1
|
Bavafa A, Izadpanahi M, Hosseini E, Hajinejad M, Abedi M, Forouzanfar F, Sahab-Negah S. Exosome: an overview on enhanced biogenesis by small molecules. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6473-6508. [PMID: 39862264 DOI: 10.1007/s00210-024-03762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
Exosomes are extracellular vesicles that received attention for their potential use in the treatment of various injuries. They communicate intercellularly by transferring genetic and bioactive molecules from parent cells. Although exosomes hold immense promise for treating neurodegenerative and oncological diseases, their actual clinical use is very limited because of their biogenesis and secretion. Recent studies have shown that small molecules can significantly enhance exosome biogenesis, thereby remarkably improving yield, functionality, and therapeutic effects. These molecules modulate critical pathways toward optimum exosome production in a mode that is either ESCRT dependent or ESCRT independent. Improved exosome biogenesis may provide new avenues for targeted cancer therapy, neuroprotection in neurodegenerative diseases, and regenerative medicine in wound healing. This review explores the role of small molecules in enhancing exosome biogenesis and secretion, highlights their underlying mechanisms, and discusses emerging clinical applications. By addressing current challenges and focusing on translational opportunities, this study provides a foundation for advancing cell-free therapies in regenerative medicine and beyond.
Collapse
Affiliation(s)
- Amir Bavafa
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Izadpanahi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Hosseini
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Hajinejad
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahsa Abedi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
| |
Collapse
|
2
|
Joshi G, Décembre E, Brocard J, Montpellier C, Ferrié M, Allatif O, Mehnert AK, Pons J, Galiana D, Dao Thi VL, Jouvenet N, Cocquerel L, Dreux M. Plasmacytoid dendritic cell sensing of hepatitis E virus is shaped by both viral and host factors. Life Sci Alliance 2025; 8:e202503256. [PMID: 40175091 PMCID: PMC11966012 DOI: 10.26508/lsa.202503256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/04/2025] Open
Abstract
Type I and III interferons critically protect the host against viral infection. Previous studies showed that IFN responses are suppressed in cells infected by hepatitis E virus (HEV). Here, we studied the anti-HEV function of IFN secreted by plasmacytoid dendritic cells (pDCs), specialized producers of IFNs. We showed that pDCs co-cultured with HEV-replicating cells secreted IFN in a cell contact-dependent manner. This pDC response required the endosomal nucleic acid sensor TLR7 and adhesion molecules. IFNs secreted by pDCs reduced viral spread. Intriguingly, ORF2, the capsid protein of HEV, can be produced in various forms by the infected cells, and we wanted to study their role in anti-HEV immune response. During infection, a fraction of ORF2 localizes into the nucleus, and glycosylated forms of ORF2 are massively secreted by infected cells. We showed that glycosylated ORF2 potentiates the recognition of infected cells by pDCs, by regulating cell contacts. On the other hand, nuclear ORF2 triggers immune response by IRF3 activation. Together, our results suggest that pDCs may be essential to control HEV replication.
Collapse
Affiliation(s)
- Garima Joshi
- CIRI, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University Lyon, Lyon, France
| | - Elodie Décembre
- CIRI, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University Lyon, Lyon, France
| | - Jacques Brocard
- Université Claude Bernard Lyon 1, CNRS UAR3444, INSERMUS8, ENS de Lyon, SFR Biosciences, Lyon, France
| | - Claire Montpellier
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Martin Ferrié
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Omran Allatif
- CIRI, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University Lyon, Lyon, France
| | - Ann-Kathrin Mehnert
- Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany and German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Johann Pons
- Sup'biotech, École Des Ingénieurs En Biotechnologies, Villejuif, Paris
| | - Delphine Galiana
- CIRI, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University Lyon, Lyon, France
| | - Viet Loan Dao Thi
- Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany and German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, Paris, France
| | - Laurence Cocquerel
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Marlène Dreux
- CIRI, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University Lyon, Lyon, France
| |
Collapse
|
3
|
Kashkoulinejad Kouhi T. Exosome-mediated communication between T cells and dendritic cells: Implications for therapeutic strategies. Cytokine 2025; 189:156914. [PMID: 40073808 DOI: 10.1016/j.cyto.2025.156914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/16/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Cell communication is crucial for coordinating physiological functions in multicellular organisms, with exosomes playing a significant role. Exosomes mediate intercellular communication by transporting proteins, lipids, and nucleic acids between cells. These small, membrane-bound vesicles, derived from the endosomal pathway, are integral to various biological processes, including signal transmission and cellular behavior modulation. Recent advances highlight the potential of exosomes, especially dendritic cell-derived exosomes (DEXs), for diagnostic and therapeutic applications, particularly in cancer immunotherapy. DEXs are distinguished by their ability to present antigens and stimulate immune responses more effectively than exosomes from other cell types. They carry a cargo rich in immunostimulatory molecules and MHC-peptide complexes, which facilitate robust T-cell activation and enhance tumor-specific immune responses. The unique properties of DEXs, such as their ability to cross biological barriers and resist tumor-induced immunosuppression, position them as promising candidates for therapeutic applications. Here, I review the reports on the bidirectional interaction between dendritic cells and T cells through exosomes and their role in medicine.
Collapse
Affiliation(s)
- Tahereh Kashkoulinejad Kouhi
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; CTOAM | Cancer Treatment Options & Management, Vancouver, British Columbia, Canada.
| |
Collapse
|
4
|
Madhan S, Dhar R, Devi A. Clinical Impact of Exosome Chemistry in Cancer. ACS APPLIED BIO MATERIALS 2025; 8:1862-1876. [PMID: 39936581 DOI: 10.1021/acsabm.4c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
As we progress into the 21st century, cancer stands as one of the most dreaded diseases. With approximately one in every four individuals facing a lifetime risk of developing cancer, cancer remains one of the most serious health challenges worldwide. Its multifaceted nature makes it an arduous and tricky problem to diagnose and treat. Over the years, researchers have explored plenty of approaches and avenues to improve cancer management. One notable strategy includes the study of extracellular vesicles (EVs) as potential biomarkers and therapeutics. Among these EVs, exosomes have emerged as particularly promising candidates due to their unique characteristic properties and functions. They are small membrane-bound vesicles secreted by cells carrying a cargo of biomolecules such as proteins, nucleic acids, and lipids. These vesicles play crucial roles in intercellular communication, facilitating the transfer of biological information between cell-to-cell communication. Exosomes transport cargoes such as DNA, RNA, proteins, and lipids involved in cellular reprogramming and promoting cancer. In this review, we explore the molecular composition of exosomes, significance of exosomes chemistry in cancer development, and its theranostic application as well as exosomes research complications and solutions.
Collapse
Affiliation(s)
- Shrishti Madhan
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| |
Collapse
|
5
|
Athira AP, Sreekanth S, Chandran A, Lahon A. Dual Role of Extracellular Vesicles as Orchestrators of Emerging and Reemerging Virus Infections. Cell Biochem Biophys 2025; 83:159-175. [PMID: 39225901 DOI: 10.1007/s12013-024-01495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Current decade witnessed the emergence and re-emergence of many viruses, which affected public health significantly. Viruses mainly utilize host cell machinery to promote its growth, and spread of these diseases. Numerous factors influence virus-host cell interactions, of which extracellular vesicles play an important role, where they transfer information both locally and distally by enclosing viral and host-derived proteins and RNAs as their cargo. Thus, they play a dual role in mediating virus infections by promoting virus dissemination and evoking immune responses in host organisms. Moreover, it acts as a double-edged sword during these infections. Advances in extracellular vesicles regulating emerging and reemerging virus infections, particularly in the context of SARS-CoV-2, Dengue, Ebola, Zika, Chikungunya, West Nile, and Japanese Encephalitis viruses are discussed in this review.
Collapse
Affiliation(s)
- A P Athira
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India
| | - Smrithi Sreekanth
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India
| | - Ananthu Chandran
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India
| | - Anismrita Lahon
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
6
|
DaCunza JT, Wickman JR, Ajit SK. miRNA packaging into small extracellular vesicles and implications in pain. Pain Rep 2024; 9:e1198. [PMID: 39450410 PMCID: PMC11500789 DOI: 10.1097/pr9.0000000000001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 10/26/2024] Open
Abstract
Extracellular vesicles (EVs) are a heterogenous group of lipid bilayer bound particles naturally released by cells. These vesicles are classified based on their biogenesis pathway and diameter. The overlap in size of exosomes generated from the exosomal pathway and macrovesicles that are pinched off from the surface of the plasma membrane makes it challenging to isolate pure populations. Hence, isolated vesicles that are less than 200 nm are called small extracellular vesicles (sEVs). Extracellular vesicles transport a variety of cargo molecules, and multiple mechanisms govern the packaging of cargo into sEVs. Here, we discuss the current understanding of how miRNAs are targeted into sEVs, including the role of RNA binding proteins and EXOmotif sequences present in miRNAs in sEV loading. Several studies in human pain disorders and rodent models of pain have reported alterations in sEV cargo, including miRNAs. The sorting mechanisms and target regulation of miR-939, a miRNA altered in individuals with complex regional pain syndrome, is discussed in the context of inflammation. We also provide a broad overview of the therapeutic strategies being pursued to utilize sEVs in the clinic and the work needed to further our understanding of EVs to successfully deploy sEVs as a pain therapeutic.
