1
|
Chen X, Tian W. Selective extraction and determination of chlorpyrifos residues from aqueous samples using biochar-functionalized molecularly imprinted polymer combined with high-performance liquid chromatography. J Chromatogr A 2025; 1741:465611. [PMID: 39718260 DOI: 10.1016/j.chroma.2024.465611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The concentration of chlorpyrifos (CPF) in aqueous samples was determined using a novel molecularly imprinted dispersive solid-phase extraction (MISPE) approach that was presented in this research. Using a non-covalent molecular imprinting technique, a biochar (BC)-functionalized molecularly imprinted polymers (MIPs) (BC-MIPs) was created. These MIPs were used in dispersive solid-phase extraction (DSPE) in conjunction with high-performance liquid chromatography with photodiode array detection (HPLC-PDA) to detect CPF in aqueous samples with high sensitivity. Using methacrylic acid (MAA) as the monomer and ethylene glycol dimethacrylate (EGDMA) as the cross-linker, BC-MIPs were created using CPF as a template. By using the suggested dispersive solid-phase extraction (DSPE) approach, the efficiency of the synthesized BC-MIPs granules was evaluated. Analytical performance of the devised DSPE-HPLC-PDA technique was assessed under optimal settings. The optimized parameters included extraction time, aqueous sample pH, desorption time and desorption reagents. Compared with the traditional method, the established method has better selective adsorption capacity, reusability and sensitivity for CPF. The suggested method presented that limit of detection and limit of quantification were 1.0 ng/mL and 4.0 ng/mL, along with excellent linear range (4.0-1500 ng/mL) with coefficients of determination (R2=0.9982). The established method was successfully used to determination CPF in aqueous samples from the Baisha River in Qingdao, with the advantages of accuracy (recoveries: 81.2 %-103.6 %, RSDs≤9.2 %), speed (CPF-BC-MIPs-DSPE time: 75 min; HPLC-PDA time: 12 min), selectivity (imprinting factor: 4.24), and economy (50 mg of adsorbent synthesized using cheap straw and 1 mL of solvents), which partially conform to the current advanced principle of "3S+2A" in analytical chemistry. The BC-MIPs granules shown potential for CPF preconcentration in complicated samples and were effective carriers for the selective adsorption of CPF.
Collapse
Affiliation(s)
- Xinwei Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266000, China; Qingdao Engineering Vocational College, Qingdao 266000, China
| | - Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266000, China; Laoshan Laboratory, Qingdao 266234, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
2
|
Hao Y, Xia Y, Huang J, Zhong C, Li G. Covalent-Organic Frameworks for Selective and Sensitive Detection of Antibiotics from Water. Polymers (Basel) 2024; 16:2319. [PMID: 39204541 PMCID: PMC11359747 DOI: 10.3390/polym16162319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
As the consumption of antibiotics rises, they have generated some negative impacts on organisms and the environment because they are often unable to be effectively degraded, and seeking effective detection methods is currently a challenge. Covalent-organic frameworks (COFs) are new types of crystalline porous crystals created based on the strong covalent interactions between blocked monomers, and COFs demonstrate great potential in the detection of antibiotics from aqueous solutions because of their large surface area, adjustable porosity, recyclability, and predictable structure. This review aims to present state-of-the-art insights into COFs (properties, classification, synthesis methods, and functionalization). The key mechanisms for the detection of antibiotics and the application performance of COFs in the detection of antibiotics from water are also discussed, followed by the challenges and opportunities for COFs in future research.
Collapse
Affiliation(s)
| | | | | | - Chenglin Zhong
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (Y.H.); (Y.X.); (J.H.)
| | - Guizhen Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (Y.H.); (Y.X.); (J.H.)
| |
Collapse
|
3
|
Fang Y, Chen C, Cui B, Zhou D. Nanoscale zero-valent iron alleviate antibiotic resistance risk during managed aquifer recharge (MAR) by regulating denitrifying bacterial network. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133238. [PMID: 38134694 DOI: 10.1016/j.jhazmat.2023.133238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
The frequent occurrence of antibiotics in reclaimed water is concerning, in the case of managed aquifer recharge (MAR), it inevitably hinders further water purification and accelerates the evolutionary resistance in indigenous bacteria. In this study, we constructed two column reactors and nanoscale zero-valent iron (nZVI) amendment was applied for its effects on water quality variation, microbial community succession, and antibiotic resistance genes (ARGs) dissemination, deciphered the underlying mechanism of resistance risk reduction. Results showed that nZVI was oxidized to iron oxides in the sediment column, and total effluent iron concentration was within permissible limits. nZVI enhanced NO3--N removal by 15.5% through enriching denitrifying bacteria and genes, whereas made no effects on oxacillin (OXA) removal. In addition, nZVI exhibited a pivotal impact on ARGs and plasmids decreasing. Network analysis elucidated that the diversity and richness of ARG host declined with nZVI amendment. Denitrifying bacteria play a key role in suppressing horizontal gene transfer (HGT). The underlying mechanisms of inhibited HGT included the downregulated SOS response, the inhibited Type-Ⅳ secretion system and the weakened driving force. This study afforded vital insights into ARG spread control, providing a reference for future applications of nZVI in MAR.
Collapse
Affiliation(s)
- Yuanping Fang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Congli Chen
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Bin Cui
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
4
|
Kuru Cİ, Ulucan-Karnak F, Akgol S. Metal-Chelated Polymeric Nanomaterials for the Removal of Penicillin G Contamination. Polymers (Basel) 2023; 15:2832. [PMID: 37447478 DOI: 10.3390/polym15132832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
We developed selective and relatively low-cost metal-chelated nanoparticle systems for the removal of the penicillin G (Pen G) antibiotic, presented for the first time in the literature. In the nanosystem, poly(glycidyl methacrylate) nanoparticles were synthesized by a surfactant-free emulsion polymerization method and covalently bound with a tridentate-chelating ligand, iminodiacetic acid, based on the immobilized metal chelate affinity technique. It was modified with Cu2+, a chelating metal, to make Pen G specific. Metal-chelated nanoparticles were characterized by Fourier-transform infrared spectroscopy, energy dispersive spectrometry, zeta dimensional analysis, and scanning electron microscopy technology. Optimization studies of the Pen G removal were conducted. As a result of this study, Pen G removal with the p(GMA)-IDA-Cu2+ nanoparticle reached its maximum adsorption capacity of 633.92 mg/g in the short time of 15 min. The Pen G adsorption of p(GMA)-IDA-Cu2+ was three times more than that of the p(GMA) nanoparticles and two times more than that of the ampicillin adsorption. In addition, there was no significant decrease in the adsorption capacity of Pen G resulting from the repeated adsorption-desorption process of metal-chelated nanoparticles over five cycles. The metal-chelated nanoparticle had an 84.5% ability to regain its ability to regenerate the product with its regeneration capability, making the widespread use of the system very convenient in terms of reducing cost, an important factor in removal processes.
