1
|
Yu CJ, Damania B. Molecular Mechanisms of Kaposi Sarcoma-Associated Herpesvirus (HHV8)-Related Lymphomagenesis. Cancers (Basel) 2024; 16:3693. [PMID: 39518131 PMCID: PMC11544871 DOI: 10.3390/cancers16213693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Approximately 15-20% of cancers are caused by viruses. Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV8), is an oncogenic virus that is the etiologic agent of not only Kaposi sarcoma but also the lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). KSHV can infect a broad tropism of cells, including B lymphocytes, wherein KSHV encodes specific viral proteins that can transform the cell. KSHV infection precedes the progression of PEL and MCD. KSHV establishes lifelong infection and has two phases of its lifecycle: latent and lytic. During the latent phase, viral genomes are maintained episomally with limited gene expression. Upon sporadic reactivation, the virus enters its replicative lytic phase to produce infectious virions. KSHV relies on its viral products to modulate host factors to evade immune detection or to co-opt their function for KSHV persistence. These manipulations dysregulate normal cell pathways to ensure cell survival and inhibit antiviral immune responses, which in turn, contribute to KSHV-associated malignancies. Here, we highlight the known molecular mechanisms of KSHV that promote lymphomagenesis and how these findings identify potential therapeutic targets for KSHV-associated lymphomas.
Collapse
Affiliation(s)
| | - Blossom Damania
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA;
| |
Collapse
|
2
|
Granata S, La Russa D, Stallone G, Perri A, Zaza G. Inflammasome pathway in kidney transplantation. Front Med (Lausanne) 2023; 10:1303110. [PMID: 38020086 PMCID: PMC10663322 DOI: 10.3389/fmed.2023.1303110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Kidney transplantation is the best available renal replacement therapy for patients with end-stage kidney disease and is associated with better quality of life and patient survival compared with dialysis. However, despite the significant technical and pharmaceutical advances in this field, kidney transplant recipients are still characterized by reduced long-term graft survival. In fact, almost half of the patients lose their allograft after 15-20 years. Most of the conditions leading to graft loss are triggered by the activation of a large immune-inflammatory machinery. In this context, several inflammatory markers have been identified, and the deregulation of the inflammasome (NLRP3, NLRP1, NLRC4, AIM2), a multiprotein complex activated by either whole pathogens (including fungi, bacteria, and viruses) or host-derived molecules, seems to play a pivotal pathogenetic role. However, the biological mechanisms leading to inflammasome activation in patients developing post-transplant complications (including, ischemia-reperfusion injury, rejections, infections) are still largely unrecognized, and only a few research reports, reviewed in this manuscript, have addressed the association between abnormal activation of this pathway and the onset/development of major clinical effects. Finally, the regulation of the inflammasome machinery could represent in future a valuable therapeutic target in kidney transplantation.
Collapse
Affiliation(s)
- Simona Granata
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Anna Perri
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
3
|
Chen W, Zhu L, Shen LL, Si SY, Liu JL. T Lymphocyte Subsets Profile and Toll-Like Receptors Responses in Patients with Herpes Zoster. J Pain Res 2023; 16:1581-1594. [PMID: 37220634 PMCID: PMC10200109 DOI: 10.2147/jpr.s405157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
Purpose Herpes zoster (HZ) is caused by the varicella-zoster virus (VZV), and 20% of healthy humans and 50% of people with immune dysfunction have a high probability of suffering from HZ. This study aimed to screen dynamic immune signatures and explore the potential mechanism during HZ progression. Patients and Methods Peripheral blood samples from 31 HZ patients and 32 age-sex-matched healthy controls were collected and analyzed. The protein levels and gene levels of toll-like receptors (TLRs) were detected in peripheral blood mononuclear cells (PBMCs) by flow cytometry and quantitative real-time PCR. Further, the characteristics of T cell subsets and cytokines were detected via a cytometric bead array. Results Compared to healthy controls, the mRNA levels of TLR2, TLR4, TLR7, and TLR9 mRNA in PBMCs were significantly increased in HZ patients. The protein level of TLR4 and TLR7 was significantly increased in HZ patients, but the levels of TLR2 and TLR9 were dramatically decreased. The CD3+ T cells were constant in HZ and healthy controls. CD4+ T cells were decreased in HZ patients, while CD8+ T cells were increased, resulting in an improved CD4+/CD8+ T cells ratio. Further, it was found that Th2 and Th17 were not changed, but the decreased Th1 and upregulated Treg cells were found in HZ. The Th1/Th2 and Th17/Treg ratios were significantly decreased. Last, the levels of IL-6, IL-10, and IFN-γ were significantly increased, but IL-2, IL-4, and IL-17A had no significant changes. Conclusion The dysfunction of host's lymphocytes and activation of TLRs in PBMCs were the important mechanism in varicella-zoster virus induced herpes zoster. TLRs might be the core targets for the therapy drug development in treating HZ.
Collapse
Affiliation(s)
- Wei Chen
- Dermatology, Zhejiang Provincial Dermatology Hospital, Huzhou, Zhejiang, People’s Republic of China
| | - Lu Zhu
- Dermatology, Zhejiang Provincial Dermatology Hospital, Huzhou, Zhejiang, People’s Republic of China
| | - Li-Ling Shen
- Dermatology, Zhejiang Provincial Dermatology Hospital, Huzhou, Zhejiang, People’s Republic of China
| | - Shao-Yan Si
- Department of Comprehensive Basic Experiment, Strategic Support Force Medical Center, Bejing, People’s Republic of China
| | - Jun-Lian Liu
- Dermatology, Chui Yang Liu Hospital Affiliated Tsinghua University, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Zuo J, Meng T, Wang Y, Tang W. A Review of the Antiviral Activities of Glycyrrhizic Acid, Glycyrrhetinic Acid and Glycyrrhetinic Acid Monoglucuronide. Pharmaceuticals (Basel) 2023; 16:ph16050641. [PMID: 37242424 DOI: 10.3390/ph16050641] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Licorice, a natural medicine derived from the roots and rhizomes of Glycyrrhiza species, possesses a wide range of therapeutic applications, including antiviral properties. Glycyrrhizic acid (GL) and glycyrrhetinic acid (GA) are the most important active ingredients in licorice. Glycyrrhetinic acid 3-O-mono-β-d-glucuronide (GAMG) is the active metabolite of GL. GL and its metabolites have a wide range of antiviral activities against viruses, such as, the hepatitis virus, herpes virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and so on. Although their antiviral activity has been widely reported, the specific mechanism of action involving multiple links such as the virus itself, cells, and immunity are not clearly established. In this review, we will give an update on the role of GL and its metabolites as antiviral agents, and detail relevant evidence on the potential use and mechanisms of actions. Analyzing antivirals, their signaling, and the impacts of tissue and autoimmune protection may provide promising new therapeutic strategies.
Collapse
Affiliation(s)
- Jiawei Zuo
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230011, China
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Tao Meng
- Department of General Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Yuanyuan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230011, China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
5
|
Toll-like receptor 4 and lipopolysaccharide from commensal microbes regulate Tembusu virus infection. J Biol Chem 2022; 298:102699. [PMID: 36379254 PMCID: PMC9761373 DOI: 10.1016/j.jbc.2022.102699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Unlike most flaviviruses transmitted by arthropods, Tembusu virus (TMUV) is still active during winter and causes outbreaks in some areas, indicating vector-independent spread of the virus. Gastrointestinal transmission might be one of the possible routes of vector-free transmission, which also means that the virus has to interact with more intestinal bacteria. Here, we found evidence that TMUV indeed can transmit through the digestive tract. Interestingly, using an established TMUV disease model by oral gavage combined with an antibiotic treatment, we revealed that a decrease in intestinal bacteria significantly reduced local TMUV proliferation in the intestine, revealing that the bacterial microbiome is important in TMUV infection. We found that lipopolysaccharide (LPS) present in the outer membrane of Gram-negative bacteria enhanced TMUV proliferation by promoting its attachment. Toll-like receptor 4 (TLR4), a cell surface receptor, can transmit signal from LPS. We confirmed colocalization of TLR4 with TMUV envelope (E) protein as well as their interaction in infected cells. Coherently, TMUV infection of susceptible cells was inhibited by an anti-TLR4 antibody, purified soluble TLR4 protein, and knockdown of TLR4 expression. LPS-enhanced TMUV proliferation could also be blocked by a TLR4 inhibitor. Meanwhile, pretreatment of duck primary cells with TMUV significantly impaired LPS-induced interleukin 6 production. Collectively, our study provides first insights into vector-free transmission mechanisms of flaviviruses.
Collapse
|
6
|
Amsden H, Kourko O, Roth M, Gee K. Antiviral Activities of Interleukin-27: A Partner for Interferons? Front Immunol 2022; 13:902853. [PMID: 35634328 PMCID: PMC9134790 DOI: 10.3389/fimmu.2022.902853] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022] Open
Abstract
Emergence of new, pandemic-level viral threats has brought to the forefront the importance of viral immunology and continued improvement of antiviral therapies. Interleukin-27 (IL-27) is a pleiotropic cytokine that regulates both innate and adaptive immune responses. Accumulating evidence has revealed potent antiviral activities of IL-27 against numerous viruses, including HIV, influenza, HBV and more. IL-27 contributes to the immune response against viruses indirectly by increasing production of interferons (IFNs) which have various antiviral effects. Additionally, IL-27 can directly interfere with viral infection both by acting similarly to an IFN itself and by modulating the differentiation and function of various immune cells. This review discusses the IFN-dependent and IFN-independent antiviral mechanisms of IL-27 and highlights the potential of IL-27 as a therapeutic cytokine for viral infection.
