1
|
Liu Y, Tian Z, Yang J, Zhou Z. Attraction of Bactrocera cucurbitae (Coquillett) to selected gut microbiota supernatants: implications for pest control. PEST MANAGEMENT SCIENCE 2025; 81:2277-2287. [PMID: 39797524 DOI: 10.1002/ps.8627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Bactrocera cucurbitae (Coquillett) is a distructive quarantine insect pest that causes significant economic losses on cucurbit crops. To explore a green control approach, we investigated the behavioral responses of B. cucurbitae larvae and adults to bacterial suspensions, sediments, and supernatants derived from eight gut microbial strains across four distinct genera. The proboscis extension response was used to evaluate the impact of these microbial strains. In addition, using food selection experiments, two-choice trap methods, and gas chromatography-mass spectrometry, we isolated and identified the predominant volatile compounds in the microbiota supernatants. RESULTS Among the tested gut microbial strains, Kluyvera, Morganella, and Providencia exhibited notable attraction toward B. cucurbitae. In particular, the supernatant of Providencia M38 revealed the most highly attractive effect on B. cucurbitae larvae, whereas the supernatant of Morganella M72 was highly attractive to B. cucurbitae adults. Primary components present in the supernatant of M38 and M72 were dimethyl disulfide, indole, 2-nonone, phenethyl alcohol, and 1-decanol. CONCLUSION Strains of M38 and M72 displayed remarkable attractive properties for B. cucurbitae larvae and adults, respectively, presenting promising potential for developing a novel attractant for this pest species. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Zhenya Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Jingfang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
2
|
Franchet A, Haller S, Yamba M, Barbier V, Thomaz-Vieira A, Leclerc V, Becker S, Lee KZ, Orlov I, Spehner D, Daeffler L, Ferrandon D. Nora virus proliferates in dividing intestinal stem cells and sensitizes flies to intestinal infection and oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635658. [PMID: 39975242 PMCID: PMC11838516 DOI: 10.1101/2025.01.30.635658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The digestive tract represents the most complex interface of an organism with its biotope. Food may be contaminated by pathogens and toxicants while an abundant and complex microbiota strives in the gut lumen. The organism must defend itself against potentially noxious biotic or abiotic stresses while preserving its microbiota, provided it plays a beneficial role. The presence of intestinal viruses adds another layer of complexity. Starting from a differential sensitivity of two lines from the same Drosophila wild-type strain to ingested Pseudomonas aeruginosa, we report here that the presence of Nora virus in the gut epithelium promotes the sensitivity to this bacterial pathogen as well as to an ingested oxidizing xenobiotic. The genotype, age, nature of the ingested food and to a limited extent the microbiota are relevant parameters that influence the effects of Nora virus on host fitness. Mechanistically, we detect the initial presence of viral proteins essentially in progenitor cells. Upon stress such as infection, exposure to xenobiotics, aging or feeding on a rich-food diet, the virus is then detected in enterocytes, which correlates with a disruption of the intestinal barrier function in aged flies. Finally, we show that the virus proliferates only when ISCs are induced to divide and that blocking either enterocyte apoptosis or JAK/STAT-driven ISC division leads to a drastically reduced Nora virus titer. In conclusion, it is important to check that experimental strains are devoid of intestinal viruses when monitoring survival/life span of fly lines or when investigating the homeostasis of the intestinal epithelium as these viruses can constitute significant confounding factors.
Collapse
Affiliation(s)
- Adrien Franchet
- UPR 9022 CNRS, IBMC, University of Strasbourg, France
- Present address: The Francis Crick Institute, London, UK
| | | | - Miriam Yamba
- UPR 9022 CNRS, IBMC, University of Strasbourg, France
| | | | - Angelica Thomaz-Vieira
- UPR 9022 CNRS, IBMC, University of Strasbourg, France
- Present address: Institute of Translational Medicine and Liver Disease, Inserm U1110, Strasbourg, France
| | | | - Stefanie Becker
- Institute for Parasitology and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kwang-Zin Lee
- UPR 9022 CNRS, IBMC, University of Strasbourg, France
- Present address: Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, Giessen, Germany
| | - Igor Orlov
- UMR 7104 CNRS, U964 INSERM, IGBMC, University of Strasbourg, France
| | - Danièle Spehner
- UMR 7104 CNRS, U964 INSERM, IGBMC, University of Strasbourg, France
| | - Laurent Daeffler
- UPR 9022 CNRS, IBMC, University of Strasbourg, France
- Present address: UMR 7178 CNRS, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
| | | |
Collapse
|
3
|
Haraji S, Shahmohammadi N, Talaei-Hassanloui R, Jin G, Ahsan SM, Kim HJ, Choi HW, Jeon Y, Kwon M, Lee D, Kim Y. Lipoxin B 4 and lipocalin play a crucial role in insect immune-priming induced by a gut microbial commensal. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 163:105317. [PMID: 39798858 DOI: 10.1016/j.dci.2025.105317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Host cabbage possesses an endophyte, Bacillus subtilis, which induced immune-priming of the diamondback moth, Plutella xylostella. In contrast, larvae raised under axenic conditions lost the chance to feed the bacteria and were highly susceptible to various pathogens. Addition of B. subtilis to axenic larvae significantly restored immune responses and enhanced survival rates following pathogen infections. The immune-priming factor(s) was determined among 18 apolipoprotein D (ApoD) genes identified as lipocalin candidates in P. xylostella, in which ApoD1 expression was functionally linked with B. subtilis-induced immune-priming. In addition, lipoxins were analyzed in immune-primed larvae via LC-MS/MS, in which LXB4 was detected, but not LXA4. The LXB4 titer was significantly higher than that that in the larvae reared under axenic conditions. Notably, LXB4 alone sufficiently induced significant immune responses. To support lipoxin biosynthesis in insects, this study identified a lipoxygenase-like peroxidase gene, HemP2. Its expression was induced in the immune-primed larvae. However, its suppression prevented LXB4 production under the immune-priming conditions. To explain the up-regulations of lipocalin/lipoxin by the gut commensal, Toll and IMD immune signaling pathways were analyzed. The up-regulation of ApoD1 and HemP2 expressions was mediated through the IMD, but not the Toll, immune signaling pathway in the larval gut of P. xylostella under B. subtilis-induced immune-priming conditions. This study highlights the potential role of commensal gut microbes including B. subtilis in driving immune-priming via an insect lipoxin-lipocalin complex through the IMD immune signaling pathway.
Collapse
Affiliation(s)
- Shiva Haraji
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea; Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Niayesh Shahmohammadi
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea
| | - Reza Talaei-Hassanloui
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Gahyeon Jin
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea
| | - S M Ahsan
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hee-Jin Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea
| | - Hyong Woo Choi
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea
| | - Yongho Jeon
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea
| | - Minji Kwon
- Industry Academy Cooperation Foundation, Andong National University, Andong, 36729, South Korea
| | - Donghee Lee
- Industry Academy Cooperation Foundation, Andong National University, Andong, 36729, South Korea
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea.
| |
Collapse
|
4
|
Turner M, Van Hulzen L, Guse K, Agany D, Pietri JE. The gut microbiota confers resistance against Salmonella Typhimurium in cockroaches by modulating innate immunity. iScience 2024; 27:111293. [PMID: 39628558 PMCID: PMC11612784 DOI: 10.1016/j.isci.2024.111293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Cockroaches exhibit unexplained intra- and interpopulation variation in susceptibility to Salmonella enterica serovar Typhimurium (S. Typhimurium) infection. Here, we show that the gut microbiota has a protective effect against colonization by ingested S. Typhimurium in cockroaches. We further examine two potential mechanisms for this effect, showing that commensal bacteria present in the gut do not compete with S. Typhimurium during growth in cockroach feces, but rather prime expression of host antimicrobial peptide genes that suppress S. Typhimurium infection. Lastly, we determine that neither absolute abundance of the microbiota nor its overall diversity is linked to infection susceptibility. Instead, we identify several minority bacterial taxa that exhibit interindividual variation in abundance as key indicators of infection susceptibility among genetically similar individuals. These findings illuminate the potential of cockroaches as an invertebrate model for interspecies microbial interactions and provide insight into vector-borne Salmonella transmission, suggesting that the microbiota of cockroaches could be targeted to reduce pathogen transmission.
Collapse
Affiliation(s)
- Matthew Turner
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, USA
| | - Landen Van Hulzen
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, USA
| | - Kylene Guse
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, USA
| | - Diing Agany
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, USA
| | - Jose E. Pietri
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, USA
- Purdue University, Department of Entomology, Center for Urban and Industrial Pest Management, West Lafayette, IN, USA
- Purdue University, Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA
- Purdue University, Department of Biological Sciences, West Lafayette, IN, USA
| |
Collapse
|
5
|
Hu R, Li M, Chen S, Wang M, Tao X, Zhu Y, Yan H, Liu Y. Sniffer restricts arboviral brain infections by regulating ROS levels and protecting blood-brain barrier integrity in Drosophila and mosquitoes. PLoS Pathog 2024; 20:e1012797. [PMID: 39680616 PMCID: PMC11684763 DOI: 10.1371/journal.ppat.1012797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Arthropod-borne viruses (arboviruses) are transmitted to humans by arthropod vectors and pose a serious threat to global public health. Neurotropic arboviruses including Sindbis virus (SINV) persistently infect the central nervous system (CNS) of vector insects without causing notable pathological changes or affecting their behavior or lifespan. However, the mechanisms by which vector insects evade these viral infections in the brains are poorly understood. In this study, we found that loss of the carbonyl reductase Sniffer (Sni) led to a significant increase in SINV infection in the Drosophila brain. Sni regulates reactive oxygen species (ROS) levels, and its depletion leads to elevated ROS, which in turn disrupts the septate junctions (SJs) between subperineurial glia (SPG) cells, compromising the integrity and barrier function of the blood-brain barrier (BBB). Genetic and pharmacological reduction of ROS restored BBB integrity and reduced viral load in the brains of Sni-depleted flies. Additionally, we identified Sni homologs and revealed that the antiviral function of Sni is highly conserved in mosquitoes, where it regulates ROS and protects BBB integrity. Our results revealed an evolutionarily conserved antiviral mechanism in which Sni acts as an antioxidant that protects BBB integrity and restricts viral infection in the vector insect brain.
Collapse
Affiliation(s)
- Rui Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mengzhu Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shulin Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Man Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xinjun Tao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yihan Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huan Yan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuan Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Segrist E, Miller S, Gold B, Li Y, Cherry S. Tissue specific innate immune responses impact viral infection in Drosophila. PLoS Pathog 2024; 20:e1012672. [PMID: 39495785 PMCID: PMC11563389 DOI: 10.1371/journal.ppat.1012672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/14/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
All organisms sense and respond to pathogenic challenge. Tissue-specific responses are required to combat pathogens infecting distinct cell types. Cyclic dinucleotides (CDNs) are produced endogenously downstream of pathogen recognition or by pathogens themselves which bind to STING to activate NF-kB-dependent antimicrobial gene expression programs. It remains unknown whether there are distinct immune responses to CDNs in Drosophila tissues. Here, we investigated tissue specific CDN-STING responses and uncovered differences in gene-induction patterns across tissues that play important roles in viral infections. Using tissue-and cell-specific genetic studies we found that dSTING in the fat body controls CDN-induced expression of dSTING-regulated gene 1 (Srg1) but not dSTING-regulated gene 2 (Srg2) or 3 (Srg3). In contrast, the gastrointestinal tract largely controls expression of Srg2 and Srg3. We found that Srg3 is antiviral against the natural fly pathogen Drosophila C virus and the human arthropod-borne Rift Valley Fever virus (RVFV), but not other arthropod-borne viruses including Sindbis virus and dengue virus. Furthermore, we found that Srg3 has an important role in controlling RVFV infection of the ovary which has important implications in understanding vertical transmission of viruses and RVFV in mosquitoes. Overall, our study underscores the importance of tissue-specific responses in antiviral immunity and highlights the complex tissue regulation of the CDN-STING pathway.
