1
|
Hossain MJ, Romanov KA, Jian J, Swaby LC, Bandyopadhyay S, Guan I, Thomas SM, Olive AJ, O’Connor TJ. Bacterial pathogens hijack host cell peroxisomes for replication vacuole expansion and integrity. SCIENCE ADVANCES 2025; 11:eadr8005. [PMID: 40305606 PMCID: PMC12042894 DOI: 10.1126/sciadv.adr8005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Pathogens manipulate host cell organelles to establish infection. There is extensive evidence of pathogen modulation of the endoplasmic reticulum, Golgi apparatus, mitochondria, endosomes, lysosomes, and nucleus. However, one organelle that has been largely overlooked in connection with bacterial pathogenesis is peroxisomes. Here, we demonstrate that Legionella actively recruits peroxisomes to its replication vacuole using a secreted bacterial effector protein. Defects in peroxisome metabolic function restrict expansion of the Legionella vacuole membrane and cause rupture of this compartment, inhibiting bacterial replication and leading to bacterial degradation. Similarly, peroxisome dysfunction causes Salmonella replication vacuole destabilization and reduced bacterial burden within host cells. Thus, these two intracellular bacterial pathogens exploit host cell peroxisomes to maintain their replication compartments, establishing a critical role for this organelle in disease.
Collapse
Affiliation(s)
- Mohammad J. Hossain
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Katerina A. Romanov
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey Jian
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Louis C. Swaby
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saumya Bandyopadhyay
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ivan Guan
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sean M. Thomas
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Andrew J. Olive
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Tamara J. O’Connor
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Kang Y, Lehmann KS, Long H, Jefferson A, Purice M, Freeman M, Clark S. Structural basis of lipid transfer by a bridge-like lipid-transfer protein. Nature 2025:10.1038/s41586-025-08918-y. [PMID: 40269155 DOI: 10.1038/s41586-025-08918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
Bridge-like lipid-transport proteins (BLTPs) are an evolutionarily conserved family of proteins that localize to membrane-contact sites and are thought to mediate the bulk transfer of lipids from a donor membrane, typically the endoplasmic reticulum, to an acceptor membrane, such as that of the cell or an organelle1. Although BLTPs are fundamentally important for a wide array of cellular functions, their architecture, composition and lipid-transfer mechanisms remain poorly characterized. Here we present the subunit composition and the cryogenic electron microscopy structure of the native LPD-3 BLTP complex isolated from transgenic Caenorhabditis elegans. LPD-3 folds into an elongated, rod-shaped tunnel of which the interior is filled with ordered lipid molecules that are coordinated by a track of ionizable residues that line one side of the tunnel. LPD-3 forms a complex with two previously uncharacterized proteins, one of which we have named Spigot and the other of which remains unnamed. Spigot interacts with the N-terminal end of LPD-3 where lipids are expected to enter the tunnel, and experiments in multiple model systems indicate that Spigot has a conserved role in BLTP function. Our LPD-3 complex structural data reveal protein-lipid interactions that suggest a model for how the native LPD-3 complex mediates bulk lipid transport and provides a foundation for mechanistic studies of BLTPs.
Collapse
Affiliation(s)
- Yunsik Kang
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Hannah Long
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Amanda Jefferson
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Maria Purice
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Marc Freeman
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Sarah Clark
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
3
|
Chadha A, Yanai Y, Oide H, Wakana Y, Inoue H, Saha S, Paul M, Tagaya M, Arasaki K, Mukherjee S. Legionella uses host Rab GTPases and BAP31 to create a unique ER niche. Cell Rep 2024; 43:115053. [PMID: 39661521 PMCID: PMC11730038 DOI: 10.1016/j.celrep.2024.115053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/12/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024] Open
Abstract
The bacterium Legionella pneumophila secretes numerous effector proteins that manipulate endoplasmic reticulum (ER)-derived vesicles to form the Legionella-containing vacuole (LCV). Despite extensive studies, whether the LCV membrane is separate from or connected to the host ER network remains unclear. Here, we show that the smooth ER (sER) is closely associated with the LCV early in infection. Remarkably, Legionella forms a distinct rough ER (rER) niche at later stages, disconnected from the host ER network. We discover that host small GTPases Rab10 and Rab4 and an ER protein, BAP31, play crucial roles in transitioning the LCV from an sER to an rER. Additionally, we have identified a Legionella effector, Lpg1152, that binds to BAP31. Interestingly, the optimal growth of Legionella is dependent on both BAP31 and Lpg1152. These findings detail the complex interplay between host and pathogen in transforming the LCV membrane from a host-associated sER to a distinct rER.
Collapse
Affiliation(s)
- Attinder Chadha
- G.W. Hooper Foundation, University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Yu Yanai
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiromu Oide
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroki Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Saradindu Saha
- G.W. Hooper Foundation, University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Manish Paul
- G.W. Hooper Foundation, University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| | - Shaeri Mukherjee
- G.W. Hooper Foundation, University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
4
|
Feng N, Zhang R, Wen X, Wang W, Zhang N, Zheng J, Zhang L, Liu N. RABIF promotes hepatocellular carcinoma progression through regulation of mitophagy and glycolysis. Commun Biol 2024; 7:1333. [PMID: 39414994 PMCID: PMC11484875 DOI: 10.1038/s42003-024-07028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
The RAB interacting factor (RABIF) is a putative guanine nucleotide exchange factor that also functions as a RAB-stabilizing holdase chaperone. It has been implicated in pathogenesis of several cancers. However, the functional role and molecular mechanism of RABIF in hepatocellular carcinoma (HCC) are not entirely known. Here, we demonstrate an upregulation of RABIF in patients with HCC, correlating with a poor prognosis. RABIF inhibition results in decreased HCC cell growth both in vitro and in vivo. Our study reveals that depleting RABIF attenuates the STOML2-PARL-PGAM5 axis-mediated mitophagy. Consequently, this reduction in mitophagy results in diminished mitochondrial reactive oxygen species (mitoROS) production, thereby alleviating the HIF1α-mediated downregulation of glycolytic genes HK1, HKDC1, and LDHB. Additionally, we illustrate that RABIF regulates glucose uptake by controlling RAB10 expression. Importantly, the knockout of RABIF or blockade of mitophagy sensitizes HCC cells to sorafenib. This study uncovers a previously unrecognized role of RABIF crucial for HCC growth and identifies it as a potential therapeutic target.
Collapse
Affiliation(s)
- Ning Feng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rui Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Wen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nie Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Longzhen Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Nianli Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Pathology and Laboratory of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
5
|
Rice SM, Varotsis DF, Wodoslawsky S, Critchlow E, Liu R, McLaren RA, Makhamreh MM, Firman B, Berger SI, Al-Kouatly HB. Prenatal Phenotype of Alkuraya-Kučinskas Syndrome: A Novel Case and Systematic Literature Review. Prenat Diagn 2024; 44:1381-1397. [PMID: 39228063 DOI: 10.1002/pd.6637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/06/2024] [Accepted: 07/12/2024] [Indexed: 09/05/2024]
Abstract
Alkuraya-Kučinskas syndrome (AKS) is an autosomal recessive multisystem disorder resulting from mutations in the BLTP1 gene, formerly known as KIAA1109. Primary manifestations include brain malformations, arthrogryposis, and clubfeet. Cardiac, renal, and ophthalmologic abnormalities may also be observed, while nonimmune hydrops is rare. We present a case of two novel BLTP1 canonical splice-site variants in a fetus with multiple congenital anomalies, including hydrops, a kinked brainstem, and joint contractures. A systematic literature review was conducted to describe the prenatal phenotype of AKS, which was inspired by our case. Our systematic literature review of the prenatal phenotype in 19 cases, including our additional case, demonstrated joint contractures in 90% (18/20), ventriculomegaly in 60% (12/20), brainstem dysgenesis in 50% (10/20), cerebellar hypoplasia in 50% (10/20), parenchymal thinning with lissencephalic aspect in 60% (12/20), and facial dysmorphism in 70% (14/20) of reported AKS cases. In addition to our case, hydrops was reported in two other families. AKS should be considered in fetal presentations with characteristic features, especially brainstem kinking and joint contractures. Exome sequencing, including coverage of canonical intronic splice-site variants, can clarify the diagnosis. TRIAL REGISTRATION: ClinicalTrials.gov registration: NCT03911531.
Collapse
Affiliation(s)
- Stephanie M Rice
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Dante F Varotsis
- Department of Obstetrics and Gynecology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sascha Wodoslawsky
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Elizabeth Critchlow
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ruby Liu
- Revvity Omics, Inc., Waltham, Massachusetts, USA
| | - Rodney A McLaren
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mona M Makhamreh
- Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, New York, USA
| | - Brandy Firman
- Department of Obstetrics and Gynecology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Seth I Berger
- Center for Genetic Medicine Research at Children's National Hospital, Washington, DC, USA
| | - Huda B Al-Kouatly
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Ma K, Xian W, Liu H, Shu R, Ge J, Luo ZQ, Liu X, Qiu J. Bacterial ubiquitin ligases hijack the host deubiquitinase OTUB1 to inhibit MTORC1 signaling and promote autophagy. Autophagy 2024; 20:1968-1983. [PMID: 38818749 PMCID: PMC11346569 DOI: 10.1080/15548627.2024.2353492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/21/2024] [Accepted: 05/05/2024] [Indexed: 06/01/2024] Open
Abstract
Many bacterial pathogens have evolved effective strategies to interfere with the ubiquitination network to evade clearance by the innate immune system. Here, we report that OTUB1, one of the most abundant deubiquitinases (DUBs) in mammalian cells, is subjected to both canonical and noncanonical ubiquitination during Legionella pneumophila infection. The effectors SidC and SdcA catalyze OTUB1 ubiquitination at multiple lysine residues, resulting in its association with a Legionella-containing vacuole. Lysine ubiquitination by SidC and SdcA promotes interactions between OTUB1 and DEPTOR, an inhibitor of the MTORC1 pathway, thus suppressing MTORC1 signaling. The inhibition of MTORC1 leads to suppression of host protein synthesis and promotion of host macroautophagy/autophagy during L. pneumophila infection. In addition, members of the SidE family effectors (SidEs) induce phosphoribosyl (PR)-linked ubiquitination of OTUB1 at Ser16 and Ser18 and block its DUB activity. The levels of the lysine and serine ubiquitination of OTUB1 are further regulated by effectors that function to antagonize the activities of SidC, SdcA and SidEs, including Lem27, DupA, DupB, SidJ and SdjA. Our study reveals an effectors-mediated complicated mechanism in regulating the activity of a host DUB.Abbreviations: BafA1: bafilomycin A1; BMDMs: bone marrow-derived macrophages; DUB: deubiquitinase; Dot/Icm: defective for organelle trafficking/intracellular multiplication; DEPTOR: DEP domain containing MTOR interacting protein; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; L. pneumophila: Legionella pneumophila; LCV: Legionella-containing vacuole; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MTORC1: mechanistic target of rapamycin kinase complex 1; OTUB1: OTU deubiquitinase, ubiquitin aldehyde binding 1; PR-Ub: phosphoribosyl (PR)-linked ubiquitin; PTM: posttranslational modification; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SidEs: SidE family effectors; Ub: ubiquitin.
