1
|
Yang Y, Dalvie NC, Brady JR, Naranjo CA, Lorgeree T, Rodriguez‐Aponte SA, Johnston RS, Tracey MK, Elenberger CM, Lee E, Tié M, Love KR, Love JC. Adaptation of Aglycosylated Monoclonal Antibodies for Improved Production in Komagataella phaffii. Biotechnol Bioeng 2025; 122:361-372. [PMID: 39543843 PMCID: PMC11718428 DOI: 10.1002/bit.28878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/17/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
Monoclonal antibodies (mAbs) are a major class of biopharmaceuticals manufactured by well-established processes using Chinese Hamster Ovary (CHO) cells. Next-generation biomanufacturing using alternative hosts like Komagataella phaffii could improve the accessibility of these medicines, address broad societal goals for sustainability, and offer financial advantages for accelerated development of new products. Antibodies produced by K. phaffii, however, may manifest unique molecular quality attributes, like host-dependent, product-related variants, that could raise potential concerns for clinical use. We demonstrate here conservative modifications to the amino acid sequence of aglycosylated antibodies based on the human IgG1 isotype that minimize product-related variations when secreted by K. phaffii. A combination of 2-3 changes of amino acids reduced variations across six different aglycosylated versions of commercial mAbs. Expression of a modified sequence of NIST mAb in both K. phaffii and CHO cells showed comparable biophysical properties and molecular variations. These results suggest a path toward the production of high-quality mAbs that could be expressed interchangeably by either yeast or mammalian cells. Improving molecular designs of proteins to enable a range of manufacturing strategies for well-characterized biopharmaceuticals could accelerate global accessibility and innovations.
Collapse
Affiliation(s)
- Yuchen Yang
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Neil C. Dalvie
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Joseph R. Brady
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Christopher A. Naranjo
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Timothy Lorgeree
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Sergio A. Rodriguez‐Aponte
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Ryan S. Johnston
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Mary K. Tracey
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Carmen M. Elenberger
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | | | - Kerry R. Love
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - J. Christopher Love
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
2
|
Krishna S, Jung ST, Lee EY. Escherichia coli and Pichia pastoris: microbial cell-factory platform for -full-length IgG production. Crit Rev Biotechnol 2025; 45:191-213. [PMID: 38797692 DOI: 10.1080/07388551.2024.2342969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 05/29/2024]
Abstract
Owing to the unmet demand, the pharmaceutical industry is investigating an alternative host to mammalian cells to produce antibodies for a variety of therapeutic and research applications. Regardless of some disadvantages, Escherichia coli and Pichia pastoris are the preferred microbial hosts for antibody production. Despite the fact that the production of full-length antibodies has been successfully demonstrated in E. coli, which has mostly been used to produce antibody fragments, such as: antigen-binding fragments (Fab), single-chain fragment variable (scFv), and nanobodies. In contrast, Pichia, a eukaryotic microbial host, is mostly used to produce glycosylated full-length antibodies, though hypermannosylated glycan is a major challenge. Advanced strategies, such as the introduction of human-like glycosylation in endotoxin-edited E. coli and cell-free system-based glycosylation, are making progress in creating human-like glycosylation profiles of antibodies in these microbes. This review begins by explaining the structural and functional requirements of antibodies and continues by describing and analyzing the potential of E. coli and P. pastoris as hosts for providing a favorable environment to create a fully functional antibody. In addition, authors compare these microbes on certain features and predict their future in antibody production. Briefly, this review analyzes, compares, and highlights E. coli and P. pastoris as potential hosts for antibody production.
Collapse
Affiliation(s)
- Shyam Krishna
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sang Taek Jung
- BK21 Graduate Program, Department of Biomedical Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
She YM, Jia Z, Zhang X. Region-selective and site-specific glycation of influenza proteins surrounding the viral envelope membrane. Sci Rep 2024; 14:18975. [PMID: 39152175 PMCID: PMC11329638 DOI: 10.1038/s41598-024-69793-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Analysis of protein modifications is critical for quality control of therapeutic biologics. However, the identification and quantification of naturally occurring glycation of membrane proteins by mass spectrometry remain technically challenging. We used highly sensitive LC MS/MS analyses combined with multiple enzyme digestions to determine low abundance early-stage lysine glycation products of influenza vaccines derived from embryonated chicken eggs and cultured cells. Straightforward sequencing was enhanced by MS/MS fragmentation of small peptides. As a result, we determined a widespread distribution of lysine modifications attributed by the region-selectivity and site-specificity of glycation toward influenza matrix 1, hemagglutinin and neuraminidase. Topological analysis provides insights into the site-specific lysine glycation, localizing in the distinct structural regions of proteins surrounding the viral envelope membrane. Our finding highlights the proteome-wide discovery of lysine glycation of influenza membrane proteins and potential effects on the structural assembly, stability, receptor binding and enzyme activity, demonstrating that the impacts of accumulated glycation on the quality of products can be directly monitored by mass spectrometry-based structural proteomics analyses.
Collapse
Affiliation(s)
- Yi-Min She
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Xu Zhang
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada.