Collapse
Affiliation(s)
- Elisha Segrist
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Steven Miller
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Beth Gold
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yue Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
7
|
Guo D, Xu W, Cui T, Rong Q, Wu Q. Protein-coding circular RNA enhances antiviral immunity via JAK/STAT pathway in Drosophila. mBio 2024; 15:e0146924. [PMID: 39158293 PMCID: PMC11389369 DOI: 10.1128/mbio.01469-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024] Open
Abstract
RNA interference (RNAi) drives powerful antiviral immunity in plants and animals so that many viruses must express viral suppressor of RNAi (VSR) to establish virulent infection. However, little is known about the immune responses conferring resistance against viruses that have evolved the counter-defensive strategy to suppress antiviral RNAi. In this study, we discover that Drosophila cells infected with Drosophila C virus (DCV), a natural viral pathogen of Drosophila known to harbor a potent VSR, exhibit heightened expression of circular RNA circZfh1. circZfh1 confers virus resistance in the presence of viral suppression of antiviral RNAi. Furthermore, we validate that circZfh1 encodes a 274-amino acid protein, CRAV, essential for its antiviral activity. Notably, CRAV differs from its parental Zfh1 gene in a different reading frame, with the C-terminal 69 amino acids unique to CRAV. Our analysis also reveals the presence of CRAV in species within the melanogaster subgroup, with the C-terminal unique fragment undergoing accelerated evolution. Expression of CRAV upregulates the expression of the cytokine Upd3, which binds to its receptor, stimulating the JAK-STAT pathway and enhancing the immune response to DCV infection. Notably, CRISPR/Cas9 knockout of circZfh1 significantly enhances DCV replication in vitro and in vivo, with circZfh1-knockout adult flies displaying heightened disease susceptibility to DCV. In summary, our findings unveil a Drosophila protein-coding circular RNA that activates an innate immune signaling pathway crucial for virus resistance following the suppression of antiviral RNAi by viruses, thereby elucidating a novel counter-defensive strategy.IMPORTANCEEukaryotic hosts possess a complex, multilayered immune system that guards against pathogen invasion. In fruit flies, RNA interference (RNAi) drives robust antiviral immunity, prompting many viruses to express viral suppressors of RNAi (VSRs) to establish virulent infections. However, little is known about immune responses that confer resistance against viruses with potent VSRs. In this study, we discovered that Drosophila cells infected with Drosophila C virus (DCV), a natural viral pathogen possessing a potent VSR, upregulated the expression of circular RNA circZfh1. circZfh1 exhibits DCV-specific antiviral activity, encoding a 274-amino acid protein, CRAV, crucial for its antiviral effects. As a different reading frame from its parental Zfh1 gene, the C-terminal 69 amino acids are unique to CRAV, undergoing faster evolution. CRAV activates the JAK-STAT pathway, enhancing the immune response to DCV infection. Therefore, our work uncovers a new strategy for suppressing viral counter-defense through protein-coding circular RNA in fruit flies.
Collapse
Affiliation(s)
- Dongyang Guo
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, China
| | - Wen Xu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, China
| | - Ting Cui
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, China
| | - Qiqi Rong
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, China
| | - Qingfa Wu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
8
|
Tanaka T, Yano T, Usuki S, Seo Y, Mizuta K, Okaguchi M, Yamaguchi M, Hanyu-Nakamura K, Toyama-Sorimachi N, Brückner K, Nakamura A. Endocytosed dsRNAs induce lysosomal membrane permeabilization that allows cytosolic dsRNA translocation for Drosophila RNAi responses. Nat Commun 2024; 15:6993. [PMID: 39143098 PMCID: PMC11324899 DOI: 10.1038/s41467-024-51343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
RNA interference (RNAi) is a gene-silencing mechanism triggered by the cytosolic entry of double-stranded RNAs (dsRNAs). Many animal cells internalize extracellular dsRNAs via endocytosis for RNAi induction. However, it is not clear how the endocytosed dsRNAs are translocated into the cytosol across the endo/lysosomal membrane. Herein, we show that in Drosophila S2 cells, endocytosed dsRNAs induce lysosomal membrane permeabilization (LMP) that allows cytosolic dsRNA translocation. LMP mediated by dsRNAs requires the lysosomal Cl-/H+ antiporter ClC-b/DmOstm1. In clc-b or dmostm1 knockout S2 cells, extracellular dsRNAs are endocytosed and reach the lysosomes normally but fail to enter the cytosol. Pharmacological induction of LMP restores extracellular dsRNA-directed RNAi in clc-b or dmostm1-knockout cells. Furthermore, clc-b or dmostm1 mutant flies are defective in extracellular dsRNA-directed RNAi and its associated antiviral immunity. Therefore, endocytosed dsRNAs have an intrinsic ability to induce ClC-b/DmOstm1-dependent LMP that allows cytosolic dsRNA translocation for RNAi responses in Drosophila cells.
Collapse
Affiliation(s)
- Tsubasa Tanaka
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tamaki Yano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yoko Seo
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Kento Mizuta
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Maho Okaguchi
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Maki Yamaguchi
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Kazuko Hanyu-Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Noriko Toyama-Sorimachi
- Division of Human Immunology, International Research and Development Center for Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
9
|
Destoumieux-Garzón D, Montagnani C, Dantan L, Nicolas NDS, Travers MA, Duperret L, Charrière GM, Toulza E, Mitta G, Cosseau C, Escoubas JM. Cross-talk and mutual shaping between the immune system and the microbiota during an oyster's life. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230065. [PMID: 38497271 PMCID: PMC10945412 DOI: 10.1098/rstb.2023.0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2023] [Indexed: 03/19/2024] Open
Abstract
The Pacific oyster Crassostrea gigas lives in microbe-rich marine coastal systems subjected to rapid environmental changes. It harbours a diversified and fluctuating microbiota that cohabits with immune cells expressing a diversified immune gene repertoire. In the early stages of oyster development, just after fertilization, the microbiota plays a key role in educating the immune system. Exposure to a rich microbial environment at the larval stage leads to an increase in immune competence throughout the life of the oyster, conferring a better protection against pathogenic infections at later juvenile/adult stages. This beneficial effect, which is intergenerational, is associated with epigenetic remodelling. At juvenile stages, the educated immune system participates in the control of the homeostasis. In particular, the microbiota is fine-tuned by oyster antimicrobial peptides acting through specific and synergistic effects. However, this balance is fragile, as illustrated by the Pacific Oyster Mortality Syndrome, a disease causing mass mortalities in oysters worldwide. In this disease, the weakening of oyster immune defences by OsHV-1 µVar virus induces a dysbiosis leading to fatal sepsis. This review illustrates the continuous interaction between the highly diversified oyster immune system and its dynamic microbiota throughout its life, and the importance of this cross-talk for oyster health. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Caroline Montagnani
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Luc Dantan
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Noémie de San Nicolas
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Marie-Agnès Travers
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Léo Duperret
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Guillaume M. Charrière
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Eve Toulza
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Guillaume Mitta
- Ifremer, IRD, ILM, Université de Polynésie Française, UMR EIO, Vairao 98179, French Polynesia
| | - Céline Cosseau
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Jean-Michel Escoubas
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| |
Collapse
|
10
|
Liang W, Liu W, Xiong XP, Li JW, Li JL, Perera RJ, Zhou R. The circular RNA circATP8B(2) regulates ROS production and antiviral immunity in Drosophila. Cell Rep 2024; 43:113973. [PMID: 38507406 PMCID: PMC11081091 DOI: 10.1016/j.celrep.2024.113973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/04/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
We identified and validated a collection of circular RNAs (circRNAs) in Drosophila melanogaster. We show that depletion of the pro-viral circRNA circATP8B(2), but not its linear siblings, compromises viral infection both in cultured Drosophila cells and in vivo. In addition, circATP8B(2) is enriched in the fly gut, and gut-specific depletion of circATP8B(2) attenuates viral replication in an oral infection model. Furthermore, circATP8B(2) depletion results in increased levels of reactive oxygen species (ROS) and enhanced expression of dual oxidase (Duox), which produces ROS. Genetic and pharmacological manipulations of circATP8B(2)-depleted flies that reduce ROS levels rescue the viral replication defects elicited by circATP8B(2) depletion. Mechanistically, circATP8B(2) associates with Duox, and circATP8B(2)-Duox interaction is crucial for circATP8B(2)-mediated modulation of Duox activity. In addition, Gαq, a G protein subunit required for optimal Duox activity, acts downstream of circATP8B(2). We conclude that circATP8B(2) regulates antiviral defense by modulating Duox expression and Duox-dependent ROS production.
Collapse
Affiliation(s)
- Weihong Liang
- Departments of Medicine, Biological Chemistry, & Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA
| | - Wei Liu
- Departments of Medicine, Biological Chemistry, & Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA
| | - Xiao-Peng Xiong
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jennifer W Li
- Department of Medicine, Brown University, Providence, RI 02912, USA
| | - Jian-Liang Li
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Ranjan J Perera
- Departments of Medicine, Biological Chemistry, & Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Rui Zhou
- Departments of Medicine, Biological Chemistry, & Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Pradeu T, Thomma BPHJ, Girardin SE, Lemaitre B. The conceptual foundations of innate immunity: Taking stock 30 years later. Immunity 2024; 57:613-631. [PMID: 38599162 DOI: 10.1016/j.immuni.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
While largely neglected over decades during which adaptive immunity captured most of the attention, innate immune mechanisms have now become central to our understanding of immunology. Innate immunity provides the first barrier to infection in vertebrates, and it is the sole mechanism of host defense in invertebrates and plants. Innate immunity also plays a critical role in maintaining homeostasis, shaping the microbiota, and in disease contexts such as cancer, neurodegeneration, metabolic syndromes, and aging. The emergence of the field of innate immunity has led to an expanded view of the immune system, which is no longer restricted to vertebrates and instead concerns all metazoans, plants, and even prokaryotes. The study of innate immunity has given rise to new concepts and language. Here, we review the history and definition of the core concepts of innate immunity, discussing their value and fruitfulness in the long run.
Collapse
Affiliation(s)
- Thomas Pradeu
- CNRS UMR 5164 ImmunoConcept, University of Bordeaux, Bordeaux, France; Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France; Presidential Fellow, Chapman University, Orange, CA, USA.
| | - Bart P H J Thomma
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
12
|
Wang Z, Lin X, Shi W, Cao C. Nicotinic Acetylcholine Receptor Alpha6 Contributes to Antiviral Immunity via IMD Pathway in Drosophila melanogaster. Viruses 2024; 16:562. [PMID: 38675904 PMCID: PMC11054842 DOI: 10.3390/v16040562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, insecticides that target nicotinic acetylcholine receptors (nAChR) are widely used. Studies on the sublethal effects of insecticides have found that they can affect the amount of virus in insects. The mechanism by which insecticides affect insect virus load remain unclear. Here, we show that nAChR targeting insecticide can affect viral replication through the immune deficiency (IMD) pathway. We demonstrate that a low dose of spinosad (6.8 ng/mL), acting as an antagonist to Drosophila melanogaster nicotinic acetylcholine receptor α6 (Dα6), significantly elevates Drosophila melanogaster sigmavirus (DMelSV) virus titers in adults of Drosophila melanogaster. Conversely, a high dose of spinosad (50 ng/mL), acting as an agonist to Dα6, substantially decreases viral load. This bidirectional regulation of virus levels is absent in Dα6-knockout flies, signifying the specificity of spinosad's action through Dα6. Furthermore, the knockdown of Dα6 results in decreased expression of genes in the IMD pathway, including dredd, imd, relish, and downstream antimicrobial peptide genes AttA and AttB, indicating a reduced innate immune response. Subsequent investigations reveal no significant difference in viral titers between relish mutant flies and Dα6-relish double mutants, suggesting that the IMD pathway's role in antiviral defense is dependent on Dα6. Collectively, our findings shed light on the intricate interplay between nAChR signaling and the IMD pathway in mediating antiviral immunity, highlighting the potential for nAChR-targeting compounds to inadvertently influence viral dynamics in insect hosts. This knowledge may inform the development of integrated pest management strategies that consider the broader ecological impact of insecticide use.