Collapse
Affiliation(s)
- Jason T. DaCunza
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Molecular & Cell Biology & Genetics Graduate Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jason R. Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Seena K. Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
7
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Extracellular Vesicles in Viral Liver Diseases. Viruses 2024; 16:1785. [PMID: 39599900 PMCID: PMC11598962 DOI: 10.3390/v16111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Extracellular vesicles (EVs) are bilayer vesicles released by cells in the microenvironment of the liver including parenchymal and non-parenchymal cells. They are the third important mechanism in the communications between cells, besides the secretion of cytokines and chemokines and the direct cell-to-cell contact. The aim of this review is to discuss the important role of EVs in viral liver disease, as there is increasing evidence that the transportation of viral proteins, all types of RNA, and viral particles including complete virions is implicated in the pathogenesis of both viral cirrhosis and viral-related hepatocellular carcinoma. The biogenesis of EVs is discussed and their role in the pathogenesis of viral liver diseases is presented. Their use as diagnostic and prognostic biomarkers is also analyzed. Most importantly, the significance of possible novel treatment strategies for liver fibrosis and hepatocellular carcinoma is presented, although available data are based on experimental evidence and clinical trials have not been reported.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
8
|
Chen KR, Yang CY, Shu SG, Lo YC, Lee KW, Wang LC, Chen JB, Shih MC, Chang HC, Hsiao YJ, Wu CL, Tan TH, Ling P. Endosomes serve as signaling platforms for RIG-I ubiquitination and activation. SCIENCE ADVANCES 2024; 10:eadq0660. [PMID: 39504361 PMCID: PMC11540011 DOI: 10.1126/sciadv.adq0660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
RIG-I-like receptors (RLRs) are cytosolic RNA sensors critical for antiviral immunity. RLR activation is regulated by polyubiquitination and oligomerization following RNA binding. Yet, little is known about how RLRs exploit subcellular organelles to facilitate their posttranslational modifications and activation. Endosomal adaptor TAPE regulates the endosomal TLR and cytosolic RLR pathways. The potential interplay between RIG-I signaling and endosomes has been explored. Here, we report that endosomes act as platforms for facilitating RIG-I polyubiquitination and complex formation. RIG-I was translocated onto endosomes to form signaling complexes upon activation. Ablation of endosomes impaired RIG-I signaling to type I IFN activation. TAPE mediates the interaction and polyubiquitination of RIG-I and TRIM25. TAPE-deficient myeloid cells were defective in type I IFN activation upon RNA ligand and virus challenges. Myeloid TAPE deficiency increased the susceptibility to RNA virus infection in vivo. Our work reveals endosomes as signaling platforms for RIG-I activation and antiviral immunity.
Collapse
Affiliation(s)
- Kuan-Ru Chen
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
- Department of Medical Research, E-Da Hospital, I-Shou University, 824005 Kaohsiung, Taiwan
| | - Chia-Yu Yang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, 33302 Tao-Yuan, Taiwan
| | - San-Ging Shu
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 60002 Chiayi City, Taiwan
| | - Yin-Chiu Lo
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Kuan-Wei Lee
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Li-Chun Wang
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Jia-Bao Chen
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Meng-Cen Shih
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Hung-Chun Chang
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Yu-Ju Hsiao
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Chao-Liang Wu
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 60002 Chiayi City, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Pin Ling
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, 70101 Tainan, Taiwan
| |
Collapse
|
9
|
Ebrahimi F, Modaresi Movahedi A, Sabbaghian M, Poortahmasebi V. A State-of-the-Art Review on the Recent Advances in Exosomes in Oncogenic Virus. Health Sci Rep 2024; 7:e70196. [PMID: 39558933 PMCID: PMC11570872 DOI: 10.1002/hsr2.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Background and Aims Oncogenic viruses are responsible for approximately 12% of human malignancies, influencing various cancer processes through intricate interactions with host cells. Exosomes (EXOs), nanometric-sized microvesicles involved in cell communication, have emerged as critical mediators in these interactions. This review aims to explore the mechanisms by which EXOs produced by cells infected with oncogenic viruses promote cancer growth, enhance viral transmissibility, and act as immunomodulators. Methods A comprehensive review was conducted, focusing on recent studies highlighting the mechanisms by which EXOs facilitate the oncogenic potential of viruses. The analysis included the characterization of exosomal content, such as microRNAs (miRNAs) and proteins, and their effects on tumor microenvironments and immune responses. A search was performed using databases including PubMed, ScienceDirect, and Google Scholar. MeSH keywords related to EXOs, oncogenic viruses, and cancer were used to retrieve relevant review, systematic, and research articles. Results Findings indicate that EXOs from oncogenic virus-infected cells carry viral components that facilitate infection and inflammation. These EXOs alter the tumor microenvironment, contributing to the development of virus-associated cancers. Additionally, the review highlights the growing interest among researchers regarding the implications of EXOs in cancer progression and their potential role in enhancing the oncogenicity of viruses. Conclusion The findings underscore the pivotal role of EXOs in mediating the oncogenic effects of viruses, suggesting that targeting exosomal pathways may provide new therapeutic avenues for managing virus-associated cancers. Further research is needed to fully elucidate the functional mechanisms of EXOs in viral oncogenesis.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| | - Ali Modaresi Movahedi
- Department of Medical Parasitology and MycologyFaculty of Medical Sciences, Shahid Sadoughi University of Medical SciencesYazdIran
| | - Mohammad Sabbaghian
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| |
Collapse
|
10
|
Chu YD, Chen MC, Yeh CT, Lai MW. Hijacking host extracellular vesicle machinery by hepatotropic viruses: current understandings and future prospects. J Biomed Sci 2024; 31:97. [PMID: 39369194 PMCID: PMC11453063 DOI: 10.1186/s12929-024-01063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/25/2024] [Indexed: 10/07/2024] Open
Abstract
Recent advances in studies exploring the roles of extracellular vesicles (EVs) in viral transmission and replication have illuminated hepatotropic viruses, such as hepatitis A (HAV), hepatitis B (HBV), hepatitis C (HCV), hepatitis D (HDV), and hepatitis E (HEV). While previous investigations have uncovered these viruses' ability to exploit cellular EV pathways for replication and transmission, most have focused on the impacts of exosomal pathways. With an improved understanding of EVs, four main subtypes, including exosomes, microvesicles, large oncosomes, and apoptotic bodies, have been categorized based on size and biogenic pathways. However, there remains a noticeable gap in comprehensive reviews summarizing recent findings and outlining future perspectives for EV studies related to hepatotropic viruses. This review aims to consolidate insights into EV pathways utilized by hepatotropic viruses, offering guidance for the future research direction in this field. By comprehending the diverse range of hepatotropic virus-associated EVs and their role in cellular communication during productive viral infections, this review may offer valuable insights for targeting therapeutics and devising strategies to combat virulent hepatotropic virus infections and the associated incidence of liver cancer.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Mi-Chi Chen
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Ngo C, Garrec C, Tomasello E, Dalod M. The role of plasmacytoid dendritic cells (pDCs) in immunity during viral infections and beyond. Cell Mol Immunol 2024; 21:1008-1035. [PMID: 38777879 PMCID: PMC11364676 DOI: 10.1038/s41423-024-01167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Type I and III interferons (IFNs) are essential for antiviral immunity and act through two different but complimentary pathways. First, IFNs activate intracellular antimicrobial programs by triggering the upregulation of a broad repertoire of viral restriction factors. Second, IFNs activate innate and adaptive immunity. Dysregulation of IFN production can lead to severe immune system dysfunction. It is thus crucial to identify and characterize the cellular sources of IFNs, their effects, and their regulation to promote their beneficial effects and limit their detrimental effects, which can depend on the nature of the infected or diseased tissues, as we will discuss. Plasmacytoid dendritic cells (pDCs) can produce large amounts of all IFN subtypes during viral infection. pDCs are resistant to infection by many different viruses, thus inhibiting the immune evasion mechanisms of viruses that target IFN production or their downstream responses. Therefore, pDCs are considered essential for the control of viral infections and the establishment of protective immunity. A thorough bibliographical survey showed that, in most viral infections, despite being major IFN producers, pDCs are actually dispensable for host resistance, which is achieved by multiple IFN sources depending on the tissue. Moreover, primary innate and adaptive antiviral immune responses are only transiently affected in the absence of pDCs. More surprisingly, pDCs and their IFNs can be detrimental in some viral infections or autoimmune diseases. This makes the conservation of pDCs during vertebrate evolution an enigma and thus raises outstanding questions about their role not only in viral infections but also in other diseases and under physiological conditions.
Collapse
Affiliation(s)
- Clémence Ngo
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Clémence Garrec
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Elena Tomasello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
12
|
Marima R, Basera A, Miya T, Damane BP, Kandhavelu J, Mirza S, Penny C, Dlamini Z. Exosomal long non-coding RNAs in cancer: Interplay, modulation, and therapeutic avenues. Noncoding RNA Res 2024; 9:887-900. [PMID: 38616862 PMCID: PMC11015109 DOI: 10.1016/j.ncrna.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
In the intricate field of cancer biology, researchers are increasingly intrigued by the emerging role of exosomal long non-coding RNAs (lncRNAs) due to their multifaceted interactions, complex modulation mechanisms, and potential therapeutic applications. These exosomal lncRNAs, carried within extracellular vesicles, play a vital partin tumorigenesis and disease progression by facilitating communication networks between tumor cells and their local microenvironment, making them an ideal candidates for use in a liquid biopsy approach. However, exosomal lncRNAs remain an understudied area, especially in cancer biology. Therefore this review aims to comprehensively explore the dynamic interplay between exosomal lncRNAs and various cellular components, including interactions with tumor-stroma, immune modulation, and drug resistance mechanisms. Understanding the regulatory functions of exosomal lncRNAs in these processes can potentially unveil novel diagnostic markers and therapeutic targets for cancer. Additionally, the emergence of RNA-based therapeutics presents exciting opportunities for targeting exosomal lncRNAs, offering innovative strategies to combat cancer progression and improve treatment outcomes. Thus, this review provides insights into the current understanding of exosomal lncRNAs in cancer biology, highlighting their crucial roles, regulatory mechanisms, and the evolving landscape of therapeutic interventions. Furthermore, we have also discussed the advantage of exosomes as therapeutic carriers of lncRNAs for the development of personalized targeted therapy for cancer patients.
Collapse
Affiliation(s)
- Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| | - Afra Basera
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, South Africa
| | - Thabiso Miya
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria, 0028, South Africa
| | - Jeyalakshmi Kandhavelu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Sheefa Mirza
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Clement Penny
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| |
Collapse
|
13
|
Ważny Ł, Whiteside TL, Pietrowska M. Oncoviral Infections and Small Extracellular Vesicles. Viruses 2024; 16:1291. [PMID: 39205265 PMCID: PMC11359865 DOI: 10.3390/v16081291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Small extracellular vesicles (sEV) are small membrane-bound nanovesicles with a size range below 200 nm that are released by all types of cells. sEV carry a diverse cargo of proteins, lipids, glycans, and nucleic acids that mimic the content of producer cells. sEV mediate intercellular communication and play a key role in a broad variety of physiological and pathological conditions. Recently, numerous reports have emerged examining the role of sEV in viral infections. A significant number of similarities in the sEV biogenesis pathways and the replication cycles of viruses suggest that sEV might influence the course of viral infections in diverse ways. Besides directly modulating virus propagation by transporting the viral cargo (complete virions, proteins, RNA, and DNA), sEV can also modify the host antiviral response and increase the susceptibility of cells to infection. The network of mutual interactions is particularly complex in the case of oncogenic viruses, deserving special consideration because of its significance in cancer progression. This review summarizes the current knowledge of interactions between sEV and oncogenic viruses, focusing on sEV abilities to modulate the carcinogenic properties of oncoviruses.