Collapse
Affiliation(s)
- Kelong Ma
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Wei Xian
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Rundong Shu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jinli Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Wan M, Minelli ME, Zhao Q, Marshall S, Yu H, Smolka M, Mao Y. Phosphoribosyl modification of poly-ubiquitin chains at the Legionella-containing vacuole prohibiting autophagy adaptor recognition. Nat Commun 2024; 15:7481. [PMID: 39214972 PMCID: PMC11364841 DOI: 10.1038/s41467-024-51273-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
Ubiquitination is a posttranslational modification in eukaryotes that plays a significant role in the infection of intracellular microbial pathogens, such as Legionella pneumophila. While the Legionella-containing vacuole (LCV) is coated with ubiquitin (Ub), it avoids recognition by autophagy adaptors. Here, we report that the Sdc and Sde families of effectors work together to build ubiquitinated species around the LCV. The Sdc effectors catalyze canonical polyubiquitination directly on host targets or on phosphoribosyl-Ub conjugated to host targets by Sde. Remarkably, Ub moieties within poly-Ub chains are either modified with a phosphoribosyl group by PDE domain-containing effectors or covalently attached to other host substrates via Sde-mediated phosphoribosyl-ubiquitination. Furthermore, these modifications prevent the recognition by Ub adaptors and therefore exclude host autophagy adaptors from the LCV. In this work, we shed light on the nature of the poly-ubiquitinated species present at the surface of the LCV and provide a molecular mechanism for the avoidance of autophagy adaptors by the Ub-decorated LCV.
Collapse
Affiliation(s)
- Min Wan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Marena E Minelli
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Qiuye Zhao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Shannon Marshall
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Haiyuan Yu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Marcus Smolka
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
8
|
Pruneda JN, Nguyen JV, Nagai H, Kubori T. Bacterial usurpation of the OTU deubiquitinase fold. FEBS J 2024; 291:3303-3316. [PMID: 36636866 PMCID: PMC10338644 DOI: 10.1111/febs.16725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/10/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
The extensive cellular signalling events controlled by posttranslational ubiquitination are tightly regulated through the action of specialized proteases termed deubiquitinases. Among them, the OTU family of deubiquitinases can play very specialized roles in the regulation of discrete subtypes of ubiquitin signals that control specific cellular functions. To exert control over host cellular functions, some pathogenic bacteria have usurped the OTU deubiquitinase fold as a secreted virulence factor that interferes with ubiquitination inside infected cells. Herein, we provide a review of the function of bacterial OTU deubiquitinases during infection, the structural basis for their deubiquitinase activities and the bioinformatic approaches leading to their identification. Understanding bacterial OTU deubiquitinases holds the potential for discoveries not only in bacterial pathogenesis but in eukaryotic biology as well.
Collapse
Affiliation(s)
- Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Justine V. Nguyen
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hiroki Nagai
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Gifu 501-1194, Japan
| | - Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan
| |
Collapse
|
9
|
Xu H, Wang S, Wang X, Zhang P, Zheng Q, Qi C, Liu X, Li M, Liu Y, Liu J. Role of Rab GTPases in Bacteria Escaping from Vesicle Trafficking of Host Cells. J Microbiol 2024; 62:581-590. [PMID: 39212865 DOI: 10.1007/s12275-024-00162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Most bacteria will use their toxins to interact with the host cell, causing damage to the cell and then escaping from it. When bacteria enter the cell, they will be transported via the endosomal pathway. Rab GTPases are involved in bacterial transport as major components of endosomes that bind to their downstream effector proteins. The bacteria manipulate some Rab GTPases, escape the cell, and get to survive. In this review, we will focus on summarizing the many processes of how bacteria manipulate Rab GTPases to control their escape.
Collapse
Affiliation(s)
- Huiling Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China
| | - Shengnan Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China
- The ShangHai Hanvet Bio-Pharm Co. Ltd., Shanghai, 200135, People's Republic of China
| | - Xiaozhou Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China
| | - Pu Zhang
- The Affiliated Taian City Central Hospital of Qingdao University, Tai`an, 271000, Shandong, People's Republic of China
| | - Qi Zheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China
| | - ChangXi Qi
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xiaoting Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Muzi Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China.
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
10
|
Yousefi M, See WR, Aw-Yong KL, Lee WS, Yong CL, Fanusi F, Smith GJD, Ooi EE, Li S, Ghosh S, Ooi YS. GeneRaMeN enables integration, comparison, and meta-analysis of multiple ranked gene lists to identify consensus, unique, and correlated genes. Brief Bioinform 2024; 25:bbae452. [PMID: 39293806 PMCID: PMC11410378 DOI: 10.1093/bib/bbae452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
High-throughput experiments often produce ranked gene outputs, with forward genetic screening being a notable example. While there are various tools for analyzing individual datasets, those that perform comparative and meta-analytical examination of such ranked gene lists remain scarce. Here, we introduce Gene Rank Meta Analyzer (GeneRaMeN), an R Shiny tool utilizing rank statistics to facilitate the identification of consensus, unique, and correlated genes across multiple hit lists. We focused on two key topics to showcase GeneRaMeN: virus host factors and cancer dependencies. Using GeneRaMeN 'Rank Aggregation', we integrated 24 published and new flavivirus genetic screening datasets, including dengue, Japanese encephalitis, and Zika viruses. This meta-analysis yielded a consensus list of flavivirus host factors, elucidating the significant influence of cell line selection on screening outcomes. Similar analysis on 13 SARS-CoV-2 CRISPR screening datasets highlighted the pivotal role of meta-analysis in revealing redundant biological pathways exploited by the virus to enter human cells. Such redundancy was further underscored using GeneRaMeN's 'Rank Correlation', where a strong negative correlation was observed for host factors implicated in one entry pathway versus the alternate route. Utilizing GeneRaMeN's 'Rank Uniqueness', we analyzed human coronaviruses 229E, OC43, and SARS-CoV-2 datasets, identifying host factors uniquely associated with a defined subset of the screening datasets. Similar analyses were performed on over 1000 Cancer Dependency Map (DepMap) datasets spanning 19 human cancer types to reveal unique cancer vulnerabilities for each organ/tissue. GeneRaMeN, an efficient tool to integrate and maximize the usability of genetic screening datasets, is freely accessible via https://ysolab.shinyapps.io/GeneRaMeN.
Collapse
Affiliation(s)
- Meisam Yousefi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wayne Ren See
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kam Leng Aw-Yong
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wai Suet Lee
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Cythia Lingli Yong
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Felic Fanusi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Gavin J D Smith
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Shang Li
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sujoy Ghosh
- Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Laboratory of Computational Biology, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, United States
| | - Yaw Shin Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648, Singapore
| |
Collapse
|
11
|
Kang Y, Lehmann KS, Vanegas J, Long H, Jefferson A, Freeman M, Clark S. Structural basis of bulk lipid transfer by bridge-like lipid transfer protein LPD-3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600134. [PMID: 38948693 PMCID: PMC11213131 DOI: 10.1101/2024.06.21.600134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Bridge-like lipid transport proteins (BLTPs) are an evolutionarily conserved family of proteins that localize to membrane contact sites and are thought to mediate the bulk transfer of lipids from a donor membrane, typically the endoplasmic reticulum (ER), to an acceptor membrane, such as a that of the cell or an organelle 1 . Despite the fundamental importance of BLTPs for cellular function, the architecture, composition, and lipid transfer mechanisms remain poorly characterized. Here, we present the subunit composition and the cryo-electron microscopy structure of the native LPD-3 BLTP complex isolated from transgenic C. elegans . LPD-3 folds into an elongated, rod-shaped tunnel whose interior is filled with ordered lipid molecules that are coordinated by a track of ionizable residues that line one side of the tunnel. LPD-3 forms a complex with two previously uncharacterized proteins, here named "Intake" and "Spigot", both of which interact with the N-terminal end of LPD-3 where lipids enter the tunnel. Intake has three transmembrane helices, one of which borders the entrance to the tunnel; Spigot has one transmembrane helix and extends 80 Å along the cytosolic surface of LPD-3. Experiments in multiple model systems indicate that Spigot plays a conserved role in ER-PM contact site formation. Our LPD-3 complex structural data, together with molecular dynamics simulations of the transmembrane region in a lipid bilayer, reveal protein-lipid interactions that suggest a model for how the native LPD-3-complex mediates bulk lipid transport and provide a foundation for mechanistic studies of BLTPs.
Collapse
|
12
|
Ma K, Shu R, Liu H, Ge J, Liu J, Lu Q, Fu J, Liu X, Qiu J. Legionella effectors SidC/SdcA ubiquitinate multiple small GTPases and SNARE proteins to promote phagosomal maturation. Cell Mol Life Sci 2024; 81:249. [PMID: 38836877 PMCID: PMC11335287 DOI: 10.1007/s00018-024-05271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024]
Abstract
Protein ubiquitination is one of the most important posttranslational modifications (PTMs) in eukaryotes and is involved in the regulation of almost all cellular signaling pathways. The intracellular bacterial pathogen Legionella pneumophila translocates at least 26 effectors to hijack host ubiquitination signaling via distinct mechanisms. Among these effectors, SidC/SdcA are novel E3 ubiquitin ligases with the adoption of a Cys-His-Asp catalytic triad. SidC/SdcA are critical for the recruitment of endoplasmic reticulum (ER)-derived vesicles to the Legionella-containing vacuole (LCV). However, the ubiquitination targets of SidC/SdcA are largely unknown, which restricts our understanding of the mechanisms used by these effectors to hijack the vesicle trafficking pathway. Here, we demonstrated that multiple Rab small GTPases and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are bona fide ubiquitination substrates of SidC/SdcA. SidC/SdcA-mediated ubiquitination of syntaxin 3 and syntaxin 4 promotes their unconventional pairing with the vesicle-SNARE protein Sec22b, thereby contributing to the membrane fusion of ER-derived vesicles with the phagosome. In addition, our data reveal that ubiquitination of Rab7 by SidC/SdcA is critical for its association with the LCV membrane. Rab7 ubiquitination could impair its binding with the downstream effector Rab-interacting lysosomal protein (RILP), which partially explains why LCVs avoid fusion with lysosomes despite the acquisition of Rab7. Taken together, our study reveals the biological mechanisms employed by SidC/SdcA to promote the maturation of the LCVs.
Collapse
Affiliation(s)
- Kelong Ma
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Rundong Shu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jinli Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Qian Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jiaqi Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
13
|
Kubori T, Arasaki K, Oide H, Kitao T, Nagai H. Multi-tiered actions of Legionella effectors to modulate host Rab10 dynamics. eLife 2024; 12:RP89002. [PMID: 38771316 PMCID: PMC11108646 DOI: 10.7554/elife.89002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Rab GTPases are representative targets of manipulation by intracellular bacterial pathogens for hijacking membrane trafficking. Legionella pneumophila recruits many Rab GTPases to its vacuole and exploits their activities. Here, we found that infection-associated regulation of Rab10 dynamics involves ubiquitin signaling cascades mediated by the SidE and SidC families of Legionella ubiquitin ligases. Phosphoribosyl-ubiquitination of Rab10 catalyzed by the SidE ligases is crucial for its recruitment to the bacterial vacuole. SdcB, the previously uncharacterized SidC-family effector, resides on the vacuole and contributes to retention of Rab10 at the late stages of infection. We further identified MavC as a negative regulator of SdcB. By the transglutaminase activity, MavC crosslinks ubiquitin to SdcB and suppresses its function, resulting in elimination of Rab10 from the vacuole. These results demonstrate that the orchestrated actions of many L. pneumophila effectors fine-tune the dynamics of Rab10 during infection.
