1
|
Paz M, Moratorio G. Deep mutational scanning and CRISPR-engineered viruses: tools for evolutionary and functional genomics studies. mSphere 2025; 10:e0050824. [PMID: 40272173 DOI: 10.1128/msphere.00508-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Recent advancements in synthetic biology and sequencing technologies have revolutionized the ability to manipulate viral genomes with unparalleled precision. This review focuses on two powerful methodologies: deep mutational scanning and CRISPR-based genome editing, that enable comprehensive mutagenesis and detailed functional characterization of viral proteins. These approaches have significantly deepened our understanding of the molecular determinants driving viral evolution and adaptation. Furthermore, we discuss how these advances provide transformative insights for future vaccine development and therapeutic strategies.
Collapse
Affiliation(s)
- Mercedes Paz
- Laboratory of Experimental Virus Evolution, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Molecular Virology Laboratory, Faculty of Sciences, University of the Republic, Montevideo, Uruguay
| | - Gonzalo Moratorio
- Laboratory of Experimental Virus Evolution, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Molecular Virology Laboratory, Faculty of Sciences, University of the Republic, Montevideo, Uruguay
- Center for Innovation in Epidemiological Surveillance, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
2
|
Bravo IG, Belkhir S, Paget-Bailly P. Why HPV16? Why, now, HPV42? How the discovery of HPV42 in rare cancers provides an opportunity to challenge our understanding about the transition between health and disease for common members of the healthy microbiota. FEMS Microbiol Rev 2024; 48:fuae029. [PMID: 39562287 PMCID: PMC11644485 DOI: 10.1093/femsre/fuae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024] Open
Abstract
In 2022, a bioinformatic, agnostic approach identified HPV42 as causative agent of a rare cancer, later confirmed experimentally. This unexpected association offers an opportunity to reconsider our understanding about papillomavirus infections and cancers. We have expanded our knowledge about the diversity of papillomaviruses and the diseases they cause. Yet, we still lack answers to fundamental questions, such as what makes HPV16 different from the closely related HPV31 or HPV33; or why the very divergent HPV13 and HPV32 cause focal epithelial hyperplasia, while HPV6 or HPV42 do not, despite their evolutionary relatedness. Certain members of the healthy skin microbiota are associated to rare clinical conditions. We propose that a focus on cellular phenotypes, most often transient and influenced by intrinsic and extrinsic factors, may help understand the continuum between health and disease. A conceptual switch is required towards an interpretation of biology as a diversity of states connected by transition probabilities, rather than quasi-deterministic programs. Under this perspective, papillomaviruses may only trigger malignant transformation when specific viral genotypes interact with precise cellular states. Drawing on Canguilhem's concepts of normal and pathological, we suggest that understanding the transition between fluid cellular states can illuminate how commensal-like infections transition from benign to malignant.
Collapse
Affiliation(s)
- Ignacio G Bravo
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| | - Sophia Belkhir
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| | - Philippe Paget-Bailly
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| |
Collapse
|
3
|
Boon WX, Sia BZ, Ng CH. Prediction of the effects of the top 10 synonymous mutations from 26645 SARS-CoV-2 genomes of early pandemic phase. F1000Res 2024; 10:1053. [PMID: 39268187 PMCID: PMC11391198 DOI: 10.12688/f1000research.72896.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 09/15/2024] Open
Abstract
Background The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had led to a global pandemic since December 2019. SARS-CoV-2 is a single-stranded RNA virus, which mutates at a higher rate. Multiple works had been done to study nonsynonymous mutations, which change protein sequences. However, there is little study on the effects of SARS-CoV-2 synonymous mutations, which may affect viral fitness. This study aims to predict the effect of synonymous mutations on the SARS-CoV-2 genome. Methods A total of 26645 SARS-CoV-2 genomic sequences retrieved from Global Initiative on Sharing all Influenza Data (GISAID) database were aligned using MAFFT. Then, the mutations and their respective frequency were identified. Multiple RNA secondary structures prediction tools, namely RNAfold, IPknot++ and MXfold2 were applied to predict the effect of the mutations on RNA secondary structure and their base pair probabilities was estimated using MutaRNA. Relative synonymous codon usage (RSCU) analysis was also performed to measure the codon usage bias (CUB) of SARS-CoV-2. Results A total of 150 synonymous mutations were identified. The synonymous mutation identified with the highest frequency is C3037U mutation in the nsp3 of ORF1a. Of these top 10 highest frequency synonymous mutations, C913U, C3037U, U16176C and C18877U mutants show pronounced changes between wild type and mutant in all 3 RNA secondary structure prediction tools, suggesting these mutations may have some biological impact on viral fitness. These four mutations show changes in base pair probabilities. All mutations except U16176C change the codon to a more preferred codon, which may result in higher translation efficiency. Conclusion Synonymous mutations in SARS-CoV-2 genome may affect RNA secondary structure, changing base pair probabilities and possibly resulting in a higher translation rate. However, lab experiments are required to validate the results obtained from prediction analysis.
Collapse
Affiliation(s)
- Wan Xin Boon
- Faculty of Information Science and Technology, Multimedia University, Bukit Beruang, Melaka, 75450, Malaysia
| | - Boon Zhan Sia
- Faculty of Information Science and Technology, Multimedia University, Bukit Beruang, Melaka, 75450, Malaysia
| | - Chong Han Ng
- Faculty of Information Science and Technology, Multimedia University, Bukit Beruang, Melaka, 75450, Malaysia
| |
Collapse
|
4
|
Xu Q, Cao J, Rai KR, Zhu B, Liu D, Wan C. Codon usage bias of goose circovirus and its adaptation to host. Poult Sci 2024; 103:103775. [PMID: 38713985 PMCID: PMC11091504 DOI: 10.1016/j.psj.2024.103775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 05/09/2024] Open
Abstract
Goose circovirus (GoCV), a potential immunosuppressive virus possessing a circular single-stranded DNA genome, is widely distributed in both domesticated and wild geese. This virus infection causes significant economic losses in the waterfowl industry. The codon usage patterns of viruses reflect the evolutionary history and genetic architecture, allowing them to adapt quickly to changes in the external environment, particularly to their hosts. In this study, we retrieved the coding sequences (Rep and Cap) and the genome of GoCV from GenBank, conducting comprehensive research to explore the codon usage patterns in 144 GoCV strains. The overall codon usage of the GoCV strains was relatively similar and exhibited a slight bias. The effective number of codons (ENC) indicated a low overall extent of codon usage bias (CUB) in GoCV. Combined with the base composition and relative synonymous codon usage (RSCU) analysis, the results revealed a bias toward A- and G-ending codons in the overall codon usage. Analysis of the ENC-GC3s plot and neutrality plot suggested that natural selection plays an important role in shaping the codon usage pattern of GoCV, with mutation pressure having a minor influence. Furthermore, the correlations between ENC and relative indices, as well as correspondence analysis (COA), showed that hydrophobicity and geographical distribution also contribute to codon usage variation in GoCV, suggesting the possible involvement of natural selection. In conclusion, GoCV exhibits comparatively slight CUB, with natural selection being the major factor shaping the codon usage pattern of GoCV. Our research contributes to a deeper understanding of GoCV evolution and its host adaptation, providing valuable insights for future basic studies and vaccine design related to GoCV.
Collapse
Affiliation(s)
- Quanming Xu
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou 350007, China
| | - Jie Cao
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou 350007, China
| | - Kul Raj Rai
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binling Zhu
- Department of Forensic Science, Fujian Police College, Fuzhou 350007, China
| | - Dan Liu
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| |
Collapse
|
5
|
Wu Q, Kinoti WM, Habili N, Tyerman SD, Rinaldo A, Constable FE. Genetic Diversity of Grapevine Virus A in Three Australian Vineyards Using Amplicon High Throughput Sequencing (Amplicon-HTS). Viruses 2023; 16:42. [PMID: 38257742 PMCID: PMC10819895 DOI: 10.3390/v16010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Shiraz disease (SD) is one of the most destructive viral diseases of grapevines in Australia and is known to cause significant economic loss to local growers. Grapevine virus A (GVA) was reported to be the key pathogen associated with this disease. This study aimed to better understand the diversity of GVA variants both within and between individual SD and grapevine leafroll disease (LRD) affected grapevines located at vineyards in South Australia. Amplicon high throughput sequencing (Amplicon-HTS) combined with median-joining networks (MJNs) was used to analyze the variability in specific gene regions of GVA variants. Several GVAII variant groups contain samples from both vineyards studied, suggesting that these GVAII variants were from a common origin. Variant groups analyzed by MJNs using the overall data set denote that there may be a possible relationship between variant groups of GVA and the geographical location of the grapevines.
Collapse
Affiliation(s)
- Qi Wu
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Wycliff M. Kinoti
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
| | - Nuredin Habili
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Stephen D. Tyerman
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
| | - Amy Rinaldo
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Fiona E. Constable
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
6
|
Molteni C, Forni D, Cagliani R, Bravo IG, Sironi M. Evolution and diversity of nucleotide and dinucleotide composition in poxviruses. J Gen Virol 2023; 104. [PMID: 37792576 DOI: 10.1099/jgv.0.001897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Poxviruses (family Poxviridae) have long dsDNA genomes and infect a wide range of hosts, including insects, birds, reptiles and mammals. These viruses have substantial incidence, prevalence and disease burden in humans and in other animals. Nucleotide and dinucleotide composition, mostly CpG and TpA, have been largely studied in viral genomes because of their evolutionary and functional implications. We analysed here the nucleotide and dinucleotide composition, as well as codon usage bias, of a set of representative poxvirus genomes, with a very diverse host spectrum. After correcting for overall nucleotide composition, entomopoxviruses displayed low overall GC content, no enrichment in TpA and large variation in CpG enrichment, while chordopoxviruses showed large variation in nucleotide composition, no obvious depletion in CpG and a weak trend for TpA depletion in GC-rich genomes. Overall, intergenome variation in dinucleotide composition in poxviruses is largely accounted for by variation in overall genomic GC levels. Nonetheless, using vaccinia virus as a model, we found that genes expressed at the earliest times in infection are more CpG-depleted than genes expressed at later stages. This observation has parallels in betahepesviruses (also large dsDNA viruses) and suggests an antiviral role for the innate immune system (e.g. via the zinc-finger antiviral protein ZAP) in the early phases of poxvirus infection. We also analysed codon usage bias in poxviruses and we observed that it is mostly determined by genomic GC content, and that stratification after host taxonomy does not contribute to explaining codon usage bias diversity. By analysis of within-species diversity, we show that genomic GC content is the result of mutational biases. Poxvirus genomes that encode a DNA ligase are significantly AT-richer than those that do not, suggesting that DNA repair systems shape mutation biases. Our data shed light on the evolution of poxviruses and inform strategies for their genetic manipulation for therapeutic purposes.