Collapse
Affiliation(s)
| | | | | | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
7
|
Molecular Mechanisms of Kaposi Sarcoma Development. Cancers (Basel) 2022; 14:cancers14081869. [PMID: 35454776 PMCID: PMC9030761 DOI: 10.3390/cancers14081869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 01/08/2023] Open
Abstract
Simple Summary There are at least four forms of Kaposi’s sarcoma (KS) with the ‘HIV’-related form being the most aggressive and can involve mucosae or visceral organs. Kaposi’s sarcoma-associated herpes virus (KSHV) is the underlying cause of this disease. It can infect endothelial and/or mesenchymal cells and establish a latent phase in host cells in which latency proteins and various non-coding RNAs (ncRNAs) play a complex role in proliferation and angiogenesis. It also undergoes periods of sporadic lytic reactivation that are key for KS progression. Complex interactions with the microenvironment with production of inflammatory cytokines and paracrine signaling is a standout feature of KS development and maintenance. KSHV impairs the immune response by various mechanisms such as the degradation of a variety of proteins involved in immune response or binding to cellular chemokines. Treatment options include classical chemotherapy, but other novel therapies are being investigated. Abstract Kaposi’s sarcoma (KS) is a heterogeneous angioproliferative tumor that generally arises in the skin. At least four forms of this disease have been described, with the ‘HIV’-related form being the most aggressive and can involve mucosae or visceral organs. Three quarters of KS cases occur in sub-Saharan Africa (SSA) as geographic variation is explained by the disparate prevalence of KS-associated herpes virus (KSHV), which is the underlying cause of this disease. It can infect endothelial and/or mesenchymal cells that consequently transdifferentiate to an intermediate state. KSHV establishes a latent phase in host cells in which latency proteins and various non-coding RNAs (ncRNAs) play a complex role in proliferation and angiogenesis. It also undergoes periods of sporadic lytic reactivation triggered by various biological signals in which lytic stage proteins modulate host cell signaling pathways and are key in KS progression. Complex interactions with the microenvironment with production of inflammatory cytokines with paracrine signaling is a standout feature of KS development and maintenance. KSHV impairs the immune response by various mechanisms such as the degradation of a variety of proteins involved in immune response or binding to cellular chemokines. Treatment options include classical chemotherapy, but other novel therapies are being investigated.
Collapse
|
8
|
Lange PT, White MC, Damania B. Activation and Evasion of Innate Immunity by Gammaherpesviruses. J Mol Biol 2022; 434:167214. [PMID: 34437888 PMCID: PMC8863980 DOI: 10.1016/j.jmb.2021.167214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/20/2022]
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in the vast majority of adults worldwide. Importantly, these viruses are associated with numerous malignancies and are responsible for significant human cancer burden. These virus-associated cancers are due, in part, to the ability of gammaherpesviruses to successfully evade the innate immune response throughout the course of infection. In this review, we will summarize the current understanding of how gammaherpesviruses are detected by innate immune sensors, how these viruses evade recognition by host cells, and how this knowledge can inform novel therapeutic approaches for these viruses and their associated diseases.
Collapse
Affiliation(s)
- Philip T Lange
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. https://twitter.com/langept
| | - Maria C White
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. https://twitter.com/maria_c_white
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Wei Z, Sun X, He Q, Zhao Y, Wu Y, Han X, Wu Z, Chu X, Guan S. Nephroprotective effect of magnesium isoglycyrrhizinate against arsenic trioxide‑induced acute kidney damage in mice. Exp Ther Med 2022; 23:276. [PMID: 35317438 PMCID: PMC8908469 DOI: 10.3892/etm.2022.11202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022] Open
Abstract
Magnesium isoglycyrrhizinate (MgIG) has anti-inflammatory, antioxidative, antiviral and anti-hepatotoxic effects. However, protective effects of MgIG against renal damage caused by arsenic trioxide (ATO) have not been reported. The present study aimed to clarify the protective function of MgIG on kidney damaged induced by ATO. Other than the control group and the group treated with MgIG alone, mice were injected intraperitoneally with ATO (5 mg/kg/day) for 7 days to establish a mouse model of kidney damage. On the 8th day, blood and kidney tissue were collected and the inflammatory factors and antioxidants levels in the kidney tissue and serum were measured. The expression of protein levels of caspase-3, Bcl-2, Bax, Toll-like receptor-4 (TLR4) and nuclear factor-κB (NF-κB) were determined via western blot analysis. In the renal tissue of mice, ATO exposure dramatically elevated markers of oxidative stress, apoptosis and inflammation. However, MgIG could also restore the activities of urea nitrogen and creatinine to normal levels, decrease the malondialdehyde level and reactive oxygen species formation and increase superoxide dismutase, catalase and glutathione activities. MgIG also ameliorated the morphological abnormalities generated by ATO, reduced inflammation and apoptosis and inhibited the TLR4/NF-κB signaling pathway. In conclusion, MgIG may mitigate ATO-induced kidney damage by decreasing apoptosis, oxidative stress and inflammation and its mechanism may be connected to the inhibition of TLR4/NF-κB signaling.
Collapse
Affiliation(s)
- Ziheng Wei
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Xiaoqi Sun
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Qianqian He
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Yang Zhao
- Department of Academic Research, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yongchao Wu
- Department of Radiological Intervention, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Zhonglin Wu
- Department of Radiological Intervention, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xi Chu
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Shengjiang Guan
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| |
Collapse
|
10
|
Banete A, Barilo J, Whittaker R, Basta S. The Activated Macrophage - A Tough Fortress for Virus Invasion: How Viruses Strike Back. Front Microbiol 2022; 12:803427. [PMID: 35087503 PMCID: PMC8787342 DOI: 10.3389/fmicb.2021.803427] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Macrophages (Mφ) are innate immune cells with a variety of functional phenotypes depending on the cytokine microenvironment they reside in. Mφ exhibit distinct activation patterns that are found within a wide array of activation states ranging from the originally discovered classical pro-inflammatory (M1) to the anti-inflammatory (M2) with their multi-facades. M1 cells are induced by IFNγ + LPS, while M2 are further subdivided into M2a (IL-4), M2b (Immune Complex) and M2c (IL-10) based on their inducing stimuli. Not surprisingly, Mφ activation influences the outcome of viral infections as they produce cytokines that in turn activate cells of the adaptive immune system. Generally, activated M1 cells tend to restrict viral replication, however, influenza and HIV exploit inflammation to support their replication. Moreover, M2a polarization inhibits HIV replication at the post-integration level, while HCMV encoded hrIL-10 suppresses inflammatory reactions by facilitating M2c formation. Additionally, viruses such as LCMV and Lassa Virus directly suppress Mφ activation leading to viral chronicity. Here we review how Mφ activation affects viral infection and the strategies by which viruses manipulate Mφ polarization to benefit their own fitness. An understanding of these mechanisms is important for the development of novel immunotherapies that can sway Mφ phenotype to inhibit viral replication.
Collapse
Affiliation(s)
- Andra Banete
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Department of Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Julia Barilo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Reese Whittaker
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
11
|
Gaglia MM. Anti-viral and pro-inflammatory functions of Toll-like receptors during gamma-herpesvirus infections. Virol J 2021; 18:218. [PMID: 34749760 PMCID: PMC8576898 DOI: 10.1186/s12985-021-01678-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Toll-like receptors (TLRs) control anti-viral responses both directly in infected cells and in responding cells of the immune systems. Therefore, they are crucial for responses against the oncogenic γ-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and the related murine virus MHV68, which directly infect immune system cells. However, since these viruses also cause lifelong persistent infections, TLRs may also be involved in modulation of inflammation during latent infection and contribute to virus-driven tumorigenesis. This review summarizes work on both of these aspects of TLR/γ-herpesvirus interactions, as well as results showing that TLR activity can drive these viruses' re-entry into the replicative lytic cycle.
Collapse
Affiliation(s)
- Marta Maria Gaglia
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
12
|
Duan Q, Liu T, Huang C, Shao Q, Ma Y, Wang W, Liu T, Sun J, Fang J, Huang G, Chen Z. The Chinese Herbal Prescription JieZe-1 Inhibits Membrane Fusion and the Toll-like Receptor Signaling Pathway in a Genital Herpes Mouse Model. Front Pharmacol 2021; 12:707695. [PMID: 34630083 PMCID: PMC8497740 DOI: 10.3389/fphar.2021.707695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
Chinese herbal prescription JieZe-1 is effective for genital herpes with no visible adverse effects clinically. It showed an excellent anti-HSV-2 effect in vitro. However, its mechanism of anti-HSV-2 effect in vivo remains unclear. This study was designed to evaluate the anti-HSV-2 effect of JieZe-1 and berberine in a genital herpes mouse model and explore the underlying mechanism. The fingerprint of JieZe-1 was determined by high-performance liquid chromatography. First, we optimized a mouse model of genital herpes. Next, the weight, symptom score, morphological changes, viral load, membrane fusion proteins, critical proteins of the Toll-like receptor signaling pathway, cytokines, and immune cells of vaginal tissue in mice at different time points were measured. Finally, we treated the genital herpes mouse model with JieZe-1 gel (2.5, 1.5, and 0.5 g/ml) and tested the above experimental indexes at 12 h and on the 9th day after modeling. JieZe-1 improved the symptoms, weight, and histopathological damage of genital herpes mice, promoted the keratin repair of tissues, and protected organelles to maintain the typical morphology of cells. It downregulated the expression of membrane fusion proteins, critical proteins of the Toll-like receptor signaling pathway, cytokines, and immune cells. The vaginal, vulvar, and spinal cord viral load and vaginal virus shedding were also significantly reduced. In summary, JieZe-1 shows significant anti-HSV-2 efficacy in vivo. The mechanism is related to the inhibition of membrane fusion, the Toll-like receptor signaling pathway, inflammatory cytokines, and cellular immunity. However, berberine, the main component of JieZe-1 monarch medicine, showed no efficacy at a concentration of 891.8 μM (0.3 mg/ml).
