
| | - Ligang Wu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
10
|
Pan J, Qiu Q, Kumar D, Xu J, Tong X, Shen Z, Zhu M, Hu X, Gong C. Interaction between Bombyx mori Cytoplasmic Polyhedrosis Virus NSP8 and BmAgo2 Inhibits RNA Interference and Enhances Virus Proliferation. Microbiol Spectr 2023; 11:e0493822. [PMID: 37341621 PMCID: PMC10434170 DOI: 10.1128/spectrum.04938-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/28/2023] [Indexed: 06/22/2023] Open
Abstract
Some insect viruses encode suppressors of RNA interference (RNAi) to counteract the antiviral RNAi pathway. However, it is unknown whether Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) encodes an RNAi suppressor. In this study, the presence of viral small interfering RNA (vsiRNA) in BmN cells infected with BmCPV was confirmed by small RNA sequencing. The Dual-Luciferase reporter test demonstrated that BmCPV infection may prevent firefly luciferase (Luc) gene silencing caused by particular short RNA. It was also established that the inhibition relied on the nonstructural protein NSP8, which suggests that NSP8 was a possible RNAi suppressor. In cultured BmN cells, the expressions of viral structural protein 1 (vp1) and NSP9 were triggered by overexpression of nsp8, suggesting that BmCPV proliferation was enhanced by NSP8. A pulldown assay was conducted with BmCPV genomic double-stranded RNA (dsRNA) labeled with biotin. The mass spectral detection of NSP8 in the pulldown complex suggests that NSP8 is capable of direct binding to BmCPV genomic dsRNA. The colocalization of NSP8 and B. mori Argonaute 2 (BmAgo2) was detected by an immunofluorescence assay, leading to the hypothesis that NSP8 interacts with BmAgo2. Coimmunoprecipitation further supported the present investigation. Moreover, vasa intronic protein, a component of RNA-induced silencing complex (RISC), could be detected in the coprecipitation complex of NSP8 by mass spectrum analysis. NSP8 and the mRNA decapping protein (Dcp2) were also discovered to colocalize to processing bodies (P bodies) for RNAi-mediated gene silencing in Saccharomyces cerevisiae. These findings revealed that by interacting with BmAgo2 and suppressing RNAi, NSP8 promoted BmCPV growth. IMPORTANCE It has been reported that the RNAi pathway is inhibited by binding RNAi suppressors encoded by some insect-specific viruses belonging to Dicistroviridae, Nodaviridae, or Birnaviridae to dsRNAs to protect dsRNAs from being cut by Dicer-2. However, it is unknown whether BmCPV, belonging to Spinareoviridae, encodes an RNAi suppressor. In this study, we found that nonstructural protein NSP8 encoded by BmCPV inhibits small interfering RNA (siRNA)-induced RNAi and that NSP8, as an RNAi suppressor, can bind to viral dsRNAs and interact with BmAgo2. Moreover, vasa intronic protein, a component of RISC, was found to interact with NSP8. Heterologously expressed NSP8 and Dcp2 were colocalized to P bodies in yeast. These results indicated that NSP8 promoted BmCPV proliferation by binding itself to BmCPV genomic dsRNAs and interacting with BmAgo2 through suppression of siRNA-induced RNAi. Our findings deepen our understanding of the game between BmCPV and silkworm in regulating viral infection.
Collapse
Affiliation(s)
- Jun Pan
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Qunnan Qiu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Dhiraj Kumar
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Jian Xu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyu Tong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zeen Shen
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Min Zhu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, China
| |
Collapse
|
11
|
Liu S, Han Y, Li WX, Ding SW. Infection Defects of RNA and DNA Viruses Induced by Antiviral RNA Interference. Microbiol Mol Biol Rev 2023; 87:e0003522. [PMID: 37052496 PMCID: PMC10304667 DOI: 10.1128/mmbr.00035-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Immune recognition of viral genome-derived double-stranded RNA (dsRNA) molecules and their subsequent processing into small interfering RNAs (siRNAs) in plants, invertebrates, and mammals trigger specific antiviral immunity known as antiviral RNA interference (RNAi). Immune sensing of viral dsRNA is sequence-independent, and most regions of viral RNAs are targeted by virus-derived siRNAs which extensively overlap in sequence. Thus, the high mutation rates of viruses do not drive immune escape from antiviral RNAi, in contrast to other mechanisms involving specific virus recognition by host immune proteins such as antibodies and resistance (R) proteins in mammals and plants, respectively. Instead, viruses actively suppress antiviral RNAi at various key steps with a group of proteins known as viral suppressors of RNAi (VSRs). Some VSRs are so effective in virus counter-defense that potent inhibition of virus infection by antiviral RNAi is undetectable unless the cognate VSR is rendered nonexpressing or nonfunctional. Since viral proteins are often multifunctional, resistance phenotypes of antiviral RNAi are accurately defined by those infection defects of VSR-deletion mutant viruses that are efficiently rescued by host deficiency in antiviral RNAi. Here, we review and discuss in vivo infection defects of VSR-deficient RNA and DNA viruses resulting from the actions of host antiviral RNAi in model systems.
Collapse
Affiliation(s)
- Si Liu
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Yanhong Han
- Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wan-Xiang Li
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Shou-Wei Ding
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| |
Collapse
|
12
|
Fellows CJ, Simone-Finstrom M, Anderson TD, Swale DR. Potassium ion channels as a molecular target to reduce virus infection and mortality of honey bee colonies. Virol J 2023; 20:134. [PMID: 37349817 PMCID: PMC10286336 DOI: 10.1186/s12985-023-02104-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023] Open
Abstract
Declines in managed honey bee populations are multifactorial but closely associated with reduced virus immunocompetence and thus, mechanisms to enhance immune function are likely to reduce viral infection rates and increase colony viability. However, gaps in knowledge regarding physiological mechanisms or 'druggable' target sites to enhance bee immunocompetence has prevented therapeutics development to reduce virus infection. Our data bridge this knowledge gap by identifying ATP-sensitive inward rectifier potassium (KATP) channels as a pharmacologically tractable target for reducing virus-mediated mortality and viral replication in bees, as well as increasing an aspect of colony-level immunity. Bees infected with Israeli acute paralysis virus and provided KATP channel activators had similar mortality rates as uninfected bees. Furthermore, we show that generation of reactive oxygen species (ROS) and regulation of ROS concentrations through pharmacological activation of KATP channels can stimulate antiviral responses, highlighting a functional framework for physiological regulation of the bee immune system. Next, we tested the influence of pharmacological activation of KATP channels on infection of 6 viruses at the colony level in the field. Data strongly support that KATP channels are a field-relevant target site as colonies treated with pinacidil, a KATP channel activator, had reduced titers of seven bee-relevant viruses by up to 75-fold and reduced them to levels comparable to non-inoculated colonies. Together, these data indicate a functional linkage between KATP channels, ROS, and antiviral defense mechanisms in bees and define a toxicologically relevant pathway that can be used for novel therapeutics development to enhance bee health and colony sustainability in the field.
Collapse
Affiliation(s)
- Christopher J Fellows
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, 70803, USA
| | - Michael Simone-Finstrom
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Laboratory, Baton Rouge, LA, 70820, USA
| | - Troy D Anderson
- Department of Entomology, University of Nebraska, Lincoln, NE, 68583, USA
| | - Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, 70803, USA.
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA.
| |
Collapse
|
13
|
Ding SW. Transgene Silencing, RNA Interference, and the Antiviral Defense Mechanism Directed by Small Interfering RNAs. PHYTOPATHOLOGY 2023; 113:616-625. [PMID: 36441873 DOI: 10.1094/phyto-10-22-0358-ia] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
One important discovery in plant pathology over recent decades is the natural antiviral defense mechanism mediated by RNA interference (RNAi). In antiviral RNAi, virus infection triggers Dicer processing of virus-specific double-stranded RNA into small interfering RNAs (siRNAs). Frequently, further amplified by host enzyme and cofactors, these virus-derived siRNAs direct specific virus clearance in an Argonaute protein-containing effector complex. The siRNAs derived from viruses and viroids accumulate to very high levels during infection. Because they overlap extensively in nucleotide sequence, this allows for deep sequencing and bioinformatics assembly of total small RNAs for rapid discovery and identification of viruses and viroids. Antiviral RNAi acts as the primary defense mechanism against both RNA and DNA viruses in plants, yet viruses still successfully infect plants. They do so because all currently recognized plant viruses combat the RNAi response by encoding at least one protein as a viral suppressor of RNAi (VSR) required for infection, even though plant viruses have small genome sizes with a limited coding capacity. This review article will recapitulate the key findings that have revealed the genetic pathway for the biogenesis and antiviral activity of viral siRNAs and the specific role of VSRs in infection by antiviral RNAi suppression. Moreover, early pioneering studies on transgene silencing, RNAi, and virus-plant/virus-virus interactions paved the road to the discovery of antiviral RNAi.