Collapse
Affiliation(s)
- Cristian Molteni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Ignacio G Bravo
- Laboratoire MIVEGEC (Univ Montpellier CNRS, IRD), Centre National de la Recherche Scientifique, Montpellier, France
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
7
|
Abstract
Understanding the factors that shape viral evolution is critical for developing effective antiviral strategies, accurately predicting viral evolution, and preventing pandemics. One fundamental determinant of viral evolution is the interplay between viral protein biophysics and the host machineries that regulate protein folding and quality control. Most adaptive mutations in viruses are biophysically deleterious, resulting in a viral protein product with folding defects. In cells, protein folding is assisted by a dynamic system of chaperones and quality control processes known as the proteostasis network. Host proteostasis networks can determine the fates of viral proteins with biophysical defects, either by assisting with folding or by targeting them for degradation. In this review, we discuss and analyze new discoveries revealing that host proteostasis factors can profoundly shape the sequence space accessible to evolving viral proteins. We also discuss the many opportunities for research progress proffered by the proteostasis perspective on viral evolution and adaptation.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Jessica E Patrick
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - C Brandon Ogbunugafor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
8
|
Si F, Song S, Yu R, Li Z, Wei W, Wu C. Coronavirus accessory protein ORF3 biology and its contribution to viral behavior and pathogenesis. iScience 2023; 26:106280. [PMID: 36945252 PMCID: PMC9972675 DOI: 10.1016/j.isci.2023.106280] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Coronavirus porcine epidemic diarrhea virus (PEDV) is classified in the genus Alphacoronavirus, family Coronaviridae that encodes the only accessory protein, ORF3 protein. However, how ORF3 contributes to viral pathogenicity, adaptability, and replication is obscure. In this review, we summarize current knowledge and identify gaps in many aspects of ORF3 protein in PEDV, with emphasis on its unique biological features, including membrane topology, Golgi retention mechanism, potential intrinsic disordered property, functional motifs, protein glycosylation, and codon usage phenotypes related to genetic evolution and gene expression. In addition, we propose intriguing questions related to ORF3 protein that we hope to stimulate further studies and encourage collaboration among virologists worldwide to provide constructive knowledge about the unique characteristics and biological functions of ORF3 protein, by which their potential role in clarifying viral behavior and pathogenesis can be possible.
Collapse
Affiliation(s)
- Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, P.R. China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, and Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangzhou 510640, P.R. China
| | - Ruisong Yu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, P.R. China
| | - Zhen Li
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, P.R. China
| | - Wenqiang Wei
- Department of Microbiology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Chao Wu
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Qin L, Ding S, He Z. Compositional biases and evolution of the largest plant RNA virus order Patatavirales. Int J Biol Macromol 2023; 240:124403. [PMID: 37076075 DOI: 10.1016/j.ijbiomac.2023.124403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/13/2023] [Accepted: 03/25/2023] [Indexed: 04/21/2023]
Abstract
Patatavirales is the largest order of plant RNA viruses and exclusively contains the family Potyviridae, accounting for 30 % of all known plant viruses. The composition bias of animal RNA viruses and several plant RNA viruses has been determined. However, the comprehensive nucleic acid composition, codon pair usage patterns, dinucleotide preference and codon pair preference of plant RNA viruses have not been investigated to date. In this study, integrated analysis and discussion of the nucleic acid composition, codon usage patterns, dinucleotide composition and codon pair bias of potyvirids were performed using 3732 complete genome coding sequences. The nucleic acid composition of potyvirids was significantly enriched in A/U. Interestingly, the A/U-rich nucleotide composition of Patatavirales is essential for determining the preferred A-ended and U-ended codons and the overexpression of UpG and CpA dinucleotides. The codon usage patterns and codon pair bias of potyvirids were significantly correlated with their nucleic acid composition. Additionally, the codon usage pattern, dinucleotide composition and codon-pair bias of potyvirids are more dependent on the classification of the virus compared with their hosts. Our analysis provides a better understanding of future research on the origin and evolution patterns of the order Patatavirales.
Collapse
Affiliation(s)
- Lang Qin
- College of Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou 225009, Jiangsu Province, PR China
| | - Shiwen Ding
- College of Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou 225009, Jiangsu Province, PR China
| | - Zhen He
- College of Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou 225009, Jiangsu Province, PR China.
| |
Collapse
|
10
|
Picard MAL, Leblay F, Cassan C, Willemsen A, Daron J, Bauffe F, Decourcelle M, Demange A, Bravo IG. Transcriptomic, proteomic, and functional consequences of codon usage bias in human cells during heterologous gene expression. Protein Sci 2023; 32:e4576. [PMID: 36692287 PMCID: PMC9926478 DOI: 10.1002/pro.4576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/25/2023]
Abstract
Differences in codon frequency between genomes, genes, or positions along a gene, modulate transcription and translation efficiency, leading to phenotypic and functional differences. Here, we present a multiscale analysis of the effects of synonymous codon recoding during heterologous gene expression in human cells, quantifying the phenotypic consequences of codon usage bias at different molecular and cellular levels, with an emphasis on translation elongation. Six synonymous versions of an antibiotic resistance gene were generated, fused to a fluorescent reporter, and independently expressed in HEK293 cells. Multiscale phenotype was analyzed by means of quantitative transcriptome and proteome assessment, as proxies for gene expression; cellular fluorescence, as a proxy for single-cell level expression; and real-time cell proliferation in absence or presence of antibiotic, as a proxy for the cell fitness. We show that differences in codon usage bias strongly impact the molecular and cellular phenotype: (i) they result in large differences in mRNA levels and protein levels, leading to differences of over 15 times in translation efficiency; (ii) they introduce unpredicted splicing events; (iii) they lead to reproducible phenotypic heterogeneity; and (iv) they lead to a trade-off between the benefit of antibiotic resistance and the burden of heterologous expression. In human cells in culture, codon usage bias modulates gene expression by modifying mRNA availability and suitability for translation, leading to differences in protein levels and eventually eliciting functional phenotypic changes.
Collapse
Affiliation(s)
- Marion A. L. Picard
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| | - Fiona Leblay
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| | - Cécile Cassan
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| | - Anouk Willemsen
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| | - Josquin Daron
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| | - Frédérique Bauffe
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| | - Mathilde Decourcelle
- BioCampus Montpellier (University of Montpellier, CNRS, INSERM)MontpellierFrance
| | - Antonin Demange
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| | - Ignacio G. Bravo
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| |
Collapse
|
11
|
Oliveira G, Vogels CBF, Zolfaghari A, Saraf S, Klitting R, Weger-Lucarelli J, P. Leon K, Ontiveros CO, Agarwal R, Tsetsarkin KA, Harris E, Ebel GD, Wohl S, Grubaugh ND, Andersen KG. Genomic and phenotypic analyses suggest moderate fitness differences among Zika virus lineages. PLoS Negl Trop Dis 2023; 17:e0011055. [PMID: 36753510 PMCID: PMC9907835 DOI: 10.1371/journal.pntd.0011055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 12/22/2022] [Indexed: 02/09/2023] Open
Abstract
RNA viruses have short generation times and high mutation rates, allowing them to undergo rapid molecular evolution during epidemics. However, the extent of RNA virus phenotypic evolution within epidemics and the resulting effects on fitness and virulence remain mostly unknown. Here, we screened the 2015-2016 Zika epidemic in the Americas for lineage-specific fitness differences. We engineered a library of recombinant viruses representing twelve major Zika virus lineages and used them to measure replicative fitness within disease-relevant human primary cells and live mosquitoes. We found that two of these lineages conferred significant in vitro replicative fitness changes among human primary cells, but we did not find fitness changes in Aedes aegypti mosquitoes. Additionally, we found evidence for elevated levels of positive selection among five amino acid sites that define major Zika virus lineages. While our work suggests that Zika virus may have acquired several phenotypic changes during a short time scale, these changes were relatively moderate and do not appear to have enhanced transmission during the epidemic.
Collapse
Affiliation(s)
- Glenn Oliveira
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Ashley Zolfaghari
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sharada Saraf
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Raphaelle Klitting
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Karla P. Leon
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Carlos O. Ontiveros
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Rimjhim Agarwal
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Konstantin A. Tsetsarkin
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Shirlee Wohl
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
12
|
Ravi V, Swaminathan A, Yadav S, Arya H, Pandey R. SARS-CoV-2 Variants of Concern and Variations within Their Genome Architecture: Does Nucleotide Distribution and Mutation Rate Alter the Functionality and Evolution of the Virus? Viruses 2022; 14:2499. [PMID: 36423107 PMCID: PMC9694950 DOI: 10.3390/v14112499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 virus pathogenicity and transmissibility are correlated with the mutations acquired over time, giving rise to variants of concern (VOCs). Mutations can significantly influence the genetic make-up of the virus. Herein, we analyzed the SARS-CoV-2 genomes and sub-genomic nucleotide composition in relation to the mutation rate. Nucleotide percentage distributions of 1397 in-house-sequenced SARS-CoV-2 genomes were enumerated, and comparative analyses (i) within the VOCs and of (ii) recovered and mortality patients were performed. Fisher's test was carried out to highlight the significant mutations, followed by RNA secondary structure prediction and protein modeling for their functional impacts. Subsequently, a uniform dinucleotide composition of AT and GC was found across study cohorts. Notably, the N gene was observed to have a high GC percentage coupled with a relatively higher mutation rate. Functional analysis demonstrated the N gene mutations, C29144T and G29332T, to induce structural changes at the RNA level. Protein secondary structure prediction with N gene missense mutations revealed a differential composition of alpha helices, beta sheets, and coils, whereas the tertiary structure displayed no significant changes. Additionally, the N gene CTD region displayed no mutations. The analysis highlighted the importance of N protein in viral evolution with CTD as a possible target for antiviral drugs.