Collapse
Affiliation(s)
- Łukasz Ważny
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| | - Theresa L. Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| |
Collapse
|
14
|
Chen J, Qiu P, Zhao T, Jiang H, Tursun K, Ksimu S, Chen X, Wang Q. Measures of insulin resistance and beta cell function before and after treatment of HCV infection. Virol Sin 2024; 39:667-674. [PMID: 38950863 PMCID: PMC11401464 DOI: 10.1016/j.virs.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
The association between chronic HCV infection and type 2 diabetes mellitus (T2DM) has been established; however, there is limited research on β-cell function particularly in the pre-diabetic population. Here, we evaluated indices of β-cell function and insulin sensitivity across the spectrum from normal glucose tolerance to T2DM in individuals with and without chronic hepatitis C (CHC), and the effects of antiviral treatments on these variables. A total of 153 non-cirrhotic, non-fibrotic CHC patients with a BMI <25 were enrolled in the study. Among them, 119 were successfully treated with either direct acting antiviral (DAA) drugs or pegylated interferon/ribavirin (IFN/RBV) anti-HCV therapy. Fasting state- and oral glucose tolerance test (OGTT)-derived indexes were used to evaluate β-cell function and insulin sensitivity. Among all subjects, 19 (13%) had T2DM and 21% exhibited pre-diabetes including 8% isolated impaired fasting glucose (IFG) and 13% combined IFG and impaired glucose tolerance (IGT). Early and total insulin secretion adjusted for the degree of insulin resistance were decreased in pre-diabetic CHC patients compared to HCV-uninfected individuals. Viral eradication through DAA or IFN/RBV therapy demonstrated positive impacts on insulin sensitivity and β-cell function in CHC patients who achieved sustained virologic response (SVR), regardless of fasting or OGTT state. These findings emphasize the role of HCV in the development of β-cell dysfunction, while also suggesting that viral eradication can improve insulin secretion, reverse insulin resistance, and ameliorate glycemic control. These results have important implications for managing pre-diabetic CHC patients and could prevent diabetes-related clinical manifestations and complications.
Collapse
Affiliation(s)
- Jizheng Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; Guangzhou Laboratory, Guangzhou, 510005, China.
| | - Pan Qiu
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, China
| | - Tingfeng Zhao
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, China
| | - Haowei Jiang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, China
| | - Kebinur Tursun
- The First Affiliated Hospital of Xinjiang Medical University, Urumchi, 830054, China
| | - Sulaiman Ksimu
- The First Affiliated Hospital of Xinjiang Medical University, Urumchi, 830054, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; Guangzhou Laboratory, Guangzhou, 510005, China.
| | - Qian Wang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
15
|
Zhu X, Lin X, Hu L, Wang L, Zhu Q. Harnessing crosstalk between extracellular vesicles and viruses for disease diagnostics and therapeutics. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:358-370. [PMID: 39697627 PMCID: PMC11648403 DOI: 10.20517/evcna.2024.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are increasingly acknowledged as important mediators of intercellular communication, closely related to the occurrence and development of a variety of diseases. Numerous studies have demonstrated that EVs play a multifaceted role in the infection process of viral diseases, elucidating their ability to both facilitate viral spread and inhibit infection progression. These versatile entities not only enhance infection rates and widen the scope of viral infection through the transmission of entire viruses or viral genomes, but also trigger antiviral responses and prompt cytokine secretion near the infection site, thereby fortifying the host's defense mechanisms and safeguarding neighboring cells against infection. This complicated crosstalk between EVs and viral infections prompts a deeper exploration into their roles in potential clinical applications. In this review, we aim to encapsulate the recent advances in understanding the intricate interplay between viruses and EVs, shedding light on the mechanisms underlying this vesicle-to-virion crosstalk. Furthermore, we underscore the significance of harnessing this knowledge for diagnostic and therapeutic functions in combating viral diseases.
Collapse
Affiliation(s)
- Xinxi Zhu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Xiuhui Lin
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Liang Hu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Liangxing Wang
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Qingfu Zhu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
16
|
Oberholster L, Du Pasquier R, Mathias A. Exploring the role of brain-derived extracellular vesicles in viral infections: from pathological insights to biomarker potential. Front Cell Infect Microbiol 2024; 14:1423394. [PMID: 38887492 PMCID: PMC11181307 DOI: 10.3389/fcimb.2024.1423394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles secreted by all cell types that play a central role in cell-to-cell communication. Since these vesicles serve as vehicles of cellular content (nucleic acids, proteins and lipids) with the potential to cross biological barriers, they represent a novel attractive window into an otherwise inaccessible organ, such as the brain. The composition of EVs is cell-type specific and mirrors the physiological condition of the cell-of-origin. Consequently, during viral infection, EVs undergo significant changes in their content and morphology, thereby reflecting alterations in the cellular state. Here, we briefly summarize the potential of brain-derived EVs as a lens into viral infection in the central nervous system, thereby: 1) uncovering underlying pathophysiological processes at play and 2) serving as liquid biopsies of the brain, representing a non-invasive source of biomarkers for monitoring disease activity. Although translating the potential of EVs from research to diagnosis poses complexities, characterizing brain-derived EVs in the context of viral infections holds promise to enhance diagnostic and therapeutic strategies, offering new avenues for managing infectious neurological diseases.
Collapse
Affiliation(s)
- Larise Oberholster
- Laboratory of Neuroimmunology, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Renaud Du Pasquier
- Laboratory of Neuroimmunology, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Amandine Mathias
- Laboratory of Neuroimmunology, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Adams NM, Das A, Yun TJ, Reizis B. Ontogeny and Function of Plasmacytoid Dendritic Cells. Annu Rev Immunol 2024; 42:347-373. [PMID: 38941603 DOI: 10.1146/annurev-immunol-090122-041105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Plasmacytoid dendritic cells (pDCs) represent a unique cell type within the innate immune system. Their defining property is the recognition of pathogen-derived nucleic acids through endosomal Toll-like receptors and the ensuing production of type I interferon and other soluble mediators, which orchestrate innate and adaptive responses. We review several aspects of pDC biology that have recently come to the fore. We discuss emerging questions regarding the lineage affiliation and origin of pDCs and argue that these cells constitute an integral part of the dendritic cell lineage. We emphasize the specific function of pDCs as innate sentinels of virus infection, particularly their recognition of and distinct response to virus-infected cells. This essential evolutionary role of pDCs has been particularly important for the control of coronaviruses, as demonstrated by the recent COVID-19 pandemic. Finally, we highlight the key contribution of pDCs to systemic lupus erythematosus, in which therapeutic targeting of pDCs is currently underway.
Collapse
Affiliation(s)
- Nicholas M Adams
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Annesa Das
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Tae Jin Yun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| |
Collapse
|
18
|
Cloherty APM, Rader AG, Patel KS, Eisden TJTHD, van Piggelen S, Schreurs RRCE, Ribeiro CMS. Dengue virus exploits autophagy vesicles and secretory pathways to promote transmission by human dendritic cells. Front Immunol 2024; 15:1260439. [PMID: 38863700 PMCID: PMC11165123 DOI: 10.3389/fimmu.2024.1260439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/19/2024] [Indexed: 06/13/2024] Open
Abstract
Dengue virus (DENV), transmitted by infected mosquitoes, is a major public health concern, with approximately half the world's population at risk for infection. Recent decades have increasing incidence of dengue-associated disease alongside growing frequency of outbreaks. Although promising progress has been made in anti-DENV immunizations, post-infection treatment remains limited to non-specific supportive treatments. Development of antiviral therapeutics is thus required to limit DENV dissemination in humans and to help control the severity of outbreaks. Dendritic cells (DCs) are amongst the first cells to encounter DENV upon injection into the human skin mucosa, and thereafter promote systemic viral dissemination to additional human target cells. Autophagy is a vesicle trafficking pathway involving the formation of cytosolic autophagosomes, and recent reports have highlighted the extensive manipulation of autophagy by flaviviruses, including DENV, for viral replication. However, the temporal profiling and function of autophagy activity in DENV infection and transmission by human primary DCs remains poorly understood. Herein, we demonstrate that mechanisms of autophagosome formation and extracellular vesicle (EV) release have a pro-viral role in DC-mediated DENV transmission. We show that DENV exploits early-stage canonical autophagy to establish infection in primary human DCs. DENV replication enhanced autophagosome formation in primary human DCs, and intrinsically-heightened autophagosome biogenesis correlated with relatively higher rates of DC susceptibility to DENV. Furthermore, our data suggest that viral replication intermediates co-localize with autophagosomes, while productive DENV infection introduces a block at the late degradative stages of autophagy in infected DCs but not in uninfected bystander cells. Notably, we identify for the first time that approximately one-fourth of DC-derived CD9/CD81/CD63+ EVs co-express canonical autophagy marker LC3, and demonstrate that DC-derived EV populations are an alternative, cell-free mechanism by which DCs promote DENV transmission to additional target sites. Taken together, our study highlights intersections between autophagy and secretory pathways during viral infection, and puts forward autophagosome accumulation and viral RNA-laden EVs as host determinants of DC-mediated DENV infection in humans. Host-directed therapeutics targeting autophagy and exocytosis pathways thus have potential to enhance DC-driven resistance to DENV acquisition and thereby limit viral dissemination by initial human target cells following mosquito-to-human transmission of DENV.