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
4
|
Esser-Skala W, Wohlschlager T, Regl C, Huber CG. A Simple Strategy to Eliminate Hexosylation Bias in the Relative Quantification of N-Glycosylation in Biopharmaceuticals. Angew Chem Int Ed Engl 2020; 59:16225-16232. [PMID: 32496655 PMCID: PMC7539909 DOI: 10.1002/anie.202002147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 01/04/2023]
Abstract
N‐glycosylation may affect the safety and efficacy of biopharmaceuticals and is thus monitored during manufacturing. Mass spectrometry of the intact protein is increasingly used to reveal co‐existing glycosylation variants. However, quantification of N‐glycoforms via this approach may be biased by single hexose residues as introduced by glycation or O‐glycosylation. Herein, we describe a simple strategy to reveal actual N‐glycoform abundances of therapeutic antibodies, involving experimental determination of glycation levels followed by computational elimination of the “hexosylation bias”. We show that actual N‐glycoform abundances may significantly deviate from initially determined values. Indeed, glycation may even obscure considerable differences in N‐glycosylation patterns of drug product batches. Our observations may thus have implications for biopharmaceutical quality control. Moreover, we solve an instance of the problem of isobaricity, which is fundamental to mass spectrometry.
Collapse
Affiliation(s)
- Wolfgang Esser-Skala
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Therese Wohlschlager
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Christof Regl
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Christian G Huber
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| |
Collapse
|
5
|
Esser‐Skala W, Wohlschlager T, Regl C, Huber CG. Eine einfache Strategie zur Korrektur des Fehlers aufgrund von Hexosylierung bei relativer Quantifizierung der N‐Glykosylierungsvarianten von Biopharmazeutika. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wolfgang Esser‐Skala
- Fachbereich Biowissenschaften Bioanalytical Research Labs Universität Salzburg Hellbrunner Straße 34 5020 Salzburg Österreich
- Christian-Doppler-Labor für Innovative Werkzeuge zur Charakterisierung von Biosimilars Universität Salzburg Hellbrunner Straße 34 5020 Salzburg Österreich
| | - Therese Wohlschlager
- Fachbereich Biowissenschaften Bioanalytical Research Labs Universität Salzburg Hellbrunner Straße 34 5020 Salzburg Österreich
- Christian-Doppler-Labor für Innovative Werkzeuge zur Charakterisierung von Biosimilars Universität Salzburg Hellbrunner Straße 34 5020 Salzburg Österreich
| | - Christof Regl
- Fachbereich Biowissenschaften Bioanalytical Research Labs Universität Salzburg Hellbrunner Straße 34 5020 Salzburg Österreich
- Christian-Doppler-Labor für Innovative Werkzeuge zur Charakterisierung von Biosimilars Universität Salzburg Hellbrunner Straße 34 5020 Salzburg Österreich
| | - Christian G. Huber
- Fachbereich Biowissenschaften Bioanalytical Research Labs Universität Salzburg Hellbrunner Straße 34 5020 Salzburg Österreich
- Christian-Doppler-Labor für Innovative Werkzeuge zur Charakterisierung von Biosimilars Universität Salzburg Hellbrunner Straße 34 5020 Salzburg Österreich
| |
Collapse
|
6
|
Duivelshof BL, Jiskoot W, Beck A, Veuthey JL, Guillarme D, D’Atri V. Glycosylation of biosimilars: Recent advances in analytical characterization and clinical implications. Anal Chim Acta 2019; 1089:1-18. [DOI: 10.1016/j.aca.2019.08.044] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/14/2022]
|
7
|
Larsen ISB, Narimatsu Y, Clausen H, Joshi HJ, Halim A. Multiple distinct O-Mannosylation pathways in eukaryotes. Curr Opin Struct Biol 2019; 56:171-178. [PMID: 30999272 DOI: 10.1016/j.sbi.2019.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/29/2022]
Abstract
Protein O-mannosylation (O-Man), originally discovered in yeast five decades ago, is an important post-translational modification (PTM) conserved from bacteria to humans, but not found in plants or nematodes. Until recently, the homologous family of ER-located protein O-mannosyl transferases (PMT1-7 in yeast; POMT1/POMT2 in humans), were the only known enzymes involved in directing O-Man biosynthesis in eukaryotes. However, recent studies demonstrate the existence of multiple distinct O-Man glycosylation pathways indicating that the genetic and biosynthetic regulation of O-Man in eukaryotes is more complex than previously envisioned. Introduction of sensitive glycoproteomics strategies provided an expansion of O-Man glycoproteomes in eukaryotes (yeast and mammalian cell lines) leading to the discovery of O-Man glycosylation on important mammalian cell adhesion (cadherin superfamily) and signaling (plexin family) macromolecules, and to the discovery of unique nucleocytoplasmic O-Man glycosylation in yeast. It is now evident that eukaryotes have multiple distinct O-Man glycosylation pathways including: i) the classical PMT1-7 and POMT1/POMT2 pathway conserved in all eukaryotes apart from plants; ii) a yet uncharacterized nucleocytoplasmic pathway only found in yeast; iii) an ER-located pathway directed by the TMTC1-4 genes found in metazoans and protists and primarily dedicated to the cadherin superfamily; and iv) a yet uncharacterized pathway found in metazoans primarily dedicated to plexins. O-Man glycosylation is thus emerging as a much more widespread and evolutionary diverse PTM with complex genetic and biosynthetic regulation. While deficiencies in the POMT1/POMT2 O-Man pathway underlie muscular dystrophies, the TMTC1-4 pathway appear to be involved in distinct congenital disorders with neurodevelopmental phenotypes. Here, we review and discuss the recent discoveries of the new non-classical O-Man glycosylation pathways, their substrates, functions and roles in disease.