Collapse
Affiliation(s)
- Cansu İlke Kuru
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Izmir, Turkey
- Biotechnology Department, Graduate School of Natural and Applied Sciences, Ege University, 35100 Izmir, Turkey
| | - Fulden Ulucan-Karnak
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Izmir, Turkey
- Advanced Biomedical Technologies Department, Graduate School of Natural and Applied Sciences, Ege University, 35100 Izmir, Turkey
| | - Sinan Akgol
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Izmir, Turkey
| |
Collapse
|
5
|
Shafqat SR, Bhawani SA, Bakhtiar S, Ibrahim MNM, Shafqat SS. Template-assisted synthesis of molecularly imprinted polymers for the removal of methyl red from aqueous media. BMC Chem 2023; 17:46. [PMID: 37165372 PMCID: PMC10173658 DOI: 10.1186/s13065-023-00957-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
This study entails the synthesis of molecularly imprinted polymers (MIPs) with good selectivity coefficients for azo dye as a potential sorbent material to extract azo dye from polluted aqueous media. A series of MIPs for methyl red (MR) as a template, were synthesized by changing the molar ratio of functional monomers, via precipitation polymerization format of non-covalent approach. Water-soluble functional monomer; acrylic acid (AA) was used to weave the frame work of polymers while ethylene glycol dimethacrylate (EGDMA) was utilized as crosslinking monomer. The impact of different experimental parameters, such as mole ratio of monomer (functional) to crosslinking monomer on the molecular recognition was investigated. The highly efficient and selective MR-MIP was used for the removal of spiked MR dye from different water samples. The selected imprinted polymer, MR1-MIP was able to selectively remove the MR molecules from aqueous media. A significant amount of dye was removed by MR1-MIP from the river water samples with a high degree of removal efficiency i.e. 92.25%. The imprinting factor of 3.75 for MR1-MIP indicated that the high selectivity in terms of adsorption for MR. A minimum loss of only ~ 3.35% in the removal efficiency within ten sequential cycles of adsorption-desorption study evidenced that MR-MIPs could be used as the most cost effective and best sorbent for the removal of MR from polluted water. Furthermore, the structural properties of MR-MIPs were characterized by FTIR and EDX, whereas TGA, SEM and BET were used to describe the thermal, morphological and surface structures of the particles, respectively.
Collapse
Affiliation(s)
- Syed Rizwan Shafqat
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
- Department of Chemistry, University of Sialkot, Sialkot, 51040, Pakistan
| | - Showkat Ahmad Bhawani
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Salma Bakhtiar
- Department of Chemistry, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | | | - Syed Salman Shafqat
- Division of Science and Technology, Department of Chemistry, University of Education, Lahore, 54770, Pakistan
| |
Collapse
|
6
|
Xiong J, Wei X, Shen X, Zhu W, Yi S, Huang C. Synthesis of molecularly-imprinted polymers towards a group of amphetamine-type stimulants by reflux precipitation polymerization with a pseudo template. J Chromatogr A 2023; 1688:463738. [PMID: 36574747 DOI: 10.1016/j.chroma.2022.463738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/26/2022]
Abstract
Determination of amphetamine-type drugs (ATSs) in urine and wastewater is a simplified approach for the widespread monitoring of ATSs abuse. To improve the sensitivity of the analytical methods, molecularly imprinted polymers (MIPs) based solid-phase extraction (SPE) pretreatment attracted great attention in this field. Generally, smaller particle sizes and more uniform morphology of the MIPs could provide higher detection sensitivity. Our previous works showed reflux precipitation polymerization (RPP) is a method for synthesizing monodispersed MIPs with small particle size. However, synthesis of uniform spherical MIPs towards a group of targets has never been reported. Therefore, in the present work, MIPs towards a group of ATSs were synthesized via RPP with a pseudo template for the first time. After screening potential pseudo-templates, N-methylphenylethylamine (MPEA) was selected as the optimal pseudo-template. MPEA-MIPs were characterized by scanning electron microscope (SEM), FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS) spectra. Adsorption isotherms, adsorption kinetics and selectivity were evaluated, and the experimental results indicated that the MPEA-MIPs possessed good selectivity and adsorption property towards ATSs. After optimization of the MIP-SPE procedure, the MIP-SPE cartridges were then coupled with liquid chromatography and tandem mass spectrometry (LC-MS/MS) for determination of ATSs. The evaluation results showed that MIP-SPE-LC-MS/MS displayed good linearity (R2 >0.991) in the linear range (1.0-50.0 µg/L for urine and 0.5-50.0 µg/L for wastewater), and low matrix effect (85-112%). The limit of detection (LOD) was 0.05 -0.29 µg/L, and the accuracy (85-115%) and repeatability (RSD ≤ 15%) were satisfactory at low, medium and high concentrations. To the best of our knowledge, this is the first time that dummy MIPs towards a group of ATSs were synthesized by RPP polymerization, which showed great potential for the detection of ATSs in urine and wastewater.
Collapse
Affiliation(s)
- Jianhua Xiong
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China
| | - Xiangting Wei
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Weiwei Zhu
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China
| | - Shaohua Yi
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China.
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China.
| |
Collapse
|
7
|
Zhang Y, Li S, Gu Y, Zhang J, Yue Z, Ouyang L, Zhao F. Dummy Template-Based Molecularly Imprinted Membrane Coating for Rapid Analysis of Malachite Green and Its Metabolic Intermediates in Shrimp and Fish. Molecules 2022; 28:molecules28010310. [PMID: 36615501 PMCID: PMC9822206 DOI: 10.3390/molecules28010310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 01/04/2023] Open
Abstract
A novel malachite green molecularly imprinted membrane (MG-MIM) with specific selectivity for malachite green (MG) and leucomalachite green (LMG) was prepared using a hydrophobic glass fiber membrane as the polymer substrate, methyl violet as a template analog, 4-vinyl benzoic acid as the functional monomer, and ethyleneglycol dimethacrylate as the crosslinking agent. MG-MIM and non-imprinted membrane (NIM) were structurally characterized using scanning electron microscopy, surface area analyzer, Fourier-transform infrared spectrometer and synchronous thermal analyzer. The results showed that MG-MIM possessed a fluffier surface, porous and looser structure, and had good thermal stability. Adsorption properties of MG-MIM were investigated under optimal conditions, and adsorption equilibrium was reached in 20 min. The saturated adsorption capacities for MG and LMG were 24.25 ng·cm-2 and 13.40 ng·cm-2, and the maximum imprinting factors were 2.41 and 3.20, respectively. Issues such as "template leakage" and "embedding" were resolved. The specific recognition ability for the targets was good and the adsorption capacity was stable even after five cycles. The proposed method was successfully applied for the detection of MG and LMG in real samples, and it showed good linear correlation in the range of 0 to 10.0 μg·L-1 (R2 = 0.9991 and 0.9982), and high detection sensitivity (detection limits of MG and LMG of 0.005 μg/kg and 0.02 μg·kg-1 in shrimp, and 0.005 μg/kg and 0.02 μg/kg in fish sample). The recoveries and relative standard deviations were in the range of 76.31-93.26% and 0.73-3.72%, respectively. The proposed method provides a simple, efficient and promising alternative for monitoring MG and LMG in aquatic products.
