1
|
Wang P, Tian B, Xiao K, Ji W, Li Z. The SARS-CoV-2 NSP4 T492I mutation promotes double-membrane vesicle formation to facilitate transmission. Virol Sin 2025; 40:225-235. [PMID: 40157604 DOI: 10.1016/j.virs.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in mutations not only in the spike protein, aiding immune evasion, but also in the NSP3/4/6 proteins, crucial for regulating double-membrane vesicle (DMV) formation. However, the functional consequences of these NSP3/4/6 mutations remain poorly understood. In this study, a systematic analysis was conducted to investigate the evolutionary patterns of NSP3/4/6 mutations and their impact on DMV formation. The findings revealed that the NSP4 T492I mutation, a prevalent mutation found in all Delta and Omicron sub-lineages, notably enhances DMV formation. Mechanistically, the NSP4 T492I mutation enhances its homodimerization, leading to an increase in the size of puncta induced by NSP3/4, and also augments endoplasmic reticulum (ER) membrane curvature, resulting in a higher DMV density per fluorescent puncta. This study underscores the significance of the NSP4 T492I mutation in modulating DMV formation, with potential implications for the transmission dynamics of SARS-CoV-2. It contributes valuable insights into how these mutations impact viral replication and pathogenesis.
Collapse
Affiliation(s)
- Pei Wang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory Clinical Base, Guangzhou Medical University, Guangzhou, 510120, China; Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Buyun Tian
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory Clinical Base, Guangzhou Medical University, Guangzhou, 510120, China; Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Ke Xiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Ji
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zonghong Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory Clinical Base, Guangzhou Medical University, Guangzhou, 510120, China; Guangzhou National Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
2
|
Wang Y, Xia B, Gao Z. A comprehensive review of current insights into the virulence factors of SARS-CoV-2. J Virol 2025; 99:e0204924. [PMID: 39878471 PMCID: PMC11852741 DOI: 10.1128/jvi.02049-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The evolution of SARS-CoV-2 pathogenicity has been a major focus of attention. However, the determinants of pathogenicity are still unclear. Various hypotheses have attempted to elucidate the mechanisms underlying the evolution of viral pathogenicity, but a definitive conclusion has yet to be reached. Here, we review the potential impact of all proteins in SARS-CoV-2 on the viral pathogenic process and analyze the effects of their mutations on pathogenicity evolution. We aim to summarize which virus-encoded proteins are crucial in influencing viral pathogenicity, defined as disease severity following infection. Mutations in these key proteins, which are the virulence factors in SARS-CoV-2, may be the driving forces behind the evolution of viral pathogenicity. Mutations in the S protein can impact viral entry and fusogenicity. Mutations in proteins such as NSP2, NSP5, NSP14, and ORF7a can alter the virus's ability to suppress host protein synthesis and innate immunity. Mutations in NSP3, NSP4, NSP6, N protein, NSP5, and NSP12 may alter viral replication efficiency. The combined effects of mutations in the S protein and NSP6 can significantly reduce viral replication. In addition, various viral proteins, including ORF3a, ORF8, NSP4, Spike protein, N protein, and E protein, directly participate in the inflammatory process. Mutations in these proteins can modulate the levels of inflammation following infection. Collectively, these viral protein mutations can influence SARS-CoV-2 pathogenicity by impacting viral immune evasion, replication capacity, and the level of inflammation mediated by infection. In conclusion, the evolution of SARS-CoV-2 pathogenicity is likely determined by multiple virulence factors.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Lee B, Quadeer AA, Sohail MS, Finney E, Ahmed SF, McKay MR, Barton JP. Inferring effects of mutations on SARS-CoV-2 transmission from genomic surveillance data. Nat Commun 2025; 16:441. [PMID: 39774959 PMCID: PMC11707167 DOI: 10.1038/s41467-024-55593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
New and more transmissible variants of SARS-CoV-2 have arisen multiple times over the course of the pandemic. Rapidly identifying mutations that affect transmission could improve our understanding of viral biology and highlight new variants that warrant further study. Here we develop a generic, analytical epidemiological model to infer the transmission effects of mutations from genomic surveillance data. Applying our model to SARS-CoV-2 data across many regions, we find multiple mutations that substantially affect the transmission rate, both within and outside the Spike protein. The mutations that we infer to have the largest effects on transmission are strongly supported by experimental evidence from prior studies. Importantly, our model detects lineages with increased transmission even at low frequencies. As an example, we infer significant transmission advantages for the Alpha, Delta, and Omicron variants shortly after their appearances in regional data, when they comprised only around 1-2% of sample sequences. Our model thus facilitates the rapid identification of variants and mutations that affect transmission from genomic surveillance data.