Collapse
Affiliation(s)
- Varsha Ravi
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Division of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Aparna Swaminathan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Division of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Sunita Yadav
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Division of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Hemant Arya
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Division of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Division of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
He Z, Qin L, Xu X, Ding S. Evolution and host adaptability of plant RNA viruses: Research insights on compositional biases. Comput Struct Biotechnol J 2022; 20:2600-2610. [PMID: 35685354 PMCID: PMC9160401 DOI: 10.1016/j.csbj.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/23/2023] Open
Abstract
During recent decades, many new emerging or re-emerging RNA viruses have been found in plants through the development of deep-sequencing technology and big data analysis. These findings largely changed our understanding of the origin, evolution and host range of plant RNA viruses. There is evidence that their genetic composition originates from viruses, and host populations play a key role in the evolution and host adaptability of plant RNA viruses. In this mini-review, we describe the state of our understanding of the evolution of plant RNA viruses in view of compositional biases and explore how they adapt to the host. It appears that adenine rich (A-rich) coding sequences, low CpG and UpA dinucleotide frequencies and lower codon usage patterns were found in the vast majority of plant RNA viruses. The codon usage pattern of plant RNA viruses was influenced by both natural selection and mutation pressure, and natural selection mostly from hosts was the dominant factor. The codon adaptation analyses support that plant RNA viruses probably evolved a dynamic balance between codon adaptation and deoptimization to maintain efficient replication cycles in multiple hosts with various codon usage patterns. In the future, additional combinations of computational and experimental analyses of the nucleotide composition and codon usage of plant RNA viruses should be addressed.
Collapse
Affiliation(s)
- Zhen He
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
- Corresponding author.
| | - Lang Qin
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
| | - Xiaowei Xu
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
| | - Shiwen Ding
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
| |
Collapse
|
14
|
Abstract
Vertebrate immune systems suppress viral infection using both innate restriction factors and adaptive immunity. Viruses mutate to escape these defenses, driving hosts to counterevolve to regain fitness. This cycle recurs repeatedly, resulting in an evolutionary arms race whose outcome depends on the pace and likelihood of adaptation by host and viral genes. Although viruses evolve faster than their vertebrate hosts, their proteins are subject to numerous functional constraints that impact the probability of adaptation. These constraints are globally defined by evolutionary landscapes, which describe the fitness and adaptive potential of all possible mutations. We review deep mutational scanning experiments mapping the evolutionary landscapes of both host and viral proteins engaged in arms races. For restriction factors and some broadly neutralizing antibodies, landscapes favor the host, which may help to level the evolutionary playing field against rapidly evolving viruses. We discuss the biophysical underpinnings of these landscapes and their therapeutic implications.
Collapse
Affiliation(s)
- Jeannette L Tenthorey
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; , ,
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; , , .,Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; , , .,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
15
|
Gaunt ER, Digard P. Compositional biases in RNA viruses: Causes, consequences and applications. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1679. [PMID: 34155814 PMCID: PMC8420353 DOI: 10.1002/wrna.1679] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2023]
Abstract
If each of the four nucleotides were represented equally in the genomes of viruses and the hosts they infect, each base would occur at a frequency of 25%. However, this is not observed in nature. Similarly, the order of nucleotides is not random (e.g., in the human genome, guanine follows cytosine at a frequency of ~0.0125, or a quarter the number of times predicted by random representation). Codon usage and codon order are also nonrandom. Furthermore, nucleotide and codon biases vary between species. Such biases have various drivers, including cellular proteins that recognize specific patterns in nucleic acids, that once triggered, induce mutations or invoke intrinsic or innate immune responses. In this review we examine the types of compositional biases identified in viral genomes and current understanding of the evolutionary mechanisms underpinning these trends. Finally, we consider the potential for large scale synonymous recoding strategies to engineer RNA virus vaccines, including those with pandemic potential, such as influenza A virus and Severe Acute Respiratory Syndrome Coronavirus Virus 2. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > Computational Analyses of RNA RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
- Eleanor R. Gaunt
- Department of Infection and ImmunityThe Roslin Institute, The University of EdinburghEdinburghUK
| | - Paul Digard
- Department of Infection and ImmunityThe Roslin Institute, The University of EdinburghEdinburghUK
| |
Collapse
|
16
|
A novel statistical method predicts mutability of the genomic segments of the SARS-CoV-2 virus. QRB DISCOVERY 2021; 3:e1. [PMID: 35106478 PMCID: PMC8795775 DOI: 10.1017/qrd.2021.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/28/2021] [Accepted: 11/26/2021] [Indexed: 11/06/2022] Open
Abstract
Abstract
The SARS-CoV-2 virus has made the largest pandemic of the 21st century, with hundreds of millions of cases and tens of millions of fatalities. Scientists all around the world are racing to develop vaccines and new pharmaceuticals to overcome the pandemic and offer effective treatments for COVID-19 disease. Consequently, there is an essential need to better understand how the pathogenesis of SARS-CoV-2 is affected by viral mutations and to determine the conserved segments in the viral genome that can serve as stable targets for novel therapeutics. Here, we introduce a text-mining method to estimate the mutability of genomic segments directly from a reference (ancestral) whole genome sequence. The method relies on calculating the importance of genomic segments based on their spatial distribution and frequency over the whole genome. To validate our approach, we perform a large-scale analysis of the viral mutations in nearly 80,000 publicly available SARS-CoV-2 predecessor whole genome sequences and show that these results are highly correlated with the segments predicted by the statistical method used for keyword detection. Importantly, these correlations are found to hold at the codon and gene levels, as well as for gene coding regions. Using the text-mining method, we further identify codon sequences that are potential candidates for siRNA-based antiviral drugs. Significantly, one of the candidates identified in this work corresponds to the first seven codons of an epitope of the spike glycoprotein, which is the only SARS-CoV-2 immunogenic peptide without a match to a human protein.
Collapse
|
17
|
Si F, Jiang L, Yu R, Wei W, Li Z. Study on the Characteristic Codon Usage Pattern in Porcine Epidemic Diarrhea Virus Genomes and Its Host Adaptation Phenotype. Front Microbiol 2021; 12:738082. [PMID: 34733253 PMCID: PMC8558211 DOI: 10.3389/fmicb.2021.738082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), which classified in the genus Alphacoronavirus, family Coronaviridae, is one of the most important pathogens that cause heavy economic losses in pig industry. Although intensive mutation and recombination analysis of PEDV strains were provided, systematic genome analysis were needed to elucidate the evolution mechanism and codon usage adaptation profiles of the pathogen. Here, a comprehensive investigation was carried out to reveal the systematic evolutionary processes of synonymous codon usage and host-adapted evolution phenotype of PEDV genome. We found a low codon usage bias (CUB) in PEDV genome and that nucleotide compositions, natural selection, mutation pressure and geographical diversity shapes the codon usage patterns of PEDV, with natural selection dominated the overall codon usage bias in PEDV than the others. By using the relative codon deoptimization index (RCDI) and similarity index (SiD) analysis, we observed that genotype II PEDV strains showed the highest level of adaptation phenotype to Sus scrofa than another divergent clade. To the best of our knowledge, this is the first comprehensive report elaborating the codon usage and host adaptation of PEDV. The findings offer an insight into our understanding of factors involved in PEDV evolution, adaptation and fitness toward their hosts.
Collapse
Affiliation(s)
- Fusheng Si
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Li Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ruisong Yu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wenqiang Wei
- Department of Microbiology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhen Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
18
|
In Silico Analysis of Dengue Virus Serotype 2 Mutations Detected at the Intrahost Level in Patients with Different Clinical Outcomes. Microbiol Spectr 2021; 9:e0025621. [PMID: 34468189 PMCID: PMC8557815 DOI: 10.1128/spectrum.00256-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intrahost genetic diversity is thought to facilitate arbovirus adaptation to changing environments and hosts, and it may also be linked to viral pathogenesis. Intending to shed light on the viral determinants for severe dengue pathogenesis, we previously analyzed the DENV-2 intrahost genetic diversity in 68 patients clinically classified as dengue fever (n = 31), dengue with warning signs (n = 19), and severe dengue (n = 18), performing viral whole-genome deep sequencing from clinical samples with an amplicon-free approach. From it, we identified a set of 141 relevant mutations distributed throughout the viral genome that deserved further attention. Therefore, we employed molecular modeling to recreate three-dimensional models of the viral proteins and secondary RNA structures to map the mutations and assess their potential effects. Results showed that, in general lines, disruptive variants were identified primarily among dengue fever cases. In contrast, potential immune-escape variants were associated mainly with warning signs and severe cases, in line with the latter's longer intrahost evolution times. Furthermore, several mutations were located on protein-surface regions, with no associated function. They could represent sites of further investigation, as the interaction of viral and host proteins is critical for both host immunomodulation and virus hijacking of the cellular machinery. The present analysis provides new information about the implications of the intrahost genetic diversity of DENV-2, contributing to the knowledge about the viral factors possibly involved in its pathogenesis within the human host. Strengthening our results with functional studies could allow many of these variants to be considered in the design of therapeutic or prophylactic compounds and the improvement of diagnostic assays. IMPORTANCE Previous evidence showed that intrahost genetic diversity in arboviruses may be linked to viral pathogenesis and that one or a few amino acid replacements within a single protein are enough to modify a biological feature of an RNA virus. To assess dengue virus serotype 2 determinants potentially involved in pathogenesis, we previously analyzed the intrahost genetic diversity of the virus in patients with different clinical outcomes and identified a set of 141 mutations that deserved further study. Thus, through a molecular modeling approach, we showed that disruptive variants were identified primarily among cases with mild dengue fever, while potential immune-escape variants were mainly associated with cases of greater severity. We believe that some of the variants pointed out in this study were attractive enough to be potentially considered in future intelligent designs of therapeutic or prophylactic compounds or the improvement of diagnostic tools. The present analysis provides new information about DENV-2 viral factors possibly involved in its pathogenesis within the human host.
Collapse
|
19
|
Abstract
Background: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had led to a global pandemic since December 2019. SARS-CoV-2 is a single-stranded RNA virus, which mutates at a higher rate. Multiple studies had been done to identify and study nonsynonymous mutations, which change amino acid residues of SARS-CoV-2 proteins. On the other hand, there is little study on the effects of SARS-CoV-2 synonymous mutations. Although these mutations do not alter amino acids, some studies suggest that they may affect viral fitness. This study aims to predict the effect of synonymous mutations on the SARS-CoV-2 genome. Methods: A total of 30,229 SARS-CoV-2 genomic sequences were retrieved from Global Initiative on Sharing all Influenza Data (GISAID) database and aligned using MAFFT. Then, the mutations and their respective frequency were identified. A prediction of RNA secondary structures and their base pair probabilities was performed to study the effect of synonymous mutations on RNA structure and stability. Relative synonymous codon usage (RSCU) analysis was also performed to measure the codon usage bias (CUB) of SARS-CoV-2. Results: A total of 150 synonymous mutations were identified. The synonymous mutation identified with the highest frequency is C3037U mutation in the nsp3 of ORF1a, followed by C313U and C9286U mutation in nsp1 and nsp4 of ORF1a, respectively. Conclusion: Among the synonymous mutations identified, C913U mutation in ORF1a and C26735U in membrane (M) protein may affect RNA secondary structure, reducing the stability of RNA folding and possibly resulting in a higher translation rate. However, lab experiments are required to validate the results obtained from prediction analysis.