Collapse
Affiliation(s)
- Ida Signe Bohse Larsen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | - Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
8
|
Darula Z, Medzihradszky KF. Analysis of Mammalian O-Glycopeptides-We Have Made a Good Start, but There is a Long Way to Go. Mol Cell Proteomics 2018; 17:2-17. [PMID: 29162637 PMCID: PMC5750848 DOI: 10.1074/mcp.mr117.000126] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
Glycosylation is perhaps the most common post-translational modification. Recently there has been growing interest in cataloging the glycan structures, glycoproteins, and specific sites modified and deciphering the biological functions of glycosylation. Although the results are piling up for N-glycosylation, O-glycosylation is seriously trailing behind. In our review we reiterate the difficulties researchers have to overcome in order to characterize O-glycosylation. We describe how an ingenious cell engineering method delivered exciting results, and what could we gain from "wild-type" samples. Although we refer to the biological role(s) of O-glycosylation, we do not provide a complete inventory on this topic.
Collapse
Affiliation(s)
- Zsuzsanna Darula
- From the ‡Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, H-6726, 62 Temesvari krt, Szeged, Hungary
| | - Katalin F Medzihradszky
- From the ‡Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, H-6726, 62 Temesvari krt, Szeged, Hungary;
- §Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, Genentech Hall, N472A, MC 2240, 600 16th Street, San Francisco, California 94158-2517
| |
Collapse
|
9
|
Larsen ISB, Narimatsu Y, Joshi HJ, Yang Z, Harrison OJ, Brasch J, Shapiro L, Honig B, Vakhrushev SY, Clausen H, Halim A. Mammalian O-mannosylation of cadherins and plexins is independent of protein O-mannosyltransferases 1 and 2. J Biol Chem 2017; 292:11586-11598. [PMID: 28512129 DOI: 10.1074/jbc.m117.794487] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Indexed: 11/06/2022] Open
Abstract
Protein O-mannosylation is found in yeast and metazoans, and a family of conserved orthologous protein O-mannosyltransferases is believed to initiate this important post-translational modification. We recently discovered that the cadherin superfamily carries O-linked mannose (O-Man) glycans at highly conserved residues in specific extracellular cadherin domains, and it was suggested that the function of E-cadherin was dependent on the O-Man glycans. Deficiencies in enzymes catalyzing O-Man biosynthesis, including the two human protein O-mannosyltransferases, POMT1 and POMT2, underlie a subgroup of congenital muscular dystrophies designated α-dystroglycanopathies, because deficient O-Man glycosylation of α-dystroglycan disrupts laminin interaction with α-dystroglycan and the extracellular matrix. To explore the functions of O-Man glycans on cadherins and protocadherins, we used a combinatorial gene-editing strategy in multiple cell lines to evaluate the role of the two POMTs initiating O-Man glycosylation and the major enzyme elongating O-Man glycans, the protein O-mannose β-1,2-N-acetylglucosaminyltransferase, POMGnT1. Surprisingly, O-mannosylation of cadherins and protocadherins does not require POMT1 and/or POMT2 in contrast to α-dystroglycan, and moreover, the O-Man glycans on cadherins are not elongated. Thus, the classical and evolutionarily conserved POMT O-mannosylation pathway is essentially dedicated to α-dystroglycan and a few other proteins, whereas a novel O-mannosylation process in mammalian cells is predicted to serve the large cadherin superfamily and other proteins.