Collapse
Affiliation(s)
- Brian Lee
- Department of Physics and Astronomy, University of California, Riverside, Riverside, CA, USA
| | - Ahmed Abdul Quadeer
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, VIC, Australia
| | - Muhammad Saqib Sohail
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
- Department of Computer Sciences, Bahria University, Lahore, Punjab, Pakistan
| | - Elizabeth Finney
- Department of Physics and Astronomy, University of California, Riverside, Riverside, CA, USA
| | - Syed Faraz Ahmed
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Matthew R McKay
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, VIC, Australia.
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia.
| | - John P Barton
- Department of Physics and Astronomy, University of California, Riverside, Riverside, CA, USA.
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Grelewska‐Nowotko K, Elhag AE, Turowski TW. Transcription Kinetics in the Coronavirus Life Cycle. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70000. [PMID: 39757745 PMCID: PMC11701415 DOI: 10.1002/wrna.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025]
Abstract
Coronaviruses utilize a positive-sense single-strand RNA, functioning simultaneously as mRNA and the genome. An RNA-dependent RNA polymerase (RdRP) plays a dual role in transcribing genes and replicating the genome, making RdRP a critical target in therapies against coronaviruses. This review explores recent advancements in understanding the coronavirus transcription machinery, discusses it within virus infection context, and incorporates kinetic considerations on RdRP activity. We also address steric limitations in coronavirus replication, particularly during early infection phases, and outline hypothesis regarding translation-transcription conflicts, postulating the existence of mechanisms that resolve these issues. In cells infected by coronaviruses, abundant structural proteins are synthesized from subgenomic RNA fragments (sgRNAs) produced via discontinuous transcription. During elongation, RdRP can skip large sections of the viral genome, resulting in the creation of shorter sgRNAs that reflects the stoichiometry of viral structural proteins. Although the precise mechanism of discontinuous transcription remains unknown, we discuss recent hypotheses involving long-distance RNA-RNA interactions, helicase-mediated RdRP backtracking, dissociation and reassociation of RdRP, and RdRP dimerization.
Collapse
Affiliation(s)
| | - Ahmed Eisa Elhag
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
- Department of Preventive Medicine and Clinical Studies, Faculty of Veterinary SciencesUniversity of GadarifAl QadarifSudan
| | | |
Collapse
|
5
|
Paradis NJ, Wu C. Enhanced detection and molecular modeling of adaptive mutations in SARS-CoV-2 coding and non-coding regions using the c/µ test. Virus Evol 2024; 10:veae089. [PMID: 39584063 PMCID: PMC11584280 DOI: 10.1093/ve/veae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Accurately identifying mutations under beneficial selection in viral genomes is crucial for understanding their molecular evolution and pathogenicity. Traditional methods like the Ka/Ks test, which assesses non-synonymous (Ka) versus synonymous (Ks) substitution rates, assume that synonymous substitutions at synonymous sites are neutral and thus is equal to the mutation rate (µ). Yet, evidence suggests that synonymous sites in translated regions (TRs) and untranslated regions (UTRs) can be under strong beneficial selection (Ks > µ) and strongly conserved (Ks ≈ 0), leading to false predictions of adaptive mutations from codon-by-codon Ka/Ks analysis. Our previous work used a relative substitution rate test (c/µ, c: substitution rate in UTR/TR, and µ: mutation rate) to identify adaptive mutations in SARS-CoV-2 genome without the neutrality assumption of the synonymous sites. This study refines the c/µ test by optimizing µ value, leading to a smaller set of nucleotide and amino acid sites under beneficial selection in both UTR (11 sites with c/µ > 3) and TR (69 nonsynonymous sites: c/µ > 3 and Ka/Ks > 2.5; 107 synonymous sites: Ks/µ > 3). Encouragingly, the top two mutations in UTR and 70% of the top nonsynonymous mutations in TR had reported or predicted effects in the literature. Molecular modeling of top adaptive mutations for some critical proteins (S, NSP11, and NSP5) was carried out to elucidate the possible molecular mechanism of their adaptivity.