Collapse
Affiliation(s)
| | | | - Wangpeng Shi
- Department of Entomology, China Agricultural University, Beijing 100193, China; (Z.W.); (X.L.)
| | - Chuan Cao
- Department of Entomology, China Agricultural University, Beijing 100193, China; (Z.W.); (X.L.)
| |
Collapse
|
13
|
Miles J, Lozano GL, Rajendhran J, Stabb EV, Handelsman J, Broderick NA. Massively parallel mutant selection identifies genetic determinants of Pseudomonas aeruginosa colonization of Drosophila melanogaster. mSystems 2024; 9:e0131723. [PMID: 38380971 PMCID: PMC10949475 DOI: 10.1128/msystems.01317-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Pseudomonas aeruginosa is recognized for its ability to colonize diverse habitats and cause disease in a variety of hosts, including plants, invertebrates, and mammals. Understanding how this bacterium is able to occupy wide-ranging niches is important for deciphering its ecology. We used transposon sequencing [Tn-Seq, also known as insertion sequencing (INSeq)] to identify genes in P. aeruginosa that contribute to fitness during the colonization of Drosophila melanogaster. Our results reveal a suite of critical factors, including those that contribute to polysaccharide production, DNA repair, metabolism, and respiration. Comparison of candidate genes with fitness determinants discovered in previous studies on P. aeruginosa identified several genes required for colonization and virulence determinants that are conserved across hosts and tissues. This analysis provides evidence for both the conservation of function of several genes across systems, as well as host-specific functions. These findings, which represent the first use of transposon sequencing of a gut pathogen in Drosophila, demonstrate the power of Tn-Seq in the fly model system and advance the existing knowledge of intestinal pathogenesis by D. melanogaster, revealing bacterial colonization determinants that contribute to a comprehensive portrait of P. aeruginosa lifestyles across habitats.IMPORTANCEDrosophila melanogaster is a powerful model for understanding host-pathogen interactions. Research with this system has yielded notable insights into mechanisms of host immunity and defense, many of which emerged from the analysis of bacterial mutants defective for well-characterized virulence factors. These foundational studies-and advances in high-throughput sequencing of transposon mutants-support unbiased screens of bacterial mutants in the fly. To investigate mechanisms of host-pathogen interplay and exploit the tractability of this model host, we used a high-throughput, genome-wide mutant analysis to find genes that enable the pathogen P. aeruginosa to colonize the fly. Our analysis reveals critical mediators of P. aeruginosa establishment in its host, some of which are required across fly and mouse systems. These findings demonstrate the utility of massively parallel mutant analysis and provide a platform for aligning the fly toolkit with comprehensive bacterial genomics.
Collapse
Affiliation(s)
- Jessica Miles
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Graduate Program in Microbiology, Yale University, New Haven, Connecticut, USA
| | - Gabriel L. Lozano
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Jeyaprakash Rajendhran
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Eric V. Stabb
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| | - Jo Handelsman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
14
|
Hédelin L, Thiébaut A, Huang J, Li X, Lemoine A, Haas G, Meignin C, Cai H, Waterhouse RM, Martins N, Imler JL. Investigating the Evolution of Drosophila STING-Dependent Antiviral Innate Immunity by Multispecies Comparison of 2'3'-cGAMP Responses. Mol Biol Evol 2024; 41:msae032. [PMID: 38377349 PMCID: PMC10917227 DOI: 10.1093/molbev/msae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Viruses represent a major threat to all animals, which defend themselves through induction of a large set of virus-stimulated genes that collectively control the infection. In vertebrates, these genes include interferons that play a critical role in the amplification of the response to infection. Virus- and interferon-stimulated genes include restriction factors targeting the different steps of the viral replication cycle, in addition to molecules associated with inflammation and adaptive immunity. Predictably, antiviral genes evolve dynamically in response to viral pressure. As a result, each animal has a unique arsenal of antiviral genes. Here, we exploit the capacity to experimentally activate the evolutionarily conserved stimulator of IFN genes (STING) signaling pathway by injection of the cyclic dinucleotide 2'3'-cyclic guanosine monophosphate-adenosine monophosphate into flies to define the repertoire of STING-regulated genes in 10 Drosophila species, spanning 40 million years of evolution. Our data reveal a set of conserved STING-regulated factors, including STING itself, a cGAS-like-receptor, the restriction factor pastel, and the antiviral protein Vago, but also 2 key components of the antiviral RNA interference pathway, Dicer-2, and Argonaute2. In addition, we identify unknown species- or lineage-specific genes that have not been previously associated with resistance to viruses. Our data provide insight into the core antiviral response in Drosophila flies and pave the way for the characterization of previously unknown antiviral effectors.
Collapse
Affiliation(s)
- Léna Hédelin
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Antonin Thiébaut
- Department of Ecology and Evolution, SIB Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Jingxian Huang
- School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Li
- School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Aurélie Lemoine
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Gabrielle Haas
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Carine Meignin
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Hua Cai
- School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Robert M Waterhouse
- Department of Ecology and Evolution, SIB Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Nelson Martins
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Imler
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
- School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Awais MM, Fei S, Xia J, Feng M, Sun J. Insights into midgut cell types and their crucial role in antiviral immunity in the lepidopteran model Bombyx mori. Front Immunol 2024; 15:1349428. [PMID: 38420120 PMCID: PMC10899340 DOI: 10.3389/fimmu.2024.1349428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
The midgut, a vital component of the digestive system in arthropods, serves as an interface between ingested food and the insect's physiology, playing a pivotal role in nutrient absorption and immune defense mechanisms. Distinct cell types, including columnar, enteroendocrine, goblet and regenerative cells, comprise the midgut in insects and contribute to its robust immune response. Enterocytes/columnar cells, the primary absorptive cells, facilitate the immune response through enzyme secretions, while regenerative cells play a crucial role in maintaining midgut integrity by continuously replenishing damaged cells and maintaining the continuity of the immune defense. The peritrophic membrane is vital to the insect's innate immunity, shielding the midgut from pathogens and abrasive food particles. Midgut juice, a mixture of digestive enzymes and antimicrobial factors, further contributes to the insect's immune defense, helping the insect to combat invading pathogens and regulate the midgut microbial community. The cutting-edge single-cell transcriptomics also unveiled previously unrecognized subpopulations within the insect midgut cells and elucidated the striking similarities between the gastrointestinal tracts of insects and higher mammals. Understanding the intricate interplay between midgut cell types provides valuable insights into insect immunity. This review provides a solid foundation for unraveling the complex roles of the midgut, not only in digestion but also in immunity. Moreover, this review will discuss the novel immune strategies led by the midgut employed by insects to combat invading pathogens, ultimately contributing to the broader understanding of insect physiology and defense mechanisms.
Collapse
Affiliation(s)
| | | | | | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
16
|
Bing XL, Liang ZJ, Tian J, Gong X, Huang SQ, Chen J, Hong XY. The influence of Acetobacter pomorum bacteria on the developmental progression of Drosophila suzukii via gluconic acid secretion. Mol Ecol 2024; 33:e17202. [PMID: 37947376 DOI: 10.1111/mec.17202] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Insects are rich in various microorganisms, which play diverse roles in affecting host biology. Although most Drosophila species prefer rotten fruits, the agricultural pest Drosophila suzukii attacks ripening fruits before they are harvested. We have reported that the microbiota has positive and negative impacts on the agricultural pest D. suzukii on nutrient-poor and -rich diets, respectively. On nutrient-poor diets, microbes provide protein to facilitate larval development. But how they impede D. suzukii development on nutrient-rich diets is unknown. Here we report that Acetobacter pomorum (Apo), a commensal bacterium in many Drosophila species and rotting fruit, has several detrimental effects in D. suzukii. Feeding D. suzukii larvae nutrient-rich diets containing live Apo significantly delayed larval development and reduced the body weight of emerged adults. Apo induced larval immune responses and downregulated genes of digestion and juvenile hormone metabolism. Knockdown of these genes in germ-free larvae reproduced Apo-like weakened phenotypes. Apo was confirmed to secrete substantial amounts of gluconic acid. Adding gluconic acid to the D. suzukii larval diet hindered larval growth and decreased adult body weight. Moreover, the dose of gluconic acid that adversely affected D. suzukii did not negatively affect Drosophila melanogaster, suggesting that D. suzukii is less tolerant to acid than D. melanogaster. Taken together, these findings indicate that D. suzukii is negatively affected by gluconic acid, which may explain why it prefers ripening fruit over Apo-rich rotting fruit. These results show an insect's tolerance to microbes can influence its ecological niche.
Collapse
Affiliation(s)
- Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zi-Jian Liang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jia Tian
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xue Gong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shao-Qiu Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jie Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Cao X, Scoffield J, Xie B, Morton DB, Wu H. Drosophila melanogaster as a model to study polymicrobial synergy and dysbiosis. Front Cell Infect Microbiol 2023; 13:1279380. [PMID: 38192401 PMCID: PMC10773677 DOI: 10.3389/fcimb.2023.1279380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/01/2023] [Indexed: 01/10/2024] Open
Abstract
The fruit fly Drosophila melanogaster has emerged as a valuable model for investigating human biology, including the role of the microbiome in health and disease. Historically, studies involving the infection of D. melanogaster with single microbial species have yielded critical insights into bacterial colonization and host innate immunity. However, recent evidence has underscored that multiple microbial species can interact in complex ways through physical connections, metabolic cross-feeding, or signaling exchanges, with significant implications for healthy homeostasis and the initiation, progression, and outcomes of disease. As a result, researchers have shifted their focus toward developing more robust and representative in vivo models of co-infection to probe the intricacies of polymicrobial synergy and dysbiosis. This review provides a comprehensive overview of the pioneering work and recent advances in the field, highlighting the utility of Drosophila as an alternative model for studying the multifaceted microbial interactions that occur within the oral cavity and other body sites. We will discuss the factors and mechanisms that drive microbial community dynamics, as well as their impacts on host physiology and immune responses. Furthermore, this review will delve into the emerging evidence that connects oral microbes to systemic conditions in both health and disease. As our understanding of the microbiome continues to evolve, Drosophila offers a powerful and tractable model for unraveling the complex interplay between host and microbes including oral microbes, which has far-reaching implications for human health and the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Xixi Cao
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
| | - Jessica Scoffield
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Baotong Xie
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
| | - David B. Morton
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
| | - Hui Wu
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
18
|
Khan SA, Kojour MAM, Han YS. Recent trends in insect gut immunity. Front Immunol 2023; 14:1272143. [PMID: 38193088 PMCID: PMC10773798 DOI: 10.3389/fimmu.2023.1272143] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The gut is a crucial organ in insect defense against various pathogens and harmful substances in their environment and diet. Distinct insect gut compartments possess unique functionalities contributing to their physiological processes, including immunity. The insect gut's cellular composition is vital for cellular and humoral immunity. The peritrophic membrane, mucus layer, lumen, microvilli, and various gut cells provide essential support for activating and regulating immune defense mechanisms. These components also secrete molecules and enzymes that are imperative in physiological activities. Additionally, the gut microbiota initiates various signaling pathways and produces vitamins and minerals that help maintain gut homeostasis. Distinct immune signaling pathways are activated within the gut when insects ingest pathogens or hazardous materials. The pathway induced depends on the infection or pathogen type; include immune deficiency (imd), Toll, JAK/STAT, Duox-ROS, and JNK/FOXO regulatory pathways. These pathways produce different antimicrobial peptides (AMPs) and maintain gut homeostasis. Furthermore, various signaling mechanisms within gut cells regulate insect gut recovery following infection. Although some questions regarding insect gut immunity in different species require additional study, this review provides insights into the insect gut's structure and composition, commensal microorganism roles in Drosophila melanogaster and Tenebrio molitor life cycles, different signaling pathways involved in gut immune systems, and the insect gut post-infection recovery through various signaling mechanisms.