Collapse
Affiliation(s)
- Ida Signe Bohse Larsen
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | - Yoshiki Narimatsu
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | - Hiren Jitendra Joshi
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | - Zhang Yang
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | | | - Julia Brasch
- the Department of Biochemistry and Molecular Biophysics
| | - Lawrence Shapiro
- the Department of Biochemistry and Molecular Biophysics.,Zuckerman Mind Brain Behavior Institute, Department of Systems Biology, and
| | - Barry Honig
- the Department of Biochemistry and Molecular Biophysics.,Zuckerman Mind Brain Behavior Institute, Department of Systems Biology, and.,Howard Hughes Medical Institute Columbia University, New York, New York 10032
| | - Sergey Y Vakhrushev
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | - Henrik Clausen
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | - Adnan Halim
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| |
Collapse
|
10
|
Yu J, Grant OC, Pett C, Strahl S, Stahl S, Woods RJ, Westerlind U. Induction of Antibodies Directed Against Branched Core O-Mannosyl Glycopeptides-Selectivity Complimentary to the ConA Lectin. Chemistry 2017; 23:3466-3473. [PMID: 28079948 PMCID: PMC5548291 DOI: 10.1002/chem.201605627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Indexed: 01/31/2023]
Abstract
Mammalian protein O-mannosylation, initiated by attachment of α-mannopyranose to Ser or Thr residues, comprise a group of post-translational modifications (PTMs) involved in muscle and brain development. Recent advances in glycoproteomics methodology and the "SimpleCell" strategy have enabled rapid identification of glycoproteins and specific glycosylation sites. Despite the enormous progress made, the biological impact of the mammalian O-mannosyl glycoproteome remains largely unknown to date. Tools are still needed to investigate the structure, role, and abundance of O-mannosyl glycans. Although O-mannosyl branching has been shown to be of relevance in integrin-dependent cell migration, and also plays a role in demyelinating diseases, such as multiple sclerosis, a broader understanding of the biological roles of branched O-mannosyl glycans is lacking in part due to the paucity of detection tools. In this work, a glycopeptide vaccine construct was synthesized and used to generate antibodies against branched O-mannosyl glycans. Glycopeptide microarray screening revealed high selectivity of the induced antibodies for branched glycan core structures presented on different peptide backbones, with no cross-reactivity observed with related linear glycans. For comparison, microarray screening of the mannose-binding lectin concanavalin A (ConA), which is commonly used in glycoproteomics workflows to enrich tryptic O-mannosyl peptides, showed that the ConA lectin did not recognize branched O-mannosyl glycans. The binding preference of ConA for short linear O-mannosyl glycans was rationalized in terms of molecular structure using crystallographic data augmented by molecular modeling. The contrast between the ConA binding specificity and that of the new antibodies indicates a novel role for the antibodies in studies of protein O-mannosylation.
Collapse
Affiliation(s)
- Jin Yu
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V., ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Christian Pett
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V., ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | | | - Sabine Stahl
- Centre for Organismal Studies (COS), Cell Chemistry, Heidelberg University, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Ulrika Westerlind
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V., ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| |
Collapse
|
11
|
Postnatal Gene Therapy Improves Spatial Learning Despite the Presence of Neuronal Ectopia in a Model of Neuronal Migration Disorder. Genes (Basel) 2016; 7:genes7120105. [PMID: 27916859 PMCID: PMC5192481 DOI: 10.3390/genes7120105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 11/25/2022] Open
Abstract
Patients with type II lissencephaly, a neuronal migration disorder with ectopic neurons, suffer from severe mental retardation, including learning deficits. There is no effective therapy to prevent or correct the formation of neuronal ectopia, which is presumed to cause cognitive deficits. We hypothesized that learning deficits were not solely caused by neuronal ectopia and that postnatal gene therapy could improve learning without correcting the neuronal ectopia formed during fetal development. To test this hypothesis, we evaluated spatial learning of cerebral cortex-specific protein O-mannosyltransferase 2 (POMT2, an enzyme required for O-mannosyl glycosylation) knockout mice and compared to the knockout mice that were injected with an adeno-associated viral vector (AAV) encoding POMT2 into the postnatal brains with Barnes maze. The data showed that the knockout mice exhibited reduced glycosylation in the cerebral cortex, reduced dendritic spine density on CA1 neurons, and increased latency to the target hole in the Barnes maze, indicating learning deficits. Postnatal gene therapy restored functional glycosylation, rescued dendritic spine defects, and improved performance on the Barnes maze by the knockout mice even though neuronal ectopia was not corrected. These results indicate that postnatal gene therapy improves spatial learning despite the presence of neuronal ectopia.
Collapse
|
12
|
Abstract
While yeast are lower eukaryotic organisms, they share many common features and biological processes with higher eukaryotes. As such, yeasts have been used as model organisms to facilitate our understanding of such features and processes. To this end, a large number of powerful genetic tools have been developed to investigate and manipulate these organisms. Going hand-in-hand with these genetic tools is the ability to efficiently scale up the fermentation of these organisms, thus making them attractive hosts for the production of recombinant proteins. A key feature of producing recombinant proteins in yeast is that these proteins can be readily secreted into the culture supernatant, simplifying any downstream processing. A consequence of this secretion is that the proteins typically pass through the secretory pathway, during which they may be exposed to various posttranslational modifications. The addition of glycans is one such modification. Unfortunately, while certain aspects of glycosylation are shared between lower and higher eukaryotes, significant differences exist. Over the last two decades much research has focused on engineering the glycosylation pathways of yeast to more closely resemble those of higher eukaryotes, particularly those of humans for the production of therapeutic proteins. In the current review we shall highlight some of the key achievements in yeast glyco-engineering which have led to humanization of both the N- and O-linked glycosylation pathways.