Collapse
Affiliation(s)
- Shou-Wei Ding
- Department of Microbiology & Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA
| |
Collapse
|
14
|
den Boon JA, Zhan H, Unchwaniwala N, Horswill M, Slavik K, Pennington J, Navine A, Ahlquist P. Multifunctional Protein A Is the Only Viral Protein Required for Nodavirus RNA Replication Crown Formation. Viruses 2022; 14:v14122711. [PMID: 36560715 PMCID: PMC9788154 DOI: 10.3390/v14122711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Positive-strand RNA virus RNA genome replication occurs in membrane-associated RNA replication complexes (RCs). Nodavirus RCs are outer mitochondrial membrane invaginations whose necked openings to the cytosol are "crowned" by a 12-fold symmetrical proteinaceous ring that functions as the main engine of RNA replication. Similar protein crowns recently visualized at the openings of alphavirus and coronavirus RCs highlight their broad conservation and functional importance. Using cryo-EM tomography, we earlier showed that the major nodavirus crown constituent is viral protein A, whose polymerase, RNA capping, membrane interaction and multimerization domains drive RC formation and function. Other viral proteins are strong candidates for unassigned EM density in the crown. RNA-binding RNAi inhibitor protein B2 co-immunoprecipitates with protein A and could form crown subdomains that protect nascent viral RNA and dsRNA templates. Capsid protein may interact with the crown since nodavirus virion assembly has spatial and other links to RNA replication. Using cryoelectron tomography and complementary approaches, we show that, even when formed in mammalian cells, nodavirus RC crowns generated without B2 and capsid proteins are functional and structurally indistinguishable from mature crowns in infected Drosophila cells expressing all viral proteins. Thus, the only nodaviral factors essential to form functional RCs and crowns are RNA replication protein A and an RNA template. We also resolve apparent conflicts in prior results on B2 localization in infected cells, revealing at least two distinguishable pools of B2. The results have significant implications for crown structure, assembly, function and control as an antiviral target.
Collapse
Affiliation(s)
- Johan A. den Boon
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Hong Zhan
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Nuruddin Unchwaniwala
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Mark Horswill
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Kailey Slavik
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Janice Pennington
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Amanda Navine
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Paul Ahlquist
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
15
|
The NS4A Protein of Classical Swine Fever Virus Suppresses RNA Silencing in Mammalian Cells. J Virol 2022; 96:e0187421. [PMID: 35867575 PMCID: PMC9364796 DOI: 10.1128/jvi.01874-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
RNA interference (RNAi) is a significant posttranscriptional gene silencing mechanism and can function as an antiviral immunity in eukaryotes. However, numerous viruses can evade this antiviral RNAi by encoding viral suppressors of RNA silencing (VSRs). Classical swine fever virus (CSFV), belonging to the genus Pestivirus, is the cause of classical swine fever (CSF), which has an enormous impact on animal health and the pig industry. Notably, little is known about how Pestivirus blocks RNAi in their host. In this paper, we uncovered that CSFV NS4A protein can antagonize RNAi efficiently in mammalian cells by binding to double-stranded RNA and small interfering RNA. In addition, the VSR activity of CSFV NS4A was conserved among Pestivirus. Furthermore, the replication of VSR-deficient CSFV was attenuated but could be restored by the deficiency of RNAi in mammalian cells. In conclusion, our studies uncovered that CSFV NS4A is a novel VSR that suppresses RNAi in mammalian cells and shed new light on knowledge about CSFV and other Pestivirus. IMPORTANCE It is well known that RNAi is an important posttranscriptional gene silencing mechanism that is also involved in the antiviral response in mammalian cells. While numerous viruses have evolved to block this antiviral immunity by encoding VSRs. Our data demonstrated that the NS4A protein of CSFV exhibited a potent VSR activity through binding to dsRNA and siRNA in the context of CSFV infection in mammalian cells, which are a conservative feature among Pestivirus. In addition, the replication of VSR-deficient CSFV was attenuated but could be restored by the deficiency of RNAi, providing a theoretical basis for the development of other important attenuated Pestivirus vaccines.
Collapse
|
16
|
Li WX, Ding SW. Mammalian viral suppressors of RNA interference. Trends Biochem Sci 2022; 47:978-988. [PMID: 35618579 DOI: 10.1016/j.tibs.2022.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 12/18/2022]
Abstract
The antiviral defense directed by the RNAi pathway employs distinct specificity and effector mechanisms compared with other immune responses. The specificity of antiviral RNAi is programmed by siRNAs processed from virus-derived double-stranded RNA by Dicer endonuclease. Argonaute-containing RNA-induced silencing complex loaded with the viral siRNAs acts as the effector to mediate specific virus clearance by RNAi. Recent studies have provided evidence for the production and antiviral function of virus-derived siRNAs in both undifferentiated and differentiated mammalian cells infected with a range of RNA viruses when the cognate virus-encoded suppressor of RNAi (VSR) is rendered nonfunctional. In this review, we discuss the function, mechanism, and evolutionary origin of the validated mammalian VSRs and cell culture assays for their identification.
Collapse
Affiliation(s)
- Wan-Xiang Li
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Shou-Wei Ding
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
17
|
Chesnokova E, Beletskiy A, Kolosov P. The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. Int J Mol Sci 2022; 23:5847. [PMID: 35628657 PMCID: PMC9148063 DOI: 10.3390/ijms23105847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) have been extensively studied for decades. In recent years, the introduction of whole-genome and whole-transcriptome approaches, as well as single-cell resolution techniques, provided a breakthrough that uncovered TE involvement in host gene expression regulation underlying multiple normal and pathological processes. Of particular interest is increased TE activity in neuronal tissue, and specifically in the hippocampus, that was repeatedly demonstrated in multiple experiments. On the other hand, numerous neuropathologies are associated with TE dysregulation. Here, we provide a comprehensive review of literature about the role of TEs in neurons published over the last three decades. The first chapter of the present review describes known mechanisms of TE interaction with host genomes in general, with the focus on mammalian and human TEs; the second chapter provides examples of TE exaptation in normal neuronal tissue, including TE involvement in neuronal differentiation and plasticity; and the last chapter lists TE-related neuropathologies. We sought to provide specific molecular mechanisms of TE involvement in neuron-specific processes whenever possible; however, in many cases, only phenomenological reports were available. This underscores the importance of further studies in this area.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (P.K.)
| | | | | |
Collapse
|
18
|
Zhao S, Chen G, Kong X, Chen N, Wu X. BmNPV p35 Reduces the Accumulation of Virus-Derived siRNAs and Hinders the Function of siRNAs to Facilitate Viral Infection. Front Immunol 2022; 13:845268. [PMID: 35251046 PMCID: PMC8895250 DOI: 10.3389/fimmu.2022.845268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Antiviral immunity involves various mechanisms and responses, including the RNA interference (RNAi) pathway. During long-term coevolution, viruses have gained the ability to evade this defense by encoding viral suppressors of RNAi (VSRs). It was reported that p35 of baculovirus can inhibit cellular small interference RNA (siRNA) pathway; however, the molecular mechanisms underlying p35 as a VSR remain largely unclear. Here, we showed that p35 of Bombyx mori nucleopolyhedrovirus (BmNPV) reduces the accumulation of virus-derived siRNAs (vsiRNAs) mapped to a particular region in the viral genome, leading to an increased expression of the essential genes in this region, and revealed that p35 disrupts the function of siRNAs by preventing them from loading into Argonaute-2 (Ago2). This repressive effect on the cellular siRNA pathway enhances the replication of BmNPV. Thus, our findings illustrate for the first time the inhibitory mechanism of a baculovirus VSR and how this effect influences viral infection.
Collapse
Affiliation(s)
- Shudi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Guanping Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiangshuo Kong
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Nan Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
- *Correspondence: Xiaofeng Wu,
| |
Collapse
|
19
|
Gestuveo RJ, Parry R, Dickson LB, Lequime S, Sreenu VB, Arnold MJ, Khromykh AA, Schnettler E, Lambrechts L, Varjak M, Kohl A. Mutational analysis of Aedes aegypti Dicer 2 provides insights into the biogenesis of antiviral exogenous small interfering RNAs. PLoS Pathog 2022; 18:e1010202. [PMID: 34990484 PMCID: PMC8769306 DOI: 10.1371/journal.ppat.1010202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/19/2022] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
The exogenous small interfering RNA (exo-siRNA) pathway is a key antiviral mechanism in the Aedes aegypti mosquito, a widely distributed vector of human-pathogenic arboviruses. This pathway is induced by virus-derived double-stranded RNAs (dsRNA) that are cleaved by the ribonuclease Dicer 2 (Dcr2) into predominantly 21 nucleotide (nt) virus-derived small interfering RNAs (vsiRNAs). These vsiRNAs are used by the effector protein Argonaute 2 within the RNA-induced silencing complex to cleave target viral RNA. Dcr2 contains several domains crucial for its activities, including helicase and RNase III domains. In Drosophila melanogaster Dcr2, the helicase domain has been associated with binding to dsRNA with blunt-ended termini and a processive siRNA production mechanism, while the platform-PAZ domains bind dsRNA with 3’ overhangs and subsequent distributive siRNA production. Here we analyzed the contributions of the helicase and RNase III domains in Ae. aegypti Dcr2 to antiviral activity and to the exo-siRNA pathway. Conserved amino acids in the helicase and RNase III domains were identified to investigate Dcr2 antiviral activity in an Ae. aegypti-derived Dcr2 knockout cell line by reporter assays and infection with mosquito-borne Semliki Forest virus (Togaviridae, Alphavirus). Functionally relevant amino acids were found to be conserved in haplotype Dcr2 sequences from field-derived Ae. aegypti across different continents. The helicase and RNase III domains were critical for silencing activity and 21 nt vsiRNA production, with RNase III domain activity alone determined to be insufficient for antiviral activity. Analysis of 21 nt vsiRNA sequences (produced by functional Dcr2) to assess the distribution and phasing along the viral genome revealed diverse yet highly consistent vsiRNA pools, with predominantly short or long sequence overlaps including 19 nt overlaps (the latter representing most likely true Dcr2 cleavage products). Combined with the importance of the Dcr2 helicase domain, this suggests that the majority of 21 nt vsiRNAs originate by processive cleavage. This study sheds new light on Ae. aegypti Dcr2 functions and properties in this important arbovirus vector species. Aedes aegypti mosquitoes that transmit human-pathogenic viruses rely on the exogenous small interfering RNA (exo-siRNA) pathway as part of antiviral responses. This pathway is triggered by virus-derived double-stranded RNA (dsRNA) produced during viral replication that is then cleaved by Dicer 2 (Dcr2) into virus-derived small interfering RNAs (vsiRNAs). These vsiRNAs target viral RNA, leading to suppression of viral replication. The importance of Dcr2 in this pathway has been intensely studied in the Drosophila melanogaster model but is largely lacking in mosquitoes. Here, we have identified conserved and functionally relevant amino acids in the helicase and RNase III domains of Ae. aegypti Dcr2 that are important in its silencing activity and antiviral responses against Semliki Forest virus (SFV). Small RNA sequencing of SFV-infected mosquito cells with functional or mutated Dcr2 gave new insights into the nature and origin of vsiRNAs. The findings of this study, together with the different molecular tools we have previously developed to investigate the exo-siRNA pathway of mosquito cells, have started to uncover important properties of Dcr2 that could be valuable in understanding mosquito-arbovirus interactions and potentially in developing or assisting vector control strategies.