Collapse
Affiliation(s)
- Shahidul Ahmed Khan
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Maryam Ali Mohmmadie Kojour
- Life & Medical Sciences Institute (LIMES) Development, Genetics & Molecular Physiology Unit, University of Bonn, Bonn, Germany
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
19
|
Miles J, Lozano GL, Rajendhran J, Stabb EV, Handelsman J, Broderick NA. Massively parallel mutant selection identifies genetic determinants of Pseudomonas aeruginosa colonization of Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567573. [PMID: 38045230 PMCID: PMC10690197 DOI: 10.1101/2023.11.20.567573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Pseudomonas aeruginosa is recognized for its ability to colonize diverse habitats and cause disease in a variety of hosts, including plants, invertebrates, and mammals. Understanding how this bacterium is able to occupy wide-ranging niches is important for deciphering its ecology. We used transposon sequencing (Tn-Seq, also known as INSeq) to identify genes in P. aeruginosa that contribute to fitness during colonization of Drosophila melanogaster. Our results reveal a suite of critical factors, including those that contribute to polysaccharide production, DNA repair, metabolism, and respiration. Comparison of candidate genes with fitness determinants discovered in previous studies of P. aeruginosa identified several genes required for colonization and virulence determinants that are conserved across hosts and tissues. This analysis provides evidence for both the conservation of function of several genes across systems, as well as host-specific functions. These findings, which represent the first use of transposon sequencing of a gut pathogen in Drosophila, demonstrate the power of Tn-Seq in the fly model system and advance existing knowledge of intestinal pathogenesis by D. melanogaster, revealing bacterial colonization determinants that contribute to a comprehensive portrait of P. aeruginosa lifestyles across habitats.
Collapse
Affiliation(s)
- Jessica Miles
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Graduate Program in Microbiology, Yale University, New Haven, CT, USA
| | - Gabriel L. Lozano
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Current address: Division of Infectious Diseases and Division of Gastroenterology, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeyaprakash Rajendhran
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Current address: Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, TN, India
| | - Eric V. Stabb
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Jo Handelsman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Current address: Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
20
|
Trammell CE, Rowe EH, Char AB, Jones BJ, Fawcett S, Ahlers LRH, Goodman AG. Insulin-mediated endothelin signaling is antiviral during West Nile virus infection. J Virol 2023; 97:e0111223. [PMID: 37796127 PMCID: PMC10617537 DOI: 10.1128/jvi.01112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Arboviruses, particularly those transmitted by mosquitoes, pose a significant threat to humans and are an increasing concern because of climate change, human activity, and expanding vector-competent populations. West Nile virus is of significant concern as the most frequent mosquito-borne disease transmitted annually within the continental United States. Here, we identify a previously uncharacterized signaling pathway that impacts West Nile virus infection, namely endothelin signaling. Additionally, we demonstrate that we can successfully translate results obtained from D. melanogaster into the more relevant human system. Our results add to the growing field of insulin-mediated antiviral immunity and identify potential biomarkers or intervention targets to better address West Nile virus infection and severe disease.
Collapse
Affiliation(s)
- Chasity E. Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Evelyn H. Rowe
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Aditya B. Char
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Brianne J. Jones
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Stephen Fawcett
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Laura R. H. Ahlers
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
21
|
Prince BC, Walsh E, Torres TZB, Rückert C. Recognition of Arboviruses by the Mosquito Immune System. Biomolecules 2023; 13:1159. [PMID: 37509194 PMCID: PMC10376960 DOI: 10.3390/biom13071159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) pose a significant threat to both human and animal health worldwide. These viruses are transmitted through the bites of mosquitoes, ticks, sandflies, or biting midges to humans or animals. In humans, arbovirus infection often results in mild flu-like symptoms, but severe disease and death also occur. There are few vaccines available, so control efforts focus on the mosquito population and virus transmission control. One area of research that may enable the development of new strategies to control arbovirus transmission is the field of vector immunology. Arthropod vectors, such as mosquitoes, have coevolved with arboviruses, resulting in a balance of virus replication and vector immune responses. If this balance were disrupted, virus transmission would likely be reduced, either through reduced replication, or even through enhanced replication, resulting in mosquito mortality. The first step in mounting any immune response is to recognize the presence of an invading pathogen. Recent research advances have been made to tease apart the mechanisms of arbovirus detection by mosquitoes. Here, we summarize what is known about arbovirus recognition by the mosquito immune system, try to generate a comprehensive picture, and highlight where there are still gaps in our current understanding.
Collapse
Affiliation(s)
- Brian C Prince
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Elizabeth Walsh
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Tran Zen B Torres
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
22
|
Svobodová K, Maitre A, Obregón D, Wu-Chuang A, Thaduri S, Locke B, de Miranda JR, Mateos-Hernández L, Krejčí AB, Cabezas-Cruz A. Gut microbiota assembly of Gotland varroa-surviving honey bees excludes major viral pathogens. Microbiol Res 2023; 274:127418. [PMID: 37315341 DOI: 10.1016/j.micres.2023.127418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
The spread of the parasite Varroa destructor and associated viruses has resulted in massive honey bee colony losses with considerable economic and ecological impact. The gut microbiota has a major role in shaping honey bees tolerance and resistance to parasite infestation and viral infection, but the contribution of viruses to the assembly of the host microbiota in the context of varroa resistance and susceptibility remains unclear. Here, we used a network approach including viral and bacterial nodes to characterize the impact of five viruses, Apis Rhabdovirus-1 (ARV-1), Black Queen Cell virus (BQCV), Lake Sinai virus (LSV), Sacbrood virus (SBV) and Deformed wing virus (DWV) on the gut microbiota assembly of varroa-susceptible and Gotland varroa-surviving honey bees. We found that microbiota assembly was different in varroa-surviving and varroa-susceptible honey bees with the network of the latter having a whole module not present in the network of the former. Four viruses, ARV-1, BQCV, LSV, and SBV, were tightly associated with bacterial nodes of the core microbiota of varroa-susceptible honey bees, while only two viruses BQCV and LSV, appeared correlated with bacterial nodes in varroa-surviving honey bees. In silico removal of viral nodes caused major re-arrangement of microbial networks with changes in nodes centrality and significant reduction of the networks' robustness in varroa-susceptible, but not in varroa-surviving honey bees. Comparison of predicted functional pathways in bacterial communities using PICRUSt2 showed the superpathway for heme b biosynthesis from uroporphyrinogen-III and a pathway for arginine, proline, and ornithine interconversion as significantly increased in varroa-surviving honey bees. Notably, heme and its reduction products biliverdin and bilirubin have been reported as antiviral agents. These findings show that viral pathogens are differentially nested in the bacterial communities of varroa-surviving and varroa-susceptible honey bees. These results suggest that Gotland honey bees are associated with minimally-assembled and reduced bacterial communities that exclude viral pathogens and are resilient to viral nodes removal, which, together with the production of antiviral compounds, may explain the resiliency of Gotland honey bees to viral infections. In contrast, the intertwined virus-bacterium interactions in varroa-susceptible networks suggest that the complex assembly of microbial communities in this honey bee strain favor viral infections, which may explain viral persistence in this honey bee strain. Further understanding of protective mechanisms mediated by the microbiota could help developing novel ways to control devastating viral infections affecting honey bees worldwide.
Collapse
Affiliation(s)
- Karolína Svobodová
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic.
| | - Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France; INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), 20250 Corte, France; EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Srinivas Thaduri
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden
| | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Alena Bruce Krejčí
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France.
| |
Collapse
|
23
|
Imrie RM, Walsh SK, Roberts KE, Lello J, Longdon B. Investigating the outcomes of virus coinfection within and across host species. PLoS Pathog 2023; 19:e1011044. [PMID: 37216391 DOI: 10.1371/journal.ppat.1011044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Interactions between coinfecting pathogens have the potential to alter the course of infection and can act as a source of phenotypic variation in susceptibility between hosts. This phenotypic variation may influence the evolution of host-pathogen interactions within host species and interfere with patterns in the outcomes of infection across host species. Here, we examine experimental coinfections of two Cripaviruses-Cricket Paralysis Virus (CrPV), and Drosophila C Virus (DCV)-across a panel of 25 Drosophila melanogaster inbred lines and 47 Drosophilidae host species. We find that interactions between these viruses alter viral loads across D. melanogaster genotypes, with a ~3 fold increase in the viral load of DCV and a ~2.5 fold decrease in CrPV in coinfection compared to single infection, but we find little evidence of a host genetic basis for these effects. Across host species, we find no evidence of systematic changes in susceptibility during coinfection, with no interaction between DCV and CrPV detected in the majority of host species. These results suggest that phenotypic variation in coinfection interactions within host species can occur independently of natural host genetic variation in susceptibility, and that patterns of susceptibility across host species to single infections can be robust to the added complexity of coinfection.
Collapse
Affiliation(s)
- Ryan M Imrie
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Sarah K Walsh
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Katherine E Roberts
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Joanne Lello
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ben Longdon
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| |
Collapse
|
24
|
Brown JJ, Jandová A, Jeffs CT, Higgie M, Nováková E, Lewis OT, Hrček J. Microbiome Structure of a Wild Drosophila Community along Tropical Elevational Gradients and Comparison to Laboratory Lines. Appl Environ Microbiol 2023; 89:e0009923. [PMID: 37154737 DOI: 10.1128/aem.00099-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Variation along environmental gradients in host-associated microbial communities is not well understood compared to free-living microbial communities. Because elevational gradients may serve as natural proxies for climate change, understanding patterns along these gradients can inform our understanding of the threats hosts and their symbiotic microbes face in a warming world. In this study, we analyzed bacterial microbiomes from pupae and adults of four Drosophila species native to Australian tropical rainforests. We sampled wild individuals at high and low elevations along two mountain gradients to determine natural diversity patterns. Further, we sampled laboratory-reared individuals from isofemale lines established from the same localities to see if any natural patterns are retained in the lab. In both environments, we controlled for diet to help elucidate other deterministic patterns of microbiome composition. We found small but significant differences in Drosophila bacterial community composition across elevation, with some notable taxonomic differences between different Drosophila species and sites. Further, we found that field-collected fly pupae had significantly richer microbiomes than laboratory-reared pupae. We also found similar microbiome composition in both types of provided diet, suggesting that the significant differences found among Drosophila microbiomes are the products of surrounding environments with different bacterial species pools, possibly bound to elevational differences in temperature. Our results suggest that comparative studies between lab and field specimens help reveal the true variability in microbiome communities that can exist within a single species. IMPORTANCE Bacteria form microbial communities inside most higher-level organisms, but we know little about how the microbiome varies along environmental gradients and between natural host populations and laboratory colonies. To explore such effects on insect-associated microbiomes, we studied the gut microbiome in four Drosophila species over two mountain gradients in tropical Australia. We also compared these data to individuals kept in the laboratory to understand how different settings changed microbiome communities. We found that field-sampled individuals had significantly higher microbiome diversity than those from the lab. In wild Drosophila populations, elevation explains a small but significant amount of the variation in their microbial communities. Our study highlights the importance of environmental bacterial sources for Drosophila microbiome composition across elevational gradients and shows how comparative studies help reveal the true flexibility in microbiome communities that can exist within a species.