Collapse
|
13
|
Hopkins D, Gomathinayagam S, Hamilton SR. A practical approach for O-linked mannose removal: the use of recombinant lysosomal mannosidase. Appl Microbiol Biotechnol 2014; 99:3913-27. [PMID: 25381909 DOI: 10.1007/s00253-014-6189-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 11/30/2022]
Abstract
The methylotrophic yeast Pichia pastoris is an attractive expression system due to its ability to secrete large amounts of recombinant protein, with the potential for glycosylation. Advances in glycoengineering of P. pastoris have successfully demonstrated the humanization of both the N- and O-linked glycosylation pathways in this organism. However, in certain cases, the presence of O-linked glycans on a therapeutic protein may not be desirable. Recently, we have reported the in vitro utility of jack bean α-1,2/3/6-mannosidase to remove O-linked mannose from intact undenatured glycoproteins produced in glycoengineered P. pastoris. However, one caveat of this strategy is that jack bean mannosidase has yet to be cloned and as such is only available as crude cellular extracts. This raises several concerns for using this reagent to treat large preparations of therapeutic proteins generated in P. pastoris. Therefore, we postulated that lysosomal mannosidases which have been cloned and demonstrated to have similar activities to jack bean mannosidase on N-linked glycans would also process O-linked glycans in a similar fashion. To this end, we screened a panel of recombinant lysosomal mannosidases from different organisms and identified several which cannot only reduce extended O-linked mannose chains but which can also hydrolyze the Man-α-O-Ser/Thr glycosidic bond on intact glycoproteins. As such, not only do we show for the first time the utility of lysosomal mannosidase for O-linked mannose processing, but since this is a recombinant enzyme, it has several benefits over the use of crude jack bean mannosidase extracts.
Collapse
Affiliation(s)
- Daniel Hopkins
- GlycoFi, Inc. (a wholly owned subsidiary of Merck & Co., Inc.), Biologics Discovery, Merck Research Laboratories, 16 Cavendish Court, Lebanon, NH, 03766, USA
| | | | | |
Collapse
|
14
|
Abstract
Most proteins are modified by glycans, which can modulate the biological properties and functions of glycoproteins. The major glycans can be classified into N-glycans and O-glycans according to their glycan-peptide linkage. This review will provide an overview of the O-mannosyl glycans, one subtype of O-glycans. Originally, O-mannosyl glycan was only known to be present on a limited number of glycoproteins, especially α-dystroglycan (α-DG). However, once a clear relationship was established between O-mannosyl glycan and the pathological mechanisms of some congenital muscular dystrophies in humans, research on the biochemistry and pathology of O-mannosyl glycans has been expanding. Because α-DG glycosylation is defective in congenital muscular dystrophies, which also feature abnormal neuronal migration, these disorders are collectively called α-dystroglycanopathies. In this article, I will describe the structure, biosynthesis and pathology of O-mannosyl glycans.
Collapse
Affiliation(s)
- Tamao Endo
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| |
Collapse
|
15
|
Levery SB, Steentoft C, Halim A, Narimatsu Y, Clausen H, Vakhrushev SY. Advances in mass spectrometry driven O-glycoproteomics. Biochim Biophys Acta Gen Subj 2014; 1850:33-42. [PMID: 25284204 DOI: 10.1016/j.bbagen.2014.09.026] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Global analyses of proteins and their modifications by mass spectrometry are essential tools in cell biology and biomedical research. Analyses of glycoproteins represent particular challenges and we are only at the beginnings of the glycoproteomic era. Some of the challenges have been overcome with N-glycoproteins and proteome-wide analysis of N-glycosylation sites is accomplishable today but only by sacrificing information of structures at individual glycosites. More recently advances in analysis of O-glycoproteins have been made and proteome-wide analysis of O-glycosylation sites is becoming available as well. SCOPE OF REVIEW Here we discuss the challenges of analysis of O-glycans and new O-glycoproteomics strategies focusing on O-GalNAc and O-Man glycoproteomes. MAJOR CONCLUSIONS A variety of strategies are now available for proteome-wide analysis of O-glycosylation sites enabling functional studies. However, further developments are still needed for complete analysis of glycan structures at individual sites for both N- and O-glycoproteomics strategies. GENERAL SIGNIFICANCE The advances in O-glycoproteomics have led to identification of new biological functions of O-glycosylation and a new understanding of the importance of where O-glycans are positioned on proteins.
Collapse
Affiliation(s)
- Steven B Levery
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Catharina Steentoft
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Adnan Halim
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
16
|
Praissman JL, Wells L. Mammalian O-mannosylation pathway: glycan structures, enzymes, and protein substrates. Biochemistry 2014; 53:3066-78. [PMID: 24786756 PMCID: PMC4033628 DOI: 10.1021/bi500153y] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
mammalian O-mannosylation pathway for protein post-translational
modification is intricately involved in modulating cell–matrix
interactions in the musculature and nervous system. Defects in enzymes
of this biosynthetic pathway are causative for multiple forms of congenital
muscular dystophy. The application of advanced genetic and biochemical
technologies has resulted in remarkable progress in this field over
the past few years, culminating with the publication of three landmark
papers in 2013 alone. In this review, we will highlight recent progress
focusing on the dramatic expansion of the set of genes known to be
involved in O-mannosylation and disease processes, the concurrent
acceleration of the rate of O-mannosylation pathway protein functional
assignments, the tremendous increase in the number of proteins now
known to be modified by O-mannosylation, and the recent progress in
protein O-mannose glycan quantification and site assignment. Also,
we attempt to highlight key outstanding questions raised by this abundance
of new information.