Collapse
Affiliation(s)
- Alexandra P. M. Cloherty
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Anusca G. Rader
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
| | - Kharishma S. Patel
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Tracy-Jane T. H. D. Eisden
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sterre van Piggelen
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Renée R. C. E. Schreurs
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
| | - Carla M. S. Ribeiro
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
| |
Collapse
|
19
|
Latanova A, Karpov V, Starodubova E. Extracellular Vesicles in Flaviviridae Pathogenesis: Their Roles in Viral Transmission, Immune Evasion, and Inflammation. Int J Mol Sci 2024; 25:2144. [PMID: 38396820 PMCID: PMC10889558 DOI: 10.3390/ijms25042144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The members of the Flaviviridae family are becoming an emerging threat for public health, causing an increasing number of infections each year and requiring effective treatment. The consequences of these infections can be severe and include liver inflammation with subsequent carcinogenesis, endothelial damage with hemorrhage, neuroinflammation, and, in some cases, death. The mechanisms of Flaviviridae pathogenesis are being actively investigated, but there are still many gaps in their understanding. Extracellular vesicles may play important roles in these mechanisms, and, therefore, this topic deserves detailed research. Recent data have revealed the involvement of extracellular vesicles in steps of Flaviviridae pathogenesis such as transmission, immune evasion, and inflammation, which is critical for disease establishment. This review covers recent papers on the roles of extracellular vesicles in the pathogenesis of Flaviviridae and includes examples of clinical applications of the accumulated data.
Collapse
Affiliation(s)
- Anastasia Latanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.K.); (E.S.)
| | | | | |
Collapse
|
20
|
Ricco C, Eldaboush A, Liu ML, Werth VP. Extracellular Vesicles in the Pathogenesis, Clinical Characterization, and Management of Dermatomyositis: A Narrative Review. Int J Mol Sci 2024; 25:1967. [PMID: 38396646 PMCID: PMC10889219 DOI: 10.3390/ijms25041967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid-bilayer particles secreted from cells that primarily assist in cell-to-cell communication through the content of their cargo, such as proteins and RNA. EVs have been implicated in the pathogenesis of various autoimmune diseases, including dermatomyositis (DM), an inflammatory autoimmune disease characterized by distinct cutaneous manifestations, myopathy, and lung disease. We sought to review the role of EVs in DM and understand how they contribute to the pathogenesis and clinical characterization of the disease. We summarized the research progress on EVs in dermatomyositis based on recent publications. EV cargoes, such as double-stranded DNA, microRNA, and proteins, contribute to DM pathogenesis and mediate the proinflammatory response and cytokine release through signaling pathways such as the stimulator of interferon genes (STING) pathway. These nucleic acids and proteins have been proposed as disease-specific, stable biomarkers to monitor disease activity and responses to therapy. They also correlate with clinical parameters, inflammatory markers, and disease severity scores. Furthermore, some markers show an association with morbidities of DM, such as muscle weakness and interstitial lung disease. The continued study of EVs will help us to further elucidate our understanding of dermatomyositis.
Collapse
Affiliation(s)
- Cristina Ricco
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; (C.R.); (A.E.); (M.-L.L.)
- Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahmed Eldaboush
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; (C.R.); (A.E.); (M.-L.L.)
- Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ming-Lin Liu
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; (C.R.); (A.E.); (M.-L.L.)
- Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Victoria P. Werth
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; (C.R.); (A.E.); (M.-L.L.)
- Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Bernal C, How-Volkman C, Spencer M, El-Shamy A, Mohieldin AM. The Role of Extracellular Vesicles in SARS-CoV-2-Induced Acute Kidney Injury: An Overview. Life (Basel) 2024; 14:163. [PMID: 38398672 PMCID: PMC10890680 DOI: 10.3390/life14020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions worldwide since its outbreak in the winter of 2019. While extensive research has primarily focused on the deleterious respiratory effects of SARS-CoV-2 in recent years, its pan-tropism has become evident. Among the vital organs susceptible to SARS-CoV-2 infection is the kidney. Post SARS-CoV-2 infection, patients have developed coronavirus disease 19 (COVID-19), with reported incidences of COVID-19 patients developing acute kidney injury (AKI). Given COVID-19's multisystemic manifestation, our review focuses on the impact of SARS-CoV-2 infection within the renal system with an emphasis on the current hypotheses regarding the role of extracellular vesicles (EVs) in SARS-CoV-2 pathogenesis. Emerging studies have shown that SARS-CoV-2 can directly infect the kidney, whereas EVs are involved in the spreading of SARS-CoV-2 particles to other neighboring cells. Once the viral particles are within the kidney system, many proinflammatory signaling pathways are shown to be activated, resulting in AKI. Hence, clinical investigation of urinary proinflammatory components and total urinary extracellular vesicles (uEVs) with viral particles have been used to assess the severity of AKI in patients with COVID-19. Remarkedly, new emerging studies have shown the potential of mesenchymal stem cell-derived EVs (MSC-EVs) and ACE2-containing EVs as a hopeful therapeutic tool to inhibit SARS-CoV-2 RNA replication and block viral entry, respectively. Overall, understanding EVs' physiological role is crucial and hopefully will rejuvenate our therapeutic approach towards COVID-19 patients with AKI.
Collapse
Affiliation(s)
- Carter Bernal
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Christiane How-Volkman
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Madison Spencer
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
| | - Ahmed El-Shamy
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Ashraf M. Mohieldin
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| |
Collapse
|
22
|
Glitscher M, Spannaus IM, Behr F, Murra RO, Woytinek K, Bender D, Hildt E. The Protease Domain in HEV pORF1 Mediates the Replicase's Localization to Multivesicular Bodies and Its Exosomal Release. Cell Mol Gastroenterol Hepatol 2024; 17:589-605. [PMID: 38190941 PMCID: PMC10900777 DOI: 10.1016/j.jcmgh.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
BACKGROUND A peculiar feature of the hepatitis E virus (HEV) is its reliance on the exosomal route for viral release. Genomic replication is mediated via the viral polyprotein pORF1, yet little is known about its subcellular localization. METHODS Subcellular localization of pORF1 and its subdomains, generated and cloned based on a structural prediciton of the viral replicase, was analyzed via confocal laser scanning microscopy. Exosomes released from cells were isolated via ultracentrifugation and analyzed by isopycnic density gradient centrifugation. This was followed by fluorimetry or Western blot analyses or reverse transcriptase-polymerase chain reaction to analyze separated particles in more detail. RESULTS We found pORF1 to be accumulating within the endosomal system, most dominantly to multivesicular bodies (MVBs). Expression of the polyprotein's 7 subdomains revealed that the papain-like cysteine-protease (PCP) is the only domain localizing like the full-length protein. A PCP-deficient pORF1 mutant lost its association to MVBs. Strikingly, both pORF1 and PCP can be released via exosomes. Similarly, genomic RNA still is released via exosomes in the absence of pORF2/3. CONCLUSIONS Taken together, we found that pORF1 localizes to MVBs in a PCP-dependent manner, which is followed by exosomal release. This reveals new aspects of HEV life cycle, because replication and release could be coupled at the endosomal interface. In addition, this may mediate capsid-independent spread or may facilitate the spread of viral infection, because genomes entering the cell during de novo infection readily encounter exosomally transferred pORF1.
Collapse
Affiliation(s)
- Mirco Glitscher
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Fabiane Behr
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| | | | | | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany.
| |
Collapse
|
23
|
Abstract
Extracellular vesicles (EVs) are membrane-bound structures released by cells and have become significant players in immune system functioning, primarily by facilitating cell-to-cell communication. Immune cells like neutrophils and dendritic cells release EVs containing bioactive molecules that modulate chemotaxis, activate immune cells, and induce inflammation. EVs also contribute to antigen presentation, lymphocyte activation, and immune tolerance. Moreover, EVs play pivotal roles in antimicrobial host defense. They deliver microbial antigens to antigen-presenting cells (APCs), triggering immune responses, or act as decoys to neutralize virulence factors and toxins. This review discusses host and microbial EVs' multifaceted roles in innate and adaptive immunity, highlighting their involvement in immune cell development, antigen presentation, and antimicrobial responses.
Collapse
Affiliation(s)
- Puja Kumari
- Department of Immunology, University of Connecticut Health School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Skylar S. Wright
- Department of Immunology, University of Connecticut Health School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Vijay A. Rathinam
- Department of Immunology, University of Connecticut Health School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| |
Collapse
|
24
|
Rey-Cadilhac F, Rachenne F, Missé D, Pompon J. Viral Components Trafficking with(in) Extracellular Vesicles. Viruses 2023; 15:2333. [PMID: 38140574 PMCID: PMC10747788 DOI: 10.3390/v15122333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The global public health burden exerted by viruses partially stems from viruses' ability to subdue host cells into creating an environment that promotes their multiplication (i.e., pro-viral). It has been discovered that viruses alter cell physiology by transferring viral material through extracellular vesicles (EVs), which serve as vehicles for intercellular communication. Here, we aim to provide a conceptual framework of all possible EV-virus associations and their resulting functions in infection output. First, we describe the different viral materials potentially associated with EVs by reporting that EVs can harbor entire virions, viral proteins and viral nucleic acids. We also delineate the different mechanisms underlying the internalization of these viral components into EVs. Second, we describe the potential fate of EV-associated viral material cargo by detailing how EV can circulate and target a naive cell once secreted. Finally, we itemize the different pro-viral strategies resulting from EV associations as the Trojan horse strategy, an alternative mode of viral transmission, an expansion of viral cellular tropism, a pre-emptive alteration of host cell physiology and an immunity decoy. With this conceptual overview, we aim to stimulate research on EV-virus interactions.
Collapse
Affiliation(s)
- Félix Rey-Cadilhac
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
- Faculty of Science, Université de Montpellier, 34095 Montpellier, France
| | - Florian Rachenne
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
- Faculty of Science, Université de Montpellier, 34095 Montpellier, France
| | - Dorothée Missé
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
| | - Julien Pompon
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
| |
Collapse
|
25
|
Owliaee I, Khaledian M, Boroujeni AK, Shojaeian A. Engineered small extracellular vesicles as a novel platform to suppress human oncovirus-associated cancers. Infect Agent Cancer 2023; 18:69. [PMID: 37915098 PMCID: PMC10621078 DOI: 10.1186/s13027-023-00549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Cancer, as a complex, heterogeneous disease, is currently affecting millions of people worldwide. Even if the most common traditional treatments, namely, chemotherapy (CTx) and radiotherapy (RTx), have been so far effective in some conditions, there is still a dire need for novel, innovative approaches to treat types of cancer. In this context, oncoviruses are responsible for 12% of all malignancies, such as human papillomavirus (HPV), Merkel cell polyomavirus (MCPyV), Epstein-Barr virus (EBV), human herpesvirus 8 (HHV-8), as well as hepatitis B virus (HBV) and hepatitis C virus (HCV), and the poorest in the world also account for 80% of all human cancer cases. Against this background, nanomedicine has developed nano-based drug delivery systems (DDS) to meet the demand for drug delivery vectors, e.g., extracellular vesicles (EVs). This review article aimed to explore the potential of engineered small EVs (sEVs) in suppressing human oncovirus-associated cancers. METHODS Our search was conducted for published research between 2000 and 2022 using several international databases, including Scopus, PubMed, Web of Science, and Google Scholar. We also reviewed additional evidence from relevant published articles. RESULTS In this line, the findings revealed that EV engineering as a new field is witnessing the development of novel sEV-based structures, and it is expected to be advanced in the future. EVs may be further exploited in specialized applications as therapeutic or diagnostic tools. The techniques of biotechnology have been additionally utilized to create synthetic bilayers based on the physical and chemical properties of parent molecules via a top-down strategy for downsizing complicated, big particles into nano-sized sEVs. CONCLUSION As the final point, EV-mediated treatments are less toxic to the body than the most conventional ones, making them a safer and even more effective option. Although many in vitro studies have so far tested the efficacy of sEVs, further research is still needed to develop their potential in animal and clinical trials to reap the therapeutic benefits of this promising platform.