Collapse
Affiliation(s)
- Qianni Duan
- Department of TCM, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Liu
- Department of TCM, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Huang
- Department of TCM, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Shao
- Department of TCM, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonggui Ma
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjia Wang
- Department of TCM, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianli Liu
- Department of TCM, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Sun
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianguo Fang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangying Huang
- Department of TCM, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Chen
- Department of TCM, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
O’Connor CM, Sen GC. Innate Immune Responses to Herpesvirus Infection. Cells 2021; 10:2122. [PMID: 34440891 PMCID: PMC8394705 DOI: 10.3390/cells10082122] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 12/24/2022] Open
Abstract
Infection of a host cell by an invading viral pathogen triggers a multifaceted antiviral response. One of the most potent defense mechanisms host cells possess is the interferon (IFN) system, which initiates a targeted, coordinated attack against various stages of viral infection. This immediate innate immune response provides the most proximal defense and includes the accumulation of antiviral proteins, such as IFN-stimulated genes (ISGs), as well as a variety of protective cytokines. However, viruses have co-evolved with their hosts, and as such, have devised distinct mechanisms to undermine host innate responses. As large, double-stranded DNA viruses, herpesviruses rely on a multitude of means by which to counter the antiviral attack. Herein, we review the various approaches the human herpesviruses employ as countermeasures to the host innate immune response.
Collapse
Affiliation(s)
- Christine M. O’Connor
- Department of Genomic Medicine, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Ganes C. Sen
- Department of Inflammation and Immunity, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Proximity Biotin Labeling Reveals Kaposi's Sarcoma-Associated Herpesvirus Interferon Regulatory Factor Networks. J Virol 2021; 95:JVI.02049-20. [PMID: 33597212 PMCID: PMC8104114 DOI: 10.1128/jvi.02049-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/10/2021] [Indexed: 01/04/2023] Open
Abstract
Viral protein interaction with a host protein shows at least two sides: (i) taking host protein functions for its own benefit and (ii) disruption of existing host protein complex formation to inhibit undesirable host responses. Due to the use of affinity precipitation approaches, the majority of studies have focused on how the virus takes advantage of the newly formed protein interactions for its own replication. Studies on “hit-and-run” effects by viral proteins are difficult when using traditional affinity precipitation-based techniques under dynamic conditions, because only proteins interacting at a specific instance in time can be precipitated by affinity purification. Recent advances in proximity labeling (PL) have enabled identification of both static and dynamic protein-protein interactions. In this study, we applied a PL method by generating recombinant Kaposi’s sarcoma-associated herpesvirus (KSHV). KSHV, a gammaherpesvirus, uniquely encodes four interferon regulatory factors (IRF-1 to -4) that suppress host interferon responses, and we examined KSHV IRF-1 and IRF-4 neighbor proteins to identify cellular proteins involved in innate immune regulation. PL identified 213 and 70 proteins as neighboring proteins of viral IRF-1 (vIRF-1) and vIRF-4 during viral reactivation, and 47 proteins were shared between the two vIRFs; the list also includes three viral proteins, ORF17, thymidine kinase, and vIRF-4. Functional annotation of respective interacting proteins showed highly overlapping biological roles such as mRNA processing and transcriptional regulation by TP53. Innate immune regulation by these commonly interacting 44 cellular proteins was examined with small interfering RNAs (siRNAs), and the splicing factor 3B family proteins were found to be associated with interferon transcription and to act as suppressors of KSHV reactivation. We propose that recombinant mini-TurboID-KSHV is a powerful tool to probe key cellular proteins that play a role in KSHV replication and that selective splicing factors have a function in the regulation of innate immune responses. IMPORTANCE Viral protein interaction with a host protein shows at least two sides: (i) taking host protein functions for its own benefit and (ii) disruption of existing host protein complex formation to inhibit undesirable host responses. Due to the use of affinity precipitation approaches, the majority of studies have focused on how the virus takes advantage of the newly formed protein interactions for its own replication. Proximity labeling (PL), however, can also highlight transient and negative effects—those interactions which lead to dissociation from the existing protein complex. Here, we highlight the power of PL in combination with recombinant KSHV to study viral host interactions.
Collapse
|
15
|
Blumenthal MJ, Cornejo Castro EM, Whitby D, Katz AA, Schäfer G. Evidence for altered host genetic factors in KSHV infection and KSHV-related disease development. Rev Med Virol 2021; 31:e2160. [PMID: 33043529 PMCID: PMC8047912 DOI: 10.1002/rmv.2160] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 01/09/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), the most common AIDS-related malignancy. It also causes other rare, but certainly underreported, KSHV-associated pathologies, namely primary effusion lymphoma, multicentric Castleman disease and KSHV inflammatory cytokine syndrome. Epidemiology and pathogenicity studies point to the potential for host genetic predisposition to KSHV infection and/or the subsequent development of KSHV-associated pathologies partly explaining the peculiar geographic and population-specific incidence of KSHV and associated pathologies and discrepancies in KSHV exposure and infection and KSHV infection and disease development. This review consolidates the current knowledge of host genetic factors involved in the KSHV-driven pathogenesis. Studies reviewed here indicate a plausible connection between KSHV susceptibility and host genetic factors that affect either viral access to host cells via entry mechanisms or host innate immunity to viral infection. Subsequent to infection, KSHV-associated pathogenesis, reviewed here primarily in the context of KS, is likely influenced by an orchestrated concert of innate immune system interactions, downstream inflammatory pathways and oncogenic mechanisms. The association studies reviewed here point to interesting candidate genes that may prove important in achieving a more nuanced understanding of the pathogenesis and therapeutic targeting of KSHV and associated diseases. Recent studies on host genetic factors suggest numerous candidate genes strongly associated with KSHV infection or subsequent disease development, particularly innate immune system mediators. Taken together, these contribute toward our understanding of the geographic prevalence and population susceptibility to KSHV and KSHV-associated diseases.
Collapse
Affiliation(s)
- Melissa J. Blumenthal
- International Centre for Genetic Engineering and BiotechnologyCape TownSouth Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - Elena Maria Cornejo Castro
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical ResearchFrederick National Laboratory for Cancer ResearchFrederickMarylandUSA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical ResearchFrederick National Laboratory for Cancer ResearchFrederickMarylandUSA
| | - Arieh A. Katz
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - Georgia Schäfer
- International Centre for Genetic Engineering and BiotechnologyCape TownSouth Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
16
|
Singh H, Koury J, Kaul M. Innate Immune Sensing of Viruses and Its Consequences for the Central Nervous System. Viruses 2021; 13:170. [PMID: 33498715 PMCID: PMC7912342 DOI: 10.3390/v13020170] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections remain a global public health concern and cause a severe societal and economic burden. At the organismal level, the innate immune system is essential for the detection of viruses and constitutes the first line of defense. Viral components are sensed by host pattern recognition receptors (PRRs). PRRs can be further classified based on their localization into Toll-like receptors (TLRs), C-type lectin receptors (CLR), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), NOD-like receptors (NLRs) and cytosolic DNA sensors (CDS). TLR and RLR signaling results in production of type I interferons (IFNα and -β) and pro-inflammatory cytokines in a cell-specific manner, whereas NLR signaling leads to the production of interleukin-1 family proteins. On the other hand, CLRs are capable of sensing glycans present in viral pathogens, which can induce phagocytic, endocytic, antimicrobial, and pro- inflammatory responses. Peripheral immune sensing of viruses and the ensuing cytokine response can significantly affect the central nervous system (CNS). But viruses can also directly enter the CNS via a multitude of routes, such as the nasal epithelium, along nerve fibers connecting to the periphery and as cargo of infiltrating infected cells passing through the blood brain barrier, triggering innate immune sensing and cytokine responses directly in the CNS. Here, we review mechanisms of viral immune sensing and currently recognized consequences for the CNS of innate immune responses to viruses.
Collapse
Affiliation(s)
- Hina Singh
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey Koury
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
17
|
Zheng W, Xu Q, Zhang Y, E X, Gao W, Zhang M, Zhai W, Rajkumar RS, Liu Z. Toll-like receptor-mediated innate immunity against herpesviridae infection: a current perspective on viral infection signaling pathways. Virol J 2020; 17:192. [PMID: 33298111 PMCID: PMC7726878 DOI: 10.1186/s12985-020-01463-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background In the past decades, researchers have demonstrated the critical role of Toll-like receptors (TLRs) in the innate immune system. They recognize viral components and trigger immune signal cascades to subsequently promote the activation of the immune system. Main body Herpesviridae family members trigger TLRs to elicit cytokines in the process of infection to activate antiviral innate immune responses in host cells. This review aims to clarify the role of TLRs in the innate immunity defense against herpesviridae, and systematically describes the processes of TLR actions and herpesviridae recognition as well as the signal transduction pathways involved. Conclusions Future studies of the interactions between TLRs and herpesviridae infections, especially the subsequent signaling pathways, will not only contribute to the planning of effective antiviral therapies but also provide new molecular targets for the development of antiviral drugs.
Collapse
Affiliation(s)
- Wenjin Zheng
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Qing Xu
- School of Anesthesiology, Weifang Medical University, Weifang, 261053, China
| | - Yiyuan Zhang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Xiaofei E
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Wei Gao
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Mogen Zhang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Weijie Zhai
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | | | - Zhijun Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
18
|
TLR4 896A/G and TLR9 1174G/A polymorphisms are associated with the risk of infectious mononucleosis. Sci Rep 2020; 10:13154. [PMID: 32753695 PMCID: PMC7403730 DOI: 10.1038/s41598-020-70129-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns and activate innate and adaptive immune responses. Single nucleotide polymorphisms (SNPs) within the TLR genes may influence host–pathogen interactions and can have an impact on the progression of infectious diseases. The present study aimed to investigate the genotype distribution of TLR2 (2029C/T, rs121917864; 2258G/A, rs5743708), TLR4 (896A/G, rs4986790), and TLR9 (− 1237T/C, rs5743836; − 1486T/C, rs187084; 1174G/A, rs352139; and 2848C/T, rs352140) polymorphisms in 149 children and adolescents with infectious mononucleosis (IM) and 140 healthy individuals. The potential association of TLR SNPs with the clinical manifestations of EBV infection was also studied. The presence of TLR2, TLR4, and TLR9 SNPs was identified by polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). EBV DNA loads were detected by quantitative real-time PCR assay. The TLR4 896 GG and the TLR9 1174 GA genotypes were associated with an increased risk of EBV-related IM in examined patients (p = 0.014 and p = 0.001, respectively). The heterozygous genotype of the TLR4 896A/G SNP was associated with an increased risk of elevated liver enzyme levels and leukocytosis (p < 0.05). Our preliminary study revealed that the TLR4 896A/G and the TLR9 1174G/A polymorphisms seem to be related to the course of acute EBV infection in children and adolescents.