Collapse
Affiliation(s)
- Jeremy L Praissman
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, The University of Georgia , Athens, Georgia 30602, United States
| | | |
Collapse
|
17
|
Yu J, Westerlind U. Synthesis of a glycopeptide vaccine conjugate for induction of antibodies recognizing O-mannosyl glycopeptides. Chembiochem 2014; 15:939-45. [PMID: 24753400 DOI: 10.1002/cbic.201300537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 01/30/2014] [Indexed: 01/30/2023]
Abstract
In spite of the clear importance of protein O-mannosylation in brain glycobiology, tools are lacking for specific detection, enrichment, and identification of proteins containing these modifycations. We envisioned inducing antibodies that specifically recognize O-mannose glycans on proteins and peptides. With this in mind, we prepared a glycopeptide vaccine construct containing the N-acetyllactosamine-extended mannose motif Galβ1-4GlcNAcβ1-2ManαThr, found as a common core structure on almost all mammalian O-mannosyl glycoproteins identified. O-mannose glycosylated amino acid building blocks and the corresponding glycopeptides were prepared by chemical synthesis and then conjugated to an immune carrier protein. After administration of the synthetic vaccine into rabbits, strong immune responses were obtained. Further evaluation by ELISA neutralization experiments and glycopeptide microarrays showed that the induced antibodies were highly specific to the glycopeptide antigen.
Collapse
Affiliation(s)
- Jin Yu
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227 Dortmund (Germany)
| | | |
Collapse
|
18
|
Sandra K, Vandenheede I, Sandra P. Modern chromatographic and mass spectrometric techniques for protein biopharmaceutical characterization. J Chromatogr A 2014; 1335:81-103. [DOI: 10.1016/j.chroma.2013.11.057] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 10/25/2022]
|
19
|
In vitro enzymatic treatment to remove O-linked mannose from intact glycoproteins. Appl Microbiol Biotechnol 2014; 98:2545-54. [DOI: 10.1007/s00253-013-5478-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 11/25/2022]
|
20
|
Panin VM, Wells L. Protein O-mannosylation in metazoan organisms. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2014; 75:12.12.1-12.12.29. [PMID: 24510673 PMCID: PMC3984005 DOI: 10.1002/0471140864.ps1212s75] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein O-mannosylation is a special type of glycosylation that plays prominent roles in metazoans, affecting development and physiology of the nervous system and muscles. A major biological effect of O-mannosylation involves the regulation of α-dystroglycan, a membrane glycoprotein mediating cell-extracellular matrix interactions. Genetic defects of O-mannosylation result in the loss of ligand-binding activity of α-dystroglycan and cause congenital muscular dystrophies termed dystroglycanopathies. Recent progress in mass spectrometry and in vitro analyses has shed new light on the mechanism of α-dystroglycan glycosylation; however, this mechanism is underlain by complex genetic and molecular elements that remain poorly understood. Protein O-mannosylation is evolutionarily conserved in metazoans, yet the pathway is simplified and more amenable to genetic analyses in invertebrate organisms, indicating that genetically tractable in vivo models could facilitate research in this area. This unit describes recent methodological strategies for studying protein O-mannosylation using in vitro and in vivo approaches.
Collapse
Affiliation(s)
- Vladislav M. Panin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843; Tel. 979-458-4630, FAX 979-845-9274
| | - Lance Wells
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602; Tel 706-542-7806, FAX 706-542-4412
| |
Collapse
|
21
|
Gong B, Burnina I, Lynaugh H, Li H. O-linked glycosylation analysis of recombinant human granulocyte colony-stimulating factor produced in glycoengineered Pichia pastoris by liquid chromatography and mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 945-946:135-40. [DOI: 10.1016/j.jchromb.2013.11.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/17/2013] [Indexed: 12/01/2022]
|
22
|
Gong B, Burnina I, Stadheim TA, Li H. Glycosylation characterization of recombinant human erythropoietin produced in glycoengineered Pichia pastoris by mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:1308-1317. [PMID: 24338886 DOI: 10.1002/jms.3291] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 06/03/2023]
Abstract
Glycosylation plays a critical role in the in vivo efficacy of both endogenous and recombinant erythropoietin (EPO). Using mass spectrometry, we characterized the N-/O-linked glycosylation of recombinant human EPO (rhEPO) produced in glycoengineered Pichia pastoris and compared with the glycosylation of Chinese hamster ovary (CHO) cell-derived rhEPO. While the three predicted N-linked glycosylation sites (Asn24, Asn38 and Asn83) showed complete site occupancy, Pichia- and CHO-derived rhEPO showed distinct differences in the glycan structures with the former containing sialylated bi-antennary glycoforms and the latter containing a mixture of sialylated bi-, tri- and tetra-antennary structures. Additionally, the N-linked glycans from Pichia-produced rhEPO were similar across all three sites. A low level of O-linked mannosylation was detected on Pichia-produced rhEPO at position Ser126, which is also the O-linked glycosylation site for endogenous human EPO and CHO-derived rhEPO. In summary, the mass spectrometric analyses revealed that rhEPO derived from glycoengineered Pichia has a highly uniform bi-antennary N-linked glycan composition and preserves the orthogonal O-linked glycosylation site present on endogenous human EPO and CHO-derived rhEPO.