Collapse
|
20
|
Bakre AA, Duffy C, Abdullah H, Cosby SL, Tripp RA. Small Non-coding RNA Expression Following Respiratory Syncytial Virus or Measles Virus Infection of Neuronal Cells. Front Microbiol 2021; 12:671852. [PMID: 34539595 PMCID: PMC8446675 DOI: 10.3389/fmicb.2021.671852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) or measles virus (MeV) infection modifies host responses through small non-coding RNA (sncRNA) expression. We show that RSV or MeV infection of neuronal cells induces sncRNAs including various microRNAs and transfer RNA fragments (tRFs). We show that these tRFs originate from select tRNAs (GCC and CAC for glycine, CTT and AAC for Valine, and CCC and TTT for Lysine). Some of the tRNAs are rarely used by RSV or MeV as indicated by relative synonymous codon usage indices suggesting selective cleavage of the tRNAs occurs in infected neuronal cells. The data implies that differentially expressed sncRNAs may regulate host gene expression via multiple mechanisms in neuronal cells.
Collapse
Affiliation(s)
- Abhijeet A Bakre
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Catherine Duffy
- Virology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Hani'ah Abdullah
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - S Louise Cosby
- Virology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
21
|
Pintó RM, Bosch A. The Codon Usage Code for Cotranslational Folding of Viral Capsids. Genome Biol Evol 2021; 13:evab089. [PMID: 33914886 PMCID: PMC8410136 DOI: 10.1093/gbe/evab089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/25/2022] Open
Abstract
Codon bias is common to all organisms and is the result of mutation, drift, and selection. Selection for the efficiency and accuracy of translation is well recognized as a factor shaping the codon usage. In contrast, fewer studies report the control of the rate of translation as an additional selective pressure influencing the codon usage of an organism. Experimental molecular evolution using RNA virus populations is a powerful tool for the identification of mechanisms underlying the codon bias. Indeed, the role of deoptimized codons on the cotranslational folding has been proven in the capsids of two fecal-orally transmitted picornaviruses, poliovirus, and the hepatitis A virus, emphasizing the role of the frequency of codons in determining the phenotype. However, most studies on virus codon usage rely only on computational analyses, and experimental studies should be encouraged to clearly define the role of selection on codon evolution.
Collapse
Affiliation(s)
- Rosa M Pintó
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Hoxie I, Dennehy JJ. Rotavirus A Genome Segments Show Distinct Segregation and Codon Usage Patterns. Viruses 2021; 13:v13081460. [PMID: 34452326 PMCID: PMC8402926 DOI: 10.3390/v13081460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
Reassortment of the Rotavirus A (RVA) 11-segment dsRNA genome may generate new genome constellations that allow RVA to expand its host range or evade immune responses. Reassortment may also produce phylogenetic incongruities and weakly linked evolutionary histories across the 11 segments, obscuring reassortment-specific epistasis and changes in substitution rates. To determine the co-segregation patterns of RVA segments, we generated time-scaled phylogenetic trees for each of the 11 segments of 789 complete RVA genomes isolated from mammalian hosts and compared the segments’ geodesic distances. We found that segments 4 (VP4) and 9 (VP7) occupied significantly different tree spaces from each other and from the rest of the genome. By contrast, segments 10 and 11 (NSP4 and NSP5/6) occupied nearly indistinguishable tree spaces, suggesting strong co-segregation. Host-species barriers appeared to vary by segment, with segment 9 (VP7) presenting the weakest association with host species. Bayesian Skyride plots were generated for each segment to compare relative genetic diversity among segments over time. All segments showed a dramatic decrease in diversity around 2007 coinciding with the introduction of RVA vaccines. To assess selection pressures, codon adaptation indices and relative codon deoptimization indices were calculated with respect to different host genomes. Codon usage varied by segment with segment 11 (NSP5) exhibiting significantly higher adaptation to host genomes. Furthermore, RVA codon usage patterns appeared optimized for expression in humans and birds relative to the other hosts examined, suggesting that translational efficiency is not a barrier in RVA zoonosis.
Collapse
Affiliation(s)
- Irene Hoxie
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
- Correspondence:
| | - John J. Dennehy
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
| |
Collapse
|
23
|
Trimpert J, Dietert K, Firsching TC, Ebert N, Thi Nhu Thao T, Vladimirova D, Kaufer S, Labroussaa F, Abdelgawad A, Conradie A, Höfler T, Adler JM, Bertzbach LD, Jores J, Gruber AD, Thiel V, Osterrieder N, Kunec D. Development of safe and highly protective live-attenuated SARS-CoV-2 vaccine candidates by genome recoding. Cell Rep 2021; 36:109493. [PMID: 34320400 PMCID: PMC8289629 DOI: 10.1016/j.celrep.2021.109493] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/21/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Safe and effective vaccines are urgently needed to stop the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We construct a series of live attenuated vaccine candidates by large-scale recoding of the SARS-CoV-2 genome and assess their safety and efficacy in Syrian hamsters. Animals were vaccinated with a single dose of the respective recoded virus and challenged 21 days later. Two of the tested viruses do not cause clinical symptoms but are highly immunogenic and induce strong protective immunity. Attenuated viruses replicate efficiently in the upper but not in the lower airways, causing only mild pulmonary histopathology. After challenge, hamsters develop no signs of disease and rapidly clear challenge virus: at no time could infectious virus be recovered from the lungs of infected animals. The ease with which attenuated virus candidates can be produced and administered favors their further development as vaccines to combat the ongoing pandemic.
Collapse
Affiliation(s)
- Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Kristina Dietert
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany; Tiermedizinisches Zentrum für Resistenzforschung, Freie Universität Berlin, Berlin, Germany
| | | | - Nadine Ebert
- Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tran Thi Nhu Thao
- Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Biomedical Science, University of Bern, Bern, Switzerland
| | | | - Susanne Kaufer
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Fabien Labroussaa
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Azza Abdelgawad
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Andelé Conradie
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Thomas Höfler
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Julia M Adler
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Luca D Bertzbach
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Joerg Jores
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Achim D Gruber
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | - Volker Thiel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nikolaus Osterrieder
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Dusan Kunec
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
24
|
Abstract
Atypical porcine pestivirus (APPV) has been identified as the main causative agent for congenital tremor (CT) type A-II in piglets, which is threatening the health of the global swine herd. However, the evolution of APPV remains largely unknown. In this study, phylogenetic analysis showed that APPV could be divided into three phylogroups (I, II, and III). Phylogroups I and II included viral strains from China, while phylogroup III contained strains from Europe, North America, and Asia. Phylogroups I and II are tentatively thought to be of Chinese origin. Next, compositional property analysis revealed that a high frequency of nucleotide A and A-end codons was used in the APPV genome. Intriguingly, the analysis of preferred codons revealed that the AGA[Arg] and AGG[Arg] were overrepresented. Dinucleotide CC was found to be overrepresented, and dinucleotide CG was underrepresented. Furthermore, it was found that the weak codon usage bias of APPV was mainly dominated by selection pressures versus mutational forces. The codon adaptation index (CAI), relative codon deoptimization index (RCDI), and similarity index (SiD) analyses showed that the codon usage patterns of phylogroup II and III were more similar to the one of a pig than phylogroup I, suggesting that phylogroup II and III may be more adaptive to pigs. Overall, this study provides insights into APPV evolution through phylogeny and codon usage pattern analysis.
Collapse
Affiliation(s)
- Shuonan Pan
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Institute of Comparative Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China
| | - Huiguang Wu
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Institute of Comparative Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Institute of Comparative Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|
25
|
Pereira-Gómez M, Carrau L, Fajardo Á, Moreno P, Moratorio G. Altering Compositional Properties of Viral Genomes to Design Live-Attenuated Vaccines. Front Microbiol 2021; 12:676582. [PMID: 34276608 PMCID: PMC8278477 DOI: 10.3389/fmicb.2021.676582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022] Open
Abstract
Live-attenuated vaccines have been historically used to successfully prevent numerous diseases caused by a broad variety of RNA viruses due to their ability to elicit strong and perdurable immune-protective responses. In recent years, various strategies have been explored to achieve viral attenuation by rational genetic design rather than using classic and empirical approaches, based on successive passages in cell culture. A deeper understanding of evolutionary implications of distinct viral genomic compositional aspects, as well as substantial advances in synthetic biology technologies, have provided a framework to achieve new viral attenuation strategies. Herein, we will discuss different approaches that are currently applied to modify compositional features of viruses in order to develop novel live-attenuated vaccines.
Collapse
Affiliation(s)
- Marianoel Pereira-Gómez
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Lucía Carrau
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Álvaro Fajardo
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
26
|
Virus-like insertions with sequence signatures similar to those of endogenous nonretroviral RNA viruses in the human genome. Proc Natl Acad Sci U S A 2021; 118:2010758118. [PMID: 33495343 DOI: 10.1073/pnas.2010758118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Understanding the genetics and taxonomy of ancient viruses will give us great insights into not only the origin and evolution of viruses but also how viral infections played roles in our evolution. Endogenous viruses are remnants of ancient viral infections and are thought to retain the genetic characteristics of viruses from ancient times. In this study, we used machine learning of endogenous RNA virus sequence signatures to identify viruses in the human genome that have not been detected or are already extinct. Here, we show that the k-mer occurrence of ancient RNA viral sequences remains similar to that of extant RNA viral sequences and can be differentiated from that of other human genome sequences. Furthermore, using this characteristic, we screened RNA viral insertions in the human reference genome and found virus-like insertions with phylogenetic and evolutionary features indicative of an exogenous origin but lacking homology to previously identified sequences. Our analysis indicates that animal genomes still contain unknown virus-derived sequences and provides a glimpse into the diversity of the ancient virosphere.
Collapse
|
27
|
Tournier JN, Kononchik J. Virus Eradication and Synthetic Biology: Changes with SARS-CoV-2? Viruses 2021; 13:569. [PMID: 33800626 PMCID: PMC8066276 DOI: 10.3390/v13040569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
The eradication of infectious diseases has been achieved only once in history, in 1980, with smallpox. Since 1988, significant effort has been made to eliminate poliomyelitis viruses, but eradication is still just out of reach. As the goal of viral disease eradication approaches, the ability to recreate historically eradicated viruses using synthetic biology has the potential to jeopardize the long-term sustainability of eradication. However, the emergence of the severe acute respiratory syndrome-coronavirus (SARS-CoV)-2 pandemic has highlighted our ability to swiftly and resolutely respond to a potential outbreak. This virus has been synthetized faster than any other in the past and is resulting in vaccines before most attenuated candidates reach clinical trials. Here, synthetic biology has the opportunity to demonstrate its truest potential to the public and solidify a footing in the world of vaccines.