Collapse
|
19
|
Zhang H, Ni G, Damania B. ADAR1 Facilitates KSHV Lytic Reactivation by Modulating the RLR-Dependent Signaling Pathway. Cell Rep 2020; 31:107564. [PMID: 32348766 PMCID: PMC7319254 DOI: 10.1016/j.celrep.2020.107564] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/17/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus that exhibits two alternative life cycles: latency and lytic reactivation. During lytic reactivation, host innate immune responses are activated to restrict viral replication. Here, we report that adenosine deaminase acting on RNA 1 (ADAR1) is required for optimal KSHV lytic reactivation from latency. Knockdown of ADAR1 in KSHV latently infected cells inhibits viral gene transcription and viral replication during KSHV lytic reactivation. ADAR1 deficiency also significantly increases type I interferon production during KSHV reactivation. This increased interferon response is dependent on activation of the RIG-I-like receptor (RLR) pathway. Depletion of ADAR1 together with either RIG-I, MDA5, or MAVS reverses the increased IFNβ production and rescues KSHV lytic replication. These data suggest that ADAR1 serves as a proviral factor for KSHV lytic reactivation and facilitates DNA virus reactivation by dampening the RLR pathway-mediated innate immune response.
Collapse
Affiliation(s)
- Huirong Zhang
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Guoxin Ni
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Blossom Damania
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
20
|
Broussard G, Damania B. KSHV: Immune Modulation and Immunotherapy. Front Immunol 2020; 10:3084. [PMID: 32117196 PMCID: PMC7025529 DOI: 10.3389/fimmu.2019.03084] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is associated with KS, primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD). To ensure its own survival and propagation, KSHV employs an extensive network of viral proteins to subvert the host immune system, resulting in lifelong latent infection. Modulation of cellular and systemic immune defenses allows KSHV to persist in the host, which may eventually lead to the progression of KSHV-associated cancers. Due to KSHV's reliance on modifying immune responses to efficiently infect its host, immunotherapy is an attractive option for treating KSHV-associated malignancies. In this review, we will focus on the mechanisms by which KSHV evades the immune system and the current immune-related clinical strategies to treat KSHV-associated disease.
Collapse
Affiliation(s)
- Grant Broussard
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
21
|
Carriere J, Rao Y, Liu Q, Lin X, Zhao J, Feng P. Post-translational Control of Innate Immune Signaling Pathways by Herpesviruses. Front Microbiol 2019; 10:2647. [PMID: 31798565 PMCID: PMC6868034 DOI: 10.3389/fmicb.2019.02647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
Herpesviruses constitute a large family of disease-causing DNA viruses. Each herpesvirus strain is capable of infecting particular organisms with a specific cell tropism. Upon infection, pattern recognition receptors (PRRs) recognize conserved viral features to trigger signaling cascades that culminate in the production of interferons and pro-inflammatory cytokines. To invoke a proper immune response while avoiding collateral tissue damage, signaling proteins involved in these cascades are tightly regulated by post-translational modifications (PTMs). Herpesviruses have developed strategies to subvert innate immune signaling pathways in order to ensure efficient viral replication and achieve persistent infection. The ability of these viruses to control the proteins involved in these signaling cascades post-translationally, either directly via virus-encoded enzymes or indirectly through the deregulation of cellular enzymes, has been widely reported. This ability provides herpesviruses with a powerful tool to shut off or restrict host antiviral and inflammatory responses. In this review, we highlight recent findings on the herpesvirus-mediated post-translational control along PRR-mediated signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Pinghui Feng
- Section of Infection and Immunity, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
22
|
Oladunni FS, Reedy S, Balasuriya UBR, Horohov DW, Chambers TM. The effect of equine herpesvirus type 4 on type-I interferon signaling molecules. Vet Immunol Immunopathol 2019; 219:109971. [PMID: 31739157 DOI: 10.1016/j.vetimm.2019.109971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/02/2019] [Accepted: 10/26/2019] [Indexed: 11/19/2022]
Abstract
Equine herpesvirus type 4 (EHV-4) is mildly pathogenic but is a common cause of respiratory disease in horses worldwide. We previously demonstrated that unlike EHV-1, EHV-4 is not a potent inducer of type-I IFN and does not suppress that IFN response, especially during late infection, when compared to EHV-1 infection in equine endothelial cells (EECs). Here, we investigated the impact of EHV-4 infection in EECs on type-I IFN signaling molecules at 3, 6, and 12 hpi. Findings from our study revealed that EHV-4 did not induce nor suppress TLR3 and TLR4 expression in EECs at all the studied time points. EHV-4 was able to induce variable amounts of IRF7 and IRF9 in EECs with no evidence of suppressive effect on these important transcription factors of IFN-α/β induction. Intriguingly, EHV-4 did interfere with the phosphorylation of STAT1/STAT2 at 3 hpi and 6 hpi, less so at 12 hpi. An active EHV-4 viral gene expression was required for the suppressive effect of EHV-4 on STAT1/STAT2 phosphorylation during early infection. One or more early viral genes of EHV-4 are involved in the suppression of STAT1/STAT2 phosphorylation observed during early time points in EHV-4-infected EECs. The inability of EHV-4 to significantly down-regulate key molecules of type-I IFN signaling may be related to the lower severity of pathogenesis when compared with EHV-1. Harnessing this knowledge may prove useful in controlling future outbreaks of the disease.
Collapse
Affiliation(s)
- Fatai S Oladunni
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA; Department of Veterinary Microbiology, University of Ilorin, Ilorin, Nigeria.
| | - Stephanie Reedy
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Udeni B R Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - David W Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Thomas M Chambers
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
23
|
HCMV-encoded US7 and US8 act as antagonists of innate immunity by distinctively targeting TLR-signaling pathways. Nat Commun 2019; 10:4670. [PMID: 31604943 PMCID: PMC6789044 DOI: 10.1038/s41467-019-12641-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 09/21/2019] [Indexed: 01/04/2023] Open
Abstract
The mechanisms by which many human cytomegalovirus (HCMV)-encoded proteins help the virus to evade immune surveillance remain poorly understood. In particular, it is unknown whether HCMV proteins arrest Toll-like receptor (TLR) signaling pathways required for antiviral defense. Here, we report that US7 and US8 as key suppressors that bind both TLR3 and TLR4, facilitating their destabilization by distinct mechanisms. US7 exploits the ER-associated degradation components Derlin-1 and Sec61, promoting ubiquitination of TLR3 and TLR4. US8 not only disrupts the TLR3-UNC93B1 association but also targets TLR4 to the lysosome, resulting in rapid degradation of the TLR. Accordingly, a mutant HCMV lacking the US7-US16 region has an impaired ability to hinder TLR3 and TLR4 activation, and the impairment is reversed by the introduction of US7 or US8. Our findings reveal an inhibitory effect of HCMV on TLR signaling, which contributes to persistent avoidance of the host antiviral response to achieve viral latency. Human cytomegalovirus (HCMV) has evolved several mechanisms to evade the host immune response. Here, Park et al. show that HCMV-encoded US7 and US8 proteins bind TLR3 and TLR4 and facilitate TLR degradation by distinct mechanisms, including ER-associated and lysosomal degradation.
Collapse
|
24
|
Amin I, Younas S, Afzal S, Shahid M, Idrees M. Herpes Simplex Virus Type 1 and Host Antiviral Immune Responses: An Update. Viral Immunol 2019; 32:424-429. [PMID: 31599707 DOI: 10.1089/vim.2019.0097] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infection activates a rapid stimulation of host innate immune responses and a delicate interplay between virus and host immune elements regulates the whole events. Although host immune elements play well in limiting the HSV-1 infection by interfering viral replication, they are still unable to remove the virus completely, because HSV-1 proteins are efficient enough to bypass the host antiviral immune responses and virus succeed to reactivate again from latency at opportune time. Type 1 interferon signaling pathway is the central point of innate immunity along with some of the activated neutrophils, monocytes, macrophages, and dendritic cells, and some natural killer cells play role, while the CD8+ T cells are crucial in adaptive immunity. In this review, the current knowledge of host and HSV-1 interaction has been described that how the host antiviral immune responses occur and what are the mechanisms of viral evasion adapted by virus to counteract with both arms of immunity.
Collapse
Affiliation(s)
- Iram Amin
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Saima Younas
- Molecular Diagnostic Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Shahid
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
25
|
He M, Cheng F, da Silva SR, Tan B, Sorel O, Gruffaz M, Li T, Gao SJ. Molecular Biology of KSHV in Relation to HIV/AIDS-Associated Oncogenesis. Cancer Treat Res 2019; 177:23-62. [PMID: 30523620 DOI: 10.1007/978-3-030-03502-0_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Discovered in 1994, Kaposi's sarcoma-associated herpesvirus (KSHV) has been associated with four human malignancies including Kaposi's sarcoma, primary effusion lymphoma, a subset of multicentric Castleman's disease, and KSHV inflammatory cytokine syndrome. These malignancies mostly occur in immunocompromised patients including patients with acquired immunodeficiency syndrome and often cause significant mortality because of the lack of effective therapies. Significant progresses have been made to understand the molecular basis of KSHV infection and KSHV-induced oncogenesis in the last two decades. This chapter provides an update on the recent advancements focusing on the molecular events of KSHV primary infection, the mechanisms regulating KSHV life cycle, innate and adaptive immunity, mechanism of KSHV-induced tumorigenesis and inflammation, and metabolic reprogramming in KSHV infection and KSHV-transformed cells.