Collapse
Affiliation(s)
- Bing Gong
- GlycoFi, Biologics Discovery, Merck & Co., Inc., 16 Cavendish Court, Lebanon, NH, 03766, USA
| | | | | | | |
Collapse
|
23
|
Spencer D, Novarra S, Zhu L, Mugabe S, Thisted T, Baca M, Depaz R, Barton C. O-xylosylation in a Recombinant Protein is Directed at a Common Motif on Glycine–Serine Linkers. J Pharm Sci 2013; 102:3920-4. [DOI: 10.1002/jps.23733] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 11/10/2022]
|
24
|
Mining the O-mannose glycoproteome reveals cadherins as major O-mannosylated glycoproteins. Proc Natl Acad Sci U S A 2013; 110:21018-23. [PMID: 24101494 DOI: 10.1073/pnas.1313446110] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The metazoan O-mannose (O-Man) glycoproteome is largely unknown. It has been shown that up to 30% of brain O-glycans are of the O-Man type, but essentially only alpha-dystroglycan (α-DG) of the dystrophin-glycoprotein complex is well characterized as an O-Man glycoprotein. Defects in O-Man glycosylation underlie congenital muscular dystrophies and considerable efforts have been devoted to explore this O-glycoproteome without much success. Here, we used our SimpleCell strategy using nuclease-mediated gene editing of a human cell line (MDA-MB-231) to reduce the structural heterogeneity of O-Man glycans and to probe the O-Man glycoproteome. In this breast cancer cell line we found that O-Man glycosylation is primarily found on cadherins and plexins on β-strands in extracellular cadherin and Ig-like, plexin and transcription factor domains. The positions and evolutionary conservation of O-Man glycans in cadherins suggest that they play important functional roles for this large group of cell adhesion glycoproteins, which can now be addressed. The developed O-Man SimpleCell strategy is applicable to most types of cell lines and enables proteome-wide discovery of O-Man protein glycosylation.
Collapse
|
25
|
Hamilton SR, Cook WJ, Gomathinayagam S, Burnina I, Bukowski J, Hopkins D, Schwartz S, Du M, Sharkey NJ, Bobrowicz P, Wildt S, Li H, Stadheim TA, Nett JH. Production of sialylated O-linked glycans in Pichia pastoris. Glycobiology 2013; 23:1192-203. [DOI: 10.1093/glycob/cwt056] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Pacharra S, Hanisch FG, Mühlenhoff M, Faissner A, Rauch U, Breloy I. The Lecticans of Mammalian Brain Perineural Net Are O-Mannosylated. J Proteome Res 2013; 12:1764-71. [DOI: 10.1021/pr3011028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandra Pacharra
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Köln, Germany
| | - Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Köln, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany
| | | | - Andreas Faissner
- Department for Cell Morphology and Molecular
Neurobiology, Ruhr-University Bochum, Bochum,
Germany
| | - Uwe Rauch
- Department of Experimental
Medical Science, Biomedical Center B12, Lund University, Lund, Sweden
| | - Isabelle Breloy
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Köln, Germany
| |
Collapse
|
27
|
O-linked glucosylation of a therapeutic recombinant humanised monoclonal antibody produced in CHO cells. Eur J Pharm Biopharm 2013. [DOI: 10.1016/j.ejpb.2012.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianférani S. Characterization of Therapeutic Antibodies and Related Products. Anal Chem 2012; 85:715-36. [DOI: 10.1021/ac3032355] [Citation(s) in RCA: 461] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alain Beck
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Elsa Wagner-Rousset
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Daniel Ayoub
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie
de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel 67087, Strasbourg, France and CNRS, UMR7178, 67037 Strasbourg, France
| | - Sarah Sanglier-Cianférani
- Laboratoire de Spectrométrie
de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel 67087, Strasbourg, France and CNRS, UMR7178, 67037 Strasbourg, France
| |
Collapse
|
29
|
Pacharra S, Hanisch FG, Breloy I. Neurofascin 186 is O-mannosylated within and outside of the mucin domain. J Proteome Res 2012; 11:3955-64. [PMID: 22746206 DOI: 10.1021/pr200996y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein O-mannosylation is an important modification in mammals, and deficiencies thereof lead to a variety of severe phenotypes. Although it has already been shown that the amount of O-mannosyl glycans in brain is very high, only very few proteins have been identified as O-mannosylated. Additionally, the functions of the O-mannose-based glycans are still speculative and only investigated for α-dystroglycan. In a previous study a cis-located peptide was identified, which controls O-mannosylation in mammals. A BLAST search on the basis of this peptidic determinant identified other potential O-mannosylated proteins. Among these neurofascin was chosen for further analysis as a recombinant probe (mucin domain) and as an endogenous protein from mouse brain. Mass spectrometric data for both proteins confirmed that neurofascin186 is indeed O-mannosylated. Glycopeptide analysis by liquid chromatography-tandem mass spectrometry allowed for the identification of some of the O-mannosylation sites, which are not restricted to the mucin domain but were found also within N-terminal IgG and Fibronectin domains of the protein.