Collapse
Affiliation(s)
- Nicholas J Paradis
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, United States
| | - Chun Wu
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, United States
- Department of Biological & Biomedical Sciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, United States
| |
Collapse
|
6
|
Kustova DD, Pochtovyi AA, Shpakova OG, Shtinova IA, Kuznetsova NA, Kleimenov DA, Komarov AG, Gushchin VA. [The Molecular and Biological Patterns Underlying Sustained SARS-CoV-2 Circulation in the Human Population]. Vopr Virusol 2024; 69:329-340. [PMID: 39361927 DOI: 10.36233/0507-4088-242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION For four years, SARS-CoV-2, the etiological agent of COVID-19, has been circulating among humans. By the end of the second year, an absence of immunologically naive individuals was observed, attributable to extensive immunization efforts and natural viral exposure. This study focuses on delineating the molecular and biological patterns that facilitate the persistence of SARS-CoV-2, thereby informing predictions on the epidemiological trajectory of COVID-19 toward refining pandemic countermeasures. The aim of this study was to describe the molecular biological patterns identified that contribute to the persistence of the virus in the human population. MATERIALS AND METHODS For over three years since the beginning of the COVID-19 pandemic, molecular genetic monitoring of SARS-CoV-2 has been conducted, which included the collection of nasopharyngeal swabs from infected individuals, assessment of viral load, and subsequent whole-genome sequencing. RESULTS We discerned dominant genetic lineages correlated with rising disease incidence. We scrutinized amino acid substitutions across SARS-CoV-2 proteins and quantified viral loads in swab samples from patients with emerging COVID-19 variants. Our findings suggest a model of viral persistence characterized by 1) periodic serotype shifts causing substantial diminutions in serum virus-neutralizing activity (> 10-fold), 2) serotype-specific accrual of point mutations in the receptor-binding domain (RBD) to modestly circumvent neutralizing antibodies and enhance receptor affinity, and 3) a gradually increasing amount of virus being shed in mucosal surfaces within a single serotype. CONCLUSION This model aptly accounts for the dynamics of COVID-19 incidence in Moscow. For a comprehensive understanding of these dynamics, acquiring population-level data on immune tension and antibody neutralization relative to genetic lineage compositions is essential.
Collapse
Affiliation(s)
- D D Kustova
- National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
- Federal State Budgetary Educational Institution of Higher Education Lomonosov Moscow State University
| | - A A Pochtovyi
- National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
- Federal State Budgetary Educational Institution of Higher Education Lomonosov Moscow State University
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
| | | | | | - N A Kuznetsova
- National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - D A Kleimenov
- National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | | | - V A Gushchin
- National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
- Federal State Budgetary Educational Institution of Higher Education Lomonosov Moscow State University
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
| |
Collapse
|
7
|
Focosi D, Spezia PG, Maggi F. Subsequent Waves of Convergent Evolution in SARS-CoV-2 Genes and Proteins. Vaccines (Basel) 2024; 12:887. [PMID: 39204013 PMCID: PMC11358953 DOI: 10.3390/vaccines12080887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Beginning in 2022, following widespread infection and vaccination among the global population, the SARS-CoV-2 virus mainly evolved to evade immunity derived from vaccines and past infections. This review covers the convergent evolution of structural, nonstructural, and accessory proteins in SARS-CoV-2, with a specific look at common mutations found in long-lasting infections that hint at the virus potentially reverting to an enteric sarbecovirus type.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Pietro Giorgio Spezia
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Fabrizio Maggi
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| |
Collapse
|
8
|