Collapse
Affiliation(s)
- Joel J Brown
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Anna Jandová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Megan Higgie
- College of Science & Engineering, James Cook University, Townsville, Queensland, Australia
| | - Eva Nováková
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Owen T Lewis
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Jan Hrček
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
25
|
Onuma T, Yamauchi T, Kosakamoto H, Kadoguchi H, Kuraishi T, Murakami T, Mori H, Miura M, Obata F. Recognition of commensal bacterial peptidoglycans defines Drosophila gut homeostasis and lifespan. PLoS Genet 2023; 19:e1010709. [PMID: 37023169 PMCID: PMC10112789 DOI: 10.1371/journal.pgen.1010709] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/18/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Commensal microbes in animals have a profound impact on tissue homeostasis, stress resistance, and ageing. We previously showed in Drosophila melanogaster that Acetobacter persici is a member of the gut microbiota that promotes ageing and shortens fly lifespan. However, the molecular mechanism by which this specific bacterial species changes lifespan and physiology remains unclear. The difficulty in studying longevity using gnotobiotic flies is the high risk of contamination during ageing. To overcome this technical challenge, we used a bacteria-conditioned diet enriched with bacterial products and cell wall components. Here, we demonstrate that an A. persici-conditioned diet shortens lifespan and increases intestinal stem cell (ISC) proliferation. Feeding adult flies a diet conditioned with A. persici, but not with Lactiplantibacillus plantarum, can decrease lifespan but increase resistance to paraquat or oral infection of Pseudomonas entomophila, indicating that the bacterium alters the trade-off between lifespan and host defence. A transcriptomic analysis using fly intestine revealed that A. persici preferably induces antimicrobial peptides (AMPs), while L. plantarum upregulates amidase peptidoglycan recognition proteins (PGRPs). The specific induction of these Imd target genes by peptidoglycans from two bacterial species is due to the stimulation of the receptor PGRP-LC in the anterior midgut for AMPs or PGRP-LE from the posterior midgut for amidase PGRPs. Heat-killed A. persici also shortens lifespan and increases ISC proliferation via PGRP-LC, but it is not sufficient to alter the stress resistance. Our study emphasizes the significance of peptidoglycan specificity in determining the gut bacterial impact on healthspan. It also unveils the postbiotic effect of specific gut bacterial species, which turns flies into a "live fast, die young" lifestyle.
Collapse
Affiliation(s)
- Taro Onuma
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Toshitaka Yamauchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Hibiki Kadoguchi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takumi Murakami
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan
| | - Hiroshi Mori
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumiaki Obata
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Cross ST, Brehm AL, Dunham TJ, Rodgers CP, Keene AH, Borlee GI, Stenglein MD. Galbut Virus Infection Minimally Influences Drosophila melanogaster Fitness Traits in a Strain and Sex-Dependent Manner. Viruses 2023; 15:539. [PMID: 36851753 PMCID: PMC9965562 DOI: 10.3390/v15020539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Galbut virus (family Partitiviridae) infects Drosophila melanogaster and can be transmitted vertically from infected mothers or infected fathers with near perfect efficiency. This form of super-Mendelian inheritance should drive infection to 100% prevalence, and indeed, galbut virus is ubiquitous in wild D. melanogaster populations. However, on average, only about 60% of individual flies are infected. One possible explanation for this is that a subset of flies are resistant to infection. Although galbut virus-infected flies appear healthy, infection may be sufficiently costly to drive selection for resistant hosts, thereby decreasing overall prevalence. To test this hypothesis, we quantified a variety of fitness-related traits in galbut virus-infected flies from two lines from the Drosophila Genetic Reference Panel (DGRP). Galbut virus-infected flies had no difference in average lifespan and total offspring production compared to their uninfected counterparts. Galbut virus-infected DGRP-517 flies pupated and eclosed faster than their uninfected counterparts. Some galbut virus-infected flies exhibited altered sensitivity to viral, bacterial, and fungal pathogens. The microbiome composition of flies was not measurably perturbed by galbut virus infection. Differences in phenotype attributable to galbut virus infection varied as a function of fly sex and DGRP strain, and differences attributable to infection status were dwarfed by larger differences attributable to strain and sex. Thus, galbut virus infection does produce measurable phenotypic changes, with changes being minor, offsetting, and possibly net-negative.
Collapse
Affiliation(s)
- Shaun T. Cross
- Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ali L. Brehm
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Tillie J. Dunham
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Case P. Rodgers
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Alexandra H. Keene
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Grace I. Borlee
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark D. Stenglein
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
27
|
Trammell CE, Rowe EH, Jones BJ, Char AB, Fawcett S, Ahlers LR, Goodman AG. Insulin-mediated endothelin signaling is antiviral during West Nile virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524426. [PMID: 36712090 PMCID: PMC9882177 DOI: 10.1101/2023.01.17.524426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
West Nile virus (WNV) is the most prevalent mosquito-borne virus in the United States with approximately 2,000 cases each year. There are currently no approved human vaccines and a lack of prophylactic and therapeutic treatments. Understanding host responses to infection may reveal potential intervention targets to reduce virus replication and disease progression. The use of Drosophila melanogaster as a model organism to understand innate immunity and host antiviral responses is well established. Previous studies revealed that insulin-mediated signaling regulates WNV infection in invertebrates by regulating canonical antiviral pathways. Because insulin signaling is well-conserved across insect and mammalian species, we sought to determine if results using D. melanogaster can be extrapolated for the analysis of orthologous pathways in humans. Here, we identify insulin-mediated endothelin signaling using the D. melanogaster model and evaluate an orthologous pathway in human cells during WNV infection. We demonstrate that endothelin signaling reduces WNV replication through the activation of canonical antiviral signaling. Taken together, our findings show that endothelin-mediated antiviral immunity is broadly conserved across species and reduces replication of viruses that can cause severe human disease. IMPORTANCE Arboviruses, particularly those transmitted by mosquitoes, pose a significant threat to humans and are an increasing concern because of climate change, human activity, and expanding vector-competent populations. West Nile virus is of significant concern as the most frequent mosquito-borne disease transmitted annually within the continental United States. Here, we identify a previously uncharacterized signaling pathway that impacts West Nile virus infection, namely endothelin signaling. Additionally, we demonstrate that we can successfully translate results obtained from D. melanogaster into the more relevant human system. Our results add to the growing field of insulin-mediated antiviral immunity and identifies potential biomarkers or intervention targets to better address West Nile virus infection and severe disease.
Collapse
Affiliation(s)
- Chasity E. Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Evelyn H. Rowe
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Brianne J. Jones
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Aditya B. Char
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Stephen Fawcett
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Laura R.H. Ahlers
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
28
|
Abstract
The gut epithelia of virtually all animals harbor complex microbial communities that play an important role in maintaining immune and cellular homeostasis. Gut microbiota have evolutionarily adapted to the host gut environment, serving as key regulators of intestinal stem cells to promote a healthy gut barrier and modulate epithelial self-renewal. Disruption of these populations has been associated with inflammatory disorders or cancerous lesions of the intestine. However, the molecular mechanisms controlling gut-microbe interactions are only partially understood due to the high diversity and biologically dynamic nature of these microorganisms. This article reviews the current knowledge on Drosophila gut microbiota and its role in signaling pathways that are crucial for the induction of distinct homeostatic and immune responses. Thanks to the genetic tractability of Drosophila and its cultivable and simple microbiota, this association model offers new efficient tools for investigating the crosstalk between a host and its microbiota while providing a framework for a better understanding of the ecological and evolutionary roles of the microbiome.
Collapse
Affiliation(s)
- Ghada Tafesh-Edwards
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington DC, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington DC, USA
| |
Collapse
|
29
|
Donkersley P, Rice A, Graham RI, Wilson K. Gut microbial community supplementation and reduction modulates African armyworm susceptibility to a baculovirus. FEMS Microbiol Ecol 2022; 99:6880154. [PMID: 36473704 PMCID: PMC9764207 DOI: 10.1093/femsec/fiac147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota stimulates the immune system and inhibits pathogens, and thus, it is critical for disease prevention. Probiotics represent an effective alternative to antibiotics used for the therapy and prevention of bacterial diseases. Probiotic bacteria are commonly used in vertebrates, although their use in invertebrates is still rare. We manipulated the gut microbiome of the African Armyworm (Spodoptera exempta Walker) using antibiotics and field-collected frass, in an attempt to understand the interactions of the gut microbiome with the nucleopolyhedrovirus, SpexNPV. We found that S. exempta individuals with supplemented gut microbiome were significantly more resistant to SpexNPV, relative to those with a typical laboratory gut microbiome. Illumina MiSeq sequencing revealed the bacterial phyla in the S. exempta gut belonged to 28 different classes. Individuals with an increased abundance of Lactobacillales had a higher probability of surviving viral infection. In contrast, there was an increased abundance of Enterobacteriales and Pseudomonadales in individuals dying from viral infection, corresponding with decreased abundance of these two Orders in surviving caterpillars, suggesting a potential role for them in modulating the interaction between the host and its pathogen. These results have important implications for laboratory studies testing biopesticides.
Collapse
Affiliation(s)
- Philip Donkersley
- Corresponding author: Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom. E-mail:
| | - Annabel Rice
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Robert I Graham
- Department of Rural Land Use, SRUC, Craibstone Campus, Aberdeen AB21 9YA, United Kingdom
| | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
30
|
Diet Influences the Gut Microbial Diversity and Olfactory Preference of the German Cockroach Blattella germanica. Curr Microbiol 2022; 80:23. [PMID: 36460931 DOI: 10.1007/s00284-022-03123-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
The gut microbiota of insects has been proven to play a role in the host's nutrition and foraging. The German cockroach, Blattella germanica, is an important vector of various pathogens and causes severe allergic reactions in humans. Food bait is an effective and frequently used method of controlling this omnivorous insect. Thus, understanding the relationships among diet, gut microbiota, and olfactory preferences could be useful for optimizing this management strategy. In this study, B. germanica was exposed to different foods, i.e., high-fat diet, high-protein diet, high-starch diet, and dog food (as control). Then their gut microbial and olfactory responses were investigated. 16S rRNA gene sequencing confirmed that the gut microbiota significantly differed across the four treatments, especially in relation to bacteria associated with the metabolism and digestion of essential components. Behavioral tests and the antenna electrophysiological responses showed that insects had a greater preference for other types of diets compared with their long-term domesticated diet. Moreover, continuously providing a single-type diet could change almost all the OR genes' expression of B. germanica, especially BgORco, which was significantly repressed compared to control. These results indicate that diet can shape the gut microbiota diversity and drive the olfactory preference of B. germanica. The association between gut microbiota profiles and diets can be utilized in managing B. germanica according to their olfactory preference.
Collapse
|
31
|
Zeng T, Jaffar S, Xu Y, Qi Y. The Intestinal Immune Defense System in Insects. Int J Mol Sci 2022; 23:ijms232315132. [PMID: 36499457 PMCID: PMC9740067 DOI: 10.3390/ijms232315132] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Over a long period of evolution, insects have developed unique intestinal defenses against invasion by foreign microorganisms, including physical defenses and immune responses. The physical defenses of the insect gut consist mainly of the peritrophic matrix (PM) and mucus layer, which are the first barriers to pathogens. Gut microbes also prevent the colonization of pathogens. Importantly, the immune-deficiency (Imd) pathways produce antimicrobial peptides to eliminate pathogens; mechanisms related to reactive oxygen species are another important pathway for insect intestinal immunity. The janus kinase/STAT signaling pathway is involved in intestinal immunity by producing bactericidal substances and regulating tissue repair. Melanization can produce many bactericidal active substances into the intestine; meanwhile, there are multiple responses in the intestine to fight against viral and parasitic infections. Furthermore, intestinal stem cells (ISCs) are also indispensable in intestinal immunity. Only the coordinated combination of the intestinal immune defense system and intestinal tissue renewal can effectively defend against pathogenic microorganisms.