Collapse
Affiliation(s)
- Rommel J. Gestuveo
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Division of Biological Sciences, University of the Philippines Visayas, Miagao, Iloilo, Philippines
- * E-mail: (R.J.G.); (M.V.); (A.K.)
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Laura B. Dickson
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sebastian Lequime
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, Groningen, The Netherlands
| | | | - Matthew J. Arnold
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland, Australia
| | - Esther Schnettler
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University Hamburg, Hamburg, Germany
| | - Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Margus Varjak
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Institute of Technology, University of Tartu, Tartu, Estonia
- * E-mail: (R.J.G.); (M.V.); (A.K.)
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- * E-mail: (R.J.G.); (M.V.); (A.K.)
| |
Collapse
|
20
|
Raza A, Ding SW, Wu Q. Culture-Independent Discovery of Viroids by Deep Sequencing and Computational Algorithms. Methods Mol Biol 2022; 2316:251-274. [PMID: 34845701 DOI: 10.1007/978-1-0716-1464-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Viroids are single-stranded circular RNA molecules that cause diseases in plants and do not encode any protein. Classical approaches for the identification of new viroids are challenging for many plant pathology laboratories as viroid cDNA synthesis and sequencing require purification and enrichment of the naked viroid RNA by two-dimensional gel electrophoresis. Conventional metagenomic approaches are not effective for viroid discovery because the total number of known viroids is small, and distinct viroids share limited nucleotide sequence similarity. In this chapter, we describe a homology-independent approach for the identification of both known and new viroids in disease samples. It is known that viroid infection of plants triggers production of overlapping viroid-derived small interfering RNAs (siRNAs) targeting the entire genome with high densities and that replication of viroids occurs via a rolling-circle mechanism to yield head-to-tail multiple-repeat replicative intermediates. Our approach involves deep sequencing of either long or small RNAs in a disease sample followed by viroid identification with a unique computational algorithm, progressive filtering of overlapping small RNAs (PFOR). Among the sequenced total small RNAs, PFOR retains viroid-derived siRNAs for viroid genome assembly by progressively eliminating nonoverlapping small RNAs and those that overlap but cannot be assembled into a direct repeat RNA, a unique feature of viroid RNA replication. In contrast, long RNAs sequenced after depletion of ribosomal RNAs are cut into 21-nucleotide virtual overlapping small RNAs with the algorithm SLS (splitting longer read into shorter fragments) before PFOR. We show that new viroids or viroids from the two known families are readily identified and their full-length sequences recovered by PFOR from long or small RNAs sequenced directly from infected plants. We propose that our approach can be used for viroid discovery in both plants and potentially animals since PFOR identifies viroids by searching for circular RNAs or a unique replication intermediate of the viroid genome in a sequence homology-independent manner.
Collapse
Affiliation(s)
- Ali Raza
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shou-Wei Ding
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.
| | - Qingfa Wu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
21
|
Xu Y, Zhong Z, Ren Y, Ma L, Ye Z, Gao C, Wang J, Li Y. Antiviral RNA interference in disease vector (Asian longhorned) ticks. PLoS Pathog 2021; 17:e1010119. [PMID: 34860862 PMCID: PMC8673602 DOI: 10.1371/journal.ppat.1010119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 12/15/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
Disease vectors such as mosquitoes and ticks play a major role in the emergence and re-emergence of human and animal viral pathogens. Compared to mosquitoes, however, much less is known about the antiviral responses of ticks. Here we showed that Asian longhorned ticks (Haemaphysalis longicornis) produced predominantly 22-nucleotide virus-derived siRNAs (vsiRNAs) in response to severe fever with thrombocytopenia syndrome virus (SFTSV, an emerging tick-borne virus), Nodamura virus (NoV), or Sindbis virus (SINV) acquired by blood feeding. Notably, experimental acquisition of NoV and SINV by intrathoracic injection also initiated viral replication and triggered the production of vsiRNAs in H. longicornis. We demonstrated that a mutant NoV deficient in expressing its viral suppressor of RNAi (VSR) replicated to significantly lower levels than wildtype NoV in H. longicornis, but accumulated to higher levels after knockdown of the tick Dicer2-like protein identified by phylogeny comparison. Moreover, the expression of a panel of known animal VSRs in cis from the genome of SINV drastically enhanced the accumulation of the recombinant viruses. This study establishes a novel model for virus-vector-mouse experiments with longhorned ticks and provides the first in vivo evidence for an antiviral function of the RNAi response in ticks. Interestingly, comparing the accumulation levels of SINV recombinants expressing green fluorescent protein or SFTSV proteins identified the viral non-structural protein as a putative VSR. Elucidating the function of ticks’ antiviral RNAi pathway in vivo is critical to understand the virus-host interaction and the control of tick-borne viral pathogens. Tick-borne diseases (TBDs) are the most common illnesses transmitted by ticks, and the annual number of reported TBD cases continues to increase. The Asian longhorned tick, a vector associated with at least 30 human pathogens, is native to eastern Asia and recently reached the USA as an emerging disease threat. Newly identified tick-transmitted pathogens continue to be reported, raising concerns about how TBDs occur. Interestingly, tick can harbor pathogens without being affected themselves. For viral infections, ticks have their own immune systems that protect them from infection. Meanwhile, tick-borne viruses have evolved to avoid these defenses as they establish themselves within the vector. Here, we show in detail that infecting longhorned ticks with distinct arthropod-borne RNA viruses through two approaches natural blood feeding and injection, all induce the production of vsiRNAs. Dicer2-like homolog plays a role in regulating antiviral RNAi responses as knocking down of this gene enhanced viral replication. Furthermore, we demonstrate that tick antiviral RNAi responses are inhibited through expression heterologous VSR proteins in recombinant SINV. We identify both the virus and tick factors are critical components to understanding TBDs. Importantly, our study introduces a novel, in vivo virus-vector-mouse model system for exploring TBDs in the future.
Collapse
Affiliation(s)
- Yan Xu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhengwei Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanxin Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Liting Ma
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhi Ye
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Chuang Gao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (JW); (YL)
| | - Yang Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (JW); (YL)
| |
Collapse
|
22
|
Wang Y, Lin S, Zhao Z, Xu P, Gao K, Qian H, Zhang Z, Guo X. Functional analysis of a putative Bombyx mori cypovirus miRNA BmCPV-miR-10 and its effect on virus replication. INSECT MOLECULAR BIOLOGY 2021; 30:552-565. [PMID: 34296485 DOI: 10.1111/imb.12725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Bombyx mori cypovirus (BmCPV) is an important pathogen of silkworm (B. mori), the economically beneficial insect. The mechanism of its interaction with host immune defence system in the process of infection is still not yet completely clear. Researches have demonstrated that virus-encoded microRNAs (miRNA) play a crucial role in regulating host-pathogen interaction, but few reports are available so far on miRNAs encoded by insect viruses, especially the RNA viruses. In this study, a putative miRNA encoded by the 10th segment of BmCPV genomic RNA, BmCPV-miR-10, was identified and functionally analysed. The expression of the putative BmCPV-miR-10 could be detected via stem-loop RT-PCR (reverse transcription-Polymerase Chain Reaction) in the midgut of silkworm larvae infected with BmCPV. BmCSDE1 (B. mori cold shock domain E1 protein) gene was predicted to be a candidate target gene for BmCPV-miR-10 with the miRNA binding site located in 3' untranslated region of its mRNA. The regulation effect of the putative BmCPV-miR-10 on BmCSDE1 was verified in HEK293 cells by lentiviral expression system, in BmN cells by transfecting BmCPV-miR-10 mimics. The qRT-PCR (quantitative real-time PCR) results showed that the putative BmCPV-miR-10 could suppress the expression of BmCSDE1. By injection of BmCPV-miR-10 mimics into the silkworm larvae infected with BmCPV, it was further proved that the putative BmCPV-miR-10 could suppress the expression of BmCSDE1 in vivo, then inhibit the expression of BmApaf-1 (B. mori apoptotic protease activating factor 1), while enhance the replication of BmCPV genomic RNAs to a certain extent. These results implied that the putative BmCPV-miR-10 could down-regulate the expression of BmCSDE1, then suppress the expression of BmApaf-1, thereby created a favourable intracellular environment for virus replication and proliferation.