Collapse
Affiliation(s)
- Iman Owliaee
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehran Khaledian
- Department of Medical Entomology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Armin Khaghani Boroujeni
- Skin Disease and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
26
|
Srinivas AN, Suresh D, Kaur S, Kumar DP. The promise of small particles: extracellular vesicles as biomarkers in liver pathology. J Physiol 2023; 601:4953-4971. [PMID: 35708653 DOI: 10.1113/jp283074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Extracellular vesicles (EVs) are nanoscopic packages that are heterogeneous and bona fide players in hepatic physiology and pathology as they are involved in intercellular communication. EVs carrying bioactive cargoes rich in lipids, proteins or nucleic acids are implicated in the onset and progression of liver diseases. Liver pathology using liver biopsy has been assessed for several intricate conditions such as viral hepatitis, alcoholic and non-alcoholic fatty liver disease, hepatic malignancies and drug-induced liver injury. The lacunae, however, lie in early diagnosis and timely treatment of the above conditions, underscoring the need for non-invasive, accurate diagnostic tools that could replace the gold standard method of tissue biopsy. In this regard, EVs have emerged as promising candidates that could serve as potential biomarkers. In the last two decades, EVs, owing to their multifaceted charm in bringing out cell-free therapeutic responses and the ability of their cargoes to be applied to novel biomarkers, have drawn the great attention of researchers with the advancement and clinical application of liquid biopsy. In this review, we recapitulate the role of EVs and provide insights into the promising role of these small packages as biomarkers in liver pathology.
Collapse
Affiliation(s)
- Akshatha N Srinivas
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Diwakar Suresh
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Divya P Kumar
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
27
|
Li Y, Yang Y, Li T, Wang Z, Gao C, Deng R, Ma F, Li X, Ma L, Tian R, Li H, Zhu H, Zeng L, Gao Y, Lv G, Niu J, Crispe IN, Tu Z. Activation of AIM2 by hepatitis B virus results in antiviral immunity that suppresses hepatitis C virus during coinfection. J Virol 2023; 97:e0109023. [PMID: 37787533 PMCID: PMC10617567 DOI: 10.1128/jvi.01090-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Clinical data suggest that Hepatitis C virus (HCV) levels are generally lower in Hepatitis B virus (HBV) co-infected patients, but the mechanism is unknown. Here, we show that HBV, but not HCV, activated absent in melanoma-2. This in turn results in inflammasome-mediated cleavage of pro-IL-18, leading to an innate immune activation cascade that results in increased interferon-γ, suppressing both viruses.
Collapse
Affiliation(s)
- Yongqi Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tianyang Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhengmin Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chunfeng Gao
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Rilin Deng
- Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, Hunan, China
| | - Faxiang Ma
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyang Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Licong Ma
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Renyun Tian
- Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, Hunan, China
| | - Huiyi Li
- Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, Hunan, China
| | - Haizhen Zhu
- Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, Hunan, China
| | - Lei Zeng
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanhang Gao
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun , Jilin, China
| | - Guoyue Lv
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun , Jilin, China
| | - Junqi Niu
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun , Jilin, China
| | - Ian Nicholas Crispe
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Zhengkun Tu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun , Jilin, China
| |
Collapse
|
28
|
Martinez-Espinosa I, Serrato JA, Ortiz-Quintero B. The Role of Exosome-Derived microRNA on Lung Cancer Metastasis Progression. Biomolecules 2023; 13:1574. [PMID: 38002256 PMCID: PMC10669807 DOI: 10.3390/biom13111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
The high mortality from lung cancer is mainly attributed to the presence of metastases at the time of diagnosis. Despite being the leading cause of lung cancer death, the underlying molecular mechanisms driving metastasis progression are still not fully understood. Recent studies suggest that tumor cell exosomes play a significant role in tumor progression through intercellular communication between tumor cells, the microenvironment, and distant organs. Furthermore, evidence shows that exosomes release biologically active components to distant sites and organs, which direct metastasis by preparing metastatic pre-niche and stimulating tumorigenesis. As a result, identifying the active components of exosome cargo has become a critical area of research in recent years. Among these components are microRNAs, which are associated with tumor progression and metastasis in lung cancer. Although research into exosome-derived microRNA (exosomal miRNAs) is still in its early stages, it holds promise as a potential target for lung cancer therapy. Understanding how exosomal microRNAs promote metastasis will provide evidence for developing new targeted treatments. This review summarizes current research on exosomal miRNAs' role in metastasis progression mechanisms, focusing on lung cancer.
Collapse
Affiliation(s)
| | | | - Blanca Ortiz-Quintero
- Department of Molecular Biomedicine and Translational Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City CP 14080, Mexico; (I.M.-E.); (J.A.S.)
| |
Collapse
|
29
|
Nair S, Nova-Lamperti E, Labarca G, Kulasinghe A, Short KR, Carrión F, Salomon C. Genomic communication via circulating extracellular vesicles and long-term health consequences of COVID-19. J Transl Med 2023; 21:709. [PMID: 37817137 PMCID: PMC10563316 DOI: 10.1186/s12967-023-04552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
COVID-19 continues to affect an unprecedented number of people with the emergence of new variants posing a serious challenge to global health. There is an expansion of knowledge in understanding the pathogenesis of Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the impact of the acute disease on multiple organs. In addition, growing evidence reports that the impact of COVID-19 on different organs persists long after the recovery phase of the disease, leading to long-term consequences of COVID-19. These long-term consequences involve pulmonary as well as extra-pulmonary sequelae of the disease. Noteably, recent research has shown a potential association between COVID-19 and change in the molecular cargo of extracellular vesicles (EVs). EVs are vesicles released by cells and play an important role in cell communication by transfer of bioactive molecules between cells. Emerging evidence shows a strong link between EVs and their molecular cargo, and regulation of metabolism in health and disease. This review focuses on current knowledge about EVs and their potential role in COVID-19 pathogenesis, their current and future implications as tools for biomarker and therapeutic development and their possible effects on long-term impact of COVID-19.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Estefania Nova-Lamperti
- Molecular and Translational Immunology Laboratory, Clinical Biochemistry and Immunology Department, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Gonzalo Labarca
- Molecular and Translational Immunology Laboratory, Clinical Biochemistry and Immunology Department, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Qld, 4102, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Flavio Carrión
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Qld, 4072, Australia.
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| |
Collapse
|
30
|
Huang H, Liu S, Zhao X, Zhao P, Jia Q, Ma H, Lin Q. Role of tear exosomes in the spread of herpes simplex virus type 1 in recurrent herpes simplex keratitis. Eye (Lond) 2023; 37:3180-3185. [PMID: 36894762 PMCID: PMC10564740 DOI: 10.1038/s41433-023-02473-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Herpes simplex keratitis (HSK) is the most common but serious infectious keratitis with high recurrence. It is predominantly caused by herpes simplex virus type 1 (HSV-1). The spread mechanism of HSV-1 in HSK is not entirely clear. Multiple publications indicate that exosomes participate in the intercellular communication process during viral infections. However, there is rare evidence that HSV-1 spreads in HSK by exosomal pathway. This study aims to investigate the relationship between the spread of HSV-1 and tear exosomes in recurrent HSK. METHODS Tear fluids collected from total 59 participants were included in this study. Tear exosomes were isolated by ultracentrifugation, then identified by silver staining and western blot. The size was determined by dynamic light scattering (DLS). The viral biomarkers were identified by western blot. The cellular uptake of exosomes was studied using labelled exosomes. RESULTS Tear exosomes were indeed enriched in tear fluids. Collected exosomes own normal diameters consistent with related reports. The exosomal biomarkers existed in tear exosomes. Labelled exosomes were successfully taken up by human corneal epithelial cells (HCEC) in large numbers in a short time. After cellular uptake, HSK biomarkers were detectable by western blot in infected cells. CONCLUSIONS Tear exosomes should be the latent sites of HSV-1 in recurrent HSK and might be involved in the spread of HSV-1. Besides, this study verifies HSV-1 genes can be indeed transferred between cells by exosomal pathway, providing new inspiration for the clinical intervention and treatment as well as the drug discovery of recurrent HSK.
Collapse
Affiliation(s)
- Huiying Huang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Sihao Liu
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xia Zhao
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Peiyi Zhao
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qingqing Jia
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Huixiang Ma
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Quankui Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
31
|
Zhou Y, Dong Y, Zhang A, Wu J, Sun Q. The role of mesenchymal stem cells derived exosomes as a novel nanobiotechnology target in the diagnosis and treatment of cancer. Front Bioeng Biotechnol 2023; 11:1214190. [PMID: 37662434 PMCID: PMC10470003 DOI: 10.3389/fbioe.2023.1214190] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs), one of the most common types of stem cells, are involved in the modulation of the tumor microenvironment (TME). With the advancement of nanotechnology, exosomes, especially exosomes secreted by MSCs, have been found to play an important role in the initiation and development of tumors. In recent years, nanobiotechnology and bioengineering technology have been gradually developed to detect and identify exosomes for diagnosis and modify exosomes for tumor treatment. Several novel therapeutic strategies bioengineer exosomes to carry drugs, proteins, and RNAs, and further deliver their encapsulated cargoes to cancer cells through the properties of exosomes. The unique properties of exosomes in cancer treatment include targeting, low immunogenicity, flexibility in modification, and high biological barrier permeability. Nevertheless, the current comprehensive understanding of the roles of MSCs and their secreted exosomes in cancer development remain inadequate. It is necessary to better understand/update the mechanism of action of MSCs-secreted exosomes in cancer development, providing insights for better modification of exosomes through bioengineering technology and nanobiotechnology. Therefore, this review focuses on the role of MSCs-secreted exosomes and bioengineered exosomes in the development, progression, diagnosis, and treatment of cancer.