Collapse
Affiliation(s)
- Meilan He
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Fan Cheng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Suzane Ramos da Silva
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Brandon Tan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Océane Sorel
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Marion Gruffaz
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Tingting Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
26
|
Li D, Swaminathan S. Human IFIT proteins inhibit lytic replication of KSHV: A new feed-forward loop in the innate immune system. PLoS Pathog 2019; 15:e1007609. [PMID: 30779786 PMCID: PMC6396945 DOI: 10.1371/journal.ppat.1007609] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 03/01/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is causally associated with Kaposi’s sarcoma, primary effusion lymphoma (PEL) and multicentric Castleman’s disease. The IFIT family of proteins inhibits replication of some viruses, but their effects on KSHV lytic replication was unknown. Here we show that KSHV lytic replication induces IFIT expression in epithelial cells. Depletion of IFIT1, IFIT2 and IFIT3 (IFITs) increased infectious KSHV virion production 25-32-fold compared to that in control cells. KSHV lytic gene expression was upregulated broadly with preferential activation of several genes involved in lytic viral replication. Intracellular KSHV genome numbers were also increased by IFIT knockdown, consistent with inhibition of KSHV DNA replication by IFITs. RNA seq demonstrated that IFIT depletion also led to downregulation of IFN β and several interferon-stimulated genes (ISGs), especially OAS proteins. OAS down-regulation led to decreased RNase L activity and slightly increased total RNA yield. IFIT immunoprecipitation also showed that IFIT1 bound to viral mRNAs and cellular capped mRNAs but not to uncapped RNA or trimethylated RNAs, suggesting that IFIT1 may also inhibit viral mRNA expression through direct binding. In summary, IFIT inhibits KSHV lytic replication through positively regulating the IFN β and OAS RNase L pathway to degrade RNA in addition to possibly directly targeting viral mRNAs. The innate immune response to infections is triggered by recognition of pathogens as foreign or non-self. Recognition of invading pathogens is carried out by various sensors or pattern recognition receptors (PRRs) that detect conserved features of pathogens including lipids, nucleic acids and proteins. PRR activation triggers pathways that ultimately lead to pathogen destruction, including the interferon response. Interferons, in turn induce many interferon-stimulated genes, which inhibit or destroy a wide variety of pathogens, including viruses. IFITs are a family of interferon induced proteins that are thought to recognize RNAs and have antiviral effects primarily on RNA viruses. Kaposi’s sarcoma-associated herpesvirus (KSHV), a DNA virus, is associated with Kaposi’s sarcoma and lymphoid malignancies. In this study we show that IFITs restrict replication of KSHV and does so not only by inhibiting KSHV mRNA abundance but also by enhancing other effectors of the interferon response. This study reveals that the innate immune response can control not only invading viruses but ones that reactivate from latency, that IFITs can inhibit herpesvirus replication and that IFITs may amplify the innate immune response by a feed-forward mechanism.
Collapse
Affiliation(s)
- Dajiang Li
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sankar Swaminathan
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
27
|
Abstract
Kaposi sarcoma (KS) gained public attention as an AIDS-defining malignancy; its appearance on the skin was a highly stigmatizing sign of HIV infection during the height of the AIDS epidemic. The widespread introduction of effective antiretrovirals to control HIV by restoring immunocompetence reduced the prevalence of AIDS-related KS, although KS does occur in individuals with well-controlled HIV infection. KS also presents in individuals without HIV infection in older men (classic KS), in sub-Saharan Africa (endemic KS) and in transplant recipients (iatrogenic KS). The aetiologic agent of KS is KS herpesvirus (KSHV; also known as human herpesvirus-8), and viral proteins can induce KS-associated cellular changes that enable the virus to evade the host immune system and allow the infected cell to survive and proliferate despite viral infection. Currently, most cases of KS occur in sub-Saharan Africa, where KSHV infection is prevalent owing to transmission by saliva in childhood compounded by the ongoing AIDS epidemic. Treatment for early AIDS-related KS in previously untreated patients should start with the control of HIV with antiretrovirals, which frequently results in KS regression. In advanced-stage KS, chemotherapy with pegylated liposomal doxorubicin or paclitaxel is the most common treatment, although it is seldom curative. In sub-Saharan Africa, KS continues to have a poor prognosis. Newer treatments for KS based on the mechanisms of its pathogenesis are being explored.
Collapse
Affiliation(s)
- Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Blossom Damania
- Department of Microbiology and Immunology, Lineberger Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Jeffrey Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Mark Bower
- National Centre for HIV Malignancy, Chelsea & Westminster Hospital, London, UK
| | - Denise Whitby
- Leidos Biomedical Research, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
28
|
Lu X, Wan X, Li X, Pan K, Maimaitiaili W, Zhang Y. Expression of TLR4 gene is downregulated in acquired immune deficiency syndrome-associated Kaposi's sarcoma. Exp Ther Med 2018; 17:27-34. [PMID: 30651761 PMCID: PMC6307526 DOI: 10.3892/etm.2018.6941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/12/2017] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the expression of Toll-like receptor 4 (TLR4) and proteins involved in its associated signaling pathways in patients with classic Kaposi's sarcoma (KS) and acquired immune deficiency syndrome (AIDS)-associated KS (AIDS-KS) in Xinjiang Autonomous Region of China. A total of 35 patients with KS were enrolled in the present study between May 2011 and July 2013, including 26 cases of AIDS-KS and 9 cases of classic KS. Another 10 healthy subjects of the Uygur ethnic group were included in the normal control group. KS tissues were subjected to hematoxylin and eosin staining and immunohistochemical staining. To measure the expression of mRNA, reverse-transcription quantitative polymerase chain reaction was performed. To determine protein expression, western blot analysis was employed. AIDS-KS was mainly distributed in the face and limbs, while classic KS was mainly distributed in the limbs. The histopathological characteristics of AIDS-KS and classic KS tissues were different from those of normal tissues. TLR4 was mainly distributed in the dermis of KS tissues. The mRNA expression levels of TLR4 were reduced in classic KS and AIDS-KS. The protein expression levels of RAS, RAF, nuclear factor (NF)-κB P65 and P50 as well as inhibitor of NF-κB-α of the TLR4 signaling pathway in AIDS-KS and KS tissues were higher than those in normal tissues. In conclusion, the expression of TLR4 gene in KS tissues was decreased, while the expression of proteins of the TLR4 signaling pathway was upregulated in KS. Downregulation of TLR4 may be associated with the occurrence and development of AIDS-KS, while its restoration may represent a novel therapeutic approach for AIDS-KS.
Collapse
Affiliation(s)
- Xiaobo Lu
- Department of Infectious Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Xuefeng Wan
- Department of Dermatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Xiaoran Li
- Department of Infectious Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Kejun Pan
- Department of Infectious Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Wubuli Maimaitiaili
- Department of Infectious Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yuexin Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
29
|
Wei X, Lan K. Activation and counteraction of antiviral innate immunity by KSHV: an Update. Sci Bull (Beijing) 2018; 63:1223-1234. [PMID: 30906617 PMCID: PMC6426151 DOI: 10.1016/j.scib.2018.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The innate immune responses triggering production of type I interferons and inflammatory cytokines constitute a nonspecific innate resistance that eliminates invading pathogens including viruses. The activation of innate immune signaling through pattern recognition receptors (PRRs) is by sensing pathogen-associated molecular patterns derived from viruses. According to their distribution within cells, PRRs are classified into three types of receptors: membrane, cytoplasmic, and nuclear. Kaposi's sarcoma-associated herpesvirus (KSHV), a large DNA virus, replicates in the nucleus. Its genome is protected by capsid proteins during transport in the cytosol. Multiple PRRs are involved in KSHV recognition. To successfully establish latent infection, KSHV has evolved to manipulate different aspects of the host antiviral innate immune responses. This review presents recent advances in our understanding about the activation of the innate immune signaling in response to infection of KSHV. It also reviews the evasion strategies used by KSHV to subvert host innate immune detection for establishing a persistent infection.
Collapse
Affiliation(s)
| | - Ke Lan
- Corresponding author. (K. Lan)
| |
Collapse
|
30
|
Bussey KA, Brinkmann MM. Strategies for immune evasion by human tumor viruses. Curr Opin Virol 2018; 32:30-39. [PMID: 30241043 DOI: 10.1016/j.coviro.2018.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022]
Abstract
Immune evasion is a hallmark of viral persistence. For the seven human tumor viruses to establish lifelong infection in their hosts, they must successfully control the host response to them. Viral inhibition of immune responses occurs at many levels. While some viruses directly target the pattern recognition receptors (PRR) of the innate immune system, they may also antagonize downstream effectors of PRR signaling cascades or activation of transcription, which would otherwise induce a type I interferon (IFN) and/or pro-inflammatory cytokine response. Secretion of IFN activates the type I interferon receptor (IFNAR) signaling pathway, which is also prone to viral inhibition. To evade the adaptive host response, viruses also target various mechanisms including antigen processing and presentation.