Collapse
Affiliation(s)
- Yi Zhang
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-136-3261-5891; Fax: +86-755-2673-1648
| | - Shaofeng Li
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Yurong Gu
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Jianying Zhang
- Food Inspection & Quarantine Center, Shenzhen Customs, Shenzhen 518045, China
| | - Zhenfeng Yue
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Liao Ouyang
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Fengjuan Zhao
- Food Inspection & Quarantine Center, Shenzhen Customs, Shenzhen 518045, China
| |
Collapse
|
8
|
MIP-based extraction techniques for the determination of antibiotic residues in edible meat samples: Design, performance & recent developments. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Monitoring Seasonal Differences on Contamination and Carry-over of Zearalenone from Feedstuffs to Foods by Molecularly Imprinted Solid-phase Extraction and HPLC-FLD. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Torrini F, Palladino P, Baldoneschi V, Scarano S, Minunni M. Sensitive 'two-steps' competitive assay for gonadotropin-releasing hormone detection via SPR biosensing and polynorepinephrine-based molecularly imprinted polymer. Anal Chim Acta 2021; 1161:338481. [PMID: 33896555 DOI: 10.1016/j.aca.2021.338481] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/25/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022]
Abstract
The work reports an innovative bioassay for the detection of gonadorelin in urine, a gonadotropin-releasing hormone agonist widely used in fertility medicine and to treat hormonal dysfunctions. Gonadorelin is also a synthetic hormone listed by the World Anti-Doping Agency (WADA) and of interest in anti-doping controls. The main novelty relies on the development of a biocompatible, stable, and low-cost biomimetic receptor alternative to classic antibodies. Starting from norepinephrine monomer, a highly selective and sensitive molecularly imprinted polymer (MIP) was developed and optimized for optical real-time and label-free SPR biosensing. The selectivity has been addressed by testing a series of peptides, from high to low similarity, both in terms of molecular weight and primary sequence. Due to the very low molecular weight of gonadorelin (1182 Da), a 'two-steps' competitive assay was developed. Particular attention has been paid to the design of the competitor and its binding affinity constant towards the MIP, being a key step for the success of the competitive strategy. The SPR assay was first optimized in standard conditions and finally applied to untreated urine samples, achieving the sensitivity required by WADA guidelines. The MIP, tested in parallel with a monoclonal antibody, gave comparable results in terms of affinity constants and selectivity towards possible interfering analytes. However, the biomimetic receptor appears clearly superior in terms of sensitivity and reproducibility. This, together with its preparation simplicity, the extremely low-cost of the monomer and its reusability for hundreds of measurements, make polynorepinephrine-based MIPs powerful rivals to immune-based approaches in the near future for similar applications.
Collapse
Affiliation(s)
- Francesca Torrini
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino (FI), Italy.
| | - Pasquale Palladino
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino (FI), Italy.
| | - Veronica Baldoneschi
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino (FI), Italy.
| | - Simona Scarano
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino (FI), Italy.
| | - Maria Minunni
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino (FI), Italy.
| |
Collapse
|
11
|
Zhang C, Zhao Z, Dong S, Zhou D. Simultaneous elimination of amoxicillin and antibiotic resistance genes in activated sludge process: Contributions of easy-to-biodegrade food. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142907. [PMID: 33757248 DOI: 10.1016/j.scitotenv.2020.142907] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 06/12/2023]
Abstract
Antibiotics are continuously released into aquatic environments and ecosystems where they accumulate, which increases risks from the transmission of antibiotic resistance genes (ARGs). However, it is difficult to completely remove antibiotics by conventional biological methods, and during such treatment, ARGs may spread via the activated sludge process. Easy-to-biodegrade food have been reported to improve the removal of toxic pollutants, and therefore, this study investigated whether such co-substrates may also decrease the abundance of ARGs and their transferal. This study investigated amoxicillin (AMO) degradation using 0-100 mg/L acetate sodium as co-substrate in a sequencing biological reactor. Proteobacteria, Bacteroidetes, and Actinobacteria were identified as dominant phyla for AMO removal and mineralization. Furthermore, acetate addition increased the abundances of adeF and mdsC as efflux resistance genes, which improved microbial resistance, the coping ability of AMO toxicity, and the repair of the damage from AMO. As a result, acetate addition contributed to almost 100% AMO removal and stabilized the chemical oxygen demand (~20 mg/L) in effluents when the influent AMO fluctuated from 20 to 100 mg/L. Moreover, the total abundance of ARGs decreased by approximately ~30%, and the proportion of the most dominant antibiotic resistance bacteria Proteobacteria decreased by ~9%. The total abundance of plasmids that encode ARGs decreased by as much as ~30%, implying that the ARG spreading risks were alleviated. In summary, easy-to-biodegrade food contributed to the simultaneous elimination of antibiotics and ARGs in an activated sludge process.
Collapse
Affiliation(s)
- Chongjun Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Zhiquan Zhao
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Shuangshi Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
12
|
Tarannum N, Khatoon S, Dzantiev BB. Perspective and application of molecular imprinting approach for antibiotic detection in food and environmental samples: A critical review. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107381] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Zhang C, Dong S, Chen C, Zhang Q, Zhou D. Co-substrate addition accelerated amoxicillin degradation and detoxification by up-regulating degradation related enzymes and promoting cell resistance. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122574. [PMID: 32278124 DOI: 10.1016/j.jhazmat.2020.122574] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/06/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
β-Lactam antibiotics are the most commonly used antibiotics, and are difficult to remove by conventional biological treatments because of their persistent and toxic nature. The addition of co-substrates has been successfully employed to improve the removal of refractory pollutants. So, we hypothesized that the co-substrate strategy would increase antibiotic degradation and benefit microbial survival. In this work, we reported that co-substrate (acetate) addition up-regulated key degrading enzymes and resistance related genes in a model bacteria strain (L. aquatilis) when being treated with 0.055 mM amoxicillin (AMO). β-Lactamase, amidases, transaminase, and amide C-N hydrolase showed increased activation. As a result, AMO removal reached ∼95 %, a ∼60 % increase over the control. Furthermore, the addition of acetate drove the down-stream TCA cycle, which accelerated the detoxification of the intermediates and reduced the microbial inhibition by the antibiotic products to as low as ∼15 %. Besides, the expression levels of genes encoding the efflux pump, penicillin binding proteins, and β-Lactamase were up-regulated, and the inhibition of peptidoglycan biosynthesis was down-regulated. The cell density was enhanced by ∼170 % and showed improved DNA replication. In conclusion, the addition of the co-substrate accelerated AMO degradation and detoxification by up-regulating degrading enzymes and promoting cell resistance.