Collapse
Affiliation(s)
- Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu UniversityGifuJapan
| | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life SciencesHachiojiJapan
| | - Hiromu Oide
- School of Life Sciences, Tokyo University of Pharmacy and Life SciencesHachiojiJapan
| | - Tomoe Kitao
- Department of Microbiology, Graduate School of Medicine, Gifu UniversityGifuJapan
| | - Hiroki Nagai
- Department of Microbiology, Graduate School of Medicine, Gifu UniversityGifuJapan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu UniversityGifuJapan
| |
Collapse
|
14
|
Chadha A, Yanai Y, Oide H, Wakana Y, Inoue H, Saha S, Tagaya M, Arasaki K, Mukherjee S. Legionella uses host Rab GTPases and BAP31 to create a unique ER niche. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593622. [PMID: 38765994 PMCID: PMC11100814 DOI: 10.1101/2024.05.10.593622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Upon entry into host cells, the facultative intracellular bacterium Legionella pneumophila ( L.p .) uses its type IV secretion system, Dot/Icm, to secrete ~330 bacterial effector proteins into the host cell. Some of these effectors hijack endoplasmic reticulum (ER)-derived vesicles to form the Legionella -containing vacuole (LCV). Despite extensive investigation over decades, the fundamental question persists: Is the LCV membrane distinct from or contiguous with the host ER network? Here, we employ advanced photobleaching techniques, revealing a temporal acquisition of both smooth and rough ER (sER and rER) markers on the LCV. In the early stages of infection, the sER intimately associates with the LCV. Remarkably, as the infection progresses, the LCV evolves into a distinct niche comprising an rER membrane that is independent of the host ER network. We discover that the L.p. effector LidA binds to and recruits two host proteins of the Rab superfamily, Rab10, and Rab4, that play significant roles in acquiring sER and rER membranes, respectively. Additionally, we identify the pivotal role of a host ER-resident protein, BAP31, in orchestrating the transition from sER to rER. While previously recognized for shuttling between sER and rER, we demonstrate BAP31's role as a Rab effector, mediating communication between these ER sub-compartments. Furthermore, using genomic deletion strains, we uncover a novel L.p. effector, Lpg1152, essential for recruiting BAP31 to the LCV and facilitating its transition from sER to rER. Depletion of BAP31 or infection with an isogenic L.p. strain lacking Lpg1152 results in a growth defect. Collectively, our findings illuminate the intricate interplay between molecular players from both host and pathogen, elucidating how L.p. orchestrates the transformation of its residing vacuole membrane from a host-associated sER to a distinct rER membrane that is not contiguous with the host ER network.
Collapse
|
15
|
Li C, Fu J, Shao S, Luo ZQ. Legionella pneumophila exploits the endo-lysosomal network for phagosome biogenesis by co-opting SUMOylated Rab7. PLoS Pathog 2024; 20:e1011783. [PMID: 38739652 PMCID: PMC11115209 DOI: 10.1371/journal.ppat.1011783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/23/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Legionella pneumophila strains harboring wild-type rpsL such as Lp02rpsLWT cannot replicate in mouse bone marrow-derived macrophages (BMDMs) due to induction of extensive lysosome damage and apoptosis. The bacterial factor directly responsible for inducing such cell death and the host factor involved in initiating the signaling cascade that leads to lysosome damage remain unknown. Similarly, host factors that may alleviate cell death induced by these bacterial strains have not yet been investigated. Using a genome-wide CRISPR/Cas9 screening, we identified Hmg20a and Nol9 as host factors important for restricting strain Lp02rpsLWT in BMDMs. Depletion of Hmg20a protects macrophages from infection-induced lysosomal damage and apoptosis, allowing productive bacterial replication. The restriction imposed by Hmg20a was mediated by repressing the expression of several endo-lysosomal proteins, including the small GTPase Rab7. We found that SUMOylated Rab7 is recruited to the bacterial phagosome via SulF, a Dot/Icm effector that harbors a SUMO-interacting motif (SIM). Moreover, overexpression of Rab7 rescues intracellular growth of strain Lp02rpsLWT in BMDMs. Our results establish that L. pneumophila exploits the lysosomal network for the biogenesis of its phagosome in BMDMs.
Collapse
Affiliation(s)
- Chuang Li
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Jiaqi Fu
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Shuai Shao
- College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Zhao-Qing Luo
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
16
|
Hossain MJ, O’Connor TJ. An efficient and cost-effective method for disrupting genes in RAW264.7 macrophages using CRISPR-Cas9. PLoS One 2024; 19:e0299513. [PMID: 38483963 PMCID: PMC10939251 DOI: 10.1371/journal.pone.0299513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) are widely used for genome editing in cultured cell lines. However, the implementation of genome editing is still challenging due to the complex and often costly multi-step process associated with this technique. Moreover, the efficiency of genome editing varies across cell types, often limiting utility. Herein, we describe pCRISPR-EASY, a vector for simplified cloning of single guide RNAs (sgRNAs) and its simultaneous introduction with CRISPR-Cas9 into cultured cells using a non-viral delivery system. We outline a comprehensive, step-by-step protocol for genome editing in RAW264.7 macrophages, a mouse macrophage cell line widely used in biomedical research for which genome editing using CRISPR-Cas9 has been restricted to lentiviral or expensive commercial reagents. This provides an economical, highly efficient and reliable method for genome editing that can easily be adapted for use in other systems.
Collapse
Affiliation(s)
- Mohammad J. Hossain
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Tamara J. O’Connor
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
17
|
Steinbach A, Bhadkamkar V, Jimenez-Morales D, Stevenson E, Jang GM, Krogan NJ, Swaney DL, Mukherjee S. Cross-family small GTPase ubiquitination by the intracellular pathogen Legionella pneumophila. Mol Biol Cell 2024; 35:ar27. [PMID: 38117589 PMCID: PMC10916871 DOI: 10.1091/mbc.e23-06-0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/22/2023] Open
Abstract
The intracellular bacterial pathogen Legionella pneumophila (L.p.) manipulates eukaryotic host ubiquitination machinery to form its replicative vacuole. While nearly 10% of L.p.'s ∼330 secreted effector proteins are ubiquitin ligases or deubiquitinases, a comprehensive measure of temporally resolved changes in the endogenous host ubiquitinome during infection has not been undertaken. To elucidate how L.p. hijacks host cell ubiquitin signaling, we generated a proteome-wide analysis of changes in protein ubiquitination during infection. We discover that L.p. infection increases ubiquitination of host regulators of subcellular trafficking and membrane dynamics, most notably ∼40% of mammalian Ras superfamily small GTPases. We determine that these small GTPases undergo nondegradative ubiquitination at the Legionella-containing vacuole (LCV) membrane. Finally, we find that the bacterial effectors SidC/SdcA play a central role in cross-family small GTPase ubiquitination, and that these effectors function upstream of SidE family ligases in the polyubiquitination and retention of GTPases in the LCV membrane. This work highlights the extensive reconfiguration of host ubiquitin signaling by bacterial effectors during infection and establishes simultaneous ubiquitination of small GTPases across the Ras superfamily as a novel consequence of L.p. infection. Our findings position L.p. as a tool to better understand how small GTPases can be regulated by ubiquitination in uninfected contexts.
Collapse
Affiliation(s)
- Adriana Steinbach
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- George Williams Hooper Foundation, University of California, San Francisco, CA 94143
| | - Varun Bhadkamkar
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- George Williams Hooper Foundation, University of California, San Francisco, CA 94143
| | - David Jimenez-Morales
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA 94158
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, CA 94309
| | - Erica Stevenson
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA 94158
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Gwendolyn M. Jang
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA 94158
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Nevan J. Krogan
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA 94158
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Danielle L. Swaney
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA 94158
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Shaeri Mukherjee
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- George Williams Hooper Foundation, University of California, San Francisco, CA 94143
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
18
|
Ghosh S, Bandyopadhyay S, Smith DM, Adak S, Semenkovich CF, Nagy L, Wolfgang MJ, O’Connor TJ. Legionella pneumophila usurps host cell lipids for vacuole expansion and bacterial growth. PLoS Pathog 2024; 20:e1011996. [PMID: 38386622 PMCID: PMC10883544 DOI: 10.1371/journal.ppat.1011996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Vacuolar pathogens reside in membrane-bound compartments within host cells. Maintaining the integrity of this compartment is paramount to bacterial survival and replication as it protects against certain host surveillance mechanisms that function to eradicate invading pathogens. Preserving this compartment during bacterial replication requires expansion of the vacuole membrane to accommodate the increasing number of bacteria, and yet, how this is accomplished remains largely unknown. Here, we show that the vacuolar pathogen Legionella pneumophila exploits multiple sources of host cell fatty acids, including inducing host cell fatty acid scavenging pathways, in order to promote expansion of the replication vacuole and bacteria growth. Conversely, when exogenous lipids are limited, the decrease in host lipid availability restricts expansion of the replication vacuole membrane, resulting in a higher density of bacteria within the vacuole. Modifying the architecture of the vacuole prioritizes bacterial growth by allowing the greatest number of bacteria to remain protected by the vacuole membrane despite limited resources for its expansion. However, this trade-off is not without risk, as it can lead to vacuole destabilization, which is detrimental to the pathogen. However, when host lipid resources become extremely scarce, for example by inhibiting host lipid scavenging, de novo biosynthetic pathways, and/or diverting host fatty acids to storage compartments, bacterial replication becomes severely impaired, indicating that host cell fatty acid availability also directly regulates L. pneumophila growth. Collectively, these data demonstrate dual roles for host cell fatty acids in replication vacuole expansion and bacterial proliferation, revealing the central functions for these molecules and their metabolic pathways in L. pneumophila pathogenesis.
Collapse
Affiliation(s)
- Soma Ghosh
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Saumya Bandyopadhyay
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Danielle M. Smith
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sangeeta Adak
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Clay F. Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Laszlo Nagy
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, United States of America
| | - Michael J. Wolfgang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tamara J. O’Connor
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
19
|
Mizuike A, Hanada K. DGARM/C10orf76/ARMH3 for Ceramide Transfer Zone at the Endoplasmic Reticulum-Distal Golgi Contacts. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241239443. [PMID: 38515862 PMCID: PMC10956147 DOI: 10.1177/25152564241239443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Phosphatidylinositol 4-monophosphate (PtdIns(4)P) is one of the key membrane components which mark the membrane contact sites. In the mammalian Golgi complex, PtdIns(4)P is produced at various subregions via specific mechanisms for each site. Particularly, PtdIns(4)P pools generated at the distal Golgi regions are pivotal for the determination of membrane contacts between the endoplasmic reticulum (ER) and Golgi, at which inter-organelle lipid transport takes place. In this short review, we will focus on C10orf76 (or ARMH3), which we propose to rename as DGARM after a distal Golgi armadillo repeat protein, for its function in generating a PtdIns(4)P pool crucial for ER-to-distal Golgi ceramide transport. We further discuss from the viewpoint of the evolutionary conservation of DGARM.
