1
|
Durr HA, Abri S, Salinas SD, Adkins-Travis K, Amini R, Shriver LP, Leipzig ND. Extracellular matrix repair and organization of chronic infected diabetic wounds treated with MACF hydrogels. Acta Biomater 2025:S1742-7061(25)00315-0. [PMID: 40318743 DOI: 10.1016/j.actbio.2025.04.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/25/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Diabetic foot ulcers (DFUs) are a multifactorial medical problem that require multifaceted approaches for effective healing. Most research on DFU healing has concentrated on promoting wound closure, with less emphasis on the quality of repaired tissue. This is problematic, however, since quality of the repaired tissues can have potential to improve wound healing outcomes and limit re-ulceration. If more functionally active dermis replaces the lost tissue, this can effectively maximize strength, organization, and overall structure of the plantar surface. Additionally, DFUs commonly show multi-strain infection, which further exacerbates the non-healing status of these wounds. Treatment of chronic wounds can be benefitted by application of oxygen and localized infection treatment, both can be achieved via our methacrylated chitosan-based (MACF) hydrogel. A non-healing diabetic infected wound model was used to explore extracellular matrix (ECM) organization, tensile strength, and metabolomic profiles at a 21-day endpoint as a marker for maturation and improved functionality of repaired tissues over normal scar formation. Effective remediation of infection was achieved with 14 days of polyhexamethylene biguanide (PHMB) application with improved wound repair compared to continuous treatment. Prolonged (21 day) application of PHMB showed resulting necrosis, although standard application times for patients with infected wounds can reach up to 28 continuous days. Biaxial mechanical analysis showed improved isotropic strength of infected tissues treated with MACF with PHMB stopped on D14, supported by collagen fiber orientation in second harmonics generation (SHG) imaging. Oxygenating MACF treatments also improved collagen deposition through the enhancement of the hydroxyproline fibrillary collagen synthesis pathway. These structural and mechanical results demonstrate a promising potential treatment for infected diabetic foot ulcers which shows improved dermal functionality. STATEMENT OF SIGNIFICANCE: Diabetic foot ulcers are a multifaceted problem in the medical field exacerbated by infection, with potential for gangrene, lower limb amputation, sepsis, or death. Current treatment regimens include oxygen therapy, physical debridement, and strong antibacterials. However, there is a lack of multi-faceted approaches, which we have designed in our oxygenating chitosan-based hydrogels capable of delivering antibiotics. Treatments currently focus on closure of wounds; however, functionality of regenerated tissues are limited due to fibrotic scar formation. Therefore, we have chosen to focus not only on closure, but also quality of regenerated tissues through mechanical testing and analysis of extracellular matrix composition and organization, with a goal of improving functionality of regenerated tissues.
Collapse
Affiliation(s)
- Hannah A Durr
- Integrated Biosciences Program, Department of Biology, University of Akron, Akron, OH, USA
| | - Shahrzad Abri
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, OH, USA
| | - Samuel D Salinas
- Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Kayla Adkins-Travis
- Department of Chemistry, Washington University, St. Louis, MO, USA; Center for Mass Spectrometry and Isotope Tracing, Washington University, St. Louis, MO, USA
| | - Rouzbeh Amini
- Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Leah P Shriver
- Department of Chemistry, Washington University, St. Louis, MO, USA; Center for Mass Spectrometry and Isotope Tracing, Washington University, St. Louis, MO, USA; Department of Medicine, Washington University, St. Louis, MO, USA
| | - Nic D Leipzig
- Integrated Biosciences Program, Department of Biology, University of Akron, Akron, OH, USA; Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, OH, USA.
| |
Collapse
|
2
|
Chen WR, Liao FY, Lu CY, Weng JR, Feng CH. Ice-bath-effervescence-assisted salting-out extraction combined with microwave-assisted derivatization for the detection of spermidine and spermine in whole blood. J Chromatogr A 2025; 1747:465807. [PMID: 40020286 DOI: 10.1016/j.chroma.2025.465807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Spermidine (Spd) and spermine (Spm) are biomarkers for various cancers. In the present study, we used 4-dimethylamino-1-naphthyl isothiocyanate as a derivatizing reagent to achieve microwave-assisted nucleophilic addition to Spd and Spm. We designed a strategy comprising an ice bath combined with salting out to increase the efficiency of Spd and Spm derivative extractions. Ice-bath-effervescence-assisted salting-out extraction (IEA-SOE) was conducted using a proton donor (citric acid) and an effervescent salt (KHCO3), which simultaneously provided salting-out and effervescence effects. The ice bath stopped the derivatization and improved the extraction efficiency of the IEA-SOE. Moreover, under optimized derivatization and extraction conditions, the total time required was only 10 min. Finally, the extraction layer was collected and analyzed using a narrow-bore liquid chromatograph equipped with a UV detector. The quantitative linear range was 1-200 μM, and the detection limit was 0.1 μM. The intra- and inter-batch relative standard deviations were in the range of 3.96-7.74 %, with relative errors in the range of -10.55-4.70 %. The proposed analytical method was successfully applied to determine Spd and Spm concentrations in whole-blood samples. Our method will serve as a useful tool for the accurate assessment of essential biomarkers in blood and subsequently, disease diagnosis.