Collapse
Affiliation(s)
- Chongjun Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Shuangshi Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Congli Chen
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Qifeng Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
14
|
Kuru CI, Ulucan F, Kuşat K, Akgöl S. A model study by using polymeric molecular imprinting nanomaterials for removal of penicillin G. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:367. [PMID: 32415329 DOI: 10.1007/s10661-020-08294-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
We aimed to develop a molecularly imprinted polymeric systems with using penicillin G as a template molecule for removal of the antibiotic residues from environmental samples. Firstly, Pen-G-imprinted poly (2-hydroxyethyl methacrylate-N-methacryloyl-L-alanine) [p(HEMA-MAAL)] nanopolymers were synthesized by surfactant-free emulsion polymerization method. Then, template molecule (Pen-G) was extracted from nanopolymers. Synthesized nanopolymers were characterized by different methods such as Fourier-transform infrared spectroscopy (FTIR), elemental and zeta-size analysis, scanning electron microscope (SEM), and surface area calculations. Nanopolymers have 60.38 nm average size and 1034.22 m2/g specific surface area. System parameters on Pen-G adsorption onto Pen-G imprint nanopolymers were investigated at different conditions. The specific adsorption value (Qmax) of molecularly impirinted p(HEMA-MAAL) nanopolymers was found 71.91 g/g for Pen-G in 5 mg/mL Pen-G initial concentration. Pen-G adsorption of molecularly imprinted nanopolymers was 15 times more than non-imprinted polymer. It is shown that obtained p(HEMA-MAAL) nanopolymer was a reuseable product which protected its adsorption capacity of 98.9% after 5th adsorption-desorption cycle. In conclusion, we suggest a method to develop a nanostructure, selective, low-cost molecularly imprinted polymeric systems with using penicillin G as a template molecule for removal of the antibiotic residues.
Collapse
Affiliation(s)
- Cansu Ilke Kuru
- Department of Biochemistry, Ege University Faculty of Science, Izmir, Turkey
| | - Fulden Ulucan
- Department of Biochemistry, Ege University Faculty of Science, Izmir, Turkey
| | - Kevser Kuşat
- Turkish Health of Ministry, Turkish Medicines and Medical Devices Agency, Ankara, Turkey
| | - Sinan Akgöl
- Department of Biochemistry, Ege University Faculty of Science, Izmir, Turkey.
| |
Collapse
|
15
|
Azizi A, Bottaro CS. A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. J Chromatogr A 2020; 1614:460603. [DOI: 10.1016/j.chroma.2019.460603] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 01/05/2023]
|
16
|
Roland RM, Bhawani SA, Wahi R, Ibrahim MNM. Synthesis, characterization, and application of molecular imprinting polymer for extraction of melamine from spiked milk, water, and blood serum. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1672077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Rachel Marcella Roland
- Faculty of Resource Science and Technology, Department of Chemistry, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| | - Showkat Ahmad Bhawani
- Faculty of Resource Science and Technology, Department of Chemistry, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| | - Rafeah Wahi
- Faculty of Resource Science and Technology, Department of Chemistry, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| | | |
Collapse
|
17
|
Pupin RR, Foguel MV, Gonçalves LM, Sotomayor MDPT. Magnetic molecularly imprinted polymers obtained by photopolymerization for selective recognition of penicillin G. J Appl Polym Sci 2019. [DOI: 10.1002/app.48496] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Rafael Rovatti Pupin
- Department of Analytical Chemistry, Institute of ChemistryUNESP – Univ Estadual Paulista Araraquara SP Brazil
- UNESP, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT‐DATREM)Institute of Chemistry Araraquara SP Brazil
| | - Marcos Vinicius Foguel
- Department of Analytical Chemistry, Institute of ChemistryUNESP – Univ Estadual Paulista Araraquara SP Brazil
- UNESP, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT‐DATREM)Institute of Chemistry Araraquara SP Brazil
- Department of ChemistryUniversity of Central Florida Orlando Florida
| | - Luís Moreira Gonçalves
- Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São Paulo (USP) São Paulo SP Brazil
| | - Maria del Pilar T. Sotomayor
- Department of Analytical Chemistry, Institute of ChemistryUNESP – Univ Estadual Paulista Araraquara SP Brazil
- UNESP, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT‐DATREM)Institute of Chemistry Araraquara SP Brazil
| |
Collapse
|
18
|
Söylemez MA, Güven O. Preparation and detailed structural characterization of Penicillin G imprinted polymers by PALS and XPS. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.02.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Brito LB, Garcia LF, Caetano MP, Lobón GS, Teles de Oliveira M, de Oliveira R, Sapateiro Torres IM, Yepez A, Vaz BG, Luque R, Grisolia CK, Valadares MC, de Souza Gil E, Rodrigues de Oliveira GA. Electrochemical remediation of amoxicillin: detoxification and reduction of antimicrobial activity. Chem Biol Interact 2018; 291:162-170. [PMID: 29920285 DOI: 10.1016/j.cbi.2018.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/18/2018] [Accepted: 06/13/2018] [Indexed: 11/24/2022]
Abstract
Amoxicillin (AMX) is one of the most commonly prescribed antibiotics around the world to treat and prevent several diseases in both human and veterinary medicine. Incomplete removal of AMX during wastewater treatment contributes to its presence in water bodies and drinking water. AMX is an emerging contaminant since its impact on the environment and human health remains uncertain. This contribution was aimed to evaluate the electrochemical oxidation (EO) of AMX using different anodes in tap water, NaCl or Na2SO4 solutions and to evaluate the potential toxicity of remaining AMX and its by-products on zebrafish early-life stages. Chemical intermediates generated after EO were determined by mass spectrometry and their resulting antimicrobial activity was evaluated. AMX did not induce significant mortality in zebrafish during extended exposure but affected zebrafish development (increased body length) from 6.25 mg/L to 25 mg/L and inhibited enzymatic biomarkers. Carbon modified with titanium oxide (TiO2@C) anode achieved complete AMX removal in just a few minutes and efficiency of the supported electrolytes occurred in the following order: 0.1 M NaCl > 0.1 M Na2SO4 > 0.01 M NaCl > tap water. The order of potential toxicity to zebrafish early life-stages related to lethal and sublethal effects was as follows: 0.1 M Na2SO4 > 0.1 M NaCl >0.01 M NaCl = tap water. Additionally, the EO of AMX using TiO2@C electrode with 0.01 M NaCl was able to inhibit the antimicrobial activity of AMX, reducing the possibility of developing bacterial resistance.