Collapse
Affiliation(s)
- Aya Mizuike
- Department of Quality Assurance, Radiation Safety and Information System, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Hanada
- Department of Quality Assurance, Radiation Safety and Information System, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
20
|
Ma K, Shu R, Liu H, Fu J, Luo ZQ, Qiu J. Ubiquitination of Sec22b by a novel Legionella pneumophila ubiquitin E3 ligase. mBio 2023; 14:e0238223. [PMID: 37882795 PMCID: PMC10746214 DOI: 10.1128/mbio.02382-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Protein ubiquitination is one of the most important post-translational modifications that plays critical roles in the regulation of a wide range of eukaryotic signaling pathways. Many successful intracellular bacterial pathogens can hijack host ubiquitination machinery through the action of effector proteins that are injected into host cells by secretion systems. Legionella pneumophila is the etiological agent of legionellosis that is able to survive and replicate in various host cells. The defective in organelle trafficking (Dot)/intracellular multiplication (Icm) type IV secretion system of L. pneumophila injects over 330 effectors into infected cells to create an optimal environment permissive for its intracellular proliferation. To date, at least 26 Dot/Icm substrates have been shown to manipulate ubiquitin signaling via diverse mechanisms. Among these, 14 are E3 ligases that either cooperate with host E1 and E2 enzymes or adopt E1/E2-independent catalytic mechanisms. In the present study, we demonstrate that the L. pneumophila effector Legionella ubiquitin ligase gene 15 (Lug15) is a novel ubiquitin E3 ligase. Lug15 is involved in the remodeling of LCV with polyubiquitinated species. Moreover, Lug15 catalyzes the ubiquitination of host SNARE protein Sec22b and mediates its recruitment to the LCV. Ubiquitination of Sec22b by Lug15 promotes its noncanonical pairing with plasma membrane-derived syntaxins (e.g., Stx3). Our study further reveals the complexity of strategies utilized by L. pneumophila to interfere with host functions by hijacking host ubiquitin signaling.
Collapse
Affiliation(s)
- Kelong Ma
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rundong Shu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiaqi Fu
- Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
21
|
Yang Y, Mei L, Chen J, Chen X, Wang Z, Liu L, Yang A. Legionella pneumophila-mediated host posttranslational modifications. J Mol Cell Biol 2023; 15:mjad032. [PMID: 37156500 PMCID: PMC10720952 DOI: 10.1093/jmcb/mjad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/17/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023] Open
Abstract
Legionella pneumophila is a Gram-negative bacterium ubiquitously present in freshwater environments and causes a serious type of pneumonia called Legionnaires' disease. During infections, L. pneumophila releases over 300 effector proteins into host cells through an Icm/Dot type IV secretion system to manipulate the host defense system for survival within the host. Notably, certain effector proteins mediate posttranslational modifications (PTMs), serving as useful approaches exploited by L. pneumophila to modify host proteins. Some effectors catalyze the addition of host protein PTMs, while others mediate the removal of PTMs from host proteins. In this review, we summarize L. pneumophila effector-mediated PTMs of host proteins, including phosphorylation, ubiquitination, glycosylation, AMPylation, phosphocholination, methylation, and ADP-ribosylation, as well as dephosphorylation, deubiquitination, deAMPylation, deADP-ribosylation, dephosphocholination, and delipidation. We describe their molecular mechanisms and biological functions in the regulation of bacterial growth and Legionella-containing vacuole biosynthesis and in the disruption of host immune and defense machinery.
Collapse
Affiliation(s)
- Yi Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Ligang Mei
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jing Chen
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaorong Chen
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhuolin Wang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Lu Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
22
|
Wehrmann M, Vilchez D. The emerging role and therapeutic implications of bacterial and parasitic deubiquitinating enzymes. Front Immunol 2023; 14:1303072. [PMID: 38077335 PMCID: PMC10703165 DOI: 10.3389/fimmu.2023.1303072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Deubiquitinating enzymes (DUBs) are emerging as key factors for the infection of human cells by pathogens such as bacteria and parasites. In this review, we discuss the most recent studies on the role of deubiquitinase activity in exploiting and manipulating ubiquitin (Ub)-dependent host processes during infection. The studies discussed here highlight the importance of DUB host-pathogen research and underscore the therapeutic potential of inhibiting pathogen-specific DUB activity to prevent infectious diseases.
Collapse
Affiliation(s)
- Markus Wehrmann
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
23
|
Li C, Fu J, Shao S, Luo ZQ. Legionella pneumophila exploits the endo-lysosomal network for phagosome biogenesis by co-opting SUMOylated Rab7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564884. [PMID: 37961430 PMCID: PMC10634985 DOI: 10.1101/2023.10.31.564884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
L. pneumophila strains harboring wild-type rpsL such as Lp02rpsLWT cannot replicate in mouse bone marrow-derived macrophages (BMDMs) due to induction of extensive lysosome damage and apoptosis. The mechanism of this unique infection-induced cell death remains unknown. Using a genome-wide CRISPR/Cas9 screening, we identified Hmg20a and Nol9 as host factors important for restricting strain Lp02rpsLWT in BMDMs. Depletion of Hmg20a protects macrophages from infection-induced lysosomal damage and apoptosis, allowing productive bacterial replication. The restriction imposed by Hmg20a was mediated by repressing the expression of several endo-lysosomal proteins, including the small GTPase Rab7. We found that SUMOylated Rab7 is recruited to the bacterial phagosome via SulF, a Dot/Icm effector that harbors a SUMO-interacting motif (SIM). Moreover, overexpression of Rab7 rescues intracellular growth of strain Lp02rpsLWT in BMDMs. Our results establish that L. pneumophila exploits the lysosomal network for the biogenesis of its phagosome in BMDMs.
Collapse
Affiliation(s)
- Chuang Li
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Jiaqi Fu
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Shuai Shao
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Zhao-Qing Luo
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
- Lead Contact
| |
Collapse
|
24
|
Hanna M, Guillén-Samander A, De Camilli P. RBG Motif Bridge-Like Lipid Transport Proteins: Structure, Functions, and Open Questions. Annu Rev Cell Dev Biol 2023; 39:409-434. [PMID: 37406299 DOI: 10.1146/annurev-cellbio-120420-014634] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The life of eukaryotic cells requires the transport of lipids between membranes, which are separated by the aqueous environment of the cytosol. Vesicle-mediated traffic along the secretory and endocytic pathways and lipid transfer proteins (LTPs) cooperate in this transport. Until recently, known LTPs were shown to carry one or a few lipids at a time and were thought to mediate transport by shuttle-like mechanisms. Over the last few years, a new family of LTPs has been discovered that is defined by a repeating β-groove (RBG) rod-like structure with a hydrophobic channel running along their entire length. This structure and the localization of these proteins at membrane contact sites suggest a bridge-like mechanism of lipid transport. Mutations in some of these proteins result in neurodegenerative and developmental disorders. Here we review the known properties and well-established or putative physiological roles of these proteins, and we highlight the many questions that remain open about their functions.
Collapse
Affiliation(s)
- Michael Hanna
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andrés Guillén-Samander
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut, USA
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
25
|
Srivastava K, Pandit B. Genome-wide CRISPR screens and their applications in infectious disease. Front Genome Ed 2023; 5:1243731. [PMID: 37794981 PMCID: PMC10546192 DOI: 10.3389/fgeed.2023.1243731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Inactivation or targeted disruption of a gene provides clues to assess the function of the gene in many cellular processes. Knockdown or knocking out a gene has been widely used for this purpose. However, recently CRISPR mediated genome editing has taken over the knockout/knockdown system with more precision. CRISPR technique has enabled us to perform targeted mutagenesis or genome editing to address questions in fundamental biology to biomedical research. Its application is wide in understanding the role of genes in the disease process, and response to therapy in cancer, metabolic disorders, or infectious disease. In this article, we have focused on infectious disease and how genome-wide CRISPR screens have enabled us to identify host factors involved in the process of infection. Understanding the biology of the host-pathogen interaction is of immense importance in planning host-directed therapy to improve better management of the disease. Genome-wide CRISPR screens provide strong mechanistic ways to identify the host dependency factors involved in various infections. We presented insights into genome-wide CRISPR screens conducted in the context of infectious diseases both viral and bacterial that led to better understanding of host-pathogen interactions and immune networks. We have discussed the advancement of knowledge pertaining to influenza virus, different hepatitis viruses, HIV, most recent SARS CoV2 and few more. Among bacterial diseases, we have focused on infection with life threatening Mycobacteria, Salmonella, S. aureus, etc. It appears that the CRISPR technique can be applied universally to multiple infectious disease models to unravel the role of known or novel host factors.
Collapse
Affiliation(s)
| | - Bhaswati Pandit
- National Institute of Biomedical Genomics (NIBMG), Calcutta, West Bengal, India
| |
Collapse
|
26
|
Roberts CG, Franklin TG, Pruneda JN. Ubiquitin-targeted bacterial effectors: rule breakers of the ubiquitin system. EMBO J 2023; 42:e114318. [PMID: 37555693 PMCID: PMC10505922 DOI: 10.15252/embj.2023114318] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Regulation through post-translational ubiquitin signaling underlies a large portion of eukaryotic biology. This has not gone unnoticed by invading pathogens, many of which have evolved mechanisms to manipulate or subvert the host ubiquitin system. Bacteria are particularly adept at this and rely heavily upon ubiquitin-targeted virulence factors for invasion and replication. Despite lacking a conventional ubiquitin system of their own, many bacterial ubiquitin regulators loosely follow the structural and mechanistic rules established by eukaryotic ubiquitin machinery. Others completely break these rules and have evolved novel structural folds, exhibit distinct mechanisms of regulation, or catalyze foreign ubiquitin modifications. Studying these interactions can not only reveal important aspects of bacterial pathogenesis but also shed light on unexplored areas of ubiquitin signaling and regulation. In this review, we discuss the methods by which bacteria manipulate host ubiquitin and highlight aspects that follow or break the rules of ubiquitination.