Collapse
Affiliation(s)
- Jean-Nicolas Tournier
- Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France;
- CNRS UMR-3569, Innovative Vaccine Laboratory, Virology Department, Institut Pasteur, 75015 Paris, France
- Ecole du Val-de-Grâce, 75005 Paris, France
| | - Joseph Kononchik
- Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France;
- US Army Medical Research Institute of Chemical Defense (USAMRICD), 8350 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA
- Toxicology and Chemical Risk Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| |
Collapse
|
28
|
Mattenberger F, Vila-Nistal M, Geller R. Increased RNA virus population diversity improves adaptability. Sci Rep 2021; 11:6824. [PMID: 33767337 PMCID: PMC7994910 DOI: 10.1038/s41598-021-86375-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/15/2021] [Indexed: 11/20/2022] Open
Abstract
The replication machinery of most RNA viruses lacks proofreading mechanisms. As a result, RNA virus populations harbor a large amount of genetic diversity that confers them the ability to rapidly adapt to changes in their environment. In this work, we investigate whether further increasing the initial population diversity of a model RNA virus can improve adaptation to a single selection pressure, thermal inactivation. For this, we experimentally increased the diversity of coxsackievirus B3 (CVB3) populations across the capsid region. We then compared the ability of these high diversity CVB3 populations to achieve resistance to thermal inactivation relative to standard CVB3 populations in an experimental evolution setting. We find that viral populations with high diversity are better able to achieve resistance to thermal inactivation at both the temperature employed during experimental evolution as well as at a more extreme temperature. Moreover, we identify mutations in the CVB3 capsid that confer resistance to thermal inactivation, finding significant mutational epistasis. Our results indicate that even naturally diverse RNA virus populations can benefit from experimental augmentation of population diversity for optimal adaptation and support the use of such viral populations in directed evolution efforts that aim to select viruses with desired characteristics.
Collapse
Affiliation(s)
- Florian Mattenberger
- Institute for Integrative Systems Biology, I2SysBio (Universitat de València-CSIC), C. Catedràtic José Beltrán 2, 46980, Paterna, Spain
| | - Marina Vila-Nistal
- Department of Physiology, Genetics and Microbiology, Universidad de Alicante, C. San Vicente del Raspeig s/n, 03690, Alicante, Spain
| | - Ron Geller
- Institute for Integrative Systems Biology, I2SysBio (Universitat de València-CSIC), C. Catedràtic José Beltrán 2, 46980, Paterna, Spain.
| |
Collapse
|
29
|
Jordan-Paiz A, Franco S, Martínez MA. Impact of Synonymous Genome Recoding on the HIV Life Cycle. Front Microbiol 2021; 12:606087. [PMID: 33796084 PMCID: PMC8007914 DOI: 10.3389/fmicb.2021.606087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Synonymous mutations within protein coding regions introduce changes in DNA or messenger (m) RNA, without mutating the encoded proteins. Synonymous recoding of virus genomes has facilitated the identification of previously unknown virus biological features. Moreover, large-scale synonymous recoding of the genome of human immunodeficiency virus type 1 (HIV-1) has elucidated new antiviral mechanisms within the innate immune response, and has improved our knowledge of new functional virus genome structures, the relevance of codon usage for the temporal regulation of viral gene expression, and HIV-1 mutational robustness and adaptability. Continuous improvements in our understanding of the impacts of synonymous substitutions on virus phenotype - coupled with the decreased cost of chemically synthesizing DNA and improved methods for assembling DNA fragments - have enhanced our ability to identify potential HIV-1 and host factors and other aspects involved in the infection process. In this review, we address how silent mutagenesis impacts HIV-1 phenotype and replication capacity. We also discuss the general potential of synonymous recoding of the HIV-1 genome to elucidate unknown aspects of the virus life cycle, and to identify new therapeutic targets.
Collapse
Affiliation(s)
- Ana Jordan-Paiz
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Sandra Franco
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Miguel Angel Martínez
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| |
Collapse
|
30
|
Villa TG, Abril AG, Sánchez S, de Miguel T, Sánchez-Pérez A. Animal and human RNA viruses: genetic variability and ability to overcome vaccines. Arch Microbiol 2021; 203:443-464. [PMID: 32989475 PMCID: PMC7521576 DOI: 10.1007/s00203-020-02040-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/29/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023]
Abstract
RNA viruses, in general, exhibit high mutation rates; this is mainly due to the low fidelity displayed by the RNA-dependent polymerases required for their replication that lack the proofreading machinery to correct misincorporated nucleotides and produce high mutation rates. This lack of replication fidelity, together with the fact that RNA viruses can undergo spontaneous mutations, results in genetic variants displaying different viral morphogenesis, as well as variation on their surface glycoproteins that affect viral antigenicity. This diverse viral population, routinely containing a variety of mutants, is known as a viral 'quasispecies'. The mutability of their virions allows for fast evolution of RNA viruses that develop antiviral resistance and overcome vaccines much more rapidly than DNA viruses. This also translates into the fact that pathogenic RNA viruses, that cause many diseases and deaths in humans, represent the major viral group involved in zoonotic disease transmission, and are responsible for worldwide pandemics.
Collapse
Affiliation(s)
- T G Villa
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 5706, Santiago de Compostela, Spain.
| | - Ana G Abril
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 5706, Santiago de Compostela, Spain
| | - S Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 5706, Santiago de Compostela, Spain
| | - T de Miguel
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 5706, Santiago de Compostela, Spain
| | - A Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
31
|
Abstract
The development of safe and effective vaccines against viruses is central to disease control. With advancements in DNA synthesis technology, the production of synthetic viral genomes has fueled many research efforts that aim to generate attenuated viruses by introducing synonymous mutations. Elucidation of the mechanisms underlying virus attenuation through synonymous mutagenesis is revealing interesting new biology that can be exploited for vaccine development. Here, we review recent advancements in this field of synthetic virology and focus on the molecular mechanisms of attenuation by genetic recoding of viruses. We highlight the action of the zinc finger antiviral protein (ZAP) and RNase L, two proteins involved in the inhibition of viruses enriched for CpG and UpA dinucleotides, that are often the products of virus recoding algorithms. Additionally, we discuss current challenges in the field as well as studies that may illuminate how other host functions, such as translation, are potentially involved in the attenuation of recoded viruses.
Collapse
|
32
|
Jung T, Hackbarth M, Horn H, Gescher J. Improving the Cathodic Biofilm Growth Capabilities of Kyrpidia spormannii EA-1 by Undirected Mutagenesis. Microorganisms 2020; 9:microorganisms9010077. [PMID: 33396703 PMCID: PMC7823960 DOI: 10.3390/microorganisms9010077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/18/2022] Open
Abstract
The biotechnological usage of carbon dioxide has become a relevant aim for future processes. Microbial electrosynthesis is a rather new technique to energize biological CO2 fixation with the advantage to establish a continuous process based on a cathodic biofilm that is supplied with renewable electrical energy as electron and energy source. In this study, the recently characterized cathodic biofilm forming microorganism Kyrpidia spormannii strain EA-1 was used in an adaptive laboratory evolution experiment to enhance its cathodic biofilm growth capabilities. At the end of the experiment, the adapted cathodic population exhibited an up to fourfold higher biofilm accumulation rate, as well as faster substratum coverage and a more uniform biofilm morphology compared to the progenitor strain. Genomic variant analysis revealed a genomically heterogeneous population with genetic variations occurring to various extends throughout the community. Via the conducted analysis we identified possible targets for future genetic engineering with the aim to further optimize cathodic growth. Moreover, the results assist in elucidating the underlying processes that enable cathodic biofilm formation.
Collapse
Affiliation(s)
- Tobias Jung
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Max Hackbarth
- Engler-Bunte-Institut, Chair of Water Chemistry and Water Technology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany
| | - Harald Horn
- Engler-Bunte-Institut, Chair of Water Chemistry and Water Technology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany
| | - Johannes Gescher
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
- Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
33
|
Chen Z, Boon SS, Wang MH, Chan RWY, Chan PKS. Genomic and evolutionary comparison between SARS-CoV-2 and other human coronaviruses. J Virol Methods 2020; 289:114032. [PMID: 33290786 PMCID: PMC7718587 DOI: 10.1016/j.jviromet.2020.114032] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/15/2020] [Accepted: 12/02/2020] [Indexed: 11/28/2022]
Abstract
Three highly pathogenic human coronaviruses can cause severe acute respiratory syndrome (SARS-CoV, SARS-CoV-2 and MERS-CoV). Although phylogenetic analyses have indicated ancient origin of human coronaviruses from animal relatives, their evolutionary history remains to be established. Using phylogenetics and “high order genomic structures” including trimer spectrums, codon usage and dinucleotide suppression, we observed distinct clustering of all human coronaviruses that formed phylogenetic clades with their closest animal relatives, indicating they have encompassed long evolutionary histories within specific ecological niches before jumping species barrier to infect humans. The close relationships between SARS-CoV and SARS-CoV-2 imply similar evolutionary origin. However, a lower Effective Codon Number (ENC) pattern and CpG dinucleotide suppression in SARS-CoV-2 genomes compared to SARS-CoV and MERS-CoV may imply a better host fitness, and thus their success in sustaining a pandemic. Characterization of coronavirus heterogeneity via complementary approaches enriches our understanding on the evolution and virus-host interaction of these emerging human pathogens while the underlying mechanistic basis in pathogenicity warrants further investigation.
Collapse
Affiliation(s)
- Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Siaw S Boon
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Maggie H Wang
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Renee W Y Chan
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Paul K S Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
34
|
Cheng S, Wu H, Chen Z. Evolution of Transmissible Gastroenteritis Virus (TGEV): A Codon Usage Perspective. Int J Mol Sci 2020; 21:E7898. [PMID: 33114322 PMCID: PMC7660598 DOI: 10.3390/ijms21217898] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a coronavirus associated with diarrhea and high mortality in piglets. To gain insight into the evolution and adaptation of TGEV, a comprehensive analysis of phylogeny and codon usage bias was performed. The phylogenetic analyses of maximum likelihood and Bayesian inference displayed two distinct genotypes: genotypes I and II, and genotype I was classified into subtypes Ia and Ib. The compositional properties revealed that the coding sequence contained a higher number of A/U nucleotides than G/C nucleotides, and that the synonymous codon third position was A/U-enriched. The principal component analysis based on the values of relative synonymous codon usage (RSCU) showed the genotype-specific codon usage patterns. The effective number of codons (ENC) indicated moderate codon usage bias in the TGEV genome. Dinucleotide analysis showed that CpA and UpG were over-represented and CpG was under-represented in the coding sequence of the TGEV genome. The analyses of Parity Rule 2 plot, ENC-plot, and neutrality plot displayed that natural selection was the dominant evolutionary driving force in shaping codon usage preference in genotypes Ia and II. In addition, natural selection played a major role, while mutation pressure had a minor role in driving the codon usage bias in genotype Ib. The codon adaptation index (CAI), relative codon deoptimization index (RCDI), and similarity index (SiD) analyses suggested that genotype I might be more adaptive to pigs than genotype II. Current findings contribute to understanding the evolution and adaptation of TGEV.