Collapse
Affiliation(s)
- Sandra Pacharra
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Köln, Germany
| | | | | |
Collapse
|
30
|
Zhang Z. Prediction of Collision-Induced-Dissociation Spectra of Peptides with Post-translational or Process-Induced Modifications. Anal Chem 2011; 83:8642-51. [DOI: 10.1021/ac2020917] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhongqi Zhang
- Process and Product Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
31
|
Ha S, Wang Y, Rustandi RR. Biochemical and biophysical characterization of humanized IgG1 produced in Pichia pastoris. MAbs 2011; 3:453-60. [PMID: 22048694 DOI: 10.4161/mabs.3.5.16891] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The first full length IgG produced in Pichia pastoris was reported in late 1980. However, use of a wild-type Pichia expression system to produce IgGs with human-like N-linked glycans was not possible until recently. Advances in glycoengineering have enabled organisms such as Pichia to mimic human N-glycan biosynthesis and produce IgGs with human glycans on an industrial scale. Since there are only a few reports of the analytical characterization of Pichia-produced IgG, we summarize the results known in this field, and provide additional characterization data generated in our laboratories. The data suggest that Pichia-produced IgG has the same stability as that produced in Chinese hamster ovary (CHO) cells. It has similar aggregation profiles, charge variant distribution and oxidation levels as those for a CHO IgG. It contains human N-linked glycans and O-linked single mannose. Because of the comparable biophysical and biochemical characteristics, glycoengineered Pichia pastoris is an attractive expression system for therapeutic IgG productions.
Collapse
Affiliation(s)
- Sha Ha
- Department of Bioprocess Analytical and Formulation Sciences, Merck Research Laboratories, West Point, PA, USA
| | | | | |
Collapse
|
32
|
Fitzgerald J, Lugovskoy A. Rational engineering of antibody therapeutics targeting multiple oncogene pathways. MAbs 2011; 3:299-309. [PMID: 21393992 DOI: 10.4161/mabs.3.3.15299] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Monoclonal antibodies have significantly advanced our ability to treat cancer, yet clinical studies have shown that many patients do not adequately respond to monospecific therapy. This is in part due to the multifactorial nature of the disease, where tumors rely on multiple and often redundant pathways for proliferation. Bi- or multi- specific antibodies capable of blocking multiple growth and survival pathways at once have a potential to better meet the challenge of blocking cancer growth, and indeed many of them are advancing in clinical development. ( 1) However, bispecific antibodies present significant design challenges mostly due to the increased number of variables to consider. In this perspective we describe an innovative integrated approach to the discovery of bispecific antibodies with optimal molecular properties, such as affinity, avidity, molecular format and stability. This approach combines simulations of potential inhibitors using mechanistic models of the disease-relevant biological system to reveal optimal inhibitor characteristics with antibody engineering techniques that yield manufacturable therapeutics with robust pharmaceutical properties. We illustrate how challenges of meeting the optimal design criteria and chemistry, manufacturing and control concerns can be addressed simultaneously in the context of an accelerated therapeutic design cycle. Finally, to demonstrate how this rational approach can be applied, we present a case study where the insights from mechanistic modeling were used to guide the engineering of an IgG-like bispecific antibody.
Collapse
|
33
|
|
34
|
|
35
|
Zhang Z, Pan H, Chen X. Mass spectrometry for structural characterization of therapeutic antibodies. MASS SPECTROMETRY REVIEWS 2009; 28:147-76. [PMID: 18720354 DOI: 10.1002/mas.20190] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Antibodies, also known as immunoglobulins, have emerged as one of the most promising classes of therapeutics in the biopharmaceutical industry. The need for complete characterization of the quality attributes of these molecules requires sophisticated techniques. Mass spectrometry (MS) has become an essential analytical tool for the structural characterization of therapeutic antibodies, due to its superior resolution over other analytical techniques. It has been widely used in virtually all phases of antibody development. Structural features determined by MS include amino acid sequence, disulfide linkages, carbohydrate structure and profile, and many different post-translational, in-process, and in-storage modifications. In this review, we will discuss various MS-based techniques for the structural characterization of monoclonal antibodies. These techniques are categorized as mass determination of intact antibodies, and as middle-up, bottom-up, top-down, and middle-down structural characterizations. Each of these techniques has its advantages and disadvantages in terms of structural resolution, sequence coverage, sample consumption, and effort required for analyses. The role of MS in glycan structural characterization and profiling will also be discussed.
Collapse
Affiliation(s)
- Zhongqi Zhang
- Process and Product Development, Amgen, Thousand Oaks, CA 91320, USA.
| | | | | |
Collapse
|
36
|
Valliere-Douglass JF, Brady LJ, Farnsworth C, Pace D, Balland A, Wallace A, Wang W, Treuheit MJ, Yan B. O-Fucosylation of an antibody light chain: Characterization of a modification occurring on an IgG1 molecule. Glycobiology 2008; 19:144-52. [DOI: 10.1093/glycob/cwn116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Guo A, Han M, Martinez T, Ketchem RR, Novick S, Jochheim C, Balland A. Electrophoretic evidence for the presence of structural isoforms specific for the IgG2 isotype. Electrophoresis 2008; 29:2550-6. [DOI: 10.1002/elps.200800083] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|