Collapse
Affiliation(s)
- Cameron G Roberts
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Tyler G Franklin
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
27
|
Wan M, Minelli ME, Zhao Q, Marshall S, Yu H, Smolka M, Mao Y. Phosphoribosyl modification of poly-ubiquitin chains at the Legionella-containing vacuole prohibiting autophagy adaptor recognition. RESEARCH SQUARE 2023:rs.3.rs-3266941. [PMID: 37790579 PMCID: PMC10543435 DOI: 10.21203/rs.3.rs-3266941/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Ubiquitination is a crucial posttranslational modification in eukaryotes that plays a significant role in the infection of intracellular microbial pathogens, such as Legionella pneumophila, the bacterium responsible for Legionnaires' disease. While the Legionella-containing vacuole (LCV) is coated with ubiquitin (Ub), it avoids recognition by autophagy adaptors. In this study, we report that the Sdc and Sde families of effectors work together to build ubiquitinated species around the LCV. The Sdc effectors catalyze canonical polyubiquitination directly on host targets or on the phosphoribosyl-Ub (PR-Ub) conjugated to host targets by Sde. Remarkably, the Ub moieties within the poly-Ub chains are either modified with a phosphoribosyl group by Sde and other PDE domain-containing effectors or covalently attached to other host substrates via Sde-mediated PR-ubiquitination. Furthermore, these modifications prevent the recognition by Ub adaptors, such as p62, and therefore exclude host autophagy adaptors from the LCV. Our findings shed light on the nature of the poly-ubiquitinated species present at the surface of the LCV and provide a molecular mechanism for the avoidance of autophagy adaptors by the Ub-decorated LCV.
Collapse
Affiliation(s)
- Min Wan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Marena E. Minelli
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Qiuye Zhao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Shannon Marshall
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Haiyuan Yu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
| | - Marcus Smolka
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
28
|
Steinbach AM, Bhadkamkar VL, Jimenez-Morales D, Stevenson E, Jang GM, Krogan NJ, Swaney DL, Mukherjee S. Cross-family small GTPase ubiquitination by the intracellular pathogen Legionella pneumophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551750. [PMID: 37577546 PMCID: PMC10418220 DOI: 10.1101/2023.08.03.551750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The intracellular bacterial pathogen Legionella pneumophila (L.p.) manipulates eukaryotic host ubiquitination machinery to form its replicative vacuole. While nearly 10% of L.p.'s arsenal of ~330 secreted effector proteins have been biochemically characterized as ubiquitin ligases or deubiquitinases, a comprehensive measure of temporally resolved changes in the endogenous host ubiquitinome during infection has not been undertaken. To elucidate how L.p hijacks ubiquitin signaling within the host cell, we undertook a proteome-wide analysis of changes in protein ubiquitination during infection. We discover that L.p. infection results in increased ubiquitination of host proteins regulating subcellular trafficking and membrane dynamics, most notably 63 of ~160 mammalian Ras superfamily small GTPases. We determine that these small GTPases predominantly undergo non-degradative monoubiquitination, and link ubiquitination to recruitment to the Legionella-containing vacuole membrane. Finally, we find that the bacterial effectors SidC/SdcA play a central, but likely indirect, role in cross-family small GTPase ubiquitination. This work highlights the extensive reconfiguration of host ubiquitin signaling by bacterial effectors during infection and establishes simultaneous ubiquitination of small GTPases across the Ras superfamily as a novel consequence of L.p. infection. This work positions L.p. as a tool to better understand how small GTPases can be regulated by ubiquitination in uninfected contexts.
Collapse
Affiliation(s)
- Adriana M. Steinbach
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- George Williams Hooper Foundation, University of California, San Francisco, San Francisco, California, United States of America
| | - Varun L. Bhadkamkar
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- George Williams Hooper Foundation, University of California, San Francisco, San Francisco, California, United States of America
| | - David Jimenez-Morales
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, California, United States of America
| | - Erica Stevenson
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
| | - Gwendolyn M. Jang
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
| | - Nevan J. Krogan
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
| | - Danielle L. Swaney
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
| | - Shaeri Mukherjee
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- George Williams Hooper Foundation, University of California, San Francisco, San Francisco, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
29
|
Chandra O, Sharma M, Pandey N, Jha IP, Mishra S, Kong SL, Kumar V. Patterns of transcription factor binding and epigenome at promoters allow interpretable predictability of multiple functions of non-coding and coding genes. Comput Struct Biotechnol J 2023; 21:3590-3603. [PMID: 37520281 PMCID: PMC10371796 DOI: 10.1016/j.csbj.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Understanding the biological roles of all genes only through experimental methods is challenging. A computational approach with reliable interpretability is needed to infer the function of genes, particularly for non-coding RNAs. We have analyzed genomic features that are present across both coding and non-coding genes like transcription factor (TF) and cofactor ChIP-seq (823), histone modifications ChIP-seq (n = 621), cap analysis gene expression (CAGE) tags (n = 255), and DNase hypersensitivity profiles (n = 255) to predict ontology-based functions of genes. Our approach for gene function prediction was reliable (>90% balanced accuracy) for 486 gene-sets. PubMed abstract mining and CRISPR screens supported the inferred association of genes with biological functions, for which our method had high accuracy. Further analysis revealed that TF-binding patterns at promoters have high predictive strength for multiple functions. TF-binding patterns at the promoter add an unexplored dimension of explainable regulatory aspects of genes and their functions. Therefore, we performed a comprehensive analysis for the functional-specificity of TF-binding patterns at promoters and used them for clustering functions to reveal many latent groups of gene-sets involved in common major cellular processes. We also showed how our approach could be used to infer the functions of non-coding genes using the CRISPR screens of coding genes, which were validated using a long non-coding RNA CRISPR screen. Thus our results demonstrated the generality of our approach by using gene-sets from CRISPR screens. Overall, our approach opens an avenue for predicting the involvement of non-coding genes in various functions.
Collapse
Affiliation(s)
- Omkar Chandra
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| | - Madhu Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| | - Neetesh Pandey
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| | - Indra Prakash Jha
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| | - Shreya Mishra
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| | - Say Li Kong
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Vibhor Kumar
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| |
Collapse
|
30
|
Salvato I, Ricciardi L, Dal Col J, Nigro A, Giurato G, Memoli D, Sellitto A, Lamparelli EP, Crescenzi MA, Vitale M, Vatrella A, Nucera F, Brun P, Caicci F, Dama P, Stiff T, Castellano L, Idrees S, Johansen MD, Faiz A, Wark PA, Hansbro PM, Adcock IM, Caramori G, Stellato C. Expression of targets of the RNA-binding protein AUF-1 in human airway epithelium indicates its role in cellular senescence and inflammation. Front Immunol 2023; 14:1192028. [PMID: 37483631 PMCID: PMC10360199 DOI: 10.3389/fimmu.2023.1192028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction The RNA-binding protein AU-rich-element factor-1 (AUF-1) participates to posttranscriptional regulation of genes involved in inflammation and cellular senescence, two pathogenic mechanisms of chronic obstructive pulmonary disease (COPD). Decreased AUF-1 expression was described in bronchiolar epithelium of COPD patients versus controls and in vitro cytokine- and cigarette smoke-challenged human airway epithelial cells, prompting the identification of epithelial AUF-1-targeted transcripts and function, and investigation on the mechanism of its loss. Results RNA immunoprecipitation-sequencing (RIP-Seq) identified, in the human airway epithelial cell line BEAS-2B, 494 AUF-1-bound mRNAs enriched in their 3'-untranslated regions for a Guanine-Cytosine (GC)-rich binding motif. AUF-1 association with selected transcripts and with a synthetic GC-rich motif were validated by biotin pulldown. AUF-1-targets' steady-state levels were equally affected by partial or near-total AUF-1 loss induced by cytomix (TNFα/IL1β/IFNγ/10 nM each) and siRNA, respectively, with differential transcript decay rates. Cytomix-mediated decrease in AUF-1 levels in BEAS-2B and primary human small-airways epithelium (HSAEC) was replicated by treatment with the senescence- inducer compound etoposide and associated with readouts of cell-cycle arrest, increase in lysosomal damage and senescence-associated secretory phenotype (SASP) factors, and with AUF-1 transfer in extracellular vesicles, detected by transmission electron microscopy and immunoblotting. Extensive in-silico and genome ontology analysis found, consistent with AUF-1 functions, enriched RIP-Seq-derived AUF-1-targets in COPD-related pathways involved in inflammation, senescence, gene regulation and also in the public SASP proteome atlas; AUF-1 target signature was also significantly represented in multiple transcriptomic COPD databases generated from primary HSAEC, from lung tissue and from single-cell RNA-sequencing, displaying a predominant downregulation of expression. Discussion Loss of intracellular AUF-1 may alter posttranscriptional regulation of targets particularly relevant for protection of genomic integrity and gene regulation, thus concurring to airway epithelial inflammatory responses related to oxidative stress and accelerated aging. Exosomal-associated AUF-1 may in turn preserve bound RNA targets and sustain their function, participating to spreading of inflammation and senescence to neighbouring cells.
Collapse
Affiliation(s)
- Ilaria Salvato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Luca Ricciardi
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Assunta Sellitto
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Maria Assunta Crescenzi
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Monica Vitale
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Francesco Nucera
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Paola Dama
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Thomas Stiff
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Leandro Castellano
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Sobia Idrees
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Alen Faiz
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Peter A. Wark
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Ian M. Adcock
- National Heart and Lung Institute, Imperial College London and the National Institute for Health and Care Research (NIHR) Imperial Biomedical Research Centre, London, United Kingdom
| | - Gaetano Caramori
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| |
Collapse
|
31
|
Li M, Sun J, Shi G. Application of CRISPR screen in mechanistic studies of tumor development, tumor drug resistance, and tumor immunotherapy. Front Cell Dev Biol 2023; 11:1220376. [PMID: 37427373 PMCID: PMC10326906 DOI: 10.3389/fcell.2023.1220376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Tumor is one of the biggest threats to human health. Though tumor therapy has been dramatically advanced by the progress of technology and research in recent decades, it is still far from expectations. Thus, it is of great significance to explore the mechanisms of tumor growth, metastasis, and resistance. Screen based on Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein (Cas) 9 gene editing technology are powerful tools for exploring the abovementioned facets. This review summarizes the recent screen performed in cancer cells and immune cells in the tumor microenvironment. The screens in cancer cells mainly focus on exploring the mechanisms underlying cancer cells' growth, metastasis, and how cancer cells escape from the FDA approved drugs or immunotherapy. And the studies in tumor-associated immune cells are primarily aimed at identifying signaling pathways that can enhance the anti-tumor function of cytotoxic T lymphocytes (CTLs), CAR-T cells, and macrophages. Moreover, we discuss the limitations, merits of the CRISPR screen, and further its future application in tumor studies. Importantly, recent advances in high throughput tumor related CRISPR screen have deeply contributed to new concepts and mechanisms underlying tumor development, tumor drug resistance, and tumor immune therapy, all of which will eventually potentiate the clinical therapy for tumor patients.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of Chinese Academy of Sciences, Shanghai, China
| | - Jin Sun
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of Chinese Academy of Sciences, Shanghai, China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Shanghai, China
| |
Collapse
|
32
|
Hamilton MC, Fife JD, Akinci E, Yu T, Khowpinitchai B, Cha M, Barkal S, Thi TT, Yeo GH, Ramos Barroso JP, Francoeur MJ, Velimirovic M, Gifford DK, Lettre G, Yu H, Cassa CA, Sherwood RI. Systematic elucidation of genetic mechanisms underlying cholesterol uptake. CELL GENOMICS 2023; 3:100304. [PMID: 37228746 PMCID: PMC10203276 DOI: 10.1016/j.xgen.2023.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/02/2022] [Accepted: 03/24/2023] [Indexed: 05/27/2023]
Abstract
Genetic variation contributes greatly to LDL cholesterol (LDL-C) levels and coronary artery disease risk. By combining analysis of rare coding variants from the UK Biobank and genome-scale CRISPR-Cas9 knockout and activation screening, we substantially improve the identification of genes whose disruption alters serum LDL-C levels. We identify 21 genes in which rare coding variants significantly alter LDL-C levels at least partially through altered LDL-C uptake. We use co-essentiality-based gene module analysis to show that dysfunction of the RAB10 vesicle transport pathway leads to hypercholesterolemia in humans and mice by impairing surface LDL receptor levels. Further, we demonstrate that loss of function of OTX2 leads to robust reduction in serum LDL-C levels in mice and humans by increasing cellular LDL-C uptake. Altogether, we present an integrated approach that improves our understanding of the genetic regulators of LDL-C levels and provides a roadmap for further efforts to dissect complex human disease genetics.