Collapse
Affiliation(s)
- Y Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - S Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Z Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - P Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - K Gao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - H Qian
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Z Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - X Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
23
|
Zhang Y, Xu Y, Dai Y, Li Z, Wang J, Ye Z, Ren Y, Wang H, Li WX, Lu J, Ding SW, Li Y. Efficient Dicer processing of virus-derived double-stranded RNAs and its modulation by RIG-I-like receptor LGP2. PLoS Pathog 2021; 17:e1009790. [PMID: 34343211 PMCID: PMC8362961 DOI: 10.1371/journal.ppat.1009790] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/13/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
The interferon-regulated antiviral responses are essential for the induction of both innate and adaptive immunity in mammals. Production of virus-derived small-interfering RNAs (vsiRNAs) to restrict virus infection by RNA interference (RNAi) is a recently identified mammalian immune response to several RNA viruses, which cause important human diseases such as influenza and Zika virus. However, little is known about Dicer processing of viral double-stranded RNA replicative intermediates (dsRNA-vRIs) in mammalian somatic cells. Here we show that infected somatic cells produced more influenza vsiRNAs than cellular microRNAs when both were produced by human Dicer expressed de novo, indicating that dsRNA-vRIs are not poor Dicer substrates as previously proposed according to in vitro Dicer processing of synthetic long dsRNA. We report the first evidence both for canonical vsiRNA production during wild-type Nodamura virus infection and direct vsiRNA sequestration by its RNAi suppressor protein B2 in two strains of suckling mice. Moreover, Sindbis virus (SINV) accumulation in vivo was decreased by prior production of SINV-targeting vsiRNAs triggered by infection and increased by heterologous expression of B2 in cis from SINV genome, indicating an antiviral function for the induced RNAi response. These findings reveal that unlike artificial long dsRNA, dsRNA-vRIs made during authentic infection of mature somatic cells are efficiently processed by Dicer into vsiRNAs to direct antiviral RNAi. Interestingly, Dicer processing of dsRNA-vRIs into vsiRNAs was inhibited by LGP2 (laboratory of genetics and physiology 2), which was encoded by an interferon-stimulated gene (ISG) shown recently to inhibit Dicer processing of artificial long dsRNA in cell culture. Our work thus further suggests negative modulation of antiviral RNAi by a known ISG from the interferon response. The function and mechanism of the interferon-regulated antiviral responses have been extensively characterized. Recent studies have demonstrated induction of antiviral RNA interference (RNAi) in somatic cells against several mammalian RNA viruses rendered incapable of RNAi suppression. However, little is known about Dicer-mediated production of virus-derived small-interfering RNAs (vsiRNAs) in these cells active in the type I interferon response. Here we show that the dsRNA precursors of influenza vsiRNAs were processed more efficiently than cellular precursor microRNA hairpins by wild-type human Dicer expressed de novo in Dicer-knockout somatic cells. We found that infection of two strains of suckling mice with wild-type Nodamura virus (NoV) was associated with production of silencing-active vsiRNAs and direct sequestration of duplex vsiRNAs by its RNAi suppressor protein B2. Our findings from in vivo infection with Sindbis virus recombinants expressing NoV B2 or carrying a vsiRNA-targeted insert provide evidence for an antiviral function of the induced RNAi response. Interestingly, NoV infection induces expression of RIG-I-like receptor LGP2 to inhibit vsiRNA biogenesis and promote virulent infection in suckling mice. Our findings together reveal efficient Dicer processing of vsiRNA precursors in interferon-competent somatic cells and suckling mice in contrast to synthetic long dsRNA examined previously by in vitro dicing.
Collapse
Affiliation(s)
- Yuqiang Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yunpeng Dai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhe Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiaxing Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhi Ye
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanxin Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hua Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wan-xiang Li
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, United States of America
| | - Jinfeng Lu
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, United States of America
- * E-mail: (LJ); (S-WD); (YL)
| | - Shou-Wei Ding
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, United States of America
- * E-mail: (LJ); (S-WD); (YL)
| | - Yang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (LJ); (S-WD); (YL)
| |
Collapse
|
24
|
Naganuma M, Tadakuma H, Tomari Y. Single-molecule analysis of processive double-stranded RNA cleavage by Drosophila Dicer-2. Nat Commun 2021; 12:4268. [PMID: 34257295 PMCID: PMC8277814 DOI: 10.1038/s41467-021-24555-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/23/2021] [Indexed: 11/09/2022] Open
Abstract
Drosophila Dicer-2 (Dcr-2) produces small interfering RNAs from long double-stranded RNAs (dsRNAs), playing an essential role in antiviral RNA interference. The dicing reaction by Dcr-2 is enhanced by Loquacious-PD (Loqs-PD), a dsRNA-binding protein that partners with Dcr-2. Previous biochemical analyses have proposed that Dcr-2 uses two distinct—processive or distributive—modes of cleavage by distinguishing the terminal structures of dsRNAs and that Loqs-PD alters the terminal dependence of Dcr-2. However, the direct evidence for this model is lacking, as the dynamic movement of Dcr-2 along dsRNAs has not been traced. Here, by utilizing single-molecule imaging, we show that the terminal structures of long dsRNAs and the presence or absence of Loqs-PD do not essentially change Dcr-2’s cleavage mode between processive and distributive, but rather simply affect the probability for Dcr-2 to undergo the cleavage reaction. Our results provide a refined model for how the dicing reaction by Dcr-2 is regulated. Fly Dicer-2 is thought to use two distinct – processive or distributive – modes of cleavage by distinguishing the terminal structures of double-stranded RNA (dsRNA) substrates with the help of its cofactor LoquaciousPD (Loqs-PD). Here the authors show by single-molecule imaging that dsRNA terminal structures and Loqs-PD change the probability for Dicer to initiate processive cleavage but not the mode of cleavage action per se.
Collapse
Affiliation(s)
- Masahiro Naganuma
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Hisashi Tadakuma
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, People's Republic of China.
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan. .,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
25
|
Paturi S, Deshmukh MV. A Glimpse of "Dicer Biology" Through the Structural and Functional Perspective. Front Mol Biosci 2021; 8:643657. [PMID: 34026825 PMCID: PMC8138440 DOI: 10.3389/fmolb.2021.643657] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/07/2021] [Indexed: 01/05/2023] Open
Abstract
The RNA interference pathway (RNAi) is executed by two core enzymes, Dicer and Argonaute, for accomplishing a tailored transcriptional and post-transcriptional gene regulation. Dicer, an RNase III enzyme, initiates the RNAi pathway, plays a pivotal role in fighting infection against pathogens, and acts as a housekeeping enzyme for cellular homeostasis. Here, we review structure-based functional insights of Dicer and its domains present in a diverse group of organisms. Although Dicer and its domains are evolutionarily conserved from microsporidian parasites to humans, recent cryo-electron microscopy structures of Homo sapiens Dicer and Drosophila melanogaster Dicer-2 suggest characteristic variations in the mechanism of the dsRNA substrate recognition. Interestingly, the necessity for more than one functionally distinct Dicer paralogs in insects and plants compared with a single Dicer in other eukaryotic life forms implies Dicer’s role in the interplay of RNAi and other defense mechanisms. Based on the structural and mechanistic information obtained during the last decade, we aim to highlight the significance of key Dicer domains that are crucial to Dicer specific recognition and precise cleavage of dsRNA substrates. Further, the role of Dicer in the formation of Argonaute-based RNA-induced silencing complex (RISC) assembly formation, Dicer’s ability to regulate a complex protein interaction network, and its role in other cellular processes, as well as its therapeutic potentials, are emphasized.
Collapse
Affiliation(s)
- Sneha Paturi
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | - Mandar V Deshmukh
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| |
Collapse
|
26
|
Schneider J, Imler JL. Sensing and signalling viral infection in drosophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103985. [PMID: 33358662 DOI: 10.1016/j.dci.2020.103985] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
The fruitfly Drosophila melanogaster is a valuable model to unravel mechanisms of innate immunity, in particular in the context of viral infections. RNA interference, and more specifically the small interfering RNA pathway, is a major component of antiviral immunity in drosophila. In addition, the contribution of inducible transcriptional responses to the control of viruses in drosophila and other invertebrates is increasingly recognized. In particular, the recent discovery of a STING-IKKβ-Relish signalling cassette in drosophila has confirmed that NF-κB transcription factors play an important role in the control of viral infections, in addition to bacterial and fungal infections. Here, we review recent developments in the field, which begin to shed light on the mechanisms involved in sensing of viral infections and in signalling leading to production of antiviral effectors.
Collapse
Affiliation(s)
- Juliette Schneider
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Jean-Luc Imler
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France; Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
27
|
Current Status and Potential of RNA Interference for the Management of Tomato Spotted Wilt Virus and Thrips Vectors. Pathogens 2021; 10:pathogens10030320. [PMID: 33803131 PMCID: PMC8001667 DOI: 10.3390/pathogens10030320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022] Open
Abstract
Tomato spotted wilt virus (TSWV) is the type member of the genus Orthotospovirus in the family Tospoviridae and order Bunyavirales. TSWV, transmitted by several species of thrips, causes significant disease losses to agronomic and horticultural crops worldwide, impacting both the yield and quality of the produce. Management strategies include growing virus-resistant cultivars, cultural practices, and managing thrips vectors through pesticide application. However, numerous studies have reported that TSWV isolates can overcome host-plant resistance, while thrips are developing resistance to pesticides that were once effective. RNA interference (RNAi) offers a means of host defence by using double-stranded (ds) RNA to initiate gene silencing against invading viruses. However, adoption of this approach requires production and use of transgenic plants and thus limits the practical application of RNAi against TSWV and other viruses. To fully utilize the potential of RNAi for virus management at the field level, new and novel approaches are needed. In this review, we summarize RNAi and highlight the potential of topical or exogenous application of RNAi triggers for managing TSWV and thrips vectors.