Pan R, Li P, Meyerholz DK, Perlman S. Mutations in nonstructural proteins essential for pathogenicity in SARS-CoV-2-infected mice. J Virol 2024; 98:e0058424. [PMID: 38888344 PMCID: PMC11265370 DOI: 10.1128/jvi.00584-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has resulted in substantial morbidity and mortality. The basis of severe disease in humans is difficult to determine without the use of experimental animal models. Mice are resistant to infection with ancestral strains of SARS-CoV-2, although many variants that arose later in the pandemic were able to directly infect mice. In almost all cases, viruses that naturally infected mice or were engineered to enable mouse infection required mouse passage to become virulent. In most cases, changes in structural and nonstructural changes occurred during mouse adaptation. However, the mechanism of increased virulence in mice is not understood. Here, using a recently described strain of mouse-adapted SARS-CoV-2 (rSARS2-MA30N501Y), we engineered a series of recombinant viruses that expressed a subset of the mutations present in rSARS2-MA30N501Y. Mutations were detected in the spike protein and in three nonstructural proteins (nsp4, nsp8, and nsp9). We found that infection of mice with recombinant SARS-CoV-2 expressing only the S protein mutations caused very mild infection. Addition of the mutations in nsp4 and nsp8 was required for complete virulence. Of note, all these recombinant viruses replicated equivalently in cultured cells. The innate immune response was delayed after infection with virulent compared to attenuated viruses. Further, using a lineage tracking system, we found that attenuated virus was highly inhibited in the ability to infect the parenchyma, but not the airway after infection. Together, these results indicate that mutations in both the S protein and nonstructural proteins are required for maximal virulence during mouse adaptation.IMPORTANCEUnderstanding the pathogenesis of coronavirus disease 2019 (COVID-19) requires the study of experimental animals after infection with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). For this purpose, several mouse-adapted SARS-CoV-2 strains have been developed. Here, using a strain of mouse-adapted virus that causes a range of diseases ranging from mild to severe, we show that mutations in both a structural protein [spike (S) protein] and nonstructural proteins are required for maximal virulence. Thus, changes in the S protein, the most widely studied viral protein, while required for mouse adaptation, are not sufficient to result in a virulent virus.
Collapse
Affiliation(s)
- Ruangang Pan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Pengfei Li
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | | | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
9
|
Jabeen M, Shoukat S, Shireen H, Bao Y, Khan A, Abbasi AA. Unraveling the genetic variations underlying virulence disparities among SARS-CoV-2 strains across global regions: insights from Pakistan. Virol J 2024; 21:55. [PMID: 38449001 PMCID: PMC10916261 DOI: 10.1186/s12985-024-02328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Over the course of the COVID-19 pandemic, several SARS-CoV-2 variants have emerged that may exhibit different etiological effects such as enhanced transmissibility and infectivity. However, genetic variations that reduce virulence and deteriorate viral fitness have not yet been thoroughly investigated. The present study sought to evaluate the effects of viral genetic makeup on COVID-19 epidemiology in Pakistan, where the infectivity and mortality rate was comparatively lower than other countries during the first pandemic wave. For this purpose, we focused on the comparative analyses of 7096 amino-acid long polyprotein pp1ab. Comparative sequence analysis of 203 SARS-CoV-2 genomes, sampled from Pakistan during the first wave of the pandemic revealed 179 amino acid substitutions in pp1ab. Within this set, 38 substitutions were identified within the Nsp3 region of the pp1ab polyprotein. Structural and biophysical analysis of proteins revealed that amino acid variations within Nsp3's macrodomains induced conformational changes and modified protein-ligand interactions, consequently diminishing the virulence and fitness of SARS-CoV-2. Additionally, the epistatic effects resulting from evolutionary substitutions in SARS-CoV-2 proteins may have unnoticed implications for reducing disease burden. In light of these findings, further characterization of such deleterious SARS-CoV-2 mutations will not only aid in identifying potential therapeutic targets but will also provide a roadmap for maintaining vigilance against the genetic variability of diverse SARS-CoV-2 strains circulating globally. Furthermore, these insights empower us to more effectively manage and respond to potential viral-based pandemic outbreaks of a similar nature in the future.