Collapse
Affiliation(s)
- Marisa C. Hamilton
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - James D. Fife
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ersin Akinci
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tian Yu
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Benyapa Khowpinitchai
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minsun Cha
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sammy Barkal
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Thi Tun Thi
- Precision Medicine Research Programme, Cardiovascular Disease Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Grace H.T. Yeo
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Juan Pablo Ramos Barroso
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Jake Francoeur
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minja Velimirovic
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David K. Gifford
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
- Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Haojie Yu
- Precision Medicine Research Programme, Cardiovascular Disease Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher A. Cassa
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Richard I. Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
33
|
Essletzbichler P, Sedlyarov V, Frommelt F, Soulat D, Heinz LX, Stefanovic A, Neumayer B, Superti-Furga G. A genome-wide CRISPR functional survey of the human phagocytosis molecular machinery. Life Sci Alliance 2023; 6:e202201715. [PMID: 36725334 PMCID: PMC9892931 DOI: 10.26508/lsa.202201715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Phagocytosis, the process by which cells engulf large particles, plays a vital role in driving tissue clearance and host defense. Its dysregulation is connected to autoimmunity, toxic accumulation of proteins, and increased risks for infections. Despite its importance, we lack full understanding of all molecular components involved in the process. To create a functional map in human cells, we performed a genome-wide CRISPRko FACS screen that identified 716 genes. Mapping those hits to a comprehensive protein-protein interaction network annotated for functional cellular processes allowed retrieval of protein complexes identified multiple times and detection of missing phagocytosis regulators. In addition to known components, such as the Arp2/3 complex, the vacuolar-ATPase-Rag machinery, and the Wave-2 complex, we identified and validated new phagocytosis-relevant functions, including the oligosaccharyltransferase complex (MAGT1/SLC58A1, DDOST, STT3B, and RPN2) and the hypusine pathway (eIF5A, DHPS, and DOHH). Overall, our phagocytosis network comprises elements of cargo uptake, shuffling, and biotransformation through the cell, providing a resource for the identification of potential novel drivers for diseases of the endo-lysosomal system. Our approach of integrating protein-protein interaction offers a broadly applicable way to functionally interpret genome-wide screens.
Collapse
Affiliation(s)
- Patrick Essletzbichler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Fabian Frommelt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Didier Soulat
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Adrijana Stefanovic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Benedikt Neumayer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Berlin I, Sapmaz A, Stévenin V, Neefjes J. Ubiquitin and its relatives as wizards of the endolysosomal system. J Cell Sci 2023; 136:288517. [PMID: 36825571 PMCID: PMC10022685 DOI: 10.1242/jcs.260101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The endolysosomal system comprises a dynamic constellation of vesicles working together to sense and interpret environmental cues and facilitate homeostasis. Integrating extracellular information with the internal affairs of the cell requires endosomes and lysosomes to be proficient in decision-making: fusion or fission; recycling or degradation; fast transport or contacts with other organelles. To effectively discriminate between these options, the endolysosomal system employs complex regulatory strategies that crucially rely on reversible post-translational modifications (PTMs) with ubiquitin (Ub) and ubiquitin-like (Ubl) proteins. The cycle of conjugation, recognition and removal of different Ub- and Ubl-modified states informs cellular protein stability and behavior at spatial and temporal resolution and is thus well suited to finetune macromolecular complex assembly and function on endolysosomal membranes. Here, we discuss how ubiquitylation (also known as ubiquitination) and its biochemical relatives orchestrate endocytic traffic and designate cargo fate, influence membrane identity transitions and support formation of membrane contact sites (MCSs). Finally, we explore the opportunistic hijacking of Ub and Ubl modification cascades by intracellular bacteria that remodel host trafficking pathways to invade and prosper inside cells.
Collapse
Affiliation(s)
- Ilana Berlin
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Aysegul Sapmaz
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Virginie Stévenin
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Jacques Neefjes
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| |
Collapse
|
35
|
Yang JL, Li D, Zhan XY. Concept about the Virulence Factor of Legionella. Microorganisms 2022; 11:microorganisms11010074. [PMID: 36677366 PMCID: PMC9867486 DOI: 10.3390/microorganisms11010074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Pathogenic species of Legionella can infect human alveolar macrophages through Legionella-containing aerosols to cause a disease called Legionellosis, which has two forms: a flu-like Pontiac fever and severe pneumonia named Legionnaires' disease (LD). Legionella is an opportunistic pathogen that frequently presents in aquatic environments as a biofilm or protozoa parasite. Long-term interaction and extensive co-evolution with various genera of amoebae render Legionellae pathogenic to infect humans and also generate virulence differentiation and heterogeneity. Conventionally, the proteins involved in initiating replication processes and human macrophage infections have been regarded as virulence factors and linked to pathogenicity. However, because some of the virulence factors are associated with the infection of protozoa and macrophages, it would be more accurate to classify them as survival factors rather than virulence factors. Given that the molecular basis of virulence variations among non-pathogenic, pathogenic, and highly pathogenic Legionella has not yet been elaborated from the perspective of virulence factors, a comprehensive explanation of how Legionella infects its natural hosts, protozoans, and accidental hosts, humans is essential to show a novel concept regarding the virulence factor of Legionella. In this review, we overviewed the pathogenic development of Legionella from protozoa, the function of conventional virulence factors in the infections of protozoa and macrophages, the host's innate immune system, and factors involved in regulating the host immune response, before discussing a probably new definition for the virulence factors of Legionella.
Collapse
|
36
|
Braschi B, Bruford EA, Cavanagh AT, Neuman SD, Bashirullah A. The bridge-like lipid transfer protein (BLTP) gene group: introducing new nomenclature based on structural homology indicating shared function. Hum Genomics 2022; 16:66. [PMID: 36461115 PMCID: PMC9719229 DOI: 10.1186/s40246-022-00439-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
The HUGO Gene Nomenclature Committee assigns unique symbols and names to human genes. The use of approved nomenclature enables effective communication between researchers, and there are multiple examples of how the usage of unapproved alias symbols can lead to confusion. We discuss here a recent nomenclature update (May 2022) for a set of genes that encode proteins with a shared repeating β-groove domain. Some of the proteins encoded by genes in this group have already been shown to function as lipid transporters. By working with researchers in the field, we have been able to introduce a new root symbol (BLTP, which stands for "bridge-like lipid transfer protein") for this domain-based gene group. This new nomenclature not only reflects the shared domain in these proteins, but also takes into consideration the mounting evidence of a shared lipid transport function.
Collapse
Affiliation(s)
- Bryony Braschi
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, CB10 1SD, UK.
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
- Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge, Cambridgeshire, CB2 0AW, UK
| | - Amy T Cavanagh
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705-2222, USA
| | - Sarah D Neuman
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705-2222, USA
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705-2222, USA
| |
Collapse
|
37
|
Wang C, Wang B, Pandey T, Long Y, Zhang J, Oh F, Sima J, Guo R, Liu Y, Zhang C, Mukherjee S, Bassik M, Lin W, Deng H, Vale G, McDonald JG, Shen K, Ma DK. A conserved megaprotein-based molecular bridge critical for lipid trafficking and cold resilience. Nat Commun 2022; 13:6805. [PMID: 36357390 PMCID: PMC9649747 DOI: 10.1038/s41467-022-34450-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
Cells adapt to cold by increasing levels of unsaturated phospholipids and membrane fluidity through conserved homeostatic mechanisms. Here we report an exceptionally large and evolutionarily conserved protein LPD-3 in C. elegans that mediates lipid trafficking to confer cold resilience. We identify lpd-3 mutants in a mutagenesis screen for genetic suppressors of the lipid desaturase FAT-7. LPD-3 bridges the endoplasmic reticulum (ER) and plasma membranes (PM), forming a structurally predicted hydrophobic tunnel for lipid trafficking. lpd-3 mutants exhibit abnormal phospholipid distribution, diminished FAT-7 abundance, organismic vulnerability to cold, and are rescued by Lecithin comprising unsaturated phospholipids. Deficient lpd-3 homologues in Zebrafish and mammalian cells cause defects similar to those observed in C. elegans. As mutations in BLTP1, the human orthologue of lpd-3, cause Alkuraya-Kucinskas syndrome, LPD-3 family proteins may serve as evolutionarily conserved highway bridges critical for ER-associated non-vesicular lipid trafficking and resilience to cold stress in eukaryotic cells.
Collapse
Affiliation(s)
- Changnan Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Bingying Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Taruna Pandey
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jianxiu Zhang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Fiona Oh
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Jessica Sima
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Ruyin Guo
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Yun Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Zhang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaeri Mukherjee
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Weichun Lin
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huichao Deng
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Goncalo Vale
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kang Shen
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Dengke K Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
38
|
Iliadi V, Staykova J, Iliadis S, Konstantinidou I, Sivykh P, Romanidou G, Vardikov DF, Cassimos D, Konstantinidis TG. Legionella pneumophila: The Journey from the Environment to the Blood. J Clin Med 2022; 11:jcm11206126. [PMID: 36294446 PMCID: PMC9605555 DOI: 10.3390/jcm11206126] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
An outbreak of a potentially fatal form of pneumonia in 1976 and in the annual convention of the American Legion was the first time that Legionella spp. was identified. Thereafter, the term Legionnaires’ disease (LD) was established. The infection in humans is transmitted by the inhalation of aerosols that contain the microorganisms that belong to the Legionellaceae family and the genus Legionella. The genus Legionella contains genetically heterogeneous species and serogroups. The Legionella pneumophila serogroup 1 (Lp1) is the most often detected strain in outbreaks of LD. The pathogenesis of LD infection initiates with the attachment of the bacterial cells to the host cells, and subsequent intracellular replication. Following invasion, Legionella spp. activates its virulence mechanisms: generation of specific compartments of Legionella-containing vacuole (LCV), and expression of genes that encode a type IV secretion system (T4SS) for the translocation of proteins. The ability of L. pneumophila to transmigrate across the lung’s epithelium barrier leads to bacteremia, spread, and invasion of many organs with subsequent manifestations, complications, and septic shock. The clinical manifestations of LD depend on the bacterial load in the aerosol, the virulence factors, and the immune status of the patient. The infection has two distinct forms: the non- pneumatic form or Pontiac fever, which is a milder febrile flu-like illness, and LD, a more severe form, which includes pneumonia. In addition, the extrapulmonary involvement of LD can include heart, brain, abdomen, and joints.