Collapse
|
32
|
Li Z, Liu R, Wang X, Wu H, Yi X, Huang L, Qin Q. Effects of melittin on laying performance and intestinal barrier function of quails. Poult Sci 2022; 102:102355. [PMID: 36502563 PMCID: PMC9763859 DOI: 10.1016/j.psj.2022.102355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
Abstract
To study the effects of melittin on egg-laying performance and intestinal barrier of quails, 240 quails (aged 70 d) were randomly divided into 4 groups with 6 replicates (10 quails per replicate). They were fed with basal diet (group B), basal diet + 0.08 g/kg melittin (group BA1), basal diet + 0.12 g/kg melittin (group BA2) and basal diet + 0.16 g/kg melittin (group BA3). The experiment lasted for 21 days. The eggs were collected every day. At the end of the experiment, duodenal, jejunal, and ileal tissues were collected, and the cecal contents were sampled. Intestinal antioxidant index, barrier function, and intestinal flora were analyzed. The results showed that the addition of melittin significantly increased the laying rate and average egg weight. Addition of melittin significantly increased the antioxidant function, mechanical barrier, immune barrier, and the villus height to crypt depth ratio of small intestine. Addition of melittin had no significant effect on the α and β diversity of cecal flora, but significantly increased the abundance of Bacteroidales at family level and genus level. Bioinformatics analysis of cecal content showed significant increase in COG functional category of cytoskeleton, and significant decrease in RNA processing and modification in group BA2. KEGG functional analysis showed significant decrease in steroid biosynthesis, caffeine metabolism, and cytochrome P450 pathways in group BA2. In conclusion, addition of 0.12 g/kg melittin to feed improved the laying performance and the intestinal antioxidant capacity and barrier function of quails but had no significant effect on the composition and structure of cecal microbial community. This study provides experimental data and theoretical basis for the application of melittin as a new quail feed additive.
Collapse
|
33
|
Zhai J, Li W, Liu X, Wang D, Zhang D, Liu Y, Liang X, Chen Z. Tiny Drosophila intestinal stem cells, big power. Cell Biol Int 2022; 47:3-14. [PMID: 36177490 DOI: 10.1002/cbin.11911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022]
Abstract
The signaling pathways are highly conserved between Drosophila and mammals concerning intestinal development, regeneration, and disease. The powerful genetic tools of Drosophila make it a valuable and convenient alternative to answer basic biological questions that can not be addressed using mammalian models. In this review, we discuss recent advances in how we use fly midgut to answer the following key questions: (1) How intestine stem cell niches are established; (2) which factors control asymmetric division of stem cells; (3) how intestinal cells interact with environmental factors, such as tissue damage, microbiota, and diet; (4) how to screen aging/cancer-related factors or drugs by fly intestine stem cells.
Collapse
Affiliation(s)
- Jingbo Zhai
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| | - Wanyang Li
- Medical College, Inner Mongolia Minzu University, Tongliao, China
| | - Xin Liu
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| | - Di Wang
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| | - Dongli Zhang
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| | - Yanli Liu
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Xiuwen Liang
- Hulunbuir City People's Hospital, Hulunbuir City, China
| | - Zeliang Chen
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| |
Collapse
|
34
|
Shen R, Zheng K, Zhou Y, Chi X, Pan H, Wu C, Yang Y, Zheng Y, Pan D, Liu B. A dRASSF-STRIPAK-Imd-JAK/STAT axis controls antiviral immune response in Drosophila. Cell Rep 2022; 40:111143. [PMID: 35905720 DOI: 10.1016/j.celrep.2022.111143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/09/2022] [Accepted: 07/06/2022] [Indexed: 01/20/2023] Open
Abstract
Host antiviral immunity suffers strong pressure from rapidly evolving viruses. Identifying host antiviral immune mechanisms has profound implications for developing antiviral strategies. Here, we uncover an essential role for the tumor suppressor Ras-association domain family (RASSF) in Drosophila antiviral response. Loss of dRassf in fat body leads to increased vulnerability to viral infection and impaired Imd pathway activation accompanied by detrimental JAK/STAT signaling overactivation. Mechanistically, dRASSF protects TAK1, a key kinase of Imd pathway, from inhibition by the STRIPAK PP2A phosphatase complex. Activated Imd signaling then employs the effector Relish to interfere with the dimerization of JAK/STAT transmembrane receptor Domeless, therefore preventing excessive JAK/STAT signaling. Moreover, we find that RASSF and STRIPAK PP2A complex are also involved in antiviral response in human cell lines. Our study identifies an important role for RASSF in antiviral immunity and elucidates a dRASSF-STRIPAK-Imd-JAK/STAT signaling axis that ensures proper antiviral responses in Drosophila.
Collapse
Affiliation(s)
- Rui Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kewei Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yu Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaofeng Chi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huimin Pan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengfang Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yinan Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Bo Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
35
|
Dong Y, Ding Z, Song L, Zhang D, Xie C, Zhang S, Feng L, Liu H, Pang Q. Sodium Benzoate Delays the Development of Drosophila melanogaster Larvae and Alters Commensal Microbiota in Adult Flies. Front Microbiol 2022; 13:911928. [PMID: 35814654 PMCID: PMC9257017 DOI: 10.3389/fmicb.2022.911928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/16/2022] [Indexed: 12/05/2022] Open
Abstract
Sodium benzoate (SB), the sodium salt of benzoic acid, is widely used as a preservative in foods and drinks. The toxicity of SB to the human body attracted people’s attention due to the excessive use of preservatives and the increased consumption of processed and fast foods in modern society. The SB can inhibit the growth of bacteria, fungi, and yeast. However, less is known of the effect of SB on host commensal microbial community compositions and their functions. In this study, we investigated the effect of SB on the growth and development of Drosophila melanogaster larvae and whether SB affects the commensal microbial compositions and functions. We also attempted to clarify the interaction between SB, commensal microbiota and host development by detecting the response of commensal microbiota after the intervention. The results show that SB significantly retarded the development of D. melanogaster larvae, shortened the life span, and changed the commensal microbial community. In addition, SB changed the transcription level of endocrine coding genes such as ERR and DmJHAMT. These results indicate that the slow down in D. melanogaster larvae developmental timing and shortened life span of adult flies caused by SB intake may result from the changes in endocrine hormone levels and commensal microbiota. This study provided experimental data that indicate SB could affect host growth and development of D. melanogaster through altering endocrine hormone levels and commensal microbial composition.
Collapse
Affiliation(s)
- Yuling Dong
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- *Correspondence: Yuling Dong,
| | - Zhongfeng Ding
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Linxia Song
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Desheng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, China
| | - Changjian Xie
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Shujing Zhang
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Ling Feng
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Hongliang Liu
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Qiuxiang Pang
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- Qiuxiang Pang,
| |
Collapse
|
36
|
Fallet M, Montagnani C, Petton B, Dantan L, de Lorgeril J, Comarmond S, Chaparro C, Toulza E, Boitard S, Escoubas JM, Vergnes A, Le Grand J, Bulla I, Gueguen Y, Vidal-Dupiol J, Grunau C, Mitta G, Cosseau C. Early life microbial exposures shape the Crassostrea gigas immune system for lifelong and intergenerational disease protection. MICROBIOME 2022; 10:85. [PMID: 35659369 PMCID: PMC9167547 DOI: 10.1186/s40168-022-01280-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/14/2022] [Indexed: 05/21/2023]
Abstract
BACKGROUND The interaction of organisms with their surrounding microbial communities influences many biological processes, a notable example of which is the shaping of the immune system in early life. In the Pacific oyster, Crassostrea gigas, the role of the environmental microbial community on immune system maturation - and, importantly, protection from infectious disease - is still an open question. RESULTS Here, we demonstrate that early life microbial exposure durably improves oyster survival when challenged with the pathogen causing Pacific oyster mortality syndrome (POMS), both in the exposed generation and in the subsequent one. Combining microbiota, transcriptomic, genetic, and epigenetic analyses, we show that the microbial exposure induced changes in epigenetic marks and a reprogramming of immune gene expression leading to long-term and intergenerational immune protection against POMS. CONCLUSIONS We anticipate that this protection likely extends to additional pathogens and may prove to be an important new strategy for safeguarding oyster aquaculture efforts from infectious disease. tag the videobyte/videoabstract in this section Video Abstract.
Collapse
Affiliation(s)
- Manon Fallet
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | - Caroline Montagnani
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | - Bruno Petton
- Ifremer, UBO CNRS IRD, LEMAR UMR 6539, Argenton, France
| | - Luc Dantan
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | - Julien de Lorgeril
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, ENTROPIE, F-98800, Nouméa, Nouvelle-Calédonie, France
| | - Sébastien Comarmond
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | - Cristian Chaparro
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | - Eve Toulza
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | - Simon Boitard
- CBGP, CIRAD, INRAE, Institut Agro, IRD, Université de Montpellier, Montpellier, France
| | - Jean-Michel Escoubas
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | - Agnès Vergnes
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | | | - Ingo Bulla
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | - Yannick Gueguen
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
- MARBEC, CNRS, Ifremer, IRD, Univ Montpellier, Sète, France
| | - Jérémie Vidal-Dupiol
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | - Christoph Grunau
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | - Guillaume Mitta
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France.
- Ifremer, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre Ifremer du Pacifique, BP 49, 98725, Tahiti, French Polynesia.
| | - Céline Cosseau
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France.
| |
Collapse
|
37
|
Weiland SO, Detcharoen M, Schlick‐Steiner BC, Steiner FM. Analyses of locomotion, wing morphology, and microbiome in Drosophila nigrosparsa after recovery from antibiotics. Microbiologyopen 2022; 11:e1291. [PMID: 35765190 PMCID: PMC9179132 DOI: 10.1002/mbo3.1291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/12/2022] [Indexed: 11/12/2022] Open
Abstract
Antibiotics, such as tetracycline, have been frequently used to cure arthropods of Wolbachia endosymbionts. After the symbionts have been removed, the hosts must recover for some generations from the side effects of the antibiotics. However, most studies do not assess the direct and indirect longer-term effects of antibiotics used to remove Wolbachia, which may question the exact contribution of this endosymbiont to the effects observed. Here, we used the fly Drosophila nigrosparsa treated or not with tetracycline for three generations followed by two generations of recovery to investigate the effects of this antibiotic on the fly locomotion, wing morphology, and the gut microbiome. We found that antibiotic treatment did not affect fly locomotion two generations after being treated with the antibiotic. In addition, gut-microbiome restoration was tested as a more efficient solution to reduce the potential side effects of tetracycline on the microbiome. There was no significant difference in alpha diversity between gut restoration and other treatments, but the abundance of some bacterial taxa differed significantly between the gut-restoration treatment and the control. We conclude that in D. nigrosparsa the recovery period of two generations after being treated with the antibiotic is sufficient for locomotion, and suggest a general assessment of direct and indirect effects of antibiotics after a particular recovery time.