Collapse
Affiliation(s)
- Lara Barroso Brito
- Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | | | | | - Germán Sanz Lobón
- Chemistry Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Rhaul de Oliveira
- Faculty of Pharmaceutical Sciences, University of São Paulo, USP, São Paulo, SP, Brazil
| | | | - Alfonso Yepez
- Department of Organic Chemistry, University of Córdoba, Córdoba, Andaluzia, Spain
| | - Boniek Gontijo Vaz
- Chemistry Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Rafael Luque
- Department of Organic Chemistry, University of Córdoba, Córdoba, Andaluzia, Spain
| | - Cesar Koppe Grisolia
- Biological Sciences Institute, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| | | | - Eric de Souza Gil
- Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Gisele Augusto Rodrigues de Oliveira
- Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (CNPq: INCT-DATREM), UNESP, Institute of Chemistry, Araraquara, SP, Brazil.
| |
Collapse
|
20
|
Ayankojo AG, Reut J, Öpik A, Furchner A, Syritski V. Hybrid molecularly imprinted polymer for amoxicillin detection. Biosens Bioelectron 2018; 118:102-107. [PMID: 30056300 DOI: 10.1016/j.bios.2018.07.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/11/2023]
Abstract
The potential adverse effects of the environmental presence of antibiotics on the ecosystem demands the development of new methods suitable for accurate detection of these micropollutants in various aquatic media. An analytical method exploiting the synergistic effect of a label-free sensing platform combined with a molecularly imprinted polymer (MIP) as robust recognition element could represent an efficient tool for the real-time monitoring of antibiotics. In this work, a hybrid organic-inorganic MIP film (AMO-MIP) selective towards amoxicillin (AMO) was synthesized and integrated with a surface plasmon resonance (SPR) sensor. The film was prepared by sol-gel using methacrylamide (MAAM) as organic functional monomer, tetraethoxysilane (TEOS) as inorganic precursor, and vinyltrimethoxysilane (VTMOS) as coupling agent. The AMO-MIP film characterized with the SPR system demonstrated about 16 times higher binding capacity to AMO than corresponding reference non-imprinted polymer (NIP). AMO-MIP-modified SPR sensors could detect AMO with LoD down to 73 pM and discriminate AMO among structurally similar molecules both in buffer and in tap water. Good reproducibility was achieved for several rebinding-regeneration cycles. The sensor could be stored at room temperature for up to 6 months without losing stability.
Collapse
Affiliation(s)
- Akinrinade George Ayankojo
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Jekaterina Reut
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Andres Öpik
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Andreas Furchner
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Department Berlin, Schwarzschildstraße 8, 12489 Berlin, Germany
| | - Vitali Syritski
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia.
| |
Collapse
|
21
|
Pinto PS, Lanza GD, Souza MN, Ardisson JD, Lago RM. Surface restructuring of red mud to produce FeO x (OH) y sites and mesopores for the efficient complexation/adsorption of β-lactam antibiotics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6762-6771. [PMID: 29264851 DOI: 10.1007/s11356-017-1005-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
In this work, iron oxide in the red mud (RM) waste was restructured to produce mesopores with surface [FeO x (OH) y ] sites for the efficient complexation/adsorption of β-lactam antibiotics. Red mud composed mainly by hematite was restructured by an acid/base process followed by a thermal treatment at 150-450 °C (MRM150, MRM200, MRM300, and MRM450) and fully characterized by Mössbauer, XRD, FTIR, BET, SEM, CHN, and thermogravimetric analyses. The characterization data showed a highly dispersed Fe3+ oxyhydroxy phase, which was thermally dehydrated to a mesoporous α-Fe2O3 with surface areas in the range of 141-206 m2 g-1. These materials showed high efficiencies (21-29 mg g-1) for the adsorption of β-lactam antibiotics, amoxicillin, cephalexin, and ceftriaxone, and the data was better fitted by the Langmuir model isotherm (R 2 = 0.9993) with monolayer adsorption capacity of ca. 39 mg g-1 for amoxicillin. Experiments such as competitive adsorption in the presence of phosphate and H2O2 decomposition suggested that the β-lactamic antibiotics might be interacting with surface [FeO x (OH) y ] species by a complexation process. Moreover, the OH/Fe ratio, BET surface area and porosity indicated that this complexation is occurring especially on [FeO x (OH) y ]surf sites contained in the mesopore space.
Collapse
Affiliation(s)
- Paula S Pinto
- Departamento de Química, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Giovani D Lanza
- Departamento de Química, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Mayra N Souza
- Departamento de Química, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - José D Ardisson
- Laboratório de Física Aplicada, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), Belo Horizonte, MG, 31270-901, Brazil
| | - Rochel M Lago
- Departamento de Química, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
22
|
Soledad-Rodríguez B, Fernández-Hernando P, Garcinuño-Martínez R, Durand-Alegría J. Effective determination of ampicillin in cow milk using a molecularly imprinted polymer as sorbent for sample preconcentration. Food Chem 2017; 224:432-438. [DOI: 10.1016/j.foodchem.2016.11.097] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 05/13/2016] [Accepted: 11/21/2016] [Indexed: 12/23/2022]
|
23
|
Wang W, Luo Z, Guo P, Zhou H, Fu Q, Chang C. Selective Preconcentration of Mezlocillin from Eggs by Molecularly Imprinted Polymers on Silica. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1217540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Weiwei Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shanxi, China
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, China
| | - Zhimin Luo
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shanxi, China
| | - Pengqi Guo
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shanxi, China
| | - Huiyan Zhou
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shanxi, China
| | - Qiang Fu
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shanxi, China
| | - Chun Chang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shanxi, China
| |
Collapse
|
24
|
YANG C, ZHOU XL, LIU YR, ZHANG Y, WANG J, TIAN LL, YAN YN. Extensive Imprinting Adaptability of Polyacrylamide-based Amphoteric Cryogels Against Protein Molecules. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60954-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Van Royen G, Dubruel P, Van Weyenberg S, Daeseleire E. Evaluation and validation of the use of a molecularly imprinted polymer coupled to LC–MS for benzylpenicillin determination in meat samples. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1025:48-56. [DOI: 10.1016/j.jchromb.2016.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/14/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
|
26
|
Wu N, Luo Z, Ge Y, Guo P, Du K, Tang W, Du W, Zeng A, Chang C, Fu Q. A novel surface molecularly imprinted polymer as the solid-phase extraction adsorbent for the selective determination of ampicillin sodium in milk and blood samples. J Pharm Anal 2016; 6:157-164. [PMID: 29403976 PMCID: PMC5762489 DOI: 10.1016/j.jpha.2016.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 11/04/2022] Open
Abstract
Surface molecularly imprinted polymers (SMIPs) for selective adsorption of ampicillin sodium were synthesized using surface molecular imprinting technique with silica gel as a support. The physical and morphological characteristics of the polymers were investigated by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), elemental analysis and nitrogen adsorption–desorption test. The obtained results showed that the SMIPs displayed great adsorption capacity (13.5 μg/mg), high recognition ability (the imprinted factor is 3.2) and good binding kinetics for ampicillin sodium. Finally, as solid phase extraction adsorbents, the SMIPs coupled with HPLC method were validated and applied for the enrichment, purification and determination of ampicillin sodium in real milk and blood samples. The averages of spiked accuracy ranged from 92.1% to 107.6%. The relative standard deviations of intra- and inter-day precisions were less than 4.6%. This study provides a new and promising method for enriching, extracting and determining ampicillin sodium in complex biological samples.