Collapse
|
28
|
Ma Q, Srivastav SP, Gamez S, Dayama G, Feitosa-Suntheimer F, Patterson EI, Johnson RM, Matson EM, Gold AS, Brackney DE, Connor JH, Colpitts TM, Hughes GL, Rasgon JL, Nolan T, Akbari OS, Lau NC. A mosquito small RNA genomics resource reveals dynamic evolution and host responses to viruses and transposons. Genome Res 2021; 31:512-528. [PMID: 33419731 PMCID: PMC7919454 DOI: 10.1101/gr.265157.120] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Although mosquitoes are major transmission vectors for pathogenic arboviruses, viral infection has little impact on mosquito health. This immunity is caused in part by mosquito RNA interference (RNAi) pathways that generate antiviral small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). RNAi also maintains genome integrity by potently repressing mosquito transposon activity in the germline and soma. However, viral and transposon small RNA regulatory pathways have not been systematically examined together in mosquitoes. Therefore, we developed an integrated mosquito small RNA genomics (MSRG) resource that analyzes the transposon and virus small RNA profiles in mosquito cell cultures and somatic and gonadal tissues across four medically important mosquito species. Our resource captures both somatic and gonadal small RNA expression profiles within mosquito cell cultures, and we report the evolutionary dynamics of a novel Mosquito-Conserved piRNA Cluster Locus (MCpiRCL) made up of satellite DNA repeats. In the larger culicine mosquito genomes we detected highly regular periodicity in piRNA biogenesis patterns coinciding with the expansion of Piwi pathway genes. Finally, our resource enables detection of cross talk between piRNA and siRNA populations in mosquito cells during a response to virus infection. The MSRG resource will aid efforts to dissect and combat the capacity of mosquitoes to tolerate and spread arboviruses.
Collapse
Affiliation(s)
- Qicheng Ma
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Satyam P Srivastav
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Stephanie Gamez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Gargi Dayama
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Fabiana Feitosa-Suntheimer
- Department of Microbiology and the National Emerging Infectious Disease Laboratory, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Edward I Patterson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Rebecca M Johnson
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Erik M Matson
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Alexander S Gold
- Department of Microbiology and the National Emerging Infectious Disease Laboratory, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Douglas E Brackney
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA
| | - John H Connor
- Department of Microbiology and the National Emerging Infectious Disease Laboratory, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Tonya M Colpitts
- Department of Microbiology and the National Emerging Infectious Disease Laboratory, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Jason L Rasgon
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tony Nolan
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Nelson C Lau
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
- Boston University Genome Science Institute and the National Emerging Infectious Disease Laboratory, Boston, Massachusetts 02118, USA
| |
Collapse
|
29
|
Feng Q, Li Y, Zhao ZX, Wang WM. Contribution of Small RNA Pathway to Interactions of Rice with Pathogens and Insect Pests. RICE (NEW YORK, N.Y.) 2021; 14:15. [PMID: 33547972 PMCID: PMC7867673 DOI: 10.1186/s12284-021-00458-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/28/2021] [Indexed: 05/20/2023]
Abstract
Small RNAs (sRNAs) are mainly classified into microRNAs (miRNAs) and small interfering RNAs (siRNAs) according to their origin. miRNAs originate from single-stranded RNA precursors, whereas siRNAs originate from double-stranded RNA precursors that are synthesized by RNA-dependent RNA polymerases. Both of single-stranded and double-stranded RNA precursors are processed into sRNAs by Dicer-like proteins. Then, the sRNAs are loaded into ARGONAUTE proteins, forming RNA-induced silencing complexes (RISCs). The RISCs repress the expression of target genes with sequences complementary to the sRNAs through the cleavage of transcripts, the inhibition of translation or DNA methylation. Here, we summarize the recent progress of sRNA pathway in the interactions of rice with various parasitic organisms, including fungi, viruses, bacteria, as well as insects. Besides, we also discuss the hormone signal in sRNA pathway, and the emerging roles of circular RNAs and long non-coding RNAs in rice immunity. Obviously, small RNA pathway may act as a part of rice innate immunity to coordinate with growth and development.
Collapse
Affiliation(s)
- Qin Feng
- Rice Research Institute and Research Center for Crop Disease and Insect Pests, Sichuan Agricultural University at Wenjiang, 211 Huimin Road, Wenjiang District, Chengdu, 611130 China
| | - Yan Li
- Rice Research Institute and Research Center for Crop Disease and Insect Pests, Sichuan Agricultural University at Wenjiang, 211 Huimin Road, Wenjiang District, Chengdu, 611130 China
| | - Zhi-Xue Zhao
- Rice Research Institute and Research Center for Crop Disease and Insect Pests, Sichuan Agricultural University at Wenjiang, 211 Huimin Road, Wenjiang District, Chengdu, 611130 China
| | - Wen-Ming Wang
- Rice Research Institute and Research Center for Crop Disease and Insect Pests, Sichuan Agricultural University at Wenjiang, 211 Huimin Road, Wenjiang District, Chengdu, 611130 China
| |
Collapse
|
30
|
Ren Y, Li X, Tian Z, Xu Y, Zhang R, Li Y. Zebrafish as an animal model for the antiviral RNA interference pathway. J Gen Virol 2021; 102. [PMID: 33507144 DOI: 10.1099/jgv.0.001552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The zebrafish (Danio rerio) possesses evolutionarily conserved innate and adaptive immunity as a mammal and has recently become a popular vertebrate model to exploit infection and immunity. Antiviral RNA interference (RNAi) has been illuminated in various model organisms, including Arabidopsis thaliana, Drosophila melanogaster, Caenorhabditis elegans and mice. However, to date, there is no report on the antiviral RNAi pathway of zebrafish. Here, we have evaluated the possible use of zebrafish to study antiviral RNAi with Sindbis virus (SINV), vesicular stomatitis virus (VSV) and Nodamura virus (NoV). We find that SINVs and NoVs induce the production of virus-derived small interfering RNAs (vsiRNAs), the hallmark of antiviral RNAi, with a preference for a length of 22 nucleotides, after infection of larval zebrafish. Meanwhile, the suppressor of RNAi (VSR) protein, NoV B2, may affect the accumulation of the NoV in zebrafish. Furthermore, taking advantage of the fact that zebrafish argonaute-2 (Ago2) protein is naturally deficient in cleavage compared with that of mammals, we provide evidence that the slicing activity of human Ago2 can virtually inhibit the accumulation of RNA virus after being ectopically expressed in larval zebrafish. Thus, zebrafish may be a unique model organism to study the antiviral RNAi pathway.
Collapse
Affiliation(s)
- Yanxin Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Xueyu Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, PR China
| | - Zhonghui Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Yan Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Ruilin Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, PR China
| | - Yang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| |
Collapse
|
31
|
Abstract
As an overarching immune mechanism, RNA interference (RNAi) displays pathogen specificity and memory via different pathways. The small interfering RNA (siRNA) pathway is the primary antiviral defense mechanism against RNA viruses of insects and plays a lesser role in defense against DNA viruses. Reflecting the pivotal role of the siRNA pathway in virus selection, different virus families have independently evolved unique strategies to counter this host response, including protein-mediated, decoy RNA-based, and microRNA-based strategies. In this review, we outline the interplay between insect viruses and the different pathways of the RNAi antiviral response; describe practical application of these interactions for improved expression systems and for pest and disease management; and highlight research avenues for advancement of the field.
Collapse
Affiliation(s)
- Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32611, USA;
| | - Maria-Carla Saleh
- Viruses and RNA Interference Unit, Institut Pasteur, CNRS UMR 3569, 75724 Paris CEDEX 15, France;
| |
Collapse
|
32
|
Deng Y, Zhao H, Shen S, Yang S, Yang D, Deng S, Hou C. Identification of Immune Response to Sacbrood Virus Infection in Apis cerana Under Natural Condition. Front Genet 2020; 11:587509. [PMID: 33193724 PMCID: PMC7649357 DOI: 10.3389/fgene.2020.587509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/05/2020] [Indexed: 12/03/2022] Open
Abstract
Chinese sacbrood virus (CSBV) is a serious threat to eastern honeybees (Apis cerana), especially larvae. However, the pathological mechanism of this deadly disease remains unclear. Here, we employed mRNA and small RNA (sRNA) transcriptome approach to investigate the microRNAs (miRNAs) and small interfering RNAs (siRNAs) expression changes of A. cerana larvae infected with CSBV under natural condition. We found that serine proteases involved in immune response were down-regulated, while the expression of siRNAs targeted to serine proteases were up-regulated. In addition, CSBV infection also affected the expression of larvae cuticle proteins such as larval cuticle proteins A1A and A3A, resulting in increased susceptibility to CSBV infection. Together, our results provide insights into sRNAs that they are likely to be involved in regulating honeybee immune response.
Collapse
Affiliation(s)
- Yanchun Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, China
| | - Shuo Shen
- Qinghai Academy of Agriculture and Forestry Sciences (Academy of Agriculture and Forestry Sciences), Qinghai University, Xining, China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Dahe Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Shuai Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| |
Collapse
|
33
|
Honda S, Eusebio-Cope A, Miyashita S, Yokoyama A, Aulia A, Shahi S, Kondo H, Suzuki N. Establishment of Neurospora crassa as a model organism for fungal virology. Nat Commun 2020; 11:5627. [PMID: 33159072 PMCID: PMC7648066 DOI: 10.1038/s41467-020-19355-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/08/2020] [Indexed: 01/07/2023] Open
Abstract
The filamentous fungus Neurospora crassa is used as a model organism for genetics, developmental biology and molecular biology. Remarkably, it is not known to host or to be susceptible to infection with any viruses. Here, we identify diverse RNA viruses in N. crassa and other Neurospora species, and show that N. crassa supports the replication of these viruses as well as some viruses from other fungi. Several encapsidated double-stranded RNA viruses and capsid-less positive-sense single-stranded RNA viruses can be experimentally introduced into N. crassa protoplasts or spheroplasts. This allowed us to examine viral replication and RNAi-mediated antiviral responses in this organism. We show that viral infection upregulates the transcription of RNAi components, and that Dicer proteins (DCL-1, DCL-2) and an Argonaute (QDE-2) participate in suppression of viral replication. Our study thus establishes N. crassa as a model system for the study of host-virus interactions.