Collapse
Affiliation(s)
- Saipeng Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Huiguang Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
35
|
Schwersensky M, Rooman M, Pucci F. Large-scale in silico mutagenesis experiments reveal optimization of genetic code and codon usage for protein mutational robustness. BMC Biol 2020; 18:146. [PMID: 33081759 PMCID: PMC7576759 DOI: 10.1186/s12915-020-00870-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/16/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND How, and the extent to which, evolution acts on DNA and protein sequences to ensure mutational robustness and evolvability is a long-standing open question in the field of molecular evolution. We addressed this issue through the first structurome-scale computational investigation, in which we estimated the change in folding free energy upon all possible single-site mutations introduced in more than 20,000 protein structures, as well as through available experimental stability and fitness data. RESULTS At the amino acid level, we found the protein surface to be more robust against random mutations than the core, this difference being stronger for small proteins. The destabilizing and neutral mutations are more numerous in the core and on the surface, respectively, whereas the stabilizing mutations are about 4% in both regions. At the genetic code level, we observed smallest destabilization for mutations that are due to substitutions of base III in the codon, followed by base I, bases I+III, base II, and other multiple base substitutions. This ranking highly anticorrelates with the codon-anticodon mispairing frequency in the translation process. This suggests that the standard genetic code is optimized to limit the impact of random mutations, but even more so to limit translation errors. At the codon level, both the codon usage and the usage bias appear to optimize mutational robustness and translation accuracy, especially for surface residues. CONCLUSION Our results highlight the non-universality of mutational robustness and its multiscale dependence on protein features, the structure of the genetic code, and the codon usage. Our analyses and approach are strongly supported by available experimental mutagenesis data.
Collapse
Affiliation(s)
- Martin Schwersensky
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, CP 165/61, Roosevelt Ave. 50, Brussels, 1050, Belgium
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, CP 165/61, Roosevelt Ave. 50, Brussels, 1050, Belgium.
- Interuniversity Institute of Bioinformatics in Brussels, Boulevard du Triomphe, Brussels, 1050, Belgium.
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, CP 165/61, Roosevelt Ave. 50, Brussels, 1050, Belgium.
- Interuniversity Institute of Bioinformatics in Brussels, Boulevard du Triomphe, Brussels, 1050, Belgium.
| |
Collapse
|
36
|
Lin CH, Yang CY, Wang M, Ou SC, Lo CY, Tsai TL, Wu HY. Effects of Coronavirus Persistence on the Genome Structure and Subsequent Gene Expression, Pathogenicity and Adaptation Capability. Cells 2020; 9:E2322. [PMID: 33086697 PMCID: PMC7589090 DOI: 10.3390/cells9102322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/04/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
Coronaviruses are able to establish persistence. However, how coronaviruses react to persistence and whether the selected viruses have altered their characteristics remain unclear. In this study, we found that the persistent infection of bovine coronavirus (BCoV), which is in the same genus as SARS-COV-2, led to alterations of genome structure, attenuation of gene expression, and the synthesis of subgenomic mRNA (sgmRNA) with a previously unidentified pattern. Subsequent analyses revealed that the altered genome structures were associated with the attenuation of gene expression. In addition, the genome structure at the 5' terminus and the cellular environment during the persistence were responsible for the sgmRNA synthesis, solving the previously unanswered question regarding the selection of transcription regulatory sequence for synthesis of BCoV sgmRNA 12.7. Although the BCoV variants (BCoV-p95) selected under the persistence replicated efficiently in cells without persistent infection, its pathogenicity was still lower than that of wild-type (wt) BCoV. Furthermore, in comparison with wt BCoV, the variant BCoV-p95 was not able to efficiently adapt to the challenges of alternative environments, suggesting wt BCoV is genetically robust. We anticipate that the findings derived from this fundamental research can contribute to the disease control and treatments against coronavirus infection including SARS-CoV-2.
Collapse
Affiliation(s)
- Ching-Hung Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (C.-H.L.); (C.-Y.Y.); (C.-Y.L.); (T.-L.T.)
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (C.-H.L.); (C.-Y.Y.); (C.-Y.L.); (T.-L.T.)
| | - Meilin Wang
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University, Taichung 40201, Taiwan;
| | - Shan-Chia Ou
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Chen-Yu Lo
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (C.-H.L.); (C.-Y.Y.); (C.-Y.L.); (T.-L.T.)
| | - Tsung-Lin Tsai
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (C.-H.L.); (C.-Y.Y.); (C.-Y.L.); (T.-L.T.)
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (C.-H.L.); (C.-Y.Y.); (C.-Y.L.); (T.-L.T.)
| |
Collapse
|
37
|
Atypical Porcine Pestivirus Circulation and Molecular Evolution within an Affected Swine Herd. Viruses 2020; 12:v12101080. [PMID: 32992946 PMCID: PMC7599615 DOI: 10.3390/v12101080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 01/27/2023] Open
Abstract
Atypical porcine pestivirus (APPV) is a single-stranded RNA virus from the family Flaviviridae, which is linked to congenital tremor (CT) type A-II in newborn piglets. Here, we retrospectively investigated the molecular evolution of APPV on an affected herd between 2013 and 2019. Monitoring was done at regular intervals, and the same genotype of APPV was found during the entire study period, suggesting no introductions from outside the farm. The nucleotide substitutions over time did not show substantial amino acid variation in the structural glycoproteins. Furthermore, the evolution of the virus showed mainly purifying selection, and no positive selection. The limited pressure on the virus to change at immune-dominant regions suggested that the immune pressure at the farm might be low. In conclusion, farms can have circulation of APPV for years, and massive testing and removal of infected animals are not sufficient to clear the virus from affected farms.
Collapse
|
38
|
Lin CH, Yang CY, Ou SC, Wang M, Lo CY, Tsai TL, Wu HY. The Impacts of Antivirals on the Coronavirus Genome Structure and Subsequent Pathogenicity, Virus Fitness and Antiviral Design. Biomedicines 2020; 8:E376. [PMID: 32987828 PMCID: PMC7601523 DOI: 10.3390/biomedicines8100376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 01/29/2023] Open
Abstract
With the global threat of SARS-CoV-2, much effort has been focused on treatment and disease control. However, how coronaviruses react to the treatments and whether the surviving viruses have altered their characteristics are also unanswered questions with medical importance. To this end, bovine coronavirus (BCoV), which is in the same genus as SARS-CoV-2, was used as a test model and the findings were as follows. With the treatment of antiviral remdesivir, the selected BCoV variant with an altered genome structure developed resistance, but its pathogenicity was not increased in comparison to that of wild type (wt) BCoV. Under the selection pressure of innate immunity, the genome structure was also altered; however, neither resistance developed nor pathogenicity increased for the selected BCoV variant. Furthermore, both selected BCoV variants showed a better efficiency in adapting to alternative host cells than wt BCoV. In addition, the previously unidentified feature that the spike protein was a common target for mutations under different antiviral treatments might pose a problem for vaccine development because spike protein is a common target for antibody and vaccine designs. The findings derived from this fundamental research may contribute to the disease control and treatments against coronaviruses, including SARS-CoV-2.
Collapse
Affiliation(s)
- Ching-Hung Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (C.-H.L.); (C.-Y.Y.); (C.-Y.L.); (T.-L.T.)
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (C.-H.L.); (C.-Y.Y.); (C.-Y.L.); (T.-L.T.)
| | - Shan-Chia Ou
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Meilin Wang
- Department of Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Chen-Yu Lo
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (C.-H.L.); (C.-Y.Y.); (C.-Y.L.); (T.-L.T.)
| | - Tsung-Lin Tsai
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (C.-H.L.); (C.-Y.Y.); (C.-Y.L.); (T.-L.T.)
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (C.-H.L.); (C.-Y.Y.); (C.-Y.L.); (T.-L.T.)
| |
Collapse
|
39
|
Oliveira RN, Freire CC, Iamarino A, Zanotto PM, Pessoa R, Sanabani SS, Souza SPD, Castilho JG, Batista HBCR, Carnieli P, Macedo CI, Watanabe JT, Brandão PE. Rabies virus diversification in aerial and terrestrial mammals. Genet Mol Biol 2020; 43:e20190370. [PMID: 32745160 PMCID: PMC7416755 DOI: 10.1590/1678-4685-gmb-2019-0370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/17/2020] [Indexed: 12/25/2022] Open
Abstract
Rabies is a fatal zoonotic infection of the central nervous system of mammals and has been known to humans for millennia. The etiological agent, is a neurotropic RNA virus in the order Mononegavirales, family Rhabdoviridae, genus Lyssavirus. There are currently accepted to be two cycles for rabies transmission: the urban cycle and the sylvatic cycle. The fact that both cycles originated from a common RABV or lyssavirus ancestor and the adaptive divergence that occurred since then as this ancestor virus adapted to a wide range of fitness landscapes represented by reservoir species in the orders Carnivora and Chiroptera led to the emergence of the diverse RABV lineages currently found in the sylvatic and urban cycles. Here we study full genome phylogenies and the time to the most recent common ancestor (TMRCA) of the RABVs in the sylvatic and urban cycles. Results show that there were differences between the nucleotide substitution rates per site per year for the same RABV genes maintained independently in the urban and sylvatic cycles. The results identify the most suitable gene for phylogenetic analysis, heterotachy among RABV genes and the TMRCA for the two cycles.