Collapse
Affiliation(s)
- Momina Jabeen
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Shifa Shoukat
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Huma Shireen
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Yiming Bao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| |
Collapse
|
10
|
Novkovic M, Banovic Djeri B, Ristivojevic B, Knezevic A, Jankovic M, Tanasic V, Radojicic V, Keckarevic D, Vidanovic D, Tesovic B, Skakic A, Tolinacki M, Moric I, Djordjevic V. Genome sequence diversity of SARS-CoV-2 in Serbia: insights gained from a 3-year pandemic study. Front Microbiol 2024; 15:1332276. [PMID: 38476954 PMCID: PMC10929721 DOI: 10.3389/fmicb.2024.1332276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/15/2024] [Indexed: 03/14/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, has been evolving rapidly causing emergence of new variants and health uncertainties. Monitoring the evolution of the virus was of the utmost importance for public health interventions and the development of national and global mitigation strategies. Here, we report national data on the emergence of new variants, their distribution, and dynamics in a 3-year study conducted from March 2020 to the end of January 2023 in the Republic of Serbia. Nasopharyngeal and oropharyngeal swabs from 2,398 COVID-19-positive patients were collected and sequenced using three different next generation technologies: Oxford Nanopore, Ion Torrent, and DNBSeq. In the subset of 2,107 SARS-CoV-2 sequences which met the quality requirements, detection of mutations, assignment to SARS-CoV-2 lineages, and phylogenetic analysis were performed. During the 3-year period, we detected three variants of concern, namely, Alpha (5.6%), Delta (7.4%), and Omicron (70.3%) and one variant of interest-Omicron recombinant "Kraken" (XBB1.5) (<1%), whereas 16.8% of the samples belonged to other SARS-CoV-2 (sub)lineages. The detected SARS-CoV-2 (sub)lineages resulted in eight COVID-19 pandemic waves in Serbia, which correspond to the pandemic waves reported in Europe and the United States. Wave dynamics in Serbia showed the most resemblance with the profile of pandemic waves in southern Europe, consistent with the southeastern European location of Serbia. The samples were assigned to sixteen SARS-CoV-2 Nextstrain clades: 20A, 20B, 20C, 20D, 20E, 20G, 20I, 21J, 21K, 21L, 22A, 22B, 22C, 22D, 22E, and 22F and six different Omicron recombinants (XZ, XAZ, XAS, XBB, XBF, and XBK). The 10 most common mutations detected in the coding and untranslated regions of the SARS-CoV-2 genomes included four mutations affecting the spike protein (S:D614G, S:T478K, S:P681H, and S:S477N) and one mutation at each of the following positions: 5'-untranslated region (5'UTR:241); N protein (N:RG203KR); NSP3 protein (NSP3:F106F); NSP4 protein (NSP4:T492I); NSP6 protein (NSP6: S106/G107/F108 - triple deletion), and NSP12b protein (NSP12b:P314L). This national-level study is the most comprehensive in terms of sequencing and genomic surveillance of SARS-CoV-2 during the pandemic in Serbia, highlighting the importance of establishing and maintaining good national practice for monitoring SARS-CoV-2 and other viruses circulating worldwide.