Collapse
Affiliation(s)
- You Zhou
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yuqing Dong
- China Medical University and Department of Pathology, Shenyang, China
| | - Aixue Zhang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jibin Wu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Kushch AA, Ivanov AV. [Exosomes in the life cycle of viruses and the pathogenesis of viral infections]. Vopr Virusol 2023; 68:181-197. [PMID: 37436410 DOI: 10.36233/0507-4088-173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 07/13/2023]
Abstract
Exosomes are extracellular vesicles of endosomal origin, with a bilayer membrane, 30160 nm in diameter. Exosomes are released from cells of different origins and are detected in various body fluids. They contain nucleic acids, proteins, lipids, metabolites and can transfer the contents to recipient cells. Exosome biogenesis involves cellular proteins of the Rab GTPase family and the ESCRT system, which regulate budding, vesicle transport, molecule sorting, membrane fusion, formation of multivesicular bodies and exosome secretion. Exosomes are released from cells infected with viruses and may contain viral DNA and RNA, as well as mRNA, microRNA, other types of RNA, proteins and virions. Exosomes are capable of transferring viral components into uninfected cells of various organs and tissues. This review analyzes the impact of exosomes on the life cycle of widespread viruses that cause serious human diseases: human immunodeficiency virus (HIV-1), hepatitis B virus, hepatitis C virus, SARS-CoV-2. Viruses are able to enter cells by endocytosis, use molecular and cellular pathways involving Rab and ESCRT proteins to release exosomes and spread viral infections. It has been shown that exosomes can have multidirectional effects on the pathogenesis of viral infections, suppressing or enhancing the course of diseases. Exosomes can potentially be used in noninvasive diagnostics as biomarkers of the stage of infection, and exosomes loaded with biomolecules and drugs - as therapeutic agents. Genetically modified exosomes are promising candidates for new antiviral vaccines.
Collapse
Affiliation(s)
- A A Kushch
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - A V Ivanov
- Institute of Molecular Biology named after V.A. Engelhardt of Russian Academy of Sciences
| |
Collapse
|
33
|
García-Nicolás O, Godel A, Zimmer G, Summerfield A. Macrophage phagocytosis of SARS-CoV-2-infected cells mediates potent plasmacytoid dendritic cell activation. Cell Mol Immunol 2023; 20:835-849. [PMID: 37253946 PMCID: PMC10227409 DOI: 10.1038/s41423-023-01039-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023] Open
Abstract
Early and strong interferon type I (IFN-I) responses are usually associated with mild COVID-19 disease, whereas persistent or unregulated proinflammatory cytokine responses are associated with severe disease outcomes. Previous work suggested that monocyte-derived macrophages (MDMs) are resistant and unresponsive to SARS-CoV-2 infection. Here, we demonstrate that upon phagocytosis of SARS-CoV-2-infected cells, MDMs are activated and secrete IL-6 and TNF. Importantly, activated MDMs in turn mediate strong activation of plasmacytoid dendritic cells (pDCs), leading to the secretion of high levels of IFN-α and TNF. Furthermore, pDC activation promoted IL-6 production by MDMs. This kind of pDC activation was dependent on direct integrin-mediated cell‒cell contacts and involved stimulation of the TLR7 and STING signaling pathways. Overall, the present study describes a novel and potent pathway of pDC activation that is linked to the macrophage-mediated clearance of infected cells. These findings suggest that a high infection rate by SARS-CoV-2 may lead to exaggerated cytokine responses, which may contribute to tissue damage and severe disease.
Collapse
Affiliation(s)
- O García-Nicolás
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
| | - A Godel
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - G Zimmer
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - A Summerfield
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
34
|
Pham MT, Lee JY, Ritter C, Thielemann R, Meyer J, Haselmann U, Funaya C, Laketa V, Rohr K, Bartenschlager R. Endosomal egress and intercellular transmission of hepatic ApoE-containing lipoproteins and its exploitation by the hepatitis C virus. PLoS Pathog 2023; 19:e1011052. [PMID: 37506130 PMCID: PMC10411793 DOI: 10.1371/journal.ppat.1011052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 08/09/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Liver-generated plasma Apolipoprotein E (ApoE)-containing lipoproteins (LPs) (ApoE-LPs) play central roles in lipid transport and metabolism. Perturbations of ApoE can result in several metabolic disorders and ApoE genotypes have been associated with multiple diseases. ApoE is synthesized at the endoplasmic reticulum and transported to the Golgi apparatus for LP assembly; however, the ApoE-LPs transport pathway from there to the plasma membrane is largely unknown. Here, we established an integrative imaging approach based on a fully functional fluorescently tagged ApoE. We found that newly synthesized ApoE-LPs accumulate in CD63-positive endosomes of hepatocytes. In addition, we observed the co-egress of ApoE-LPs and CD63-positive intraluminal vesicles (ILVs), which are precursors of extracellular vesicles (EVs), along the late endosomal trafficking route in a microtubule-dependent manner. A fraction of ApoE-LPs associated with CD63-positive EVs appears to be co-transmitted from cell to cell. Given the important role of ApoE in viral infections, we employed as well-studied model the hepatitis C virus (HCV) and found that the viral replicase component nonstructural protein 5A (NS5A) is enriched in ApoE-containing ILVs. Interaction between NS5A and ApoE is required for the efficient release of ILVs containing HCV RNA. These vesicles are transported along the endosomal ApoE egress pathway. Taken together, our data argue for endosomal egress and transmission of hepatic ApoE-LPs, a pathway that is hijacked by HCV. Given the more general role of EV-mediated cell-to-cell communication, these insights provide new starting points for research into the pathophysiology of ApoE-related metabolic and infection-related disorders.
Collapse
Affiliation(s)
- Minh-Tu Pham
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Ji-Young Lee
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Christian Ritter
- BioQuant Center, IPMB, Biomedical Computer Vision Group, Heidelberg University, Heidelberg, Germany
| | - Roman Thielemann
- BioQuant Center, IPMB, Biomedical Computer Vision Group, Heidelberg University, Heidelberg, Germany
| | - Janis Meyer
- BioQuant Center, IPMB, Biomedical Computer Vision Group, Heidelberg University, Heidelberg, Germany
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
| | - Charlotta Funaya
- Electron Microscopy Core Facility (EMCF), Heidelberg University, Heidelberg, Germany
| | - Vibor Laketa
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
| | - Karl Rohr
- BioQuant Center, IPMB, Biomedical Computer Vision Group, Heidelberg University, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
35
|
Parthasarathy G, Hirsova P, Kostallari E, Sidhu GS, Ibrahim SH, Malhi H. Extracellular Vesicles in Hepatobiliary Health and Disease. Compr Physiol 2023; 13:4631-4658. [PMID: 37358519 PMCID: PMC10798368 DOI: 10.1002/cphy.c210046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Extracellular vesicles (EVs) are membrane-bound nanoparticles released by cells and are an important means of intercellular communication in physiological and pathological states. We provide an overview of recent advances in the understanding of EV biogenesis, cargo selection, recipient cell effects, and key considerations in isolation and characterization techniques. Studies on the physiological role of EVs have relied on cell-based model systems due to technical limitations of studying endogenous nanoparticles in vivo . Several recent studies have elucidated the mechanistic role of EVs in liver diseases, including nonalcoholic fatty liver disease, viral hepatitis, cholestatic liver disease, alcohol-associated liver disease, acute liver injury, and liver cancers. Employing disease models and human samples, the biogenesis of lipotoxic EVs downstream of endoplasmic reticulum stress and microvesicles via intracellular activation stress signaling are discussed in detail. The diverse cargoes of EVs including proteins, lipids, and nucleic acids can be enriched in a disease-specific manner. By carrying diverse cargo, EVs can directly confer pathogenic potential, for example, recruitment and activation of monocyte-derived macrophages in NASH and tumorigenicity and chemoresistance in hepatocellular carcinoma. We discuss the pathogenic role of EVs cargoes and the signaling pathways activated by EVs in recipient cells. We review the literature that EVs can serve as biomarkers in hepatobiliary diseases. Further, we describe novel approaches to engineer EVs to deliver regulatory signals to specific cell types, and thus use them as therapeutic shuttles in liver diseases. Lastly, we identify key lacunae and future directions in this promising field of discovery and development. © 2023 American Physiological Society. Compr Physiol 13:4631-4658, 2023.
Collapse
Affiliation(s)
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Guneet S. Sidhu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Samar H. Ibrahim
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
36
|
Gonçalves D, Pinto SN, Fernandes F. Extracellular Vesicles and Infection: From Hijacked Machinery to Therapeutic Tools. Pharmaceutics 2023; 15:1738. [PMID: 37376186 DOI: 10.3390/pharmaceutics15061738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Extracellular vesicles (EVs) comprise a broad range of secreted cell-derived membrane vesicles. Beyond their more well-characterized role in cell communication, in recent years, EVs have also been shown to play important roles during infection. Viruses can hijack the biogenesis of exosomes (which are small EVs) to promote viral spreading. Additionally, these exosomes are also important mediators in inflammation and immune responses during both bacterial and viral infections. This review summarizes these mechanisms while also describing the impact of bacterial EVs in regulating immune responses. Finally, the review also focuses on the potential and challenges of using EVs, in particular, to tackle infectious diseases.