Collapse
Affiliation(s)
- Kendra A Bussey
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany; Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Melanie M Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany; Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
31
|
Hopcraft SE, Damania B. Tumour viruses and innate immunity. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0267. [PMID: 28893934 DOI: 10.1098/rstb.2016.0267] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 12/13/2022] Open
Abstract
Host cells sense viral infection through pattern recognition receptors (PRRs), which detect pathogen-associated molecular patterns (PAMPs) and stimulate an innate immune response. PRRs are localized to several different cellular compartments and are stimulated by viral proteins and nucleic acids. PRR activation initiates signal transduction events that ultimately result in an inflammatory response. Human tumour viruses, which include Kaposi's sarcoma-associated herpesvirus, Epstein-Barr virus, human papillomavirus, hepatitis C virus, hepatitis B virus, human T-cell lymphotropic virus type 1 and Merkel cell polyomavirus, are detected by several different PRRs. These viruses engage in a variety of mechanisms to evade the innate immune response, including downregulating PRRs, inhibiting PRR signalling, and disrupting the activation of transcription factors critical for mediating the inflammatory response, among others. This review will describe tumour virus PAMPs and the PRRs responsible for detecting viral infection, PRR signalling pathways, and the mechanisms by which tumour viruses evade the host innate immune system.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- Sharon E Hopcraft
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Blossom Damania
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
32
|
Mariggiò G, Koch S, Schulz TF. Kaposi sarcoma herpesvirus pathogenesis. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0275. [PMID: 28893942 PMCID: PMC5597742 DOI: 10.1098/rstb.2016.0275] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/15/2022] Open
Abstract
Kaposi sarcoma herpesvirus (KSHV), taxonomical name human gammaherpesvirus 8, is a phylogenetically old human virus that co-evolved with human populations, but is now only common (seroprevalence greater than 10%) in sub-Saharan Africa, around the Mediterranean Sea, parts of South America and in a few ethnic communities. KSHV causes three human malignancies, Kaposi sarcoma, primary effusion lymphoma, and many cases of the plasmablastic form of multicentric Castleman's disease (MCD) as well as occasional cases of plasmablastic lymphoma arising from MCD; it has also been linked to rare cases of bone marrow failure and hepatitis. As it has colonized humans physiologically for many thousand years, cofactors are needed to allow it to unfold its pathogenic potential. In most cases, these include immune defects of genetic, iatrogenic or infectious origin, and inflammation appears to play an important role in disease development. Our much improved understanding of its life cycle and its role in pathogenesis should now allow us to develop new therapeutic strategies directed against key viral proteins or intracellular pathways that are crucial for virus replication or persistence. Likewise, its limited (for a herpesvirus) distribution and transmission should offer an opportunity for the development and use of a vaccine to prevent transmission. This article is part of the themed issue ‘Human oncogenic viruses’.
Collapse
Affiliation(s)
- Giuseppe Mariggiò
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| | - Sandra Koch
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany .,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| |
Collapse
|
33
|
Role of Pattern Recognition Receptors in KSHV Infection. Cancers (Basel) 2018; 10:cancers10030085. [PMID: 29558453 PMCID: PMC5876660 DOI: 10.3390/cancers10030085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus or Human herpesvirus-8 (KSHV/HHV-8), an oncogenic human herpesvirus and the leading cause of cancer in HIV-infected individuals, is a major public health concern with recurring reports of epidemics on a global level. The early detection of KSHV virus and subsequent activation of the antiviral immune response by the host’s immune system are crucial to prevent KSHV infection. The host’s immune system is an evolutionary conserved system that provides the most important line of defense against invading microbial pathogens, including viruses. Viruses are initially detected by the cells of the host innate immune system, which evoke concerted antiviral responses via the secretion of interferons (IFNs) and inflammatory cytokines/chemokines for elimination of the invaders. Type I IFN and cytokine gene expression are regulated by multiple intracellular signaling pathways that are activated by germline-encoded host sensors, i.e., pattern recognition receptors (PRRs) that recognize a conserved set of ligands, known as ‘pathogen-associated molecular patterns (PAMPs)’. On the contrary, persistent and dysregulated signaling of PRRs promotes numerous tumor-causing inflammatory events in various human cancers. Being an integral component of the mammalian innate immune response and due to their constitutive activation in tumor cells, targeting PRRs appears to be an effective strategy for tumor prevention and/or treatment. Cellular PRRs are known to respond to KSHV infection, and KSHV has been shown to be armed with an array of strategies to selectively inhibit cellular PRR-based immune sensing to its benefit. In particular, KSHV has acquired specific immunomodulatory genes to effectively subvert PRR responses during the early stages of primary infection, lytic reactivation and latency, for a successful establishment of a life-long persistent infection. The current review aims to comprehensively summarize the latest advances in our knowledge of role of PRRs in KSHV infections.
Collapse
|
34
|
Ma D, Zhang J, Zhang Y, Zhang X, Han X, Song T, Zhang Y, Chu L. Inhibition of myocardial hypertrophy by magnesium isoglycyrrhizinate through the TLR4/NF-κB signaling pathway in mice. Int Immunopharmacol 2017; 55:237-244. [PMID: 29274625 DOI: 10.1016/j.intimp.2017.12.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 11/25/2022]
Abstract
Magnesium isoglycyrrhizinate (MgIG) is a magnesium salt of the 18-α glycyrrhizic acid stereoisomer that has exhibited hepato-protective effects and has anti-inflammatory, antioxidant, and antiviral activities. Here, we have investigated the effects and potential mechanisms of action of MgIG, with respect to myocardial fibrosis induced by isoproterenol (ISO) in mice. Mice were administered MgIG for 14days, with concurrent ISO dosing, and were sacrificed two weeks later. Lactate dehydrogenase (LDH) and creatine kinase (CK) concentrations were measured in the blood. Pathological changes in the myocardium were observed via light microscopy. In addition, the expression of the Bax and Bcl-2 genes, and the basic fibroblast growth factor (bFGF) protein were measured via an immunohistochemical method. The RNA expression of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), c-fos, and c-jun mRNA were quantified by reverse transcription-polymerase chain reaction (RT-PCR) in the myocardial tissue. The protein expression of toll-like receptor (TLR) 4, and nuclear factor kappa B (NF-κB) (p65) were measured using Western blot assays. Compared with the control group, the ISO group showed significant increases in bFGF, Bax, Bcl-2, TLR4, and NF-κB (p65) expressions, as well as increased serum levels of LDH and CK. MgIG had a protective effect on ISO-induced myocardial fibrosis, which might be ascribed, at least in part, to the inhibition of the TLR4/NF-κB (p65) signaling pathway.
Collapse
Affiliation(s)
- Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China; Collaborative Innovation Center of Integrative Reproductive Disorders, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China; Hebei key laboratory of integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei, China
| | - Jianping Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Yuanyuan Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China; Hebei key laboratory of integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei, China
| | - Xuan Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China; Hebei key laboratory of integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei, China
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Tao Song
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China; Hebei key laboratory of integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei, China; School of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Ying Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China; Hebei key laboratory of integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei, China; School of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China.
| |
Collapse
|
35
|
Botto S, Gustin JK, Moses AV. The Heme Metabolite Carbon Monoxide Facilitates KSHV Infection by Inhibiting TLR4 Signaling in Endothelial Cells. Front Microbiol 2017; 8:568. [PMID: 28421060 PMCID: PMC5376558 DOI: 10.3389/fmicb.2017.00568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/20/2017] [Indexed: 12/16/2022] Open
Abstract
Kaposi sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi sarcoma (KS) and certain rare B cell lymphoproliferative disorders. KSHV infection of endothelial cells (EC) in vitro increases expression of the inducible host-encoded enzyme heme oxygenase-1 (HO-1), which is also strongly expressed in KS tumors. HO-1 catalyzes the rate-limiting step in the conversion of heme into iron, biliverdin and the gasotransmitter carbon monoxide (CO), all of which share anti-apoptotic, anti-inflammatory, pro-survival, and tumorigenic activities. Our previous work has shown that HO-1 expression in KSHV-infected EC is characterized by a rapid yet transient induction at early times post-infection, followed by a sustained upregulation co-incident with establishment of viral latency. These two phases of expression are independently regulated, suggesting distinct roles for HO-1 in the virus life cycle. Here, we investigated the role of HO-1 during acute infection, prior to the onset of viral gene expression. The early infection phase involves a series of events that culminate in delivery of the viral genome to the nucleus. Primary infection also leads to activation of host innate immune effectors, including the pattern recognition receptor TLR4, to induce an antiviral response. It has been shown that TLR4-deficient EC are more susceptible to KSHV infection than wild-type controls, suggesting an important inhibitory role for TLR4 in the KSHV life cycle. TLR4 signaling is in turn subject to regulation by several virus-encoded immune evasion factors. In this report we identify HO-1 as a host protein co-opted by KSHV as part of a rapid immune evasion strategy. Specifically, we show that early HO-1 induction by KSHV results in increased levels of endogenous CO, which functions as a TLR4 signaling inhibitor. In addition, we show that CO-mediated inhibition of TLR4 signaling leads to reduced expression of TLR4-induced antiviral genes, thus dampening the host antiviral response and facilitating KSHV infection. Conversely, inhibition of HO-1 activity decreases intracellular CO, enhances the host antiviral response and inhibits KSHV infection. In conclusion, this study identifies HO-1 as a novel innate immune evasion factor in the context of KSHV infection and supports HO-1 inhibition as a viable therapeutic strategy for KS.
Collapse
Affiliation(s)
- Sara Botto
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, PortlandOR, USA
| | - Jean K Gustin
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, PortlandOR, USA
| | - Ashlee V Moses
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, PortlandOR, USA
| |
Collapse
|
36
|
Lee HR, Choi UY, Hwang SW, Kim S, Jung JU. Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies. Mol Cells 2016; 39:777-782. [PMID: 27871174 PMCID: PMC5125932 DOI: 10.14348/molcells.2016.0232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022] Open
Abstract
The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.
Collapse
Affiliation(s)
- Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019,
Korea
| | - Un Yung Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Harlyne J. Norris Cancer Research Tower, 1450 Biggy Street, Los Angeles, California 90033,
USA
| | - Sung-Woo Hwang
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019,
Korea
| | - Stephanie Kim
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Harlyne J. Norris Cancer Research Tower, 1450 Biggy Street, Los Angeles, California 90033,
USA
| | - Jae U. Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Harlyne J. Norris Cancer Research Tower, 1450 Biggy Street, Los Angeles, California 90033,
USA
| |
Collapse
|
37
|
Dittmer DP, Damania B. Kaposi sarcoma-associated herpesvirus: immunobiology, oncogenesis, and therapy. J Clin Invest 2016; 126:3165-75. [PMID: 27584730 DOI: 10.1172/jci84418] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8, is the etiologic agent underlying Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. This human gammaherpesvirus was discovered in 1994 by Drs. Yuan Chang and Patrick Moore. Today, there are over five thousand publications on KSHV and its associated malignancies. In this article, we review recent and ongoing developments in the KSHV field, including molecular mechanisms of KSHV pathogenesis, clinical aspects of KSHV-associated diseases, and current treatments for cancers associated with this virus.