Collapse
Affiliation(s)
- Rafael N Oliveira
- Instituto Pasteur, Laboratório de Biologia Molecular, São Paulo, SP, Brazil
| | - Caio C Freire
- Universidade de São Paulo, Instituto de Ciências Biomédicas (ICB-II), Departamento de Microbiologia, Laboratório de Evolução Molecular e Bioinformática, São Paulo, SP, Brazil
| | - Atila Iamarino
- Universidade de São Paulo, Instituto de Ciências Biomédicas (ICB-II), Departamento de Microbiologia, Laboratório de Evolução Molecular e Bioinformática, São Paulo, SP, Brazil
| | - Paolo M Zanotto
- Universidade de São Paulo, Instituto de Ciências Biomédicas (ICB-II), Departamento de Microbiologia, Laboratório de Evolução Molecular e Bioinformática, São Paulo, SP, Brazil
| | - Rodrigo Pessoa
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Departamento de Virologia, São Paulo, SP, Brazil
| | - Sabri S Sanabani
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Departamento de Virologia, São Paulo, SP, Brazil
| | | | - Juliana G Castilho
- Instituto Pasteur, Laboratório de Biologia Molecular, São Paulo, SP, Brazil
| | | | - Pedro Carnieli
- Instituto Pasteur, Laboratório de Biologia Molecular, São Paulo, SP, Brazil
| | - Carla I Macedo
- Instituto Pasteur, Laboratório de Biologia Molecular, São Paulo, SP, Brazil
| | - Jaqueline T Watanabe
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Departamento de Virologia, São Paulo, SP, Brazil
| | - Paulo E Brandão
- Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnica, Departamento de Medicina Veterinária Preventiva e Saúde Animal, São Paulo, SP, Brazil
| |
Collapse
|
40
|
Martínez MA, Jordan-Paiz A, Franco S, Nevot M. Synonymous genome recoding: a tool to explore microbial biology and new therapeutic strategies. Nucleic Acids Res 2020; 47:10506-10519. [PMID: 31584076 PMCID: PMC6846928 DOI: 10.1093/nar/gkz831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022] Open
Abstract
Synthetic genome recoding is a new means of generating designed organisms with altered phenotypes. Synonymous mutations introduced into the protein coding region tolerate modifications in DNA or mRNA without modifying the encoded proteins. Synonymous genome-wide recoding has allowed the synthetic generation of different small-genome viruses with modified phenotypes and biological properties. Recently, a decreased cost of chemically synthesizing DNA and improved methods for assembling DNA fragments (e.g. lambda red recombination and CRISPR-based editing) have enabled the construction of an Escherichia coli variant with a 4-Mb synthetic synonymously recoded genome with a reduced number of sense codons (n = 59) encoding the 20 canonical amino acids. Synonymous genome recoding is increasing our knowledge of microbial interactions with innate immune responses, identifying functional genome structures, and strategically ameliorating cis-inhibitory signaling sequences related to splicing, replication (in eukaryotes), and complex microbe functions, unraveling the relevance of codon usage for the temporal regulation of gene expression and the microbe mutant spectrum and adaptability. New biotechnological and therapeutic applications of this methodology can easily be envisaged. In this review, we discuss how synonymous genome recoding may impact our knowledge of microbial biology and the development of new and better therapeutic methodologies.
Collapse
Affiliation(s)
- Miguel Angel Martínez
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Ana Jordan-Paiz
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Sandra Franco
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Maria Nevot
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| |
Collapse
|
41
|
Ludwig-Begall LF, Lu J, Hosmillo M, de Oliveira-Filho EF, Mathijs E, Goodfellow I, Mauroy A, Thiry E. Replicative fitness recuperation of a recombinant murine norovirus - in vitro reciprocity of genetic shift and drift. J Gen Virol 2020; 101:510-522. [PMID: 32242791 DOI: 10.1099/jgv.0.001406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Noroviruses are recognized as the major cause of non-bacterial gastroenteritis in humans. Molecular mechanisms driving norovirus evolution are the accumulation of point mutations and recombination. Recombination can create considerable changes in a viral genome, potentially eliciting a fitness cost, which must be compensated via the adaptive capacity of a recombinant virus. We previously described replicative fitness reduction of the first in vitro generated WU20-CW1 recombinant murine norovirus, RecMNV. In this follow-up study, RecMNV's capability of replicative fitness recuperation and genetic characteristics of RecMNV progenies at early and late stages of an adaptation experiment were evaluated. Replicative fitness regain of the recombinant was demonstrated via growth kinetics and plaque size differences between viral progenies prior to and post serial in vitro passaging. Point mutations at consensus and sub-consensus population levels of early and late viral progenies were characterized via next-generation sequencing and putatively associated to fitness changes. To investigate the effect of genomic changes separately and in combination in the context of a lab-generated inter-MNV infectious virus, mutations were introduced into a recombinant WU20-CW1 cDNA for subsequent DNA-based reverse genetics recovery. We thus associated fitness loss of RecMNV to a C7245T mutation and functional VP2 (ORF3) truncation and demonstrated individual and cumulative compensatory effects of one synonymous OFR2 and two non-synonymous ORF1 consensus-level mutations acquired during successive rounds of in vitro replication. Our data provide evidence of viral adaptation in a controlled environment via genetic drift after genetic shift induced a fitness cost of an infectious recombinant norovirus.
Collapse
Affiliation(s)
- Louisa F Ludwig-Begall
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Jia Lu
- Present address: The Babraham Institute, Babraham Hall House, Babraham, Cambridge, UK.,Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Edmilson F de Oliveira-Filho
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Elisabeth Mathijs
- Infectious diseases in animals, Sciensano, Ukkel, Belgium.,Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Axel Mauroy
- Staff direction for risk assessment, Control Policy, FASFC, Brussels, Belgium.,Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| |
Collapse
|
42
|
Piewbang C, Chansaenroj J, Kongmakee P, Banlunara W, Poovorawan Y, Techangamsuwan S. Genetic Adaptations, Biases, and Evolutionary Analysis of Canine Distemper Virus Asia-4 Lineage in a Fatal Outbreak of Wild-Caught Civets in Thailand. Viruses 2020; 12:361. [PMID: 32224857 PMCID: PMC7232145 DOI: 10.3390/v12040361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/24/2020] [Indexed: 01/07/2023] Open
Abstract
Canine morbillivirus (CDV) is a serious pathogen that can cause fatal systemic disease in a wide range of domestic and wildlife carnivores. Outbreaks of CDV in wildlife species lead to questions regarding the dispersal of the CDV origin. In the present study, we identified a fatal CDV outbreak in caged wild-caught civets in Thailand. Full-length genetic analysis revealed that CDV from the Asia-4 lineage served as the likely causative agent, which was supported by the viral localization in tissues. Evolutionary analysis based on the CDV hemagglutinin (H) gene revealed that the present civet CDV has co-evolved with CDV strains in dogs in Thailand since about 2014. The codon usage pattern of the CDV H gene revealed that the CDV genome has a selective bias of an A/U-ended codon preference. Furthermore, the codon usage pattern of the CDV Asia-4 strain from potential hosts revealed that the usage pattern was related more to the codon usage of civets than of dogs. This finding may indicate the possibility that the discovered CDV had initially adapted its virulence to infect civets. Therefore, the CDV Asia-4 strain might pose a potential risk to civets. Further epidemiological, evolutionary, and codon usage pattern analyses of other CDV-susceptible hosts are required.
Collapse
Affiliation(s)
- Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.P.); (W.B.)
- Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (J.C.); (Y.P.)
| | - Piyaporn Kongmakee
- The Zoological Park Organization under The Royal Patronage of H.M. The King, Bangkok 10800, Thailand;
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.P.); (W.B.)
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (J.C.); (Y.P.)
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.P.); (W.B.)
- Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
43
|
Ou X, Ma B, Zhang R, Miao Z, Cheng A, Peppelenbosch MP, Pan Q. A simplified qPCR method revealing tRNAome remodeling upon infection by genotype 3 hepatitis E virus. FEBS Lett 2020; 594:2005-2015. [PMID: 32133647 DOI: 10.1002/1873-3468.13764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/08/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022]
Abstract
The landscape of tRNA-viral codons regulates viral adaption at the translational level, presumably through adapting to host codon usage or modulating the host tRNAome. We found that the major zoonotic genotype of hepatitis E virus (HEV) has not adapted to host codon usage, prompting exploration of the effects of HEV infection on the host tRNAome. However, tRNAome quantification is largely impeded by the extremely short sequences of tRNAs and redundancy of tRNA genes. Here, we present a length-extension and stepwise simplified qPCR method that utilizes a universal DNA/RNA hybrid tRNA adaptor and degenerate primers. Using this novel methodology, we observe that HEV infection dramatically reprograms the hepatic tRNAome, which is likely to facilitate translation of viral RNAs. This tRNAome quantification method bears broad implications for future tRNA research and possibly tRNA-based diagnostics.
Collapse
Affiliation(s)
- Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Buyun Ma
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Ruyi Zhang
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Zhijiang Miao
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
44
|
D'Andrea L, Pérez-Rodríguez FJ, de Castellarnau M, Guix S, Ribes E, Quer J, Gregori J, Bosch A, Pintó RM. The Critical Role of Codon Composition on the Translation Efficiency Robustness of the Hepatitis A Virus Capsid. Genome Biol Evol 2020; 11:2439-2456. [PMID: 31290967 PMCID: PMC6735747 DOI: 10.1093/gbe/evz146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatoviruses show an intriguing deviated codon usage, suggesting an evolutionary signature. Abundant and rare codons in the cellular genome are scarce in the human hepatitis A virus (HAV) genome, while intermediately abundant host codons are abundant in the virus. Genotype–phenotype maps, or fitness landscapes, are a means of representing a genotype position in sequence space and uncovering how genotype relates to phenotype and fitness. Using genotype–phenotype maps of the translation efficiency, we have shown the critical role of the HAV capsid codon composition in regulating translation and determining its robustness. Adaptation to an environmental perturbation such as the artificial induction of cellular shutoff—not naturally occurring in HAV infection—involved movements in the sequence space and dramatic changes of the translation efficiency. Capsid rare codons, including abundant and rare codons of the cellular genome, slowed down the translation efficiency in conditions of no cellular shutoff. In contrast, rare capsid codons that are abundant in the cellular genome were efficiently translated in conditions of shutoff. Capsid regions very rich in slowly translated codons adapt to shutoff through sequence space movements from positions with highly robust translation to others with diminished translation robustness. These movements paralleled decreases of the capsid physical and biological robustness, and resulted in the diversification of capsid phenotypes. The deviated codon usage of extant hepatoviruses compared with that of their hosts may suggest the occurrence of a virus ancestor with an optimized codon usage with respect to an unknown ancient host.