Collapse
Affiliation(s)
- Diogo Gonçalves
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra N Pinto
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fábio Fernandes
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
37
|
Chen Z, Yang K, Zhang J, Ren S, Chen H, Guo J, Cui Y, Wang T, Wang M. Systems crosstalk between antiviral response and cancerous pathways via extracellular vesicles in HIV-1-associated colorectal cancer. Comput Struct Biotechnol J 2023; 21:3369-3382. [PMID: 37389186 PMCID: PMC10300105 DOI: 10.1016/j.csbj.2023.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 07/01/2023] Open
Abstract
HIV-1 associated colorectal cancer (HA-CRC) is one of the most understudied non-AIDS-defining cancers. In this study, we analyzed the proteome of HA-CRC and the paired remote tissues (HA-RT) through data-independent acquisition mass spectrometry (MS). The quantified proteins could differentiate the HA-CRC and HA-RT groups per PCA or cluster analyses. As a background comparison, we reanalyzed the MS data of non-HIV-1 infected CRC (non-HA-CRC) published by CPTAC. According to the GSEA results, we found that HA-CRC and non-HA-CRC shared similarly over-represented KEGG pathways. Hallmark analysis suggested that terms of antiviral response were only significantly enriched in HA-CRC. The network and molecular system analysis centered the crosstalk of IFN-associated antiviral response and cancerous pathways, which was favored by significant up-regulation of ISGylated proteins as detected in the HA-CRC tissues. We further proved that defective HIV-1 reservoir cells as represented by the 8E5 cells could activate the IFN pathway in human macrophages via horizonal transfer of cell-associated HIV-1 RNA (CA-HIV RNA) carried by extracellular vesicles (EVs). In conclusion, HIV-1 reservoir cells secreted and CA-HIV RNA-containing EVs can induce IFN pathway activation in macrophages that contributes to one of the mechanistic explanations of the systems crosstalk between antiviral response and cancerous pathways in HA-CRC.
Collapse
Affiliation(s)
- Zimei Chen
- The First Affiliated Hospital, MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
- Department of Infectious Diseases, Institute of HIV/AIDS, The First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Ke Yang
- Department of Infectious Diseases, Institute of HIV/AIDS, The First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Jiayi Zhang
- The First Affiliated Hospital, MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Shufan Ren
- The First Affiliated Hospital, MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hui Chen
- Department of Infectious Diseases, Institute of HIV/AIDS, The First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Jiahui Guo
- The First Affiliated Hospital, MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yizhi Cui
- The First Affiliated Hospital, MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Tong Wang
- The First Affiliated Hospital, MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
- Department of Infectious Diseases, Institute of HIV/AIDS, The First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Min Wang
- Department of Infectious Diseases, Institute of HIV/AIDS, The First Hospital of Changsha, Changsha, Hunan 410005, China
| |
Collapse
|
38
|
Wei J, Ou Z, Tong B, Liao Z, Yang C. Engineered extracellular vesicles as therapeutics of degenerative orthopedic diseases. Front Bioeng Biotechnol 2023; 11:1162263. [PMID: 37362216 PMCID: PMC10289007 DOI: 10.3389/fbioe.2023.1162263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Degenerative orthopedic diseases, as a global public health problem, have made serious negative impact on patients' quality of life and socio-economic burden. Traditional treatments, including chemical drugs and surgical treatments, have obvious side effects and unsatisfactory efficacy. Therefore, biological therapy has become the focus of researches on degenerative orthopedic diseases. Extracellular vesicles (EVs), with superior properties of immunoregulatory, growth support, and drug delivery capabilities, have emerged as a new cell-free strategy for the treatment of many diseases, including degenerative orthopedic diseases. An increasing number of studies have shown that EVs can be engineered through cargo loading, surface modification, and chemical synthesis to improve efficiency, specificity, and safety. Herein, a comprehensive overview of recent advances in engineering strategies and applications of engineered EVs as well as related researches in degenerative orthopedic diseases, including osteoarthritis (OA), osteoporosis (OP), intervertebral disc degeneration (IDD) and osteonecrosis of the femoral head (ONFH), is provided. In addition, we analyze the potential and challenges of applying engineered EVs to clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Cao Yang
- *Correspondence: Zhiwei Liao, ; Cao Yang,
| |
Collapse
|
39
|
Vp V, Kannan A, Perumal MK. Role of adipocyte-derived extracellular vesicles during the progression of liver inflammation to hepatocellular carcinoma. J Cell Physiol 2023; 238:1125-1140. [PMID: 36960683 DOI: 10.1002/jcp.31008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 03/25/2023]
Abstract
Extracellular vesicles are membrane-bound cargos that vary in size and are stably transported through various bodily fluids. Extracellular vesicles communicate information between the cells and organs. Extracellular vesicles from the diseased cells alter cellular responses of the recipient cells contributing to disease progression. In obesity, adipocytes become hypertrophic and the extracellular vesicles from these dysfunctional adipocytes showed altered cargo contents instigating pathophysiological response leading to chronic liver diseases. In this review, the role of adipocyte-derived extracellular vesicles on the progression of liver inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma are extensively discussed. Newer approaches are crucial to take advantage of extracellular vesicles and their content as biomarkers to diagnose initial liver inflammation before reaching to an irreversible liver failure stage.
Collapse
Affiliation(s)
- Venkateish Vp
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Madan Kumar Perumal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
40
|
Sundaresan B, Shirafkan F, Ripperger K, Rattay K. The Role of Viral Infections in the Onset of Autoimmune Diseases. Viruses 2023; 15:v15030782. [PMID: 36992490 PMCID: PMC10051805 DOI: 10.3390/v15030782] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Autoimmune diseases (AIDs) are the consequence of a breach in immune tolerance, leading to the inability to sufficiently differentiate between self and non-self. Immune reactions that are targeted towards self-antigens can ultimately lead to the destruction of the host's cells and the development of autoimmune diseases. Although autoimmune disorders are comparatively rare, the worldwide incidence and prevalence is increasing, and they have major adverse implications for mortality and morbidity. Genetic and environmental factors are thought to be the major factors contributing to the development of autoimmunity. Viral infections are one of the environmental triggers that can lead to autoimmunity. Current research suggests that several mechanisms, such as molecular mimicry, epitope spreading, and bystander activation, can cause viral-induced autoimmunity. Here we describe the latest insights into the pathomechanisms of viral-induced autoimmune diseases and discuss recent findings on COVID-19 infections and the development of AIDs.
Collapse
Affiliation(s)
- Bhargavi Sundaresan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Fatemeh Shirafkan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kevin Ripperger
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kristin Rattay
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| |
Collapse
|
41
|
Zhao F, Xu Y, Liu N, Lv D, Chen Y, Liu Z, Jin X, Xiao M, Lavillette D, Zhong J, Bartenschlager R, Long G. Extracellular vesicles from Zika virus-infected cells display viral E protein that binds ZIKV-neutralizing antibodies to prevent infection enhancement. EMBO J 2023; 42:e112096. [PMID: 36734074 PMCID: PMC10015360 DOI: 10.15252/embj.2022112096] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/26/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Mosquito-borne flaviviruses including Zika virus (ZIKV) represent a public health problem in some parts of the world. Although ZIKV infection is predominantly asymptomatic or associated with mild symptoms, it can lead to neurological complications. ZIKV infection can also cause antibody-dependent enhancement (ADE) of infection with similar viruses, warranting further studies of virion assembly and the function of envelope (E) protein-specific antibodies. Although extracellular vesicles (EVs) from flavivirus-infected cells have been reported to transmit infection, this interpretation is challenged by difficulties in separating EVs from flavivirions due to their similar biochemical composition and biophysical properties. In the present study, a rigorous EV-virion separation method combining sequential ultracentrifugation and affinity capture was developed to study EVs from ZIKV-infected cells. We find that these EVs do not transmit infection, but EVs display abundant E proteins which have an antigenic landscape similar to that of virions carrying E. ZIKV E-coated EVs attenuate antibody-dependent enhancement mediated by ZIKV E-specific and DENV-cross-reactive antibodies in both cell culture and mouse models. We thus report an alternative route for Flavivirus E protein secretion. These results suggest that modulation of E protein release via virions and EVs may present a new approach to regulating flavivirus-host interactions.
Collapse
Affiliation(s)
- Fanfan Zhao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 LaboratoryShanghai Institute of Infectious Disease and Biosecurity, Fudan UniversityShanghaiChina
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Yongfen Xu
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Na Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 LaboratoryShanghai Institute of Infectious Disease and Biosecurity, Fudan UniversityShanghaiChina
| | - Dawei Lv
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Yujie Chen
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Zhi Liu
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Xia Jin
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Mingbing Xiao
- Department of Gastroenterology and Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular VirologyHeidelberg UniversityHeidelbergGermany
- German Center for Infectious Diseases, Heidelberg Partner SiteHeidelbergGermany
| | - Gang Long
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 LaboratoryShanghai Institute of Infectious Disease and Biosecurity, Fudan UniversityShanghaiChina
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
42
|
Porcine Hemagglutinating Encephalomyelitis Virus Co-Opts Multivesicular-Derived Exosomes for Transmission. mBio 2023; 14:e0305422. [PMID: 36541757 PMCID: PMC9973304 DOI: 10.1128/mbio.03054-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a member of the family Coronaviridae, genus Betacoronavirus, and subgenus Embecovirus that causes neurological disorders, vomiting and wasting disease (VWD), or influenza-like illness (ILI) in pigs. Exosomes regulate nearby or distant cells as a means of intercellular communication; however, whether they are involved in the transmission of viral reference materials during PHEV infection is unknown. Here, we collected exosomes derived from PHEV-infected neural cells (PHEV-exos) and validated their morphological, structural, and content characteristics. High-resolution mass spectrometry indicated that PHEV-exos carry a variety of cargoes, including host innate immunity sensors and viral ingredients. Furthermore, transwell analysis revealed that viral ingredients, such as proteins and RNA fragments, could be encapsulated in the exosomes of multivesicular bodies (MVBs) to nonpermissive microglia. Inhibition of exosome secretion could suppress PHEV infection. Therefore, we concluded that the mode of infectious transmission of PHEV is likely through a mixture of virus-modified exosomes and virions and that exosomal export acts as a host strategy to induce an innate response in replicating nonpermissive bystander cells free of immune system recognition. IMPORTANCE The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a large number of deaths worldwide. Clinical neurological complications have occurred in some cases; however, knowledge of the natural history of coronavirus in the central nervous system (CNS) is thus far limited. PHEV is a typical neurotropic betacoronavirus (β-CoV) that propagates via neural circuits in the host CNS after peripheral incubation rather than through the bloodstream. It is therefore a good prototype pathogen to investigate the neuropathological pathogenesis of acute human coronavirus infection. In this study, we demonstrate a new association between host vesicle-based secretion and PHEV infection, showing that multivesicular-derived exosomes are one of the modes of infectious transmission and that they mediate the transfer of immunostimulatory cargo to uninfected neuroimmune cells. These findings provide novel insights into the treatment and monitoring of neurological consequences associated with β-CoV, similar to those associated with SARS-CoV-2.