Collapse
Affiliation(s)
- Ningli Wu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.,Department of Pharmacy, Xi'an First Hospital, Xi'an 710002, China
| | - Zhimin Luo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yanhui Ge
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Pengqi Guo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Kangli Du
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.,Department of Pharmacy, Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Weili Tang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.,Department of Pharmacy, Hospital of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Wei Du
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Aiguo Zeng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chun Chang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qiang Fu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
27
|
Liu Y, Zhong G, Liu Z, Meng M, Jiang Y, Ni L, Guo W, Liu F. Preparation of core–shell ion imprinted nanoparticles via photoinitiated polymerization at ambient temperature for dynamic removal of cobalt in aqueous solution. RSC Adv 2015. [DOI: 10.1039/c5ra13224j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, novel core–shell ion imprinted polymers were firstly synthesized by photoinitiated polymerization (P-IIPs) for the selective separation of Co(ii) in aqueous solution.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Guoxing Zhong
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| | - Zhanchao Liu
- School of Materials Science and Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| | - Minjia Meng
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Yinhua Jiang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Liang Ni
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Wenlu Guo
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| | - Fangfang Liu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| |
Collapse
|
28
|
Díaz-Bao M, Barreiro R, Miranda JM, Cepeda A, Regal P. Fast HPLC-MS/MS Method for Determining Penicillin Antibiotics in Infant Formulas Using Molecularly Imprinted Solid-Phase Extraction. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2015; 2015:959675. [PMID: 25785233 PMCID: PMC4345270 DOI: 10.1155/2015/959675] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/13/2015] [Accepted: 01/27/2015] [Indexed: 05/10/2023]
Abstract
The dairy cattle may suffer from different infections relatively often, but the inflammation of the mammary gland is very important to the farmer. These infections are frequently treated with penicillin antimicrobial drugs. However, their use may result in the presence of residues in animal products, such as milk powder and/or infant formulas, and it represents a potential risk for consumers. To monitor this, the EU has defined safe maximum residue limits (MRLs) through Commission Regulation (EU) number 37/2010. Although LC-MS is a trustful option for confirmation and quantification of antibiotics, the analysis of real samples with complex matrices frequently implies previous clean-up steps. In this work, precipitation polymerization has been used and different molecularly imprinted polymer (MIP) sorbents were tested and optimized for the fast and simultaneous solid-phase extraction (MISPE) of eight common penicillins (ampicillin, amoxicillin, oxacillin, penicillin G, penicillin V, cloxacillin, dicloxacillin, and nafcillin). The extracts were analyzed using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) and the applicability of these polymers as sorbents for the extraction of penicillins at MRL levels in milk powder (infant formulas) was proved. The limits of detection and quantification were below the legal tolerances, except for LOQ for oxacillin and cloxacillin.
Collapse
Affiliation(s)
- Mónica Díaz-Bao
- Department of Analytical Chemistry, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Rocío Barreiro
- Department of Analytical Chemistry, University of Santiago de Compostela, 27002 Lugo, Spain
| | - José Manuel Miranda
- Department of Analytical Chemistry, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Alberto Cepeda
- Department of Analytical Chemistry, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Patricia Regal
- Department of Analytical Chemistry, University of Santiago de Compostela, 27002 Lugo, Spain
- *Patricia Regal:
| |
Collapse
|
29
|
Zhao Y, Bi C, He X, Chen L, Zhang Y. Preparation of molecularly imprinted polymers based on magnetic carbon nanotubes for determination of sulfamethoxazole in food samples. RSC Adv 2015. [DOI: 10.1039/c5ra13183a] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
An efficient approach was developed to synthesize the imprinted magnetic carbon nanotubes nanocomposite and apply for sulfamethoxazole enrichment from milk and honey samples.
Collapse
Affiliation(s)
- Yingran Zhao
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Changfen Bi
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Xiwen He
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Langxing Chen
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Yukui Zhang
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| |
Collapse
|
30
|
Huang DL, Wang RZ, Liu YG, Zeng GM, Lai C, Xu P, Lu BA, Xu JJ, Wang C, Huang C. Application of molecularly imprinted polymers in wastewater treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:963-77. [PMID: 25280502 DOI: 10.1007/s11356-014-3599-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/11/2014] [Indexed: 05/13/2023]
Abstract
Molecularly imprinted polymers are synthetic polymers possessing specific cavities designed for target molecules. They are prepared by copolymerization of a cross-linking agent with the complex formed from a template and monomers that have functional groups specifically interacting with the template through covalent or noncovalent bonds. Subsequent removal of the imprint template leaves specific cavities whose shape, size, and functional groups are complementary to the template molecule. Because of their predetermined selectivity, molecularly imprinted polymers (MIPs) can be used as ideal materials in wastewater treatment. Especially, MIP-based composites offer a wide range of potentialities in wastewater treatment. This paper reviews the latest applications of MIPs in wastewater treatment, highlights the development of MIP-based composites in wastewater, and offers suggestions for future success in the field of MIPs.