Collapse
Affiliation(s)
| | - Matsapume Detcharoen
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
- Division of Biological Science, Faculty of SciencePrince of Songkla UniversityHat YaiThailand
| | | | | |
Collapse
|
38
|
Korša A, Lo LK, Gandhi S, Bang C, Kurtz J. Oral Immune Priming Treatment Alters Microbiome Composition in the Red Flour Beetle Tribolium castaneum. Front Microbiol 2022; 13:793143. [PMID: 35495655 PMCID: PMC9043903 DOI: 10.3389/fmicb.2022.793143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
It is now well-established that the microbiome is relevant for many of an organism’s properties and that its composition reacts dynamically to various conditions. The microbiome interacts with host immunity and can play important roles in the defenses against pathogens. In invertebrates, immune priming, that is, improved survival upon secondary exposure to a previously encountered pathogen, can be dependent upon the presence of the gut microbiome. However, it is currently unknown whether the microbiome changes upon priming treatment. We here addressed this question in a well-established model for immune priming, the red flour beetle Tribolium castaneum exposed to the entomopathogenic bacterium Bacillus thuringiensis (Bt). After priming treatments, the microbiota composition of beetle larvae was assessed by deep sequencing of the V1-V2 region of the bacterial 16S rRNA gene. We compared the effect of two established routes of priming treatments in this system: injection priming with heat-killed Bt and oral priming via ingestion of filtered sterilized bacterial spore culture supernatants. For oral priming, we used several strains of Bt known to vary in their ability to induce priming. Our study revealed changes in microbiome composition following the oral priming treatment with two different strains of Bt, only one of which (Bt tenebrionis, Btt) is known to lead to improved survival. In contrast, injection priming treatment with the same bacterial strain did not result in microbiome changes. Combined with the previous results indicating that oral priming with Btt depends on the larval microbiome, this suggests that certain members of the microbiome could be involved in forming an oral priming response in the red flour beetle.
Collapse
Affiliation(s)
- Ana Korša
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Lai Ka Lo
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Shrey Gandhi
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany.,Institute of Immunology, University of Münster, Münster, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
39
|
Cheung YP, Park S, Pagtalunan J, Maringer K. The antiviral role of NF-κB-mediated immune responses and their antagonism by viruses in insects. J Gen Virol 2022; 103. [PMID: 35510990 DOI: 10.1099/jgv.0.001741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The antiviral role of innate immune responses mediated by the NF-κB family of transcription factors is well established in vertebrates but was for a long time less clear in insects. Insects encode two canonical NF-κB pathways, the Toll and Imd ('immunodeficiency') pathways, which are best characterised for their role in antibacterial and antifungal defence. An increasing body of evidence has also implicated NF-κB-mediated innate immunity in antiviral responses against some, but not all, viruses. Specific pattern recognition receptors (PRRs) and molecular events leading to NF-κB activation by viral pathogen-associated molecular patterns (PAMPs) have been elucidated for a number of viruses and insect species. Particularly interesting are recent findings indicating that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway detects viral RNA to activate NF-κB-regulated gene expression. We summarise the literature on virus-NF-κB pathway interactions across the class Insecta, with a focus on the dipterans Drosophila melanogaster and Aedes aegypti. We discuss potential reasons for differences observed between different virus-host combinations, and highlight similarities and differences between cGAS-STING signalling in insects versus vertebrates. Finally, we summarise the increasing number of known molecular mechanisms by which viruses antagonise NF-κB responses, which suggest that NF-κB-mediated immunity exerts strong evolutionary pressures on viruses. These developments in our understanding of insect antiviral immunity have relevance to the large number of insect species that impact on humans through their transmission of human, livestock and plant diseases, exploitation as biotechnology platforms, and role as parasites, pollinators, livestock and pests.
Collapse
Affiliation(s)
- Yin P Cheung
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Sohyun Park
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Justine Pagtalunan
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Kevin Maringer
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
| |
Collapse
|
40
|
Mongelli V, Lequime S, Kousathanas A, Gausson V, Blanc H, Nigg J, Quintana-Murci L, Elena SF, Saleh MC. Innate immune pathways act synergistically to constrain RNA virus evolution in Drosophila melanogaster. Nat Ecol Evol 2022; 6:565-578. [PMID: 35273366 PMCID: PMC7612704 DOI: 10.1038/s41559-022-01697-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023]
Abstract
Host-pathogen interactions impose recurrent selective pressures that lead to constant adaptation and counter-adaptation in both competing species. Here, we sought to study this evolutionary arms-race and assessed the impact of the innate immune system on viral population diversity and evolution, using Drosophila melanogaster as model host and its natural pathogen Drosophila C virus (DCV). We isogenized eight fly genotypes generating animals defective for RNAi, Imd and Toll innate immune pathways as well as pathogen-sensing and gut renewal pathways. Wild-type or mutant flies were then orally infected with DCV and the virus was serially passaged ten times via reinfection in naive flies. Viral population diversity was studied after each viral passage by high-throughput sequencing and infection phenotypes were assessed at the beginning and at the end of the evolution experiment. We found that the absence of any of the various immune pathways studied increased viral genetic diversity while attenuating virulence. Strikingly, these effects were observed in a range of host factors described as having mainly antiviral or antibacterial functions. Together, our results indicate that the innate immune system as a whole and not specific antiviral defence pathways in isolation, generally constrains viral diversity and evolution.
Collapse
Affiliation(s)
- Vanesa Mongelli
- Viruses and RNA Interference Unit, Institut Pasteur, CNRS, Paris, France
| | - Sebastian Lequime
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | | | - Valérie Gausson
- Viruses and RNA Interference Unit, Institut Pasteur, CNRS, Paris, France
| | - Hervé Blanc
- Viruses and RNA Interference Unit, Institut Pasteur, CNRS, Paris, France
| | - Jared Nigg
- Viruses and RNA Interference Unit, Institut Pasteur, CNRS, Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetic Unit, Institut Pasteur, CNRS, Paris, France
- Human Genomics and Evolution, Collège de France, Paris, France
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), València, Spain.
- The Santa Fe Institute, Santa Fe, NM, USA.
| | - Maria-Carla Saleh
- Viruses and RNA Interference Unit, Institut Pasteur, CNRS, Paris, France.
| |
Collapse
|
41
|
Segrist E, Dittmar M, Gold B, Cherry S. Orally acquired cyclic dinucleotides drive dSTING-dependent antiviral immunity in enterocytes. Cell Rep 2021; 37:110150. [PMID: 34965418 DOI: 10.1016/j.celrep.2021.110150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 11/19/2022] Open
Abstract
Enteric pathogens overcome barrier immunity within the intestinal environment that includes the endogenous flora. The microbiota produces diverse ligands, and the full spectrum of microbial products that are sensed by the epithelium and prime protective immunity is unknown. Using Drosophila, we find that the gut presents a high barrier to infection, which is partially due to signals from the microbiota, as loss of the microbiota enhances oral viral infection. We report cyclic dinucleotide (CDN) feeding is sufficient to protect microbiota-deficient flies from enhanced oral infection, suggesting that bacterial-derived CDNs induce immunity. Mechanistically, we find CDN protection is dSTING- and dTBK1-dependent, leading to NF-kB-dependent gene expression. Furthermore, we identify the apical nucleoside transporter, CNT2, as required for oral CDN protection. Altogether, our studies define a role for bacterial products in priming immune defenses in the gut.
Collapse
Affiliation(s)
- Elisha Segrist
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Dittmar
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beth Gold
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Yuan C, Xing L, Wang M, Hu Z, Zou Z. Microbiota modulates gut immunity and promotes baculovirus infection in Helicoverpa armigera. INSECT SCIENCE 2021; 28:1766-1779. [PMID: 33463036 DOI: 10.1111/1744-7917.12894] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/07/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Baculoviruses are natural enemies of agricultural and forest insect pests and play an important role in biological pest control. Oral infection by baculovirus in the insect midgut is necessary for establishing systemic infection and eventually killing the insect. Since the insect midgut continuously encounters microbiota, the gut microbiota could affect baculovirus infection. Here, we demonstrated that gut microbiota modulates immune responses and promotes baculovirus infection in the cotton bollworm, Helicoverpa armigera. After oral infection, numerous host immunity-related genes including genes encoding Toll and immune deficiency (IMD) pathway components were upregulated in the midgut. Elimination of the gut microbiota significantly increased the resistance to viral infection in H. armigera. Quantitative real-time reverse transcription polymerase chain reaction and proteomic analysis showed that downregulation of the antiviral factor prophenoloxidase (PPO) could be mediated by microbiota during infection. It implied that midgut microbiota diminishes the expression of PPO to facilitate viral infection in H. armigera. Our findings revealed that the microbiota plays an important role in modulating the resistance of H. armigera to baculovirus infection, providing new insights in applying biopesticide.
Collapse
Affiliation(s)
- Chuanfei Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, China
| | - Longsheng Xing
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
43
|
Winkler B, Funke D, Benmimoun B, Spéder P, Rey S, Logan MA, Klämbt C. Brain inflammation triggers macrophage invasion across the blood-brain barrier in Drosophila during pupal stages. SCIENCE ADVANCES 2021; 7:eabh0050. [PMID: 34705495 PMCID: PMC8550232 DOI: 10.1126/sciadv.abh0050] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The nervous system is shielded from circulating immune cells by the blood-brain barrier (BBB). During infections and autoimmune diseases, macrophages can enter the brain where they participate in pathogen elimination but can also cause tissue damage. Here, we establish a Drosophila model to study macrophage invasion into the inflamed brain. We show that the immune deficiency (Imd) pathway, but not the Toll pathway, is responsible for attraction and invasion of hemolymph-borne macrophages across the BBB during pupal stages. Macrophage recruitment is mediated by glial, but not neuronal, induction of the Imd pathway through expression of Pvf2. Within the brain, macrophages can phagocytose synaptic material and reduce locomotor abilities and longevity. Similarly, we show that central nervous system infection by group B Streptococcus elicits macrophage recruitment in an Imd-dependent manner. This suggests that evolutionarily conserved inflammatory responses require a delicate balance between beneficial and detrimental activities.
Collapse
Affiliation(s)
- Bente Winkler
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Dominik Funke
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Billel Benmimoun
- Brain Plasticity in response to the Environment, Institut Pasteur, UMR3738 CNRS, 75015 Paris, France
| | - Pauline Spéder
- Brain Plasticity in response to the Environment, Institut Pasteur, UMR3738 CNRS, 75015 Paris, France
| | - Simone Rey
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Mary A. Logan
- Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR 97239, USA
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
- Corresponding author.
| |
Collapse
|
44
|
Coordination among multiple receptor tyrosine kinase signals controls Drosophila developmental timing and body size. Cell Rep 2021; 36:109644. [PMID: 34469735 PMCID: PMC8428980 DOI: 10.1016/j.celrep.2021.109644] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 05/10/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
In holometabolous insects, metamorphic timing and body size are controlled by a neuroendocrine axis composed of the ecdysone-producing prothoracic gland (PG) and its presynaptic neurons (PGNs) producing PTTH. Although PTTH/Torso signaling is considered the primary mediator of metamorphic timing, recent studies indicate that other unidentified PGN-derived factors also affect timing. Here, we demonstrate that the receptor tyrosine kinases anaplastic lymphoma kinase (Alk) and PDGF and VEGF receptor-related (Pvr), function in coordination with PTTH/Torso signaling to regulate pupariation timing and body size. Both Alk and Pvr trigger Ras/Erk signaling in the PG to upregulate expression of ecdysone biosynthetic enzymes, while Alk also suppresses autophagy by activating phosphatidylinositol 3-kinase (PI3K)/Akt. The Alk ligand Jelly belly (Jeb) is produced by the PGNs and serves as a second PGN-derived tropic factor, while Pvr activation mainly relies on autocrine signaling by PG-derived Pvf2 and Pvf3. These findings illustrate that a combination of juxtacrine and autocrine signaling regulates metamorphic timing, the defining event of holometabolous development.