Collapse
|
43
|
Severe COVID-19 patients have impaired plasmacytoid dendritic cell-mediated control of SARS-CoV-2. Nat Commun 2023; 14:694. [PMID: 36755036 PMCID: PMC9907212 DOI: 10.1038/s41467-023-36140-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Type I and III interferons (IFN-I/λ) are important antiviral mediators against SARS-CoV-2 infection. Here, we demonstrate that plasmacytoid dendritic cells (pDC) are the predominant IFN-I/λ source following their sensing of SARS-CoV-2-infected cells. Mechanistically, this short-range sensing by pDCs requires sustained integrin-mediated cell adhesion with infected cells. In turn, pDCs restrict viral spread by an IFN-I/λ response directed toward SARS-CoV-2-infected cells. This specialized function enables pDCs to efficiently turn-off viral replication, likely via a local response at the contact site with infected cells. By exploring the pDC response in SARS-CoV-2 patients, we further demonstrate that pDC responsiveness inversely correlates with the severity of the disease. The pDC response is particularly impaired in severe COVID-19 patients. Overall, we propose that pDC activation is essential to control SARS-CoV-2-infection. Failure to develop this response could be important to understand severe cases of COVID-19.
Collapse
|
44
|
Extracellular Vesicles: a Trojan Horse Delivery Method for Systemic Administration of Oncolytic Viruses. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2023. [DOI: 10.1007/s40883-023-00295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
45
|
Rangel-Ramírez VV, González-Sánchez HM, Lucio-García C. Exosomes: from biology to immunotherapy in infectious diseases. Infect Dis (Lond) 2023; 55:79-107. [PMID: 36562253 DOI: 10.1080/23744235.2022.2149852] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Exosomes are extracellular vesicles derived from the endosomal compartment, which are released by all kinds of eukaryotic and prokaryotic organisms. These vesicles contain a variety of biomolecules that differ both in quantity and type depending on the origin and cellular state. Exosomes are internalized by recipient cells, delivering their content and thus contributing to cell-cell communication in health and disease. During infections exosomes may exert a dual role, on one hand, they can transmit pathogen-related molecules mediating further infection and damage, and on the other hand, they can protect the host by activating the immune response and reducing pathogen spread. Selective packaging of pathogenic components may mediate these effects. Recently, quantitative analysis of samples by omics technologies has allowed a deep characterization of the proteins, lipids, RNA, and metabolite cargoes of exosomes. Knowledge about the content of these vesicles may facilitate their therapeutic application. Furthermore, as exosomes have been detected in almost all biological fluids, pathogenic or host-derived components can be identified in liquid biopsies, making them suitable for diagnosis and prognosis. This review attempts to organize the recent findings on exosome composition and function during viral, bacterial, fungal, and protozoan infections, and their contribution to host defense or to pathogen spread. Moreover, we summarize the current perspectives and future directions regarding the potential application of exosomes for prophylactic and therapeutic purposes.
Collapse
Affiliation(s)
| | | | - César Lucio-García
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| |
Collapse
|
46
|
Gangadaran P, Madhyastha H, Madhyastha R, Rajendran RL, Nakajima Y, Watanabe N, Velikkakath AKG, Hong CM, Gopi RV, Muthukalianan GK, Valsala Gopalakrishnan A, Jeyaraman M, Ahn BC. The emerging role of exosomes in innate immunity, diagnosis and therapy. Front Immunol 2023; 13:1085057. [PMID: 36726968 PMCID: PMC9885214 DOI: 10.3389/fimmu.2022.1085057] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023] Open
Abstract
Exosomes, which are nano-sized transport bio-vehicles, play a pivotal role in maintaining homeostasis by exchanging genetic or metabolic information between different cells. Exosomes can also play a vital role in transferring virulent factors between the host and parasite, thereby regulating host gene expression and the immune interphase. The association of inflammation with disease development and the potential of exosomes to enhance or mitigate inflammatory pathways support the notion that exosomes have the potential to alter the course of a disease. Clinical trials exploring the role of exosomes in cancer, osteoporosis, and renal, neurological, and pulmonary disorders are currently underway. Notably, the information available on the signatory efficacy of exosomes in immune-related disorders remains elusive and sporadic. In this review, we discuss immune cell-derived exosomes and their application in immunotherapy, including those against autoimmune connective tissue diseases. Further, we have elucidated our views on the major issues in immune-related pathophysiological processes. Therefore, the information presented in this review highlights the role of exosomes as promising strategies and clinical tools for immune regulation.
Collapse
Affiliation(s)
- Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Radha Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Yuichi Nakajima
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Nozomi Watanabe
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Anoop Kumar G. Velikkakath
- Center for System Biology and Molecular Medicine, Yenepoya Research center, Yenepoya (Deemed to be University), Mangaluru, Karnataka, India
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Rahul Velikkakath Gopi
- Department of Tissue Engineering and Regeneration Technologies, Sree Chitra Thirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, India
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
47
|
Abstract
Dendritic cells (DCs) are key regulators of both innate and adaptive immunity via varied functions, including cytokine production and antigen presentation. Plasmacytoid DC (pDC) is a DC subset specialized in the production of type I and III interferons (IFNs). They are thus pivotal players of the host antiviral response during the acute phase of infection by genetically distant viruses. The pDC response is primarily triggered by the endolysosomal sensors Toll-like receptors, which recognize nucleic acids from pathogens. In some pathologic contexts, pDC response can also be triggered by host nucleic acids, hereby contributing to the pathogenesis of autoimmune diseases, such as, e.g., systemic lupus erythematosus. Importantly, recent in vitro studies from our laboratory and others uncovered that pDCs sense viral infections when a physical contact is established with infected cells. This specialized synapse-like feature enables a robust type I and III IFN secretion at the infected site. Therefore, this concentrated and confined response likely limits the correlated deleterious impacts of excessive cytokine production to the host, notably due to tissue damages. Here we provide a pipeline of methods for ex vivo studies of pDC antiviral functions, designed to address how pDC activation is regulated by cell-cell contact with virally infected cells and the current approaches enabling to decipher the underlying molecular events leading to an efficient antiviral response.
Collapse
|
48
|
Many Ways to Communicate-Crosstalk between the HBV-Infected Cell and Its Environment. Pathogens 2022; 12:pathogens12010029. [PMID: 36678377 PMCID: PMC9866324 DOI: 10.3390/pathogens12010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic infection with the hepatitis B virus (HBV) affects an estimated 257 million people worldwide and can lead to liver diseases such as cirrhosis and liver cancer. Viral replication is generally considered not to be cytopathic, and although some HBV proteins may have direct carcinogenic effects, the majority of HBV infection-related disease is related to chronic inflammation resulting from disrupted antiviral responses and aberrant innate immune reactions. Like all cells, healthy and HBV-infected cells communicate with each other, as well as with other cell types, such as innate and adaptive immune cells. They do so by both interacting directly and by secreting factors into their environment. Such factors may be small molecules, such as metabolites, single viral proteins or host proteins, but can also be more complex, such as virions, protein complexes, and extracellular vesicles. The latter are small, membrane-enclosed vesicles that are exchanged between cells, and have recently gained a lot of attention for their potential to mediate complex communication and their potential for therapeutic repurposing. Here, we review how HBV infection affects the communication between HBV-infected cells and cells in their environment. We discuss the impact of these interactions on viral persistence in chronic infection, as well as their relation to HBV infection-related pathology.
Collapse
|
49
|
Yin Y, Zhao Y, Chen Q, Chen Y, Mao L. Dual roles and potential applications of exosomes in HCV infections. Front Microbiol 2022; 13:1044832. [PMID: 36578571 PMCID: PMC9791051 DOI: 10.3389/fmicb.2022.1044832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
The hepatitis C virus (HCV) causes severe liver diseases, including hepatitis, liver cirrhosis, and hepatocellular carcinoma, which have high morbidity and mortality. Antibody targeting receptor-mediated HCV infections have limited therapeutic benefits, suggesting that the transmission of HCV infections is possibly mediated via receptor-independent mechanisms. Exosomes are membrane-enclosed vesicles with a diameter of 30-200 nm, which originate from the fusion of endosomal multivesicular bodies with the plasma membrane. Accumulating evidence suggests that exosomes have a pivotal role in HCV infections. Exosomes can transfer viral and cellular bioactive substances, including nucleic acids and proteins, to uninfected cells, thus spreading the infection by masking these materials from immunological recognition. In addition, exosomes originating from some cells can deliver antiviral molecules or prompt the immune response to inhibit HCV infection. Exosomes can be used for the diagnosis of HCV-related diseases, and are being presently evaluated as therapeutic tools for anti-HCV drug delivery. This review summarizes the current knowledge on the dual roles and potential clinical applications of exosomes in HCV infections.
Collapse
|
50
|
Pradhan A, Shivaprasad S, Dey S, Goel A, Aggarwal R, Das S. Exosome-associated microRNA-375 induces cell proliferation by regulating IGFBP4 upon hepatitis C virus infection. Mol Microbiol 2022; 118:570-587. [PMID: 36203260 DOI: 10.1111/mmi.14986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Hepatitis C virus (HCV) infection is one of the most common causes of liver cancer. HCV infection causes chronic disease followed by cirrhosis, which often leads to hepatocellular carcinoma (HCC). In this study, we investigated the roles of exosome-associated miRNAs in HCV-induced disease pathology. Small RNA sequencing was performed to identify miRNAs that are differentially regulated in exosomes isolated from patient sera at two different stages of HCV infection: cirrhosis and hepatocellular carcinoma. Among the differentially expressed miRNAs, miR-375 was found to be significantly upregulated in exosomes isolated from patients with cirrhosis and HCC. A similar upregulation was observed in intracellular and extracellular/exosomal levels of miR-375 in HCV-JFH1 infected Huh7.5 cells. The depletion of miR-375 in infected cells inhibited HCV-induced cell migration and proliferation, suggesting a supportive role for miR-375 in HCV pathogenesis. miR-375, secreted through exosomes derived from HCV-infected cells, could also be transferred to naïve Huh7.5 cells, resulting in an increase in cell proliferation and migration in the recipient cells. Furthermore, we identified Insulin growth factor binding protein 4 (IGFBP4), a gene involved in cell growth and malignancy, as a novel target of miR-375. Our results demonstrate the critical involvement of exosome-associated miR-375 in HCV-induced disease progression.
Collapse
Affiliation(s)
- Aunji Pradhan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Shwetha Shivaprasad
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Shuchismita Dey
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Amit Goel
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Rakesh Aggarwal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|