Collapse
Affiliation(s)
- Dan-Lian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
32
|
Behbahani M, Bagheri S, Amini MM, Sadeghi Abandansari H, Reza Moazami H, Bagheri A. Application of a magnetic molecularly imprinted polymer for the selective extraction and trace detection of lamotrigine in urine and plasma samples. J Sep Sci 2014; 37:1610-6. [DOI: 10.1002/jssc.201400188] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/23/2014] [Accepted: 03/23/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Mohammad Behbahani
- Department of Chemistry; Faculty of Science, Shahid Beheshti University; Tehran Iran
| | - Saman Bagheri
- Department of Chemistry; Islamic Azad University, North-Tehran Branch; Tehran Iran
| | - Mostafa M. Amini
- Department of Chemistry; Faculty of Science, Shahid Beheshti University; Tehran Iran
| | | | - Hamid Reza Moazami
- Department of Chemistry; Faculty of Science, Shahid Beheshti University; Tehran Iran
| | - Akbar Bagheri
- Department of Chemistry; Faculty of Science, Shahid Beheshti University; Tehran Iran
| |
Collapse
|
33
|
Yakhkind MI, Tarantseva KR, Marynova MA, Storozhenko PA, Rasulov MM. Molecularly imprinted polymers: possible use for isolation of biosynthetic antibiotics. Russ Chem Bull 2014. [DOI: 10.1007/s11172-014-0548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Zhou H, Zhang Q, Wang X, Zhang Q, Ma L, Zhan Y. Systematic screening of common wastewater-marking pharmaceuticals in urban aquatic environments: implications for environmental risk control. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:7113-7129. [PMID: 24557805 DOI: 10.1007/s11356-014-2622-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/04/2014] [Indexed: 06/03/2023]
Abstract
In this report, we refer to pharmaceuticals that are widespread in the urban aquatic environment and that mainly originate from wastewater treatment plants or non-point source sewage as "wastewater-marking pharmaceuticals" (WWMPs). To some extent, they reflect the condition or trend of water contamination and also contribute to aquatic environmental risk assessment. The method reported here for screening typical WWMPs was proposed based on academic concerns about them and their concentrations present in the urban aquatic environment, as well as their properties of accumulation, persistence, eco-toxicity and related environmental risks caused by them. The screening system consisted of an initial screening system and a further screening system. In the former, pharmaceuticals were categorised into different evaluation levels, and in the latter, each pharmaceutical was given a normalised final evaluation score, which was the sum of every score for its properties of accumulation, persistence, eco-toxicity and environmental risk in the aquatic environment. The system was applied to 126 pharmaceuticals frequently detected in the aquatic environment. In the initial screening procedure, five pharmaceuticals were classified into the "high" category, 16 pharmaceuticals into the "medium" category, 15 pharmaceuticals into the "low" category and 90 pharmaceuticals into the "very low" category. Subsequently, further screening were conducted on 36 pharmaceuticals considered as being of "high", "medium" and "low" categories in the former system. We identified 7 pharmaceuticals with final evaluation scores of 1-10, 10 pharmaceuticals with scores of 11-15, 15 pharmaceuticals with scores from 16 to 20 and 4 pharmaceuticals with scores above 21. The results showed that this screening system could contribute to the effective selection of target WWMPs, which would be important for spatial-temporal dynamics, transference and pollution control of pharmaceuticals in the urban aquatic environment. However, there remains a number of pharmaceutical parameters with measured data gaps, such as organic carbon adsorption coefficients and bioconcentration factors, which, if filled, would improve the accuracy of the screening system.
Collapse
Affiliation(s)
- Haidong Zhou
- School of Environment and Architecture, University of Shanghai for Science and Technology, No. 516, Jungong Road, Shanghai, 200093, China,
| | | | | | | | | | | |
Collapse
|
35
|
Lei W, Xue M, Zhong X, Meng ZH, Zhang WB, Zhang LY. PREPARATION OF SURFACE-IMPRINTED SILICA USING METAL COORDINATION FOR THE SEPARATION OF PROTEINS. J LIQ CHROMATOGR R T 2013. [DOI: 10.1080/10826076.2012.717058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Wen Lei
- a School of Chemical Engineering and the Environment , Beijing Institute of Technology , Beijing , P. R. China
- b Shanghai Key Laboratory of Functional Materials Chemistry , East China University of Science and Technology , Shanghai , P. R. China
| | - Min Xue
- a School of Chemical Engineering and the Environment , Beijing Institute of Technology , Beijing , P. R. China
| | - Xu Zhong
- a School of Chemical Engineering and the Environment , Beijing Institute of Technology , Beijing , P. R. China
| | - Zi-Hui Meng
- a School of Chemical Engineering and the Environment , Beijing Institute of Technology , Beijing , P. R. China
| | - Wei-Bing Zhang
- b Shanghai Key Laboratory of Functional Materials Chemistry , East China University of Science and Technology , Shanghai , P. R. China
| | - Ling-Yi Zhang
- b Shanghai Key Laboratory of Functional Materials Chemistry , East China University of Science and Technology , Shanghai , P. R. China
| |
Collapse
|
36
|
Solid phase extraction of penicillins from milk by using sacrificial silica beads as a support for a molecular imprint. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-0980-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Mehdinia A, Baradaran Kayyal T, Jabbari A, Aziz-Zanjani MO, Ziaei E. Magnetic molecularly imprinted nanoparticles based on grafting polymerization for selective detection of 4-nitrophenol in aqueous samples. J Chromatogr A 2013; 1283:82-8. [DOI: 10.1016/j.chroma.2013.01.093] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/17/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
|
38
|
Xiao D, Dramou P, Xiong N, He H, Yuan D, Dai H, Li H, He X, Peng J, Li N. Preparation of molecularly imprinted polymers on the surface of magnetic carbon nanotubes with a pseudo template for rapid simultaneous extraction of four fluoroquinolones in egg samples. Analyst 2013; 138:3287-96. [DOI: 10.1039/c3an36755j] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Li X, Pan J, Dai J, Dai X, Ou H, Xu L, Li C, Zhang R. Removal of cefalexin using yeast surface-imprinted polymer prepared by atom transfer radical polymerization. J Sep Sci 2012; 35:2787-95. [DOI: 10.1002/jssc.201200397] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/20/2012] [Accepted: 06/24/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Xiuxiu Li
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang China
| | - Jiangdong Dai
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang China
| | - Xiaohui Dai
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang China
| | - Hongxiang Ou
- School of the Environment; Jiangsu University; Zhenjiang China
| | - Longcheng Xu
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang China
| | - Chunxiang Li
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang China
| | - Rongxian Zhang
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang China
| |
Collapse
|
40
|
Preparation of Trimethoprim Molecularly Imprinted Stir Bar Sorptive Extraction and Its Application for Trace Analysis of Trimethoprim and Sulfonamides in Complex Samples. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.1016/s1872-2040(11)60557-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Application of molecularly imprinted polymers in food analysis: clean-up and chromatographic improvements. OPEN CHEM 2012. [DOI: 10.2478/s11532-012-0016-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractSeveral natural and synthetic substances have been monitored in analytical laboratories worldwide to ensure food safety. Multiple residue detection (i.e., detection of multiple analytes in a single sample or matrix) is a main weakness of existing analytical methods, when fast and reliable results are required. Multianalyte approaches may save time and money in the food industry, and more importantly, they allow the quick release of food products into the marketplace. In addition, multianalyte approaches notably decrease the time required between sampling and analysis to meet legal requirements. However, to achieve analytical success, it is necessary to develop thorough clean-up procedures to extract analytes from the matrix. In addition, good chromatographic separation methods are also necessary to distinguish closely related analytes. Molecular imprinting technology (MIT) is an emerging, powerful tool for sample extraction and chromatography. First used for solid-phase extraction, molecularly imprinted polymers (MIPs) are also effective chromatographic phases for the separation of isomers and structurally related molecules. In recent years, a number of analytical methods utilising MIT have been applied for the analysis of residues in food, and existing methodologies have been improved. This review article describes the latest applications of MIT in the development of methodologies to monitor the presence of residues of veterinary products in foodstuff.