Collapse
Affiliation(s)
- Shinji Honda
- Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Ana Eusebio-Cope
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Shuhei Miyashita
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki-Aza- Aoba, Sendai, 980-0845, Japan
| | - Ayumi Yokoyama
- Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Annisa Aulia
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Sabitree Shahi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan.
| |
Collapse
|
34
|
Han Q, Chen G, Wang J, Jee D, Li WX, Lai EC, Ding SW. Mechanism and Function of Antiviral RNA Interference in Mice. mBio 2020; 11:e03278-19. [PMID: 32753500 PMCID: PMC7407090 DOI: 10.1128/mbio.03278-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022] Open
Abstract
Distinct mammalian RNA viruses trigger Dicer-mediated production of virus-derived small-interfering RNAs (vsiRNA) and encode unrelated proteins to suppress vsiRNA biogenesis. However, the mechanism and function of the mammalian RNA interference (RNAi) response are poorly understood. Here, we characterized antiviral RNAi in a mouse model of infection with Nodamura virus (NoV), a mosquito-transmissible positive-strand RNA virus encoding a known double-stranded RNA (dsRNA)-binding viral suppressor of RNAi (VSR), the B2 protein. We show that inhibition of NoV RNA replication by antiviral RNAi in mouse embryonic fibroblasts (MEFs) requires Dicer-dependent vsiRNA biogenesis and Argonaute-2 slicer activity. We found that VSR-B2 of NoV enhances viral RNA replication in wild-type but not RNAi-defective MEFs such as Argonaute-2 catalytic-dead MEFs and Dicer or Argonaute-2 knockout MEFs, indicating that VSR-B2 acts mainly by suppressing antiviral RNAi in the differentiated murine cells. Consistently, VSR-B2 expression in MEFs has no detectable effect on the induction of interferon-stimulated genes or the activation of global RNA cleavages by RNase L. Moreover, we demonstrate that NoV infection of adult mice induces production of abundant vsiRNA active to guide RNA slicing by Argonaute-2. Notably, VSR-B2 suppresses the biogenesis of both vsiRNA and the slicing-competent vsiRNA-Argonaute-2 complex without detectable inhibition of Argonaute-2 slicing guided by endogenous microRNA, which dramatically enhances viral load and promotes lethal NoV infection in adult mice either intact or defective in the signaling by type I, II, and III interferons. Together, our findings suggest that the mouse RNAi response confers essential protective antiviral immunity in both the presence and absence of the interferon response.IMPORTANCE Innate immune sensing of viral nucleic acids in mammals triggers potent antiviral responses regulated by interferons known to antagonize the induction of RNA interference (RNAi) by synthetic long double-stranded RNA (dsRNA). Here, we show that Nodamura virus (NoV) infection in adult mice activates processing of the viral dsRNA replicative intermediates into small interfering RNAs (siRNAs) active to guide RNA slicing by Argonaute-2. Genetic studies demonstrate that NoV RNA replication in mouse embryonic fibroblasts is inhibited by the RNAi pathway and enhanced by the B2 viral RNAi suppressor only in RNAi-competent cells. When B2 is rendered nonexpressing or nonfunctional, the resulting mutant viruses become nonpathogenic and are cleared in adult mice either intact or defective in the signaling by type I, II, and III interferons. Our findings suggest that mouse antiviral RNAi is active and necessary for the in vivo defense against viral infection in both the presence and absence of the interferon response.
Collapse
Affiliation(s)
- Qingxia Han
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Gang Chen
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Jinyan Wang
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - David Jee
- Department of Developmental Biology, Sloan Kettering Institute, New York, New York, USA
| | - Wan-Xiang Li
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Eric C Lai
- Department of Developmental Biology, Sloan Kettering Institute, New York, New York, USA
| | - Shou-Wei Ding
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
35
|
Younes S, Al-Sulaiti A, Nasser EAA, Najjar H, Kamareddine L. Drosophila as a Model Organism in Host-Pathogen Interaction Studies. Front Cell Infect Microbiol 2020; 10:214. [PMID: 32656090 PMCID: PMC7324642 DOI: 10.3389/fcimb.2020.00214] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022] Open
Abstract
Owing to the genetic similarities and conserved pathways between a fruit fly and mammals, the use of the Drosophila model as a platform to unveil novel mechanisms of infection and disease progression has been justified and widely instigated. Gaining proper insight into host-pathogen interactions and identifying chief factors involved in host defense and pathogen virulence in Drosophila serves as a foundation to establish novel strategies for infectious disease prevention and control in higher organisms, including humans.
Collapse
Affiliation(s)
- Salma Younes
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Asma Al-Sulaiti
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | - Hoda Najjar
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Layla Kamareddine
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
36
|
From the Argonauts Mythological Sailors to the Argonautes RNA-Silencing Navigators: Their Emerging Roles in Human-Cell Pathologies. Int J Mol Sci 2020; 21:ijms21114007. [PMID: 32503341 PMCID: PMC7312461 DOI: 10.3390/ijms21114007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
Regulation of gene expression has emerged as a fundamental element of transcript homeostasis. Key effectors in this process are the Argonautes (AGOs), highly specialized RNA-binding proteins (RBPs) that form complexes, such as the RNA-Induced Silencing Complex (RISC). AGOs dictate post-transcriptional gene-silencing by directly loading small RNAs and repressing their mRNA targets through small RNA-sequence complementarity. The four human highly-conserved family-members (AGO1, AGO2, AGO3, and AGO4) demonstrate multi-faceted and versatile roles in transcriptome’s stability, plasticity, and functionality. The post-translational modifications of AGOs in critical amino acid residues, the nucleotide polymorphisms and mutations, and the deregulation of expression and interactions are tightly associated with aberrant activities, which are observed in a wide spectrum of pathologies. Through constantly accumulating information, the AGOs’ fundamental engagement in multiple human diseases has recently emerged. The present review examines new insights into AGO-driven pathology and AGO-deregulation patterns in a variety of diseases such as in viral infections and propagations, autoimmune diseases, cancers, metabolic deficiencies, neuronal disorders, and human infertility. Altogether, AGO seems to be a crucial contributor to pathogenesis and its targeting may serve as a novel and powerful therapeutic tool for the successful management of diverse human diseases in the clinic.
Collapse
|
37
|
Leonetti P, Miesen P, van Rij RP, Pantaleo V. Viral and subviral derived small RNAs as pathogenic determinants in plants and insects. Adv Virus Res 2020; 107:1-36. [PMID: 32711727 DOI: 10.1016/bs.aivir.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The phenotypic manifestations of disease induced by viruses and subviral infectious entities are the result of complex molecular interactions between host and viral factors. The viral determinants of the diseased phenotype have traditionally been sought at the level of structural or non-structural proteins. However, the discovery of RNA silencing mechanisms has led to speculations that determinants of the diseased phenotype are caused by viral nucleic acid sequences in addition to proteins. RNA silencing is a gene regulation mechanism conserved within eukaryotic kingdoms (with the exception of some yeast species), and in plants and insects it also functions as an antiviral mechanism. Non-coding RNAs of viral origin, ranging in size from 21 to 24 nucleotides (viral small interfering RNAs, vsiRNAs) accumulate in virus-infected tissues and organs, in some cases to comparable levels as the entire complement of host-encoded small interfering RNAs. Upon incorporation into RNA-induced silencing complexes, vsiRNAs can mediate cleavage or induce translational inhibition of nucleic acid targets in a sequence-specific manner. This review focuses on recent findings that suggest an increased complexity of small RNA-based interactions between virus and host. We mainly address plant viruses, but where applicable discuss insect viruses as well. Prominence is given to studies that have indisputably demonstrated that vsiRNAs determine diseased phenotype by either carrying sequence determinants or, indirectly, by altering host-gene regulatory pathways. Results from these studies suggest biotechnological applications, which are also discussed.
Collapse
Affiliation(s)
- Paola Leonetti
- Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Vitantonio Pantaleo
- Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection, CNR, Bari, Italy..
| |
Collapse
|
38
|
Al Naggar Y, Paxton RJ. Mode of Transmission Determines the Virulence of Black Queen Cell Virus in Adult Honey Bees, Posing a Future Threat to Bees and Apiculture. Viruses 2020; 12:E535. [PMID: 32422881 PMCID: PMC7290678 DOI: 10.3390/v12050535] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/03/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Honey bees (Apis mellifera) can be infected by many viruses, some of which pose a major threat to their health and well-being. A critical step in the dynamics of a viral infection is its mode of transmission. Here, we compared for the first time the effect of mode of horizontal transmission of Black queen cell virus (BQCV), a ubiquitous and highly prevalent virus of A. mellifera, on viral virulence in individual adult honey bees. Hosts were exposed to BQCV either by feeding (representing direct transmission) or by injection into hemolymph (analogous to indirect or vector-mediated transmission) through a controlled laboratory experimental design. Mortality, viral titer and expression of three key innate immune-related genes were then quantified. Injecting BQCV directly into hemolymph in the hemocoel resulted in far higher mortality as well as increased viral titer and significant change in the expression of key components of the RNAi pathway compared to feeding honey bees BQCV. Our results support the hypothesis that mode of horizontal transmission determines BQCV virulence in honey bees. BQCV is currently considered a benign viral pathogen of adult honey bees, possibly because its mode of horizontal transmission is primarily direct, per os. We anticipate adverse health effects on honey bees if BQCV transmission becomes vector-mediated.