Collapse
|
38
|
Matteoli B, Broccolo F, Oggioni M, Scaccino A, Formica F, Ciccarese G, Drago F, Fusetti L, Esposito S, Ceccherini-Nelli L. Modulation of gene expression in Kaposi’s sarcoma-associated herpesvirus-infected lymphoid and epithelial cells. Future Virol 2016. [DOI: 10.2217/fvl-2016-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To evaluate the gene expression changes that occur soon after the active infection of two susceptible cell types with human herpesvirus 8 (HHV-8). Materials & methods: The expression profile of 282 human genes involved in the inflammatory process was investigated in HHV-8 A1 or C3 subtype-infected and mock-infected human epithelial cells and lymphoid cells. Results: The HHV-8-induced transcriptional profiles in the epithelial and lymphoid cells were very different. A robust increase in the expression was found in genes belonging to different categories, especially the categories of inflammation response and signal transduction. Conclusion: These results indicate that during early infection, HHV-8 induces a variety of cell type-specific processes, thus providing infection signatures useful as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Barbara Matteoli
- Department of Experimental Pathology, Retrovirus Centre of the Virology Section, B.M.I.E, University of Pisa, Pisa, Italy
| | - Francesco Broccolo
- Laboratory of Molecular Microbiology and Virology, Department of Health Sciences, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Massimo Oggioni
- Laboratory of Molecular Microbiology and Virology, Department of Health Sciences, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Antonio Scaccino
- Department of Experimental Pathology, Retrovirus Centre of the Virology Section, B.M.I.E, University of Pisa, Pisa, Italy
| | - Francesco Formica
- Cardiac Surgery Unit, San Gerardo Hospital, Department of Medicine and Surgery, School of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Giulia Ciccarese
- DISSAL, Department of Dermatology, IRCCS A.O.U. San Martino-IST, Largo R. Benzi 10, 16132 Genoa, Italy
| | - Francesco Drago
- DISSAL, Department of Dermatology, IRCCS A.O.U. San Martino-IST, Largo R. Benzi 10, 16132 Genoa, Italy
| | - Lisa Fusetti
- Department of Experimental Pathology, Retrovirus Centre of the Virology Section, B.M.I.E, University of Pisa, Pisa, Italy
| | - Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiologyand Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Ceccherini-Nelli
- Department of Experimental Pathology, Retrovirus Centre of the Virology Section, B.M.I.E, University of Pisa, Pisa, Italy
| |
Collapse
|
39
|
Campadelli-Fiume G, Collins-McMillen D, Gianni T, Yurochko AD. Integrins as Herpesvirus Receptors and Mediators of the Host Signalosome. Annu Rev Virol 2016; 3:215-236. [PMID: 27501260 DOI: 10.1146/annurev-virology-110615-035618] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The repertoire of herpesvirus receptors consists of nonintegrin and integrin molecules. Integrins interact with the conserved glycoproteins gH/gL or gB. This interaction is a conserved biology across the Herpesviridae family, likely directed to promote virus entry and endocytosis. Herpesviruses exploit this interaction to execute a range of critical functions that include (a) relocation of nonintegrin receptors (e.g., herpes simplex virus nectin1 and Kaposi's sarcoma-associated herpesvirus EphA2), or association with nonintegrin receptors (i.e., human cytomegalovirus EGFR), to dictate species-specific entry pathways; (b) activation of multiple signaling pathways (e.g., Ca2+ release, c-Src, FAK, MAPK, and PI3K); and (c) association with Rho GTPases, tyrosine kinase receptors, Toll-like receptors, which result in cytoskeletal remodeling, differential cell type targeting, and innate responses. In turn, integrins can be modulated by viral proteins (e.g., Epstein-Barr virus LMPs) to favor spread of transformed cells. We propose that herpesviruses evolved a multipartite entry system to allow interaction with multiple receptors, including integrins, required for their sophisticated life cycle.
Collapse
Affiliation(s)
- Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy;
| | - Donna Collins-McMillen
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130;
| | - Tatiana Gianni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy;
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130; .,Feist-Weiller Cancer Center and Center for Excellence in Arthritis and Rheumatology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
| |
Collapse
|
40
|
Warner MJ, Bridge KS, Hewitson JP, Hodgkinson MR, Heyam A, Massa BC, Haslam JC, Chatzifrangkeskou M, Evans GJO, Plevin MJ, Sharp TV, Lagos D. S6K2-mediated regulation of TRBP as a determinant of miRNA expression in human primary lymphatic endothelial cells. Nucleic Acids Res 2016; 44:9942-9955. [PMID: 27407113 PMCID: PMC5175334 DOI: 10.1093/nar/gkw631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/16/2016] [Accepted: 07/02/2016] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that silence mRNAs. They are generated following transcription and cleavage by the DROSHA/DGCR8 and DICER/TRBP/PACT complexes. Although it is known that components of the miRNA biogenesis machinery can be phosphorylated, it remains poorly understood how these events become engaged during physiological cellular activation. We demonstrate that S6 kinases can phosphorylate the extended C-terminal domain of TRBP and interact with TRBP in situ in primary cells. TRBP serines 283/286 are essential for S6K-mediated TRBP phosphorylation, optimal expression of TRBP, and the S6K-TRBP interaction in human primary cells. We demonstrate the functional relevance of this interaction in primary human dermal lymphatic endothelial cells (HDLECs). Angiopoietin-1 (ANG1) can augment miRNA biogenesis in HDLECs through enhancing TRBP phosphorylation and expression in an S6K2-dependent manner. We propose that the S6K2/TRBP node controls miRNA biogenesis in HDLECs and provides a molecular link between the mTOR pathway and the miRNA biogenesis machinery.
Collapse
Affiliation(s)
- Matthew J Warner
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Katherine S Bridge
- Centre of Molecular Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University London, London, EC1M 6BQ, UK
| | - James P Hewitson
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, Wentworth Way, York, YO10 5DD, UK
| | | | - Alex Heyam
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Bailey C Massa
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Jessica C Haslam
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Maria Chatzifrangkeskou
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Gareth J O Evans
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Michael J Plevin
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Tyson V Sharp
- Centre of Molecular Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University London, London, EC1M 6BQ, UK
| | - Dimitris Lagos
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|
41
|
Lee HR, Amatya R, Jung JU. Multi-step regulation of innate immune signaling by Kaposi's sarcoma-associated herpesvirus. Virus Res 2015; 209:39-44. [PMID: 25796211 PMCID: PMC4575611 DOI: 10.1016/j.virusres.2015.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/15/2022]
Abstract
The innate immune system provides an immediate and relatively non-specific response to infection with the aim of eliminating the pathogen before an infection can be fully established. Activation of innate immune response is achieved by production of pro-inflammatory cytokines and type I interferon (IFN). The IFN response in particular is one of the primary defenses utilized by the host innate immune system to control pathogen infection, like virus infection. Hence, viruses have learned to manipulate host immune control mechanisms to facilitate their propagation. Due to this, much work has been dedicated to the elucidation of the Kaposi's sarcoma-associated herpesvirus (KSHV)-mediated immune evasion tactics that antagonize a host's immune system. This review presents our current knowledge of the immune evasion strategies employed by KSHV at distinct stages of its life cycle to control a host's immune system with a focus on interferon signaling.
Collapse
Affiliation(s)
- Hye-Ra Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Harlyne J. Norris Cancer Research Tower, 1450 Biggy Street, Los Angeles, CA 90033, USA.
| | - Rina Amatya
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Harlyne J. Norris Cancer Research Tower, 1450 Biggy Street, Los Angeles, CA 90033, USA
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Harlyne J. Norris Cancer Research Tower, 1450 Biggy Street, Los Angeles, CA 90033, USA; Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, HMR Rm 401, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| |
Collapse
|
42
|
Leonov G, Shah K, Yee D, Timmis J, Sharp TV, Lagos D. Suppression of AGO2 by miR-132 as a determinant of miRNA-mediated silencing in human primary endothelial cells. Int J Biochem Cell Biol 2015; 69:75-84. [PMID: 26475020 PMCID: PMC4679077 DOI: 10.1016/j.biocel.2015.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/08/2015] [Accepted: 10/07/2015] [Indexed: 01/07/2023]
Abstract
The abundance of miR-132 ranges from constitutively high in the brain where it is necessary for neuronal development and function, to inducible expression in haematopoietic and endothelial cells where it controls angiogenesis and immune activation. We show that expression of AGO2, a protein central to miRNA-mediated gene silencing and miRNA biogenesis, is negatively regulated by miR-132. Using HeLa cells, we demonstrate that miR-132 interacts with the AGO2 mRNA 3'UTR and suppresses AGO2 expression and AGO2-dependent small RNA-mediated silencing. Similarly, miR-132 over-expression leads to AGO2 suppression in primary human dermal lymphatic endothelial cells (HDLECs). During phorbol myristate acetate (PMA)-activation of HDLECs, miR-132 is induced in a CREB-dependent manner and inhibition of miR-132 results in increased AGO2 expression. In agreement with the role of AGO2 in maintenance of miRNA expression, AGO2 suppression by miR-132 affects the steady state levels of miR-221 and miR-146a, two miRNAs involved in angiogenesis and inflammation, respectively. Our data demonstrate that the miRNA-silencing machinery is subject to autoregulation during primary cell activation through direct suppression of AGO2 by miR-132.