Collapse
|
45
|
Abstract
The gut microbiota affects the physiology and metabolism of animals and its alteration can lead to diseases such as gut dysplasia or metabolic disorders. Several reports have shown that the immune system plays an important role in shaping both bacterial community composition and abundance in Drosophila, and that immune deficit, especially during aging, negatively affects microbiota richness and diversity. However, there has been little study at the effector level to demonstrate how immune pathways regulate the microbiota. A key set of Drosophila immune effectors are the antimicrobial peptides (AMPs), which confer defense upon systemic infection. AMPs and lysozymes, a group of digestive enzymes with antimicrobial properties, are expressed in the gut and are good candidates for microbiota regulation. Here, we take advantage of the model organism Drosophila melanogaster to investigate the role of AMPs and lysozymes in regulation of gut microbiota structure and diversity. Using flies lacking AMPs and newly generated lysozyme mutants, we colonized gnotobiotic flies with a defined set of commensal bacteria and analyzed changes in microbiota composition and abundance in vertical transmission and aging contexts through 16S rRNA gene amplicon sequencing. Our study shows that AMPs and, to a lesser extent, lysozymes are necessary to regulate the total and relative abundance of bacteria in the gut microbiota. We also decouple the direct function of AMPs from the immune deficiency (IMD) signaling pathway that regulates AMPs but also many other processes, more narrowly defining the role of these effectors in the microbial dysbiosis observed in IMD-deficient flies upon aging.
Collapse
|
46
|
Lee HY, Loong SK, Ya'cob Z, Low VL, Teoh BT, Ahmad-Nasrah SN, Yap PC, Sofian-Azirun M, Takaoka H, AbuBakar S, Adler PH. Culturable bacteria in adults of a Southeast Asian black fly, Simulium tani (Diptera:Simuliidae). Acta Trop 2021; 219:105923. [PMID: 33878305 DOI: 10.1016/j.actatropica.2021.105923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
Although the microbiome of blood-feeding insects serves an integral role in host physiology, both beneficial and pathogenic, little is known of the microbial community of black flies. An investigation, therefore, was undertaken to identify culturable bacteria from one of Malaysia's most common black flies, Simulium tani Takaoka and Davies, using 16S rDNA sequencing, and then evaluate the isolates for antibiotic resistance and virulence genes. A total of 20 isolates representing 11 bacterial species in four genera were found. Five isolates showed β-hemolysis on Columbia agar, and virulence genes were found in three of these isolates. Some degree of resistance to six of the 12 tested antibiotics was found among the isolates. The baseline data from this study suggest rich opportunities for comparative studies exploring the diversity and roles of the microbiome of S. tani and other Southeast Asian black flies.
Collapse
|
47
|
Schissel M, Best R, Liesemeyer S, Tan YD, Carlson DJ, Shaffer JJ, Avuthu N, Guda C, Carlson KA. Effect of Nora virus infection on native gut bacterial communities of Drosophila melanogaster. AIMS Microbiol 2021; 7:216-237. [PMID: 34250376 PMCID: PMC8255909 DOI: 10.3934/microbiol.2021014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Gastrointestinal microflora is a key component in the maintenance of health and longevity across many species. In humans and mice, nonpathogenic viruses present in the gastrointestinal tract enhance the effects of the native bacterial microbiota. However, it is unclear whether nonpathogenic gastrointestinal viruses, such as Nora virus that infects Drosophila melanogaster, lead to similar observations. Longevity analysis of Nora virus infected (NV+) and uninfected (NV-) D. melanogaster in relationship to presence (B+) or absence (B-) of the native gut bacteria using four different treatment groups, NV+/B+, NV+/B-, NV-/B+, and NV-/B-, was conducted. Data from the longevity results were tested via Kaplan-Meier analysis and demonstrated that Nora virus can be detrimental to the longevity of the organism, whereas bacterial presence is beneficial. These data led to the hypothesis that gastrointestinal bacterial composition varies from NV+ to NV- flies. To test this, NV+ and NV- virgin female flies were collected and aged for 4 days. Surface sterilization followed by dissections of the fat body and the gastrointestinal tract, divided into crop (foregut), midgut, and hindgut, were performed. Ribosomal 16S DNA samples were sequenced to determine the bacterial communities that comprise the microflora in the gastrointestinal tract of NV+ and NV- D. melanogaster. When analyzing operational taxonomic units (OTUs), the data demonstrate that the NV+ samples consist of more OTUs than NV- samples. The NV+ samples were both more rich and diverse in OTUs compared to NV-. When comparing whole body samples to specific organs and organ sections, the whole fly was more diverse in OTUs, whereas the crop was the most rich. These novel data are pertinent in describing where Nora virus infection may be occurring within the gastrointestinal tract, as well as continuing discussion between the relationship of persistent viral and bacterial interaction.
Collapse
Affiliation(s)
- Makayla Schissel
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Rebecca Best
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Shelby Liesemeyer
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Yuan-De Tan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198-5805, USA
| | - Darby J. Carlson
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Julie J. Shaffer
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Nagavardhini Avuthu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198-5805, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198-5805, USA
| | - Kimberly A. Carlson
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| |
Collapse
|
48
|
Rosendo Machado S, van der Most T, Miesen P. Genetic determinants of antiviral immunity in dipteran insects - Compiling the experimental evidence. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104010. [PMID: 33476667 DOI: 10.1016/j.dci.2021.104010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
The genetic basis of antiviral immunity in dipteran insects is extensively studied in Drosophila melanogaster and advanced technologies for genetic manipulation allow a better characterization of immune responses also in non-model insect species. Especially, immunity in vector mosquitoes is recently in the spotlight, due to the medical impact that these insects have by transmitting viruses and other pathogens. Here, we review the current state of experimental evidence that supports antiviral functions for immune genes acting in different cellular pathways. We discuss the well-characterized RNA interference mechanism along with the less well-defined JAK-STAT, Toll, and IMD signaling pathways. Furthermore, we highlight the initial evidence for antiviral activity observed for the autophagy pathway, transcriptional pausing, as well as piRNA production from endogenous viral elements. We focus our review on studies from Drosophila and mosquito species from the lineages Aedes, Culex, and Anopheles, which contain major vector species responsible for virus transmission.
Collapse
Affiliation(s)
- Samara Rosendo Machado
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Tom van der Most
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands.
| |
Collapse
|
49
|
Portet A, Toulza E, Lokmer A, Huot C, Duval D, Galinier R, Gourbal B. Experimental Infection of the Biomphalaria glabrata Vector Snail by Schistosoma mansoni Parasites Drives Snail Microbiota Dysbiosis. Microorganisms 2021; 9:microorganisms9051084. [PMID: 34070104 PMCID: PMC8158356 DOI: 10.3390/microorganisms9051084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Host-parasite interaction can result in a strong alteration of the host-associated microbiota. This dysbiosis can affect the fitness of the host; can modify pathogen interaction and the outcome of diseases. Biomphalaria glabrata is the snail intermediate host of the trematode Schistosoma mansoni, the agent of human schistosomiasis, causing hundreds of thousands of deaths every year. Here, we present the first study of the snail bacterial microbiota in response to Schistosoma infection. We examined the interplay between B. glabrata, S. mansoni and host microbiota. Snails were infected and the microbiota composition was analysed by 16S rDNA amplicon sequencing approach. We demonstrated that the microbial composition of water did not affect the microbiota composition. Then, we characterised the Biomphalaria bacterial microbiota at the individual scale in both naive and infected snails. Sympatric and allopatric strains of parasites were used for infections and re-infections to analyse the modification or dysbiosis of snail microbiota in different host-parasite co-evolutionary contexts. Concomitantly, using RNAseq, we investigated the link between bacterial microbiota dysbiosis and snail anti-microbial peptide immune response. This work paves the way for a better understanding of snail/schistosome interaction and should have critical consequences in terms of snail control strategies for fighting schistosomiasis disease in the field.
Collapse
Affiliation(s)
- Anaïs Portet
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, 66860 Perpignan, France; (A.P.); (E.T.); (C.H.); (D.D.); (R.G.)
| | - Eve Toulza
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, 66860 Perpignan, France; (A.P.); (E.T.); (C.H.); (D.D.); (R.G.)
| | - Ana Lokmer
- Laboratory of Eco-Anthropology UMR 7206 CNRS-MNHN-Paris 7, 75005 Paris, France;
| | - Camille Huot
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, 66860 Perpignan, France; (A.P.); (E.T.); (C.H.); (D.D.); (R.G.)
| | - David Duval
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, 66860 Perpignan, France; (A.P.); (E.T.); (C.H.); (D.D.); (R.G.)
| | - Richard Galinier
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, 66860 Perpignan, France; (A.P.); (E.T.); (C.H.); (D.D.); (R.G.)
| | - Benjamin Gourbal
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, 66860 Perpignan, France; (A.P.); (E.T.); (C.H.); (D.D.); (R.G.)
- Correspondence:
| |
Collapse
|
50
|
Yang XL, Wang G, Xie JY, Li H, Chen SX, Liu W, Zhu SJ. The Intestinal Microbiome Primes Host Innate Immunity against Enteric Virus Systemic Infection through Type I Interferon. mBio 2021; 12:e00366-21. [PMID: 33975932 PMCID: PMC8262959 DOI: 10.1128/mbio.00366-21] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal microbiomes are of vital importance in antagonizing systemic viral infection. However, very little literature has shown whether commensal bacteria play a crucial role in protecting against enteric virus systemic infection from the aspect of modulating host innate immunity. In the present study, we utilized an enteric virus, encephalomyocarditis virus (EMCV), to inoculate mice treated with phosphate-buffered saline (PBS) or given an antibiotic cocktail (Abx) orally or intraperitoneally to examine the impact of microbiota depletion on virulence and viral replication in vivo Microbiota depletion exacerbated the mortality, neuropathogenesis, viremia, and viral burden in brains following EMCV infection. Furthermore, Abx-treated mice exhibited severely diminished mononuclear phagocyte activation and impaired type I interferon (IFN) production and expression of IFN-stimulated genes (ISG) in peripheral blood mononuclear cells (PBMC), spleens, and brains. With the help of fecal bacterial 16S rRNA sequencing of PBS- and Abx-treated mice, we identified a single commensal bacterium, Blautia coccoides, that can restore mononuclear phagocyte- and IFNAR (IFN-α/β receptor)-dependent type I IFN responses to restrict systemic enteric virus infection. These findings may provide insight into the development of novel therapeutics for preventing enteric virus infection or possibly alleviating clinical diseases by activating host systemic innate immune responses via respective probiotic treatment using B. coccoidesIMPORTANCE While cumulative data indicate that indigenous commensal bacteria can facilitate enteric virus infection, little is known regarding whether intestinal microbes have a protective role in antagonizing enteric systemic infection by modulating host innate immunity. Although accumulating literature has pointed out that the microbiota has a fundamental impact on host systemic antiviral innate immune responses mediated by type I interferon (IFN), only a few specific commensal bacteria species have been revealed to be capable of regulating IFN-I and ISG expression, not to mention the underlying mechanisms. Thus, it is important to understand the cross talk between microbiota and host anti-enteric virus innate immune responses and characterize the specific bacterial species that possess protective functions. Our study demonstrates how fundamental innate immune mediators such as mononuclear phagocytes and type I IFN are regulated by commensal bacteria to antagonize enteric virus systemic infection. In particular, we have identified a novel commensal bacterium, Blautia coccoides, that can restrict enteric virus replication and neuropathogenesis by activating IFN-I and ISG responses in mononuclear phagocytes via an IFNAR- and STAT1-mediated signaling pathway.
Collapse
Affiliation(s)
- Xiao-Lian Yang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Gan Wang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Jin-Yan Xie
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Han Li
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Shu-Xian Chen
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Shu Jeffrey Zhu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|