Collapse
Affiliation(s)
- Yahya Al Naggar
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany;
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Robert J. Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany;
| |
Collapse
|
39
|
Zhou Y, Routh A. Mapping RNA-capsid interactions and RNA secondary structure within virus particles using next-generation sequencing. Nucleic Acids Res 2020; 48:e12. [PMID: 31799606 PMCID: PMC6954446 DOI: 10.1093/nar/gkz1124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/31/2019] [Accepted: 11/16/2019] [Indexed: 01/24/2023] Open
Abstract
To characterize RNA-capsid binding sites genome-wide within mature RNA virus particles, we have developed a Next-Generation Sequencing (NGS) platform: viral Photo-Activatable Ribonucleoside CrossLinking (vPAR-CL). In vPAR-CL, 4-thiouridine is incorporated into the encapsidated genomes of virus particles and subsequently UV-crosslinked to adjacent capsid proteins. We demonstrate that vPAR-CL can readily and reliably identify capsid binding sites in genomic viral RNA by detecting crosslink-specific uridine to cytidine transitions in NGS data. Using Flock House virus (FHV) as a model system, we identified highly consistent and significant vPAR-CL signals across virus RNA genome, indicating a clear tropism of the encapsidated RNA genome. Certain interaction sites coincide with previously identified functional RNA motifs. We additionally performed dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) to generate a high-resolution profile of single-stranded genomic RNA inside viral particles. Combining vPAR-CL and DMS-MaPseq reveals that the predominant RNA-capsid interaction sites favored double-stranded RNA regions. We disrupted secondary structures associated with vPAR-CL sites using synonymous mutations, resulting in varied effects to virus replication, propagation and packaging. Certain mutations showed substantial deficiency in virus replication, suggesting these RNA-capsid sites are multifunctional. These provide further evidence to support that FHV packaging and replication are highly coordinated and inter-dependent events.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
- To whom correspondence should be address. Tel: +1 409 772 3663;
| |
Collapse
|
40
|
Samarfard S, McTaggart AR, Sharman M, Bejerman NE, Dietzgen RG. Viromes of Ten Alfalfa Plants in Australia Reveal Diverse Known Viruses and a Novel RNA Virus. Pathogens 2020; 9:pathogens9030214. [PMID: 32183134 PMCID: PMC7157637 DOI: 10.3390/pathogens9030214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/27/2022] Open
Abstract
Alfalfa plants in the field can display a range of virus-like symptoms, especially when grown over many years for seed production. Most known alfalfa viruses have RNA genomes, some of which can be detected using diagnostic assays, but many viruses of alfalfa are not well characterized. This study aims to identify the RNA and DNA virus complexes associated with alfalfa plants in Australia. To maximize the detection of RNA viruses, we purified double-stranded RNA (dsRNA) for high throughput sequencing and characterized the viromes of ten alfalfa samples that showed diverse virus-like symptoms. Using Illumina sequencing of tagged cDNA libraries from immune-captured dsRNA, we identified sequences of the single-stranded RNA viruses, alfalfa mosaic virus (AMV), bean leafroll virus, a new emaravirus tentatively named alfalfa ringspot-associated virus, and persistent dsRNA viruses belonging to the families Amalgaviridae and Partitiviridae. Furthermore, rolling circle amplification and restriction enzyme digestion revealed the complete genome of chickpea chlorosis Australia virus, a mastrevirus (family Geminiviridae) previously reported only from chickpea and French bean that was 97% identical to the chickpea isolate. The sequence data also enabled the assembly of the first complete genome (RNAs 1–3) of an Australian AMV isolate from alfalfa.
Collapse
Affiliation(s)
- Samira Samarfard
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4072, Australia;
| | - Alistair R. McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, Queensland 4102, Australia;
| | - Murray Sharman
- Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park, Queensland 4102, Australia;
| | - Nicolás E. Bejerman
- Instituto de Patología Vegetal–Centro de Investigaciones Agropecuarias–Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba 5020, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola, Córdoba 5020, Argentina
| | - Ralf G. Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4072, Australia;
- Correspondence: ; Tel.: +61-7-334-66503
| |
Collapse
|
41
|
The Capsid Protein of Semliki Forest Virus Antagonizes RNA Interference in Mammalian Cells. J Virol 2020; 94:JVI.01233-19. [PMID: 31694940 DOI: 10.1128/jvi.01233-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022] Open
Abstract
RNA interference (RNAi) is a conserved antiviral immune defense in eukaryotes, and numerous viruses have been found to encode viral suppressors of RNAi (VSRs) to counteract antiviral RNAi. Alphaviruses are a large group of positive-stranded RNA viruses that maintain their transmission and life cycles in both mosquitoes and mammals. However, there is little knowledge about how alphaviruses antagonize RNAi in both host organisms. In this study, we identified that Semliki Forest virus (SFV) capsid protein can efficiently suppress RNAi in both insect and mammalian cells by sequestrating double-stranded RNA and small interfering RNA. More importantly, when the VSR activity of SFV capsid was inactivated by reverse genetics, the resulting VSR-deficient SFV mutant showed severe replication defects in mammalian cells, which could be rescued by blocking the RNAi pathway. Besides, capsid protein of Sindbis virus also inhibited RNAi in cells. Together, our findings show that SFV uses capsid protein as VSR to antagonize RNAi in infected mammalian cells, and this mechanism is probably used by other alphaviruses, which shed new light on the knowledge of SFV and alphavirus.IMPORTANCE Alphaviruses are a genus of positive-stranded RNA viruses and include numerous important human pathogens, such as Chikungunya virus, Ross River virus, Western equine encephalitis virus, etc., which create the emerging and reemerging public health threat worldwide. RNA interference (RNAi) is one of the most important antiviral mechanisms in plants and insects. Accumulating evidence has provided strong support for the existence of antiviral RNAi in mammals. In response to antiviral RNAi, viruses have evolved to encode viral suppressors of RNAi (VSRs) to antagonize the RNAi pathway. It is unclear whether alphaviruses encode VSRs that can suppress antiviral RNAi during their infection in mammals. In this study, we first uncovered that capsid protein encoded by Semliki Forest virus (SFV), a prototypic alphavirus, had a potent VSR activity that can antagonize antiviral RNAi in the context of SFV infection in mammalian cells, and this mechanism is probably used by other alphaviruses.
Collapse
|
42
|
Abstract
Protection against microbial infection in eukaryotes is provided by diverse cellular and molecular mechanisms. Here, we present a comparative view of the antiviral activity of virus-derived small interfering RNAs in fungi, plants, invertebrates and mammals, detailing the mechanisms for their production, amplification and activity. We also highlight the recent discovery of viral PIWI-interacting RNAs in animals and a new role for mobile host and pathogen small RNAs in plant defence against eukaryotic pathogens. In turn, viruses that infect plants, insects and mammals, as well as eukaryotic pathogens of plants, have evolved specific virulence proteins that suppress RNA interference (RNAi). Together, these advances suggest that an antimicrobial function of the RNAi pathway is conserved across eukaryotic kingdoms.
Collapse
|
43
|
Danilenko ED, Belkina AO, Sysoeva GM. Development of Drugs Based on High-Polymeric Double-Stranded RNA for Antiviral and Antitumor Therapy. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES B, BIOMEDICAL CHEMISTRY 2019; 13:308-323. [PMID: 32288939 PMCID: PMC7104317 DOI: 10.1134/s1990750819040036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/24/2022]
Abstract
Abstract-The review summarizes literature data on the development of drugs based on natural and synthetic high-polymeric double-stranded RNA (dsRNA), their antiviral, immunoadjuvant, and antitumor properties. Special attention is paid to cell receptors responding to exogenous dsRNA, pathways of dsRNA-dependent antiviral reaction, ability of dsRNA to inhibit growth and induce apoptosis of malignant cells. It has been shown that enhancing the innate immune response with dsRNA can be an effective component in improving methods for treating and preventing infectious and cancer diseases. The further use of dsRNA for the correction of pathological processes of different origin is discussed.
Collapse
Affiliation(s)
- E. D. Danilenko
- Institute of Medical Biotechnology, State Research Center of Virology and Biotechnology (SRC VB) “Vector”, Khimzavodskaya ul. 9, 633010 Berdsk, Novosibirsk region Russia
| | - A. O. Belkina
- Institute of Medical Biotechnology, State Research Center of Virology and Biotechnology (SRC VB) “Vector”, Khimzavodskaya ul. 9, 633010 Berdsk, Novosibirsk region Russia
| | - G. M. Sysoeva
- Institute of Medical Biotechnology, State Research Center of Virology and Biotechnology (SRC VB) “Vector”, Khimzavodskaya ul. 9, 633010 Berdsk, Novosibirsk region Russia
| |
Collapse
|
44
|
Identification of Regulatory Host Genes Involved in Sigma Virus Replication Using RNAi Knockdown in Drosophila. INSECTS 2019; 10:insects10100339. [PMID: 31614679 PMCID: PMC6835446 DOI: 10.3390/insects10100339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 01/15/2023]
Abstract
The Drosophila melanogaster sigma virus, a member of the Rhabdoviridae family, specifically propagates itself in D. melanogaster. It contains six genes in the order of 3′-N–P–X–M–G–L-5′. The sigma virus is the only arthropod-specific virus of the Rhabdoviridae family. Sigma-virus-infected Drosophila may suffer from irreversible paralysis when exposed to a high CO2 concentration, but generally, no other symptoms are reported. A recent study reported that host gene expression in immune pathways was not changed in sigma-virus-infected Drosophila, which does not necessarily suggest that they are not involved in virus–host interactions. The present study aimed to identify host genes associated with sigma virus replication. Immune pathways JAK-STAT and IMD were selected for detailed study. The results showed that the genome copy number of the sigma virus increased after knocking down the immune pathway genes domeless and PGRP-LC in Drosophila S2 cells. The knocking down of domeless and PGRP-LC significantly up-regulated the expression of the L gene compared to the other viral genes. We propose that the immune pathways respond to sigma virus infection by altering L expression, hence suppressing viral replication. This effect was further tested in vivo, when D. melanogaster individuals injected with dsdome and dsPGRP-LC showed not only an increase in sigma virus copy number, but also a reduced survival rate when treated with CO2. Our study proved that host immunity influences viral replication, even in persistent infection. Knocking down the key components of the immune process deactivates immune controls, thus facilitating viral expression and replication. We propose that the immunity system of D. melanogaster regulates the replication of the sigma virus by affecting the L gene expression. Studies have shown minimal host–virus interaction in persistent infection. However, our study demonstrated that the immunity continued to affect viral replication even in persistent infection because knocking down the key components of the immune process disabled the relevant immune controls and facilitated viral expression and replication.