Collapse
Affiliation(s)
- German Leonov
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School University of York, Wentworth Way, York YO10 5DD, UK
| | - Kunal Shah
- Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University London, London EC1M 6BQ, UK
| | - Daniel Yee
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School University of York, Wentworth Way, York YO10 5DD, UK
| | - Jon Timmis
- Department of Electronics, Wentworth Way, York YO10 5DD, UK
| | - Tyson V Sharp
- Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University London, London EC1M 6BQ, UK
| | - Dimitris Lagos
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
43
|
Kaposi's Sarcoma-Associated Herpesvirus Reduces Cellular Myeloid Differentiation Primary-Response Gene 88 (MyD88) Expression via Modulation of Its RNA. J Virol 2015; 90:180-8. [PMID: 26468534 DOI: 10.1128/jvi.02342-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/02/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is a human gammaherpesvirus associated with several human malignancies. The replication and transcription activator (RTA) is necessary and sufficient for the switch from KSHV latency to lytic replication. Interleukin 1 (IL-1) is a major mediator for inflammation and plays an important role in both innate and adaptive immunity. Myeloid differentiation primary response gene 88 (MyD88) is an essential adaptor molecule for IL-1 as well as most Toll-like receptor signaling. In this study, we identified a novel mechanism by which KSHV interferes with host inflammation and immunity. KSHV RTA specifically reduces the steady-state protein levels of MyD88, and physiological levels of MyD88 are downregulated during KSHV lytic replication when RTA is expressed. The N-terminal region of RTA is required for the reduction of MyD88. Additional studies demonstrated that RTA targets MyD88 expression at the RNA level, inhibits RNA synthesis of MyD88, and may bind MyD88 RNA. Finally, RTA inhibits IL-1-mediated activation of NF-κB. Because IL-1 is abundant in the KS microenvironment and inhibits KSHV replication, this work may expand our understanding of how KSHV evades host inflammation and immunity for its survival in vivo. IMPORTANCE MyD88 is an important molecule for IL-1-mediated inflammation and Toll-like receptor (TLR) signaling. This work shows that KSHV inhibits MyD88 expression through a novel mechanism. KSHV RTA may bind to MyD88 RNA, suppresses RNA synthesis of MyD88, and inhibits IL-1-mediated signaling. This work may expand our understanding of how KSHV evades host inflammation and immunity.
Collapse
|
44
|
Schulz TF, Cesarman E. Kaposi Sarcoma-associated Herpesvirus: mechanisms of oncogenesis. Curr Opin Virol 2015; 14:116-28. [PMID: 26431609 DOI: 10.1016/j.coviro.2015.08.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/30/2015] [Indexed: 10/23/2022]
Abstract
Kaposi Sarcoma-associated Herpesvirus (KSHV, HHV8) causes three human malignancies, Kaposi Sarcoma (KS), an endothelial tumor, as well as Primary Effusion Lymphoma (PEL) and the plasma cell variant of Multicentric Castleman's Disease (MCD), two B-cell lymphoproliferative diseases. All three cancers occur primarily in the context of immune deficiency and/or HIV infection, but their pathogenesis differs. KS most likely results from the combined effects of an endotheliotropic virus with angiogenic properties and inflammatory stimuli and thus represents an interesting example of a cancer that arises in an inflammatory context. Viral and cellular angiogenic and inflammatory factors also play an important role in the pathogenesis of MCD. In contrast, PEL represents an autonomously growing malignancy that is, however, still dependent on the continuous presence of KSHV and the action of several KSHV proteins.
Collapse
Affiliation(s)
- Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany; German Centre of Infection Research, Hannover-Braunschweig Site, Hannover, Germany.
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, USA.
| |
Collapse
|
45
|
de Munnik SM, Kooistra AJ, van Offenbeek J, Nijmeijer S, de Graaf C, Smit MJ, Leurs R, Vischer HF. The Viral G Protein-Coupled Receptor ORF74 Hijacks β-Arrestins for Endocytic Trafficking in Response to Human Chemokines. PLoS One 2015; 10:e0124486. [PMID: 25894435 PMCID: PMC4403821 DOI: 10.1371/journal.pone.0124486] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/03/2015] [Indexed: 12/21/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus-infected cells express the virally encoded G protein-coupled receptor ORF74. Although ORF74 is constitutively active, it binds human CXC chemokines that modulate this basal activity. ORF74-induced signaling has been demonstrated to underlie the development of the angioproliferative tumor Kaposi’s sarcoma. Whereas G protein-dependent signaling of ORF74 has been the subject of several studies, the interaction of this viral GPCR with β-arrestins has hitherto not been investigated. Bioluminescence resonance energy transfer experiments demonstrate that ORF74 recruits β-arrestins and subsequently internalizes in response to human CXCL1 and CXCL8, but not CXCL10. Internalized ORF74 traffics via early endosomes to recycling and late endosomes. Site-directed mutagenesis and homology modeling identified four serine and threonine residues at the distal end of the intracellular carboxyl-terminal of ORF74 that are required for β-arrestin recruitment and subsequent endocytic trafficking. Hijacking of the human endocytic trafficking machinery is a previously unrecognized action of ORF74.
Collapse
Affiliation(s)
- Sabrina M. de Munnik
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University Amsterdam, Amsterdam, The Netherlands
| | - Albert J. Kooistra
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University Amsterdam, Amsterdam, The Netherlands
| | - Jody van Offenbeek
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University Amsterdam, Amsterdam, The Netherlands
| | - Saskia Nijmeijer
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University Amsterdam, Amsterdam, The Netherlands
| | - Chris de Graaf
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University Amsterdam, Amsterdam, The Netherlands
| | - Martine J. Smit
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University Amsterdam, Amsterdam, The Netherlands
| | - Rob Leurs
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University Amsterdam, Amsterdam, The Netherlands
| | - Henry F. Vischer
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
46
|
Kumari P, Narayanan S, Kumar H. Herpesviruses: interfering innate immunity by targeting viral sensing and interferon pathways. Rev Med Virol 2015; 25:187-201. [DOI: 10.1002/rmv.1836] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Puja Kumari
- Laboratory of Immunology, Department of Biological Sciences; Indian Institute of Science Education and Research (IISER); Bhopal India
| | - Sathish Narayanan
- Laboratory of Virology, Department of Biological Sciences; Indian Institute of Science Education and Research (IISER); Bhopal India
| | - Himanshu Kumar
- Laboratory of Immunology, Department of Biological Sciences; Indian Institute of Science Education and Research (IISER); Bhopal India
- Laboratory of Host Defense; WPI Immunology Frontier Research Centre, Osaka University; Osaka Japan
| |
Collapse
|
47
|
de Munnik SM, Smit MJ, Leurs R, Vischer HF. Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors. Front Pharmacol 2015; 6:40. [PMID: 25805993 PMCID: PMC4353375 DOI: 10.3389/fphar.2015.00040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/12/2015] [Indexed: 12/22/2022] Open
Abstract
Human herpesviruses (HHVs) are widespread infectious pathogens that have been associated with proliferative and inflammatory diseases. During viral evolution, HHVs have pirated genes encoding viral G protein-coupled receptors (vGPCRs), which are expressed on infected host cells. These vGPCRs show highest homology to human chemokine receptors, which play a key role in the immune system. Importantly, vGPCRs have acquired unique properties such as constitutive activity and the ability to bind a broad range of human chemokines. This allows vGPCRs to hijack human proteins and modulate cellular signaling for the benefit of the virus, ultimately resulting in immune evasion and viral dissemination to establish a widespread and lifelong infection. Knowledge on the mechanisms by which herpesviruses reprogram cellular signaling might provide insight in the contribution of vGPCRs to viral survival and herpesvirus-associated pathologies.
Collapse
Affiliation(s)
- Sabrina M de Munnik
- Amsterdam Institute for Molecules Medicines and Systems - Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules Medicines and Systems - Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecules Medicines and Systems - Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam Netherlands
| | - Henry F Vischer
- Amsterdam Institute for Molecules Medicines and Systems - Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam Netherlands
| |
Collapse
|
48
|
|
49
|
Kaposi's sarcoma-associated herpesvirus-encoded replication and transcription activator impairs innate immunity via ubiquitin-mediated degradation of myeloid differentiation factor 88. J Virol 2014; 89:415-27. [PMID: 25320320 DOI: 10.1128/jvi.02591-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus with latent and lytic reactivation cycles. The mechanism by which KSHV evades the innate immune system to establish latency has not yet been precisely elucidated. Toll-like receptors (TLRs) are the first line of defense against viral infections. Myeloid differentiation factor 88 (MyD88) is a key adaptor that interacts with all TLRs except TLR3 to produce inflammatory factors and type I interferons (IFNs), which are central components of innate immunity against microbial infection. Here, we found that KSHV replication and transcription activator (RTA), which is an immediate-early master switch protein of viral cycles, downregulates MyD88 expression at the protein level by degrading MyD88 through the ubiquitin (Ub)-proteasome pathway. We identified the interaction between RTA and MyD88 in vitro and in vivo and demonstrated that RTA functions as an E3 ligase to ubiquitinate MyD88. MyD88 also was repressed at the early stage of de novo infection as well as in lytic reactivation. We also found that RTA inhibited lipopolysaccharide (LPS)-triggered activation of the TLR4 pathway by reducing IFN production and NF-κB activity. Finally, we showed that MyD88 promoted the production of IFNs and inhibited KSHV LANA-1 gene transcription. Taken together, our results suggest that KSHV RTA facilitates the virus to evade innate immunity through the degradation of MyD88, which might be critical for viral latency control. IMPORTANCE MyD88 is an adaptor for all TLRs other than TLR3, and it mediates inflammatory factors and IFN production. Our study demonstrated that the KSHV RTA protein functions as an E3 ligase to degrade MyD88 through the ubiquitin-proteasome pathway and block the transmission of TLRs signals. Moreover, we found that KSHV inhibited MyD88 expression during the early stage of de novo infection as well as in lytic reactivation. These results provide a potential mechanism for the virus to evade innate immunity.
Collapse
|
50
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8) is the etiologic agent of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. These cancers often occur in the context of immunosuppression, which has made KSHV-associated malignancies an increasing global health concern with the persistence of the AIDS epidemic. KSHV has also been linked to several acute inflammatory diseases. KSHV exists between a lytic and latent lifecycle, which allows the virus to transition between active replication and quiescent infection. KSHV encodes a number of proteins and small RNAs that are thought to inadvertently transform host cells while performing their functions of helping the virus persist in the infected host. KSHV also has an arsenal of components that aid the virus in evading the host immune response, which help the virus establish a successful lifelong infection. In this comprehensive chapter, we will discuss the diseases associated with KSHV infection, the biology of latent and lytic infection, and individual proteins and microRNAs that are known to contribute to host cell transformation and immune evasion.
Collapse
Affiliation(s)
- Louise Giffin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|