Collapse
Affiliation(s)
- Valeria Iliadi
- Izhevsk State Medical Academy, Kommunarov Street 281, 426034 Izhevsk, Russia
| | - Jeni Staykova
- Faculty of Public Health, Medical University of Sofia, Byalo More Str. 8, 1527 Sofia, Bulgaria
| | - Sergios Iliadis
- Izhevsk State Medical Academy, Kommunarov Street 281, 426034 Izhevsk, Russia
| | | | - Polina Sivykh
- State Budgetary Health City Polyclinic No 2 (GBUZ GB2) of Krasnodar, Seleznev Street 4/10, 350059 Krasnodar, Russia
| | - Gioulia Romanidou
- Nephrology Department, General Hospital “Sismanogleio”, 69100 Komotini, Greece
| | - Daniil F. Vardikov
- Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health of the Russian Federation, Tkachey Str. 70-16, 192029 St. Petersburg, Russia
| | - Dimitrios Cassimos
- Pediatric Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Theocharis G. Konstantinidis
- Blood Transfusion Center, University General Hospital of Alexandroupolis Dragana Campus, 68100 Alexandroupolis, Greece
- Correspondence: ; Tel.: +30-2551-352005
| |
Collapse
|
39
|
Cohen A, Jeng EE, Voorhies M, Symington J, Ali N, Rodriguez RA, Bassik MC, Sil A. Genome-scale CRISPR screening reveals that C3aR signaling is critical for rapid capture of fungi by macrophages. PLoS Pathog 2022; 18:e1010237. [PMID: 36174103 PMCID: PMC9578593 DOI: 10.1371/journal.ppat.1010237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 10/18/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
The fungal pathogen Histoplasma capsulatum (Hc) invades, replicates within, and destroys macrophages. To interrogate the molecular mechanisms underlying this interaction, we conducted a host-directed CRISPR-Cas9 screen and identified 361 genes that modify macrophage susceptibility to Hc infection, greatly expanding our understanding of host gene networks targeted by Hc. We identified pathways that have not been previously implicated in Hc interaction with macrophages, including the ragulator complex (involved in nutrient stress sensing), glycosylation enzymes, protein degradation machinery, mitochondrial respiration genes, solute transporters, and the ER membrane complex (EMC). The highest scoring protective hits included the complement C3a receptor (C3aR), a G-protein coupled receptor (GPCR) that recognizes the complement fragment C3a. Although it is known that complement components react with the fungal surface, leading to opsonization and release of small peptide fragments such as C3a, a role for C3aR in macrophage interactions with fungi has not been elucidated. We demonstrated that whereas C3aR is dispensable for macrophage phagocytosis of bacteria and latex beads, it is critical for optimal macrophage capture of pathogenic fungi, including Hc, the ubiquitous fungal pathogen Candida albicans, and the causative agent of Valley Fever Coccidioides posadasii. We showed that C3aR localizes to the early phagosome during Hc infection where it coordinates the formation of actin-rich membrane protrusions that promote Hc capture. We also showed that the EMC promotes surface expression of C3aR, likely explaining its identification in our screen. Taken together, our results provide new insight into host processes that affect Hc-macrophage interactions and uncover a novel and specific role for C3aR in macrophage recognition of fungi.
Collapse
Affiliation(s)
- Allison Cohen
- University of California San Francisco, Department of Microbiology and Immunology, San Francisco, California, United States of America
| | - Edwin E. Jeng
- Stanford University, Department of Genetics, Palo Alto, California, United States of America
| | - Mark Voorhies
- University of California San Francisco, Department of Microbiology and Immunology, San Francisco, California, United States of America
| | - Jane Symington
- University of California San Francisco, Department of Microbiology and Immunology, San Francisco, California, United States of America
| | - Nebat Ali
- University of California San Francisco, Department of Microbiology and Immunology, San Francisco, California, United States of America
| | - Rosa A. Rodriguez
- University of California San Francisco, Department of Microbiology and Immunology, San Francisco, California, United States of America
| | - Michael C. Bassik
- Stanford University, Department of Genetics, Palo Alto, California, United States of America
| | - Anita Sil
- University of California San Francisco, Department of Microbiology and Immunology, San Francisco, California, United States of America
| |
Collapse
|
40
|
Legionella pneumophila Infection of Human Macrophages Retains Golgi Structure but Reduces O-Glycans. Pathogens 2022; 11:pathogens11080908. [PMID: 36015029 PMCID: PMC9415278 DOI: 10.3390/pathogens11080908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Legionella pneumophila is an accidental pathogen that replicates intracellularly within the Legionella-containing vacuole (LCV) in macrophages. Within an hour of infection, L. pneumophila secretes effectors to manipulate Rab1 and intercept ER-derived vesicles to the LCV. The downstream consequences of interrupted ER trafficking on the Golgi of macrophages are not clear. We examined the Golgi structure and function in L. pneumophila-infected human U937 macrophages. Intriguingly, the size of the Golgi in infected macrophages remained similar to uninfected macrophages. Furthermore, TEM analysis also did not reveal any significant changes in the ultrastructure of the Golgi in L. pneumophila-infected cells. Drug-induced Golgi disruption impacted bacterial replication in human macrophages, suggesting that an intact organelle is important for bacteria growth. To probe for Golgi functionality after L. pneumophila infection, we assayed glycosylation levels using fluorescent lectins. Golgi O-glycosylation levels, visualized by the fluorescent cis-Golgi lectin, Helix pomatia agglutinin (HPA), significantly decreased over time as infection progressed, compared to control cells. N-glycosylation levels in the Golgi, as measured by L-PHA lectin staining, were not impacted by L. pneumophila infection. To understand the mechanism of reduced O-glycans in the Golgi we monitored UDP-GalNAc transporter levels in infected macrophages. The solute carrier family 35 membrane A2 (SLC35A2) protein levels were significantly reduced in L. pneumophila-infected U937 and HeLa cells and L. pneumophila growth in human macrophages benefitted from GalNAc supplementation. The pronounced reduction in Golgi HPA levels was dependent on the translocation apparatus DotA expression in bacteria and occurred in a ubiquitin-independent manner. Thus, L. pneumophila infection of human macrophages maintains and requires an intact host Golgi ultrastructure despite known interference of ER–Golgi trafficking. Finally, L. pneumophila infection blocks the formation of O-linked glycans and reduces SLC35A2 protein levels in infected human macrophages.
Collapse
|
41
|
Wang Y, Huang C, Zhao W. Recent advances of the biological and biomedical applications of CRISPR/Cas systems. Mol Biol Rep 2022; 49:7087-7100. [PMID: 35705772 PMCID: PMC9199458 DOI: 10.1007/s11033-022-07519-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
The clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated endonuclease (Cas) system, referred to as CRISPR/Cas system, has attracted significant interest in scientific community due to its great potential in translating into versatile therapeutic tools in biomedical field. For instance, a myriad of studies has demonstrated that the CRISPR/Cas system is capable of detecting various types of viruses, killing antibiotic-resistant bacteria, treating inherited genetic diseases, and providing new strategies for cancer therapy. Furthermore, CRISPR/Cas systems are also exploited as research tools such as genome engineering tool that allows researchers to interrogate the biological roles of unexplored genes or uncover novel functions of known genes. Additionally, the CRISPR/Cas system has been employed to edit the genome of a wide range of eukaryotic, prokaryotic organisms and experimental models, including but not limited to mammalian cells, mice, zebrafish, plants, yeast, and Escherichia coli. The present review mainly focuses on summarizing recent discoveries regarding the type II CRISPR/Cas9 and type VI CRISPR/Cas13a systems to give researchers a glimpse of their potential applications in the biological and biomedical field.
Collapse
Affiliation(s)
- Yaya Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, 58 Yanta Zhonglu, 710054, Xi'an, Shaanxi, China.
- State Key Laboratory of Cancer Biology, Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China.
| | - Chun Huang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, 58 Yanta Zhonglu, 710054, Xi'an, Shaanxi, China
| | - Weiqin Zhao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, 58 Yanta Zhonglu, 710054, Xi'an, Shaanxi, China
| |
Collapse
|
42
|
Lockwood DC, Amin H, Costa TRD, Schroeder GN. The Legionella pneumophila Dot/Icm type IV secretion system and its effectors. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35639581 DOI: 10.1099/mic.0.001187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To prevail in the interaction with eukaryotic hosts, many bacterial pathogens use protein secretion systems to release virulence factors at the host–pathogen interface and/or deliver them directly into host cells. An outstanding example of the complexity and sophistication of secretion systems and the diversity of their protein substrates, effectors, is the Defective in organelle trafficking/Intracellular multiplication (Dot/Icm) Type IVB secretion system (T4BSS) of
Legionella pneumophila
and related species.
Legionella
species are facultative intracellular pathogens of environmental protozoa and opportunistic human respiratory pathogens. The Dot/Icm T4BSS translocates an exceptionally large number of effectors, more than 300 per
L. pneumophila
strain, and is essential for evasion of phagolysosomal degradation and exploitation of protozoa and human macrophages as replicative niches. Recent technological advancements in the imaging of large protein complexes have provided new insight into the architecture of the T4BSS and allowed us to propose models for the transport mechanism. At the same time, significant progress has been made in assigning functions to about a third of
L. pneumophila
effectors, discovering unprecedented new enzymatic activities and concepts of host subversion. In this review, we describe the current knowledge of the workings of the Dot/Icm T4BSS machinery and provide an overview of the activities and functions of the to-date characterized effectors in the interaction of
L. pneumophila
with host cells.
Collapse
Affiliation(s)
- Daniel C Lockwood
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| | - Himani Amin
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Tiago R D Costa
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gunnar N Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
43
|
Talapko J, Frauenheim E, Juzbašić M, Tomas M, Matić S, Jukić M, Samardžić M, Škrlec I. Legionella pneumophila-Virulence Factors and the Possibility of Infection in Dental Practice. Microorganisms 2022; 10:255. [PMID: 35208710 PMCID: PMC8879694 DOI: 10.3390/microorganisms10020255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Legionella pneumophila is defined as a bacterium that can cause severe pneumonia. It is found in the natural environment and in water, and is often found in water tanks. It can be an integral part of biofilms in nature, and the protozoa in which it can live provide it with food and protect it from harmful influences; therefore, it has the ability to move into a sustainable but uncultured state (VBNC). L. pneumophila has been shown to cause infections in dental practices. The most common transmission route is aerosol generated in dental office water systems, which can negatively affect patients and healthcare professionals. The most common way of becoming infected with L. pneumophila in a dental office is through water from dental instruments, and the dental unit. In addition to these bacteria, patients and the dental team may be exposed to other harmful bacteria and viruses. Therefore, it is vital that the dental team regularly maintains and decontaminates the dental unit, and sterilizes all accessories that come with it. In addition, regular water control in dental offices is necessary.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Erwin Frauenheim
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Matej Tomas
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Suzana Matić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia
| | - Melita Jukić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- General Hospital Vukovar, Županijska 35, HR-32000 Vukovar, Croatia
| | - Marija Samardžić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| |
Collapse
|
44
|
Luo J, Wang L, Song L, Luo ZQ. Exploitation of the Host Ubiquitin System: Means by Legionella pneumophila. Front Microbiol 2022; 12:790442. [PMID: 35003021 PMCID: PMC8727461 DOI: 10.3389/fmicb.2021.790442] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/30/2021] [Indexed: 01/12/2023] Open
Abstract
Ubiquitination is a commonly used post-translational modification (PTM) in eukaryotic cells, which regulates a wide variety of cellular processes, such as differentiation, apoptosis, cell cycle, and immunity. Because of its essential role in immunity, the ubiquitin network is a common target of infectious agents, which have evolved various effective strategies to hijack and co-opt ubiquitin signaling for their benefit. The intracellular pathogen Legionella pneumophila represents one such example; it utilizes a large cohort of virulence factors called effectors to modulate diverse cellular processes, resulting in the formation a compartment called the Legionella-containing vacuole (LCV) that supports its replication. Many of these effectors function to re-orchestrate ubiquitin signaling with distinct biochemical activities. In this review, we highlight recent progress in the mechanism of action of L. pneumophila effectors involved in ubiquitination and discuss their roles in bacterial virulence and host cell biology.