Collapse
|
42
|
Pan B, Qiu M, Wu M, Zhang D, Peng H, Wu D, Xing B. The opposite impacts of Cu and Mg cations on dissolved organic matter-ofloxacin interaction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 161:76-82. [PMID: 22230071 DOI: 10.1016/j.envpol.2011.09.040] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 05/31/2023]
Abstract
Dialysis equilibrium system was applied to investigate the roles of Cu(II) and Mg(II) on DOM-ofloxacin (OFL) interaction. The binding behavior of both cations and OFL were studied. The introduction of Cu(II) increased DOM-OFL interaction, while Mg(II) decreased DOM-OFL binding. Cu(II) binding to DOM was also increased by OFL, while Mg(II) binding was decreased by OFL. The change in OFL binding amount in the absence and presence of cations (ΔC(b)) was calculated and compared with cation binding (C(b)(m)). ΔC(b)/C(b)(m) was in the range of 1-3 for Cu(II) depending on the applied Cu concentration. Two ternary complexes of DOM-OFL-Cu and DOM-Cu-OFL were proposed. For Mg(II), ΔC(b)/C(b)(m) was around -1 at Mg(II) concentrations lower than 1 mM, but decreased up to -5 with increasing Mg(II) concentration. The competitive effect of Mg(II) to OFL was thus proposed. FTIR spectra were collected for mechanistic discussion.
Collapse
Affiliation(s)
- Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650093, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Guo H, Liu R, Yang J, Yang B, Liang X, Chu C. A novel click lysine zwitterionic stationary phase for hydrophilic interaction liquid chromatography. J Chromatogr A 2012; 1223:47-52. [DOI: 10.1016/j.chroma.2011.12.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 11/26/2022]
|
44
|
|
45
|
Luo X, Zhan Y, Huang Y, Yang L, Tu X, Luo S. Removal of water-soluble acid dyes from water environment using a novel magnetic molecularly imprinted polymer. JOURNAL OF HAZARDOUS MATERIALS 2011; 187:274-82. [PMID: 21269767 DOI: 10.1016/j.jhazmat.2011.01.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/27/2010] [Accepted: 01/05/2011] [Indexed: 05/26/2023]
Abstract
Novel magnetic and hydrophilic molecularly imprinted polymers (mag-MIPs) were prepared by an inverse emulsion-suspension polymerization to remove water-soluble acid dyes from contaminated water with 1-(α-methyl acrylate)-3-methylimidazolium bromide (1-MA-3MI-Br) being utilized as a new functional monomer. The thermal stability, chemical structure and magnetic property of the 1-MA-3MI-Br-mag-MIPs were characterized by the thermal-gravimetric analyzer (TGA), Fourier transform infrared spectrometer (FT-IR) and vibrating sample magnetometer (VSM), respectively. Moreover, effect of concentration and pH value of water-soluble acid dye solutions was optimized. Compared with the methyl acrylic acid and 4-vinylpyridine modified mag-MIPs, the 1-MA-3MI-Br-mag-MIPs showed enhanced removal efficiency. Kinetic studies depicted that the adsorption process on 1-MA-3MI-Br-mag-MIPs followed pseudo-second-order rate mechanism. Investigation results of 5 times removal-regeneration cycles by employing the 1-MA-3MI-Br-mag-MIPs showed that the resulting material was with high stability.
Collapse
Affiliation(s)
- Xubiao Luo
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China.
| | | | | | | | | | | |
Collapse
|
46
|
Ho HP, Lee RJ, Chen CY, Wang SR, Li ZG, Lee MR. Identification of new minor metabolites of penicillin G in human serum by multiple-stage tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:25-32. [PMID: 21154651 DOI: 10.1002/rcm.4823] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS) were applied to characterize drug metabolites. Although these two methods have overcome the identification and structural characterization of metabolites analysis, they remain time-consuming processes. In this study, a novel multiple-stage tandem mass spectrometric method (MS(n) ) was evaluated for identification and characterization of new minor metabolism profiling of penicillin G, one of the β-lactam antibiotics, in human serum. Seven minor metabolites including five phase I metabolites and two phase II metabolites of penicillin G were identified by using data-dependent LC/MS(n) screening in one chromatographic run. The accuracy masses of seven identified metabolites of penicillin G were also confirmed by mass spectral calibration software (MassWorks™). The proposed data-dependent LC/MS(n) method is a powerful tool to provide large amounts of the necessary structural information to characterize minor metabolite in metabolism profiling.
Collapse
Affiliation(s)
- Hsin-Pin Ho
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
47
|
Yin J, Meng Z, Zhu Y, Song M, Wang H. Dummy molecularly imprinted polymer for selective screening of trace bisphenols in river. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2011; 3:173-180. [PMID: 32938127 DOI: 10.1039/c0ay00540a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bisphenols (BPs) are potential endocrine-disrupting chemicals that may adversely affect human health and wildlife. The complexity of matrix encountered in real-world samples renders screening of trace BPs a formidable challenge. The present study highlighted the potential of molecularly imprinted solid-phase extraction (MISPE) for selective detection of trace bisphenols and their halogenated analogues in surface water. The template bleeding was observed at parts-per-billion levels, deteriorating the accuracy and precision of BPs quantification. To surmount this problem, a dummy MISPE strategy was proposed, in which bisphenol E (BPE) was selected as a dummy template for molecularly imprinted polymer (MIP) synthesis. Coupling this MISPE strategy with chromatographic analysis, a dummy MISPE-HPLC method was established. The linearity, precision, limit of detection (LOD) and recovery were then validated. The linearity of the calibration curve for each BP was observed over the range of 20-2000 ng L-1 (r > 0.998). LOD for each bisphenol was measured as low as 2.5-5.0 ng L-1. This technique was applied to simultaneous screening of BPs in the Qinghe River, and five bisphenols were found within the concentration range of 0-224 ng L-1 in river samples. The designed dummy MIP was superior to the commercial sorbents with regard to the selectivity, cross-reactivity, matrix removal efficiency and reusability. These merits enabled the applications of dummy MISPE for selective extraction and sensitive screening of BPs in environmental water samples. This method also provided a promising tool for monitoring the occurrence, distribution and fate of BPs in surface water.
Collapse
Affiliation(s)
- Junfa Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Zihui Meng
- School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081, China
| | - Yishan Zhu
- School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
48
|
Zhang X, Chen L, Xu Y, Wang H, Zeng Q, Zhao Q, Ren N, Ding L. Determination of β-lactam antibiotics in milk based on magnetic molecularly imprinted polymer extraction coupled with liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:3421-6. [DOI: 10.1016/j.jchromb.2010.10.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 10/12/2010] [Accepted: 10/27/2010] [Indexed: 11/15/2022]
|