Collapse
Affiliation(s)
- Wen-Rong Chen
- Master Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fang-Yi Liao
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chia-Hsien Feng
- Master Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
3
|
Sarkar S, Chittela RK, Chakraborty G. Fluorometric and colorimetric dual sensor for the quantification of cancer biomarker in complex biological fluid via dissociation of host assisted dye aggregate assembly. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 331:125799. [PMID: 39892362 DOI: 10.1016/j.saa.2025.125799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/22/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Present study explores the utilization of a host assisted aggregate assembly of a DNA intercalater cationic dye, ethidium bromide (EtBr) with polyanionic macrocyclic host, sulfated cyclodextrin (SCD) as colorimetric and fluorometric dual mode sensor for a cancer biomarker, spermine (Sp). The cationic dye, EtBr at the vicinity of the multi-negative SCD portal experiences strong electrostatic attraction, favoring their aggregation in an end to end fashion. Consequently the solution changes its color from orange to brick red with substantial reduction in the fluorescence intensity. Interestingly, in the presence of multi-cationic Sp, the dye aggregates are dissociated which restores the original color and fluorescence intensity of the dye solution. Such changes in the optical features been calibrated with the added Sp concentration to detect and quantify Sp with an astonishingly low detection limit of 0.28 μM in water, 0.59 μM in a 1 % human serum matrix and 5.9 µM in 10 % urine matrix. Furthermore, the ability of the system to undergo visible colour change enhances its reliability as a dual sensor, functioning as a fluorometric as well as a colorimetric tool for spermine detection with enhanced sensitivity, selectivity and rapid response.
Collapse
Affiliation(s)
- Soumyadeep Sarkar
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085 India; On Summer Internship from Indian Institute of Science Education and Research, Campus Road, Mohanpur 741246 Kolkata, India
| | - Rajani Kant Chittela
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai 400085 India; Homi Bhabha National Institute, Mumbai 400094 India
| | - Goutam Chakraborty
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085 India; Homi Bhabha National Institute, Mumbai 400094 India.
| |
Collapse
|
4
|
Mohajeri M, Mokhtari S, Khandan M, Ayatollahi SA, Kobarfard F, Hudaverdi A. "Enhancing polyamine enrichment from wheat germs: A study utilizing response surface methodology and liquid chromatography-mass spectrometry ". Food Chem 2025; 463:141408. [PMID: 39340906 DOI: 10.1016/j.foodchem.2024.141408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/02/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Wheat germ is one of the richest natural sources of polyamines, especially spermidine. Cell proliferation property of polyamines has given them inductive effects in the reduction of a variety of chronic diseases and fertility enhancement. Preparing a polyamine-rich extract powder from wheat germ for use in supplements is the aim of the present study. For the first time, the effects of three independent variables of clean-up replicate (A), extraction time (B), and solid-to-liquid ratio (C) on the response of total spermidine content (Y) were investigated using a central composite design optimizing polyamine enrichment. The optimal extraction conditions were 7 h, 3 clean-up replicates, and 1:4 solid to liquid ratio. This is the first production report of spermidine-enriched powder for encapsulation purposes. To obtain an acceptable rheological property, the polyamine-enriched extract was spray dried together with a selected group of excipients, among which glucose was evidenced as the best choice based on encapsulation properties.