Collapse
|
45
|
Wang Y, Qiao R, Wei C, Li Y. Rice Dwarf Virus Small RNA Profiles in Rice and Leafhopper Reveal Distinct Patterns in Cross-Kingdom Hosts. Viruses 2019; 11:v11090847. [PMID: 31547224 PMCID: PMC6784124 DOI: 10.3390/v11090847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 11/16/2022] Open
Abstract
RNA silencing has evolved as a widespread antiviral strategy in many eukaryotic organisms. Antiviral RNA silencing is mediated by virus-derived small RNAs (vsiRNAs), created by the cleavage of double-stranded viral RNA substrates by Dicer (Dcr) in animals or Dicer-like (DCL) proteins in plants. However, little is known about how the RNA silencing mechanisms of different hosts respond to the same virus infection. We performed high-throughput small RNA sequencing in Nephotettix cincticeps and Oryza sativa infected with Rice dwarf phytoreovirus and analyzed the distinct accumulation of vsiRNAs in these two hosts. The results suggested a potential branch in the evolution of antiviral RNA silencing of insect and plant hosts. The rice vsiRNAs were predominantly 21 and 22 nucleotides (nt) long, suggesting that OsDCL4 and OsDCL2 are involved in their production, whereas 21-nt vsiRNAs dominated in leafhopper, suggesting the involvement of a Dcr-2 homolog. Furthermore, we identified ~50-fold more vsiRNAs in rice than in leafhoppers, which might be partially attributable to the activity of RNA-dependent RNA polymerase 6 (RDR6) in rice and the lack of RDR genes in leafhoppers. Our data established a basis for further comparative studies on the evolution of RNA silencing-based interactions between a virus and its hosts, across kingdoms.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Rui Qiao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chunhong Wei
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
46
|
Danilenko ED, Belkina AO, Sysoeva GM. [Development of drugs on the basis of high-polymeric double-stranded RNA for antiviral and antitumor therapy]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:277-293. [PMID: 31436169 DOI: 10.18097/pbmc20196504277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review summarizes literature data on the development of drugs based on natural and synthetic high-polymeric double-stranded RNA, and their antiviral, immunoadjuvant and antitumor properties. Special attention is paid to cell receptors responding to exogenous dsRNA, the paths of dsRNA-dependent antiviral reaction, ability of dsRNA to inhibit growth and induce apoptosis ofmalignant cells. It has been shown that enhancing the innate immune response with dsRNA can be an effective component in improving methods for treating and preventing infectious and cancer diseases. The further use of dsRNA for the correction of pathological processes of different origin is discussed.
Collapse
Affiliation(s)
- E D Danilenko
- Institute of Medical Biotechnology, State Research Center of Virology and Biotechnology "Vector", Berdsk, Russia
| | - A O Belkina
- Institute of Medical Biotechnology, State Research Center of Virology and Biotechnology "Vector", Berdsk, Russia
| | - G M Sysoeva
- Institute of Medical Biotechnology, State Research Center of Virology and Biotechnology "Vector", Berdsk, Russia
| |
Collapse
|
47
|
Fareh M, van Lopik J, Katechis I, Bronkhorst AW, Haagsma AC, van Rij RP, Joo C. Viral suppressors of RNAi employ a rapid screening mode to discriminate viral RNA from cellular small RNA. Nucleic Acids Res 2019; 46:3187-3197. [PMID: 29325071 PMCID: PMC5888754 DOI: 10.1093/nar/gkx1316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/03/2018] [Indexed: 11/14/2022] Open
Abstract
RNA interference (RNAi) is an indispensable mechanism for antiviral defense in insects, including mosquitoes that transmit human diseases. To escape this antiviral defense system, viruses encode suppressors of RNAi that prevent elimination of viral RNAs, and thus ensure efficient virus accumulation. Although the first animal Viral Suppressor of RNAi (VSR) was identified more than a decade ago, the molecular basis of RNAi suppression by these viral proteins remains unclear. Here, we developed a single-molecule fluorescence assay to investigate how VSRs inhibit the recognition of viral RNAs by Dcr-2, a key endoribonuclease enzyme in the RNAi pathway. Using VSRs from three insect RNA viruses (Culex Y virus, Drosophila X virus and Drosophila C virus), we reveal bimodal physical interactions between RNA molecules and VSRs. During initial interactions, these VSRs rapidly discriminate short RNA substrates from long dsRNA. VSRs engage nearly irreversible binding with long dsRNAs, thereby shielding it from recognition by Dcr-2. We propose that the length-dependent switch from rapid screening to irreversible binding reflects the main mechanism by which VSRs distinguish viral dsRNA from cellular RNA species such as microRNAs.
Collapse
Affiliation(s)
- Mohamed Fareh
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Jasper van Lopik
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Iason Katechis
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Alfred W Bronkhorst
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen 6525 GA, The Netherlands
| | - Anna C Haagsma
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen 6525 GA, The Netherlands
| | - Chirlmin Joo
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| |
Collapse
|
48
|
Antiviral RNAi in Insects and Mammals: Parallels and Differences. Viruses 2019; 11:v11050448. [PMID: 31100912 PMCID: PMC6563508 DOI: 10.3390/v11050448] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/26/2022] Open
Abstract
The RNA interference (RNAi) pathway is a potent antiviral defense mechanism in plants and invertebrates, in response to which viruses evolved suppressors of RNAi. In mammals, the first line of defense is mediated by the type I interferon system (IFN); however, the degree to which RNAi contributes to antiviral defense is still not completely understood. Recent work suggests that antiviral RNAi is active in undifferentiated stem cells and that antiviral RNAi can be uncovered in differentiated cells in which the IFN system is inactive or in infections with viruses lacking putative viral suppressors of RNAi. In this review, we describe the mechanism of RNAi and its antiviral functions in insects and mammals. We draw parallels and highlight differences between (antiviral) RNAi in these classes of animals and discuss open questions for future research.
Collapse
|
49
|
Maillard PV, van der Veen AG, Poirier EZ, Reis e Sousa C. Slicing and dicing viruses: antiviral RNA interference in mammals. EMBO J 2019; 38:e100941. [PMID: 30872283 PMCID: PMC6463209 DOI: 10.15252/embj.2018100941] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/17/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022] Open
Abstract
To protect against the harmful consequences of viral infections, organisms are equipped with sophisticated antiviral mechanisms, including cell-intrinsic means to restrict viral replication and propagation. Plant and invertebrate cells utilise mostly RNA interference (RNAi), an RNA-based mechanism, for cell-intrinsic immunity to viruses while vertebrates rely on the protein-based interferon (IFN)-driven innate immune system for the same purpose. The RNAi machinery is conserved in vertebrate cells, yet whether antiviral RNAi is still active in mammals and functionally relevant to mammalian antiviral defence is intensely debated. Here, we discuss cellular and viral factors that impact on antiviral RNAi and the contexts in which this system might be at play in mammalian resistance to viral infection.
Collapse
Affiliation(s)
- Pierre V Maillard
- Division of Infection and Immunity, University College London, London, UK
| | | | - Enzo Z Poirier
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | | |
Collapse
|
50
|
Dicer functions transcriptionally and posttranscriptionally in a multilayer antiviral defense. Proc Natl Acad Sci U S A 2019; 116:2274-2281. [PMID: 30674672 DOI: 10.1073/pnas.1812407116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In antiviral RNA interference (RNAi), Dicer plays a primary role in processing double-stranded RNA (dsRNA) molecules into small-interfering RNAs (siRNAs) that guide Argonaute effectors to posttranscriptional suppression of target viral genes. Here, we show a distinct role for Dicer in the siRNA-independent transcriptional induction of certain host genes upon viral infection in a filamentous fungus. Previous studies have shown that the two key players, dicer-like 2 (dcl2) and argonaute-like 2 (agl2), of antiviral RNAi in a phytopathogenic ascomycete, Cryphonectria parasitica, are highly transcriptionally induced upon infection with certain RNA mycoviruses, including the positive-stranded RNA hypovirus mutant lacking the RNAi suppressor (Cryphonectria hypovirus 1-Δp69, CHV1-Δp69). This induction is regulated by the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, a well-known transcriptional coactivator. The present study shows that diverse host genes, in addition to dcl2 and agl2, were up-regulated more than 10-fold by SAGA upon infection with CHV1-Δp69. Interestingly, DCL2, but not AGL2, was essential for SAGA-mediated global gene up-regulation. Moreover, deletion of certain virus-induced genes enhanced a CHV1-Δp69 symptom (growth rate) but not its accumulation. Constitutive, modest levels of dcl2 expression drastically reduced viral siRNA accumulation but were sufficient for full-scale up-regulation of host genes, suggesting that high induction of dcl2 and siRNA production are not essential for the transcriptional up-regulation function of DCL2. These data clearly demonstrate the dual functionality of DCL2: as a dsRNA-specific nuclease in posttranscriptional antiviral RNA silencing and as a key player in SAGA-mediated host gene induction, which independently represses viral replication and alleviates virus-induced symptom expression.
Collapse
|