Collapse
Affiliation(s)
- Mirjana Novkovic
- Center for Genome Sequencing and Bioinformatics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Bojana Banovic Djeri
- Center for Genome Sequencing and Bioinformatics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Bojan Ristivojevic
- Center for Genome Sequencing and Bioinformatics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Knezevic
- Institute of Microbiology and Immunology, Department of Virology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Jankovic
- Institute of Microbiology and Immunology, Department of Virology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vanja Tanasic
- Center for Forensic and Applied Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Verica Radojicic
- Center for Forensic and Applied Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Dusan Keckarevic
- Center for Forensic and Applied Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Dejan Vidanovic
- Veterinary Specialized Institute “Kraljevo”, Kraljevo, Serbia
| | - Bojana Tesovic
- Veterinary Specialized Institute “Kraljevo”, Kraljevo, Serbia
| | - Anita Skakic
- Center for Genome Sequencing and Bioinformatics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Maja Tolinacki
- Center for Genome Sequencing and Bioinformatics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ivana Moric
- Center for Genome Sequencing and Bioinformatics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Valentina Djordjevic
- Center for Genome Sequencing and Bioinformatics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Zimmermann L, Zhao X, Makroczyova J, Wachsmuth-Melm M, Prasad V, Hensel Z, Bartenschlager R, Chlanda P. SARS-CoV-2 nsp3 and nsp4 are minimal constituents of a pore spanning replication organelle. Nat Commun 2023; 14:7894. [PMID: 38036567 PMCID: PMC10689437 DOI: 10.1038/s41467-023-43666-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus replication is associated with the remodeling of cellular membranes, resulting in the formation of double-membrane vesicles (DMVs). A DMV-spanning pore was identified as a putative portal for viral RNA. However, the exact components and the structure of the SARS-CoV-2 DMV pore remain to be determined. Here, we investigate the structure of the DMV pore by in situ cryo-electron tomography combined with subtomogram averaging. We identify non-structural protein (nsp) 3 and 4 as minimal components required for the formation of a DMV-spanning pore, which is dependent on nsp3-4 proteolytic cleavage. In addition, we show that Mac2-Mac3-DPUP-Ubl2 domains are critical for nsp3 oligomerization and crown integrity which influences membrane curvature required for biogenesis of DMVs. Altogether, SARS-CoV-2 nsp3-4 have a dual role by driving the biogenesis of replication organelles and assembly of DMV-spanning pores which we propose here to term replicopores.
Collapse
Affiliation(s)
- Liv Zimmermann
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, 69120, Heidelberg, Germany
| | - Xiaohan Zhao
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, 69120, Heidelberg, Germany
| | - Jana Makroczyova
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, 69120, Heidelberg, Germany
| | - Moritz Wachsmuth-Melm
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, 69120, Heidelberg, Germany
| | - Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120, Heidelberg, Germany
| | - Zach Hensel
- ITQB NOVA, Universidade NOVA de Lisboa, 2780-157, Oeiras, Portugal
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg partner site, 69120, Heidelberg, Germany
| | - Petr Chlanda
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
12
|
Gomez-Romero N, Basurto-Alcantara FJ, Velazquez-Salinas L. Assessing the Potential Role of Cats ( Felis catus) as Generators of Relevant SARS-CoV-2 Lineages during the Pandemic. Pathogens 2023; 12:1361. [PMID: 38003825 PMCID: PMC10675002 DOI: 10.3390/pathogens12111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Several questions regarding the evolution of SARS-CoV-2 remain poorly elucidated. One of these questions is the possible evolutionary impact of SARS-CoV-2 after the infection in domestic animals. In this study, we aimed to evaluate the potential role of cats as generators of relevant SARS-CoV-2 lineages during the pandemic. A total of 105 full-length genome viral sequences obtained from naturally infected cats during the pandemic were evaluated by distinct evolutionary algorithms. Analyses were enhanced, including a set of highly related SARS-CoV-2 sequences recovered from human populations. Our results showed the apparent high susceptibility of cats to the infection SARS-CoV-2 compared with other animal species. Evolutionary analyses indicated that the phylogenomic characteristics displayed by cat populations were influenced by the dominance of specific SARS-CoV-2 genetic groups affecting human populations. However, disparate dN/dS rates at some genes between populations recovered from cats and humans suggested that infection in these two species may suggest a different evolutionary constraint for SARS-CoV-2. Interestingly, the branch selection analysis showed evidence of the potential role of natural selection in the emergence of five distinct cat lineages during the pandemic. Although these lineages were apparently irrelevant to public health during the pandemic, our results suggested that additional studies are needed to understand the role of other animal species in the evolution of SARS-CoV-2 during the pandemic.
Collapse
Affiliation(s)
- Ninnet Gomez-Romero
- Comisión México-Estados Unidos para la Prevención de Fiebre Aftosa y Otras Enfermedades Exóticas de los Animales, Carretera Mexico-Toluca Km 15.5 Piso 4 Col. Palo Alto, Cuajimalpa de Morelos, Mexico City 05110, Mexico;
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad No. 3000 Col Copilco Universidad, Mexico City 14510, Mexico;
| | - Francisco Javier Basurto-Alcantara
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad No. 3000 Col Copilco Universidad, Mexico City 14510, Mexico;
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA
| |
Collapse
|