Collapse
Affiliation(s)
- Lucía D'Andrea
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Spain
| | - Francisco-Javier Pérez-Rodríguez
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Spain
| | - Montserrat de Castellarnau
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Spain
| | - Enric Ribes
- Enteric Virus Laboratory, Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Spain
| | - Josep Quer
- Liver Unit, Internal Medicine, Hepatic Diseases Laboratory, Vall d'Hebron Research Institute-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Barcelona, Spain.,Centre of the Biomedical Research Network (CIBER) for Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III
| | - Josep Gregori
- Liver Unit, Internal Medicine, Hepatic Diseases Laboratory, Vall d'Hebron Research Institute-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Barcelona, Spain.,Roche Diagnostics SL, Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Spain
| | - Rosa M Pintó
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Spain
| |
Collapse
|
45
|
mSphere of Influence: Experimental Evolution of RNA Viruses. mSphere 2020; 5:5/2/e00179-20. [PMID: 32161148 PMCID: PMC7067594 DOI: 10.1128/msphere.00179-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gonzalo Moratorio works in the field of experimental evolution of viruses. In this mSphere of Influence article, he reflects on how the papers “Virus attenuation by genome-scale changes in codon pair bias” by Coleman et al. (Science 320:1784–1787, 2008, https://doi.org/10.1126/science.1155761) and “Codon usage determines the mutational robustness, evolutionary capacity, and virulence of an RNA virus” by Lauring et al. (Cell Host Microbe 12:623–632, 2012, https://doi.org/10.1016/j.chom.2012.10.008) made an impact on his thinking about how to employ synthetic biology to study experimental evolution of viruses. Gonzalo Moratorio works in the field of experimental evolution of viruses. In this mSphere of Influence article, he reflects on how the papers “Virus attenuation by genome-scale changes in codon pair bias” by Coleman et al. (Science 320:1784–1787, 2008, https://doi.org/10.1126/science.1155761) and “Codon usage determines the mutational robustness, evolutionary capacity, and virulence of an RNA virus” by Lauring et al. (Cell Host Microbe 12:623–632, 2012, https://doi.org/10.1016/j.chom.2012.10.008) made an impact on his thinking about how to employ synthetic biology to study experimental evolution of viruses.
Collapse
|
46
|
Optimization of the Codon Pair Usage of Human Respiratory Syncytial Virus Paradoxically Resulted in Reduced Viral Replication In Vivo and Reduced Immunogenicity. J Virol 2020; 94:JVI.01296-19. [PMID: 31666376 PMCID: PMC6955273 DOI: 10.1128/jvi.01296-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/14/2019] [Indexed: 01/01/2023] Open
Abstract
Using computer algorithms and large-scale DNA synthesis, one or more ORFs of a microbial pathogen can be recoded by different strategies that involve the introduction of up to thousands of nucleotide changes without affecting amino acid coding. This approach has been used mostly to generate deoptimized viruses used as vaccine candidates. However, the effects of the converse approach of generating optimized viruses are still largely unknown. Here, various ORFs in the genome of respiratory syncytial virus (RSV) were codon pair optimized (CPO) by increasing the content of codon pairs that are overrepresented in the human genome. CPO did not affect RSV replication in multicycle replication experiments in vitro. However, replication was marginally reduced in two rodents models. In hamsters, CPO RSVs induced lower levels of serum RSV-neutralizing antibodies. Thus, CPO of an RNA virus for a mammalian host has paradoxical effects on virus replication and the adaptive humoral immune response. We subjected various open reading frames (ORFs) in the genome of respiratory syncytial virus (RSV) to codon pair optimization (CPO) by increasing the content of codon pairs that are overrepresented in the human genome without changing overall codon usage and amino acid sequences. CPO has the potential to increase the expression of the encoded protein(s). Four viruses were made: Max A (with CPO of NS1, NS2, N, P, M, and SH ORFs), Max B (with CPO of G and F), Max L (with CPO of L), and Max FLC (with CPO of all ORFs except M2-1 and M2-2). Because of the possibility of increased viral replication, each CPO virus was attenuated by the inclusion of a codon deletion mutation (Δ1313) and a missense mutation (I1314L) in the L polymerase. CPO had no effect on multicycle virus replication in vitro, temperature sensitivity, or specific infectivity. Max A and L, which in common had CPO of one or more ORFs of proteins of the polymerase complex, exhibited global increases in viral protein synthesis. Max B alone exhibited decreased protein synthesis, and it alone had reduced single-cycle virus replication in vitro. All CPO RSVs exhibited marginal reductions in replication in mice and hamsters. Surprisingly, the CPO RSVs induced lower levels of serum RSV-neutralizing antibodies in hamsters. This reduced immunogenicity might reflect reduced viral replication and possibly also the decrease in CpG and UpA dinucleotides as immune stimulators. Overall, our study describes paradoxical effects of CPO of an RNA virus on viral replication and the adaptive humoral immune response. IMPORTANCE Using computer algorithms and large-scale DNA synthesis, one or more ORFs of a microbial pathogen can be recoded by different strategies that involve the introduction of up to thousands of nucleotide changes without affecting amino acid coding. This approach has been used mostly to generate deoptimized viruses used as vaccine candidates. However, the effects of the converse approach of generating optimized viruses are still largely unknown. Here, various ORFs in the genome of respiratory syncytial virus (RSV) were codon pair optimized (CPO) by increasing the content of codon pairs that are overrepresented in the human genome. CPO did not affect RSV replication in multicycle replication experiments in vitro. However, replication was marginally reduced in two rodents models. In hamsters, CPO RSVs induced lower levels of serum RSV-neutralizing antibodies. Thus, CPO of an RNA virus for a mammalian host has paradoxical effects on virus replication and the adaptive humoral immune response.
Collapse
|
47
|
Quintero-Gil C, Rendon-Marin S, Martinez-Gutierrez M, Ruiz-Saenz J. Origin of Canine Distemper Virus: Consolidating Evidence to Understand Potential Zoonoses. Front Microbiol 2019; 10:1982. [PMID: 31555226 PMCID: PMC6722215 DOI: 10.3389/fmicb.2019.01982] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/12/2019] [Indexed: 11/15/2022] Open
Affiliation(s)
- Carolina Quintero-Gil
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Santiago Rendon-Marin
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia.,Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia.,Asociación Colombiana de Virología, Bogotá, Colombia
| |
Collapse
|
48
|
Chikungunya Virus Vaccine Candidates with Decreased Mutational Robustness Are Attenuated In Vivo and Have Compromised Transmissibility. J Virol 2019; 93:JVI.00775-19. [PMID: 31270226 PMCID: PMC6714818 DOI: 10.1128/jvi.00775-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/11/2019] [Indexed: 11/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is a reemerged arbovirus, a member of the Togaviridae family. It circulates through mosquito vectors mainly of the Aedes family and a mammalian host. CHIKV causes chikungunya fever, a mild to severe disease characterized by arthralgia, with some fatal outcomes described. In the past years, several outbreaks mainly caused by enhanced adaptation of the virus to the vector and ineffective control of the contacts between infected mosquito populations and the human host have been reported. Vaccines represent the best solution for the control of insect-borne viruses, including CHIKV, but are often unavailable. We designed live attenuated CHIKVs by applying a rational genomic design based on multiple replacements of synonymous codons. In doing so, the virus mutational robustness (capacity to maintain phenotype despite introduction of mutations to genotype) is decreased, driving the viral population toward deleterious evolutionary trajectories. When the candidate viruses were tested in the insect and mammalian hosts, we observed overall strong attenuation in both and greatly diminished signs of disease. Moreover, we found that the vaccine candidates elicited protective immunity related to the production of neutralizing antibodies after a single dose. During an experimental transmission cycle between mosquitoes and naive mice, vaccine candidates could be transmitted by mosquito bite, leading to asymptomatic infection in mice with compromised dissemination. Using deep-sequencing technology, we observed an increase in detrimental (stop) codons, which confirmed the effectiveness of this genomic design. Because the approach involves hundreds of synonymous modifications to the genome, the reversion risk is significantly reduced, rendering the viruses promising vaccine candidates.IMPORTANCE Chikungunya fever is a debilitating disease that causes severe pain to the joints, which can compromise the patient's lifestyle for several months and even in some grave cases lead to death. The etiological agent is chikungunya virus, an alphavirus transmitted by mosquito bite. Currently, there are no approved vaccines or treatments against the disease. In our research, we developed novel live attenuated vaccine candidates against chikungunya virus by applying an innovative genomic design. When tested in the insect and mammalian host, the vaccine candidates did not cause disease, elicited strong protection against further infection, and had low risk of reversion to pathogenic phenotypes.
Collapse
|
49
|
Cifuente JO, Moratorio G. Evolutionary and Structural Overview of Human Picornavirus Capsid Antibody Evasion. Front Cell Infect Microbiol 2019; 9:283. [PMID: 31482072 PMCID: PMC6710328 DOI: 10.3389/fcimb.2019.00283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
Picornaviruses constitute one of the most relevant viral groups according to their impact on human and animal health. Etiologic agents of a broad spectrum of illnesses with a clinical presentation that ranges from asymptomatic to fatal disease, they have been the cause of uncountable epidemics throughout history. Picornaviruses are small naked RNA-positive single-stranded viruses that include some of the most important pillars in the development of virology, comprising poliovirus, rhinovirus, and hepatitis A virus. Picornavirus infectious particles use the fecal-oral or respiratory routes as primary modes of transmission. In this regard, successful viral spread relies on the capability of viral capsids to (i) shelter the viral genome, (ii) display molecular determinants for cell receptor recognition, (iii) facilitate efficient genome delivery, and (iv) escape from the immune system. Importantly, picornaviruses display a substantial amount of genetic variability driven by both mutation and recombination. Therefore, the outcome of their replication results in the emergence of a genetically diverse cloud of individuals presenting phenotypic variance. The host humoral response against the capsid protein represents the most active immune pressure and primary weapon to control the infection. Since the preservation of the capsid function is deeply rooted in the virus evolutionary dynamics, here we review the current structural evidence focused on capsid antibody evasion mechanisms from that perspective.
Collapse
Affiliation(s)
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
50
|
Sexton NR, Ebel GD. Effects of Arbovirus Multi-Host Life Cycles on Dinucleotide and Codon Usage Patterns. Viruses 2019; 11:v11070643. [PMID: 31336898 PMCID: PMC6669465 DOI: 10.3390/v11070643] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) of vertebrates including dengue, zika, chikungunya, Rift Valley fever, and blue tongue viruses cause extensive morbidity and mortality in humans, agricultural animals, and wildlife across the globe. As obligate intercellular pathogens, arboviruses must be well adapted to the cellular and molecular environment of both their arthropod (invertebrate) and vertebrate hosts, which are vastly different due to hundreds of millions of years of separate evolution. Here we discuss the comparative pressures on arbovirus RNA genomes as a result of a dual host life cycle, focusing on pressures that do not alter amino acids. We summarize what is currently known about arboviral genetic composition, such as dinucleotide and codon usage, and how cyclical infection of vertebrate and invertebrate hosts results in different genetic profiles compared with single-host viruses. To serve as a comparison, we compile what is known about arthropod tRNA, dinucleotide, and codon usages and compare this with vertebrates. Additionally, we discuss the potential roles of genetic robustness in arboviral evolution and how it may vary from other viruses. Overall, both arthropod and vertebrate hosts influence the resulting genetic composition of arboviruses, but a great deal remains to be investigated.
Collapse
Affiliation(s)
- Nicole R Sexton
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|