Collapse
Affiliation(s)
- Jingjing Luo
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Lidong Wang
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
45
|
The Legionella Effector SdjA Is a Bifunctional Enzyme That Distinctly Regulates Phosphoribosyl Ubiquitination. mBio 2021; 12:e0231621. [PMID: 34488448 PMCID: PMC8546864 DOI: 10.1128/mbio.02316-21] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila promotes its survival and replication in phagocytes by actively modulating cellular processes using effectors injected into host cells by its Dot/Icm type IV secretion system. Many of these effectors function to manipulate the ubiquitin network of infected cells, thus contributing to the biogenesis of the Legionella-containing vacuole (LCV), which is permissive for bacterial replication. Among these, members of the SidE effector family (SidEs) catalyze ubiquitination of functionally diverse host proteins by a mechanism that is chemically distinct from the canonical three-enzyme cascade. The activity of SidEs is regulated by two mechanisms: reversal of the phosphoribosyl ubiquitination by DupA and DupB and direct inactivation by SidJ, which is a calmodulin-dependent glutamylase. In many L. pneumophila strains, SidJ belongs to a two-member protein family. Its homolog SdjA appears to function differently from SidJ despite the high-level similarity in their primary sequences. Here, we found that SdjA is a bifunctional enzyme that exhibits distinct activities toward members of the SidE family. It inhibits the activity of SdeB and SdeC by glutamylation. Unexpectedly, it also functions as a deglutamylase that reverses SidJ-induced glutamylation on SdeA. Our results reveal that an enzyme can catalyze two completely opposite biochemical reactions, which highlights the distinct regulation of phosphoribosyl ubiquitination by the SidJ effector family. IMPORTANCE One unique feature of L. pneumophila Dot/Icm effectors is the existence of protein families with members of high-level similarity. Whereas members of some families are functionally redundant, as suggested by their primary sequences, the relationship between SidJ and SdjA, the two members of the SidJ family, has remained mysterious. Despite their sharing 57% identity, sdjA cannot complement the defects in virulence displayed by a mutant lacking sidJ. SidJ inhibits the activity of the SidE family by a calmodulin (CaM)-dependent glutamylase activity. Here, we found that SdjA is a dual function protein: it is a CaM-dependent glutamylase against SdeB and SdeC but exhibits deglutamylase activity toward SdeA that has been modified by SidJ, indicating that SdjA functions to fine-tune the activity of SidEs. These findings have paved the way for future structural and functional analysis of SdjA, which may reveal novel mechanism for isopeptide bond cleavage and provide insights into the study of protein evolution.
Collapse
|
46
|
Abstract
The past 25 years of genomics research first revealed which genes are encoded by the human genome and then a detailed catalogue of human genome variation associated with many diseases. Despite this, the function of many genes and gene regulatory elements remains poorly characterized, which limits our ability to apply these insights to human disease. The advent of new CRISPR functional genomics tools allows for scalable and multiplexable characterization of genes and gene regulatory elements encoded by the human genome. These approaches promise to reveal mechanisms of gene function and regulation, and to enable exploration of how genes work together to modulate complex phenotypes.
Collapse
|
47
|
Inter-cellular CRISPR screens reveal regulators of cancer cell phagocytosis. Nature 2021; 597:549-554. [PMID: 34497417 PMCID: PMC9419706 DOI: 10.1038/s41586-021-03879-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Monoclonal antibody therapies targeting tumour antigens drive cancer cell elimination in large part by triggering macrophage phagocytosis of cancer cells1-7. However, cancer cells evade phagocytosis using mechanisms that are incompletely understood. Here we develop a platform for unbiased identification of factors that impede antibody-dependent cellular phagocytosis (ADCP) using complementary genome-wide CRISPR knockout and overexpression screens in both cancer cells and macrophages. In cancer cells, beyond known factors such as CD47, we identify many regulators of susceptibility to ADCP, including the poorly characterized enzyme adipocyte plasma membrane-associated protein (APMAP). We find that loss of APMAP synergizes with tumour antigen-targeting monoclonal antibodies and/or CD47-blocking monoclonal antibodies to drive markedly increased phagocytosis across a wide range of cancer cell types, including those that are otherwise resistant to ADCP. Additionally, we show that APMAP loss synergizes with several different tumour-targeting monoclonal antibodies to inhibit tumour growth in mice. Using genome-wide counterscreens in macrophages, we find that the G-protein-coupled receptor GPR84 mediates enhanced phagocytosis of APMAP-deficient cancer cells. This work reveals a cancer-intrinsic regulator of susceptibility to antibody-driven phagocytosis and, more broadly, expands our knowledge of the mechanisms governing cancer resistance to macrophage phagocytosis.
Collapse
|
48
|
Wei F, Wang Y, Zhou Y, Li Y. Long noncoding RNA CYTOR triggers gastric cancer progression by targeting miR-103/RAB10. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1044-1054. [PMID: 34110382 DOI: 10.1093/abbs/gmab071] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Growing evidence has indicated that the long noncoding RNA (lncRNA) CYTOR is involved in the initiation and progression of malignancies, including gastric cancer. Nevertheless, the mechanisms of CYTOR in gastric cancer development are not fully understood. In the present study, we aimed to clarify the association of CYTOR, miR-103, and RAB10 in gastric cancer progression. We found that CYTOR expression was increased in metastatic gastric cancer biopsies compared with that in primary samples. CYTOR expression was significantly positively correlated with the invasiveness, lymph node metastasis, and advanced stages of gastric cancer. In addition, downregulation of CYTOR expression hampered cell proliferation and migration but induced cell apoptosis. Furthermore, CYTOR sponged miR-103 and diminished miR-103 expression, thus rescuing oncogene RAB10 expression. Knockdown of CYTOR suppressed tumor growth in human BGC823 mouse models. These findings suggest that the CYTOR/miR-103/RAB10 axis is a novel signaling pathway that facilitates gastric cancer progression. CYTOR-targeted interventions provide a rationale to improve therapies targeting gastric cancer progression.
Collapse
Affiliation(s)
- Fang Wei
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110033, China
| | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110033, China
| | - Yong Zhou
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110033, China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110033, China
| |
Collapse
|
49
|
Human macrophages utilize a wide range of pathogen recognition receptors to recognize Legionella pneumophila, including Toll-Like Receptor 4 engaging Legionella lipopolysaccharide and the Toll-like Receptor 3 nucleic-acid sensor. PLoS Pathog 2021; 17:e1009781. [PMID: 34280250 PMCID: PMC8321404 DOI: 10.1371/journal.ppat.1009781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/29/2021] [Accepted: 07/03/2021] [Indexed: 12/15/2022] Open
Abstract
Cytokines made by macrophages play a critical role in determining the course of Legionella pneumophila infection. Prior murine-based modeling indicated that this cytokine response is initiated upon recognition of L. pneumophila by a subset of Toll-like receptors, namely TLR2, TLR5, and TLR9. Through the use of shRNA/siRNA knockdowns and subsequently CRISPR/Cas9 knockouts (KO), we determined that TRIF, an adaptor downstream of endosomal TLR3 and TLR4, is required for full cytokine secretion by human primary and cell-line macrophages. By characterizing a further set of TLR KO's in human U937 cells, we discerned that, contrary to the viewpoint garnered from murine-based studies, TLR3 and TLR4 (along with TLR2 and TLR5) are in fact vital to the macrophage response in the early stages of L. pneumophila infection. This conclusion was bolstered by showing that i) chemical inhibitors of TLR3 and TLR4 dampen the cytokine output of primary human macrophages and ii) transfection of TLR3 and TLR4 into HEK cells conferred an ability to sense L. pneumophila. TLR3- and TLR4-dependent cytokines promoted migration of human HL-60 neutrophils across an epithelial layer, pointing to the biological importance for the newfound signaling pathway. The response of U937 cells to L. pneumophila LPS was dependent upon TLR4, a further contradiction to murine-based studies, which had concluded that TLR2 is the receptor for Legionella LPS. Given the role of TLR3 in sensing nucleic acid (i.e., dsRNA), we utilized newly-made KO U937 cells to document that DNA-sensing by cGAS-STING and DNA-PK are also needed for the response of human macrophages to L. pneumophila. Given the lack of attention given them in the bacterial field, C-type lectin receptors were similarly examined; but, they were not required. Overall, this study arguably represents the most extensive, single-characterization of Legionella-recognition receptors within human macrophages.
Collapse
|
50
|
Lei Z, Wang J, Zhang L, Liu CH. Ubiquitination-Dependent Regulation of Small GTPases in Membrane Trafficking: From Cell Biology to Human Diseases. Front Cell Dev Biol 2021; 9:688352. [PMID: 34277632 PMCID: PMC8281112 DOI: 10.3389/fcell.2021.688352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 01/04/2023] Open
Abstract
Membrane trafficking is critical for cellular homeostasis, which is mainly carried out by small GTPases, a class of proteins functioning in vesicle budding, transport, tethering and fusion processes. The accurate and organized membrane trafficking relies on the proper regulation of small GTPases, which involves the conversion between GTP- and GDP-bound small GTPases mediated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Emerging evidence indicates that post-translational modifications (PTMs) of small GTPases, especially ubiquitination, play an important role in the spatio-temporal regulation of small GTPases, and the dysregulation of small GTPase ubiquitination can result in multiple human diseases. In this review, we introduce small GTPases-mediated membrane trafficking pathways and the biological processes of ubiquitination-dependent regulation of small GTPases, including the regulation of small GTPase stability, activity and localization. We then discuss the dysregulation of small GTPase ubiquitination and the associated human membrane trafficking-related diseases, focusing on the neurological diseases and infections. An in-depth understanding of the molecular mechanisms by which ubiquitination regulates small GTPases can provide novel insights into the membrane trafficking process, which knowledge is valuable for the development of more effective and specific therapeutics for membrane trafficking-related human diseases.
Collapse
Affiliation(s)
- Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|