Collapse
Affiliation(s)
- Maryam Mohajeri
- Iranian Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran; Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaya Mokhtari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Central Research Laboratories, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Khandan
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Anita Hudaverdi
- Department of Biological Sciences, University of California, San Diego, United States.
| |
Collapse
|
5
|
Hofer SJ, Daskalaki I, Bergmann M, Friščić J, Zimmermann A, Mueller MI, Abdellatif M, Nicastro R, Masser S, Durand S, Nartey A, Waltenstorfer M, Enzenhofer S, Faimann I, Gschiel V, Bajaj T, Niemeyer C, Gkikas I, Pein L, Cerrato G, Pan H, Liang Y, Tadic J, Jerkovic A, Aprahamian F, Robbins CE, Nirmalathasan N, Habisch H, Annerer E, Dethloff F, Stumpe M, Grundler F, Wilhelmi de Toledo F, Heinz DE, Koppold DA, Rajput Khokhar A, Michalsen A, Tripolt NJ, Sourij H, Pieber TR, de Cabo R, McCormick MA, Magnes C, Kepp O, Dengjel J, Sigrist SJ, Gassen NC, Sedej S, Madl T, De Virgilio C, Stelzl U, Hoffmann MH, Eisenberg T, Tavernarakis N, Kroemer G, Madeo F. Spermidine is essential for fasting-mediated autophagy and longevity. Nat Cell Biol 2024; 26:1571-1584. [PMID: 39117797 PMCID: PMC11392816 DOI: 10.1038/s41556-024-01468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Caloric restriction and intermittent fasting prolong the lifespan and healthspan of model organisms and improve human health. The natural polyamine spermidine has been similarly linked to autophagy enhancement, geroprotection and reduced incidence of cardiovascular and neurodegenerative diseases across species borders. Here, we asked whether the cellular and physiological consequences of caloric restriction and fasting depend on polyamine metabolism. We report that spermidine levels increased upon distinct regimens of fasting or caloric restriction in yeast, flies, mice and human volunteers. Genetic or pharmacological blockade of endogenous spermidine synthesis reduced fasting-induced autophagy in yeast, nematodes and human cells. Furthermore, perturbing the polyamine pathway in vivo abrogated the lifespan- and healthspan-extending effects, as well as the cardioprotective and anti-arthritic consequences of fasting. Mechanistically, spermidine mediated these effects via autophagy induction and hypusination of the translation regulator eIF5A. In summary, the polyamine-hypusination axis emerges as a phylogenetically conserved metabolic control hub for fasting-mediated autophagy enhancement and longevity.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Ioanna Daskalaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, Greece
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Jasna Friščić
- Department of Dermatology, Allergy and Venerology, University of Lübeck, Lübeck, Germany
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Melanie I Mueller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Mahmoud Abdellatif
- BioTechMed Graz, Graz, Austria
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Raffaele Nicastro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Sarah Masser
- BioTechMed Graz, Graz, Austria
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Sylvère Durand
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Alexander Nartey
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Mara Waltenstorfer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Sarah Enzenhofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Isabella Faimann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Verena Gschiel
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Thomas Bajaj
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Christine Niemeyer
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, Greece
| | - Lukas Pein
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Giulia Cerrato
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Hui Pan
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - YongTian Liang
- Institute for Biology and Genetics, Freie Universität Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Jelena Tadic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Andrea Jerkovic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Fanny Aprahamian
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Christine E Robbins
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Nitharsshini Nirmalathasan
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Hansjörg Habisch
- Research Unit Integrative Structural Biology, Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Elisabeth Annerer
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | | | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | | - Daniel E Heinz
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Daniela A Koppold
- Institute of Social Medicine, Epidemiology and Health Economics, corporate member of Freie Universität Berlin and Humboldt-Universität, Charité-Universitätsmedizin, Berlin, Germany
- Department of Pediatrics, Division of Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Internal Medicine and Nature-based Therapies, Immanuel Hospital Berlin, Berlin, Germany
| | - Anika Rajput Khokhar
- Institute of Social Medicine, Epidemiology and Health Economics, corporate member of Freie Universität Berlin and Humboldt-Universität, Charité-Universitätsmedizin, Berlin, Germany
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Michalsen
- Institute of Social Medicine, Epidemiology and Health Economics, corporate member of Freie Universität Berlin and Humboldt-Universität, Charité-Universitätsmedizin, Berlin, Germany
- Department of Internal Medicine and Nature-based Therapies, Immanuel Hospital Berlin, Berlin, Germany
| | - Norbert J Tripolt
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Thomas R Pieber
- BioTechMed Graz, Graz, Austria
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft, Graz, Austria
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mark A McCormick
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Christoph Magnes
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft, Graz, Austria
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Stephan J Sigrist
- Institute for Biology and Genetics, Freie Universität Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Nils C Gassen
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Simon Sedej
- BioTechMed Graz, Graz, Austria
- Division of Cardiology, Medical University of Graz, Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Tobias Madl
- BioTechMed Graz, Graz, Austria
- Research Unit Integrative Structural Biology, Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | | | - Ulrich Stelzl
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Markus H Hoffmann
- Department of Dermatology, Allergy and Venerology, University of Lübeck, Lübeck, Germany
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece.
- Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
6
|
Nanoff C, Yang Q, Hellinger R, Hermann M. Activation of the Calcium-Sensing Receptor by a Subfraction of Amino Acids Contained in Thyroid Drainage Fluid. ACS Pharmacol Transl Sci 2024; 7:1937-1950. [PMID: 39022353 PMCID: PMC11249632 DOI: 10.1021/acsptsci.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
Hypoparathyroidism is a common sequela of thyroid surgery; in this study, we aimed at exploring the pathogenesis behind it. The following premises suggest that wound fluid might be a causative agent. (i) Parathyroid hormone secretion is under feedback control by the calcium-sensing receptor, which responds to a diverse array of activating ligands. (ii) Postoperative hypoparathyroidism arises from a secretory deficiency of the parathyroid glands. Even in patients later unaffected by hypoparathyroidism, parathyroid hormone levels drop within hours after surgery. (iii) Wound fluid is bound to enter the tissue around the thyroid bed, where the parathyroid glands are located. Its composition is shaped by a series of proteolytic reactions triggered by wounding. Using thyroid drainage as a surrogate, we addressed the possibility that wound fluid contains compounds activating the calcium-sensing receptor. Drainage fluid ultrafiltrate was found to be rich in amino acids, and on separation by HPLC, compounds activating the calcium-sensing receptor partitioned with hydrophilic matter that rendered buffer acidic. The data show that glutamate and aspartate at millimolar concentrations supported activation of the calcium-sensing receptor, an effect contingent on low pH. In the presence of glutamate/aspartate, protons activated the calcium-sensing receptor with a pH50 of 6.1, and at pH 5, produced maximal activation. This synergistic mode of action was exclusive; glutamine/asparagine did not substitute for the acidic amino acids, nor did Ca2+ substitute for protons. NPS-2143, a negative allosteric receptor modulator completely blocked receptor activation by glutamate/aspartate and by fractionated drainage fluid. Thus, wound fluid may be involved in suppressing parathyroid hormone secretion.
Collapse
Affiliation(s)
- Christian Nanoff
- Centre
for Physiology and Pharmacology, Gaston H. Glock Laboratories for
Exploratory Drug Research, Medizinische
Universität Wien, Währinger Straße 13A, Vienna 1090, Austria
| | - Qiong Yang
- Centre
for Physiology and Pharmacology, Gaston H. Glock Laboratories for
Exploratory Drug Research, Medizinische
Universität Wien, Währinger Straße 13A, Vienna 1090, Austria
| | - Roland Hellinger
- Centre
for Physiology and Pharmacology, Gaston H. Glock Laboratories for
Exploratory Drug Research, Medizinische
Universität Wien, Währinger Straße 13A, Vienna 1090, Austria
| | - Michael Hermann
- Department
of Surgery, Vienna Hospital Association,
Klinik Landstraße, Juchgasse 25, Vienna 1030, Austria
| |
Collapse
|
7
|
Peng KW, Klotz A, Guven A, Kapadnis U, Ravipaty S, Tolstikov V, Vemulapalli V, Rodrigues LO, Li H, Kellogg MD, Kausar F, Rees L, Sarangarajan R, Schüle B, Langston W, Narain P, Narain NR, Kiebish MA. Identification and validation of N-acetylputrescine in combination with non-canonical clinical features as a Parkinson's disease biomarker panel. Sci Rep 2024; 14:10036. [PMID: 38693432 PMCID: PMC11063140 DOI: 10.1038/s41598-024-60872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/29/2024] [Indexed: 05/03/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder in which loss of dopaminergic neurons in the substantia nigra results in a clinically heterogeneous group with variable motor and non-motor symptoms with a degree of misdiagnosis. Only 3-25% of sporadic Parkinson's patients present with genetic abnormalities that could represent a risk factor, thus environmental, metabolic, and other unknown causes contribute to the pathogenesis of Parkinson's disease, which highlights the critical need for biomarkers. In the present study, we prospectively collected and analyzed plasma samples from 194 Parkinson's disease patients and 197 age-matched non-diseased controls. N-acetyl putrescine (NAP) in combination with sense of smell (B-SIT), depression/anxiety (HADS), and acting out dreams (RBD1Q) clinical measurements demonstrated combined diagnostic utility. NAP was increased by 28% in Parkinsons disease patients and exhibited an AUC of 0.72 as well as an OR of 4.79. The clinical and NAP panel demonstrated an area under the curve, AUC = 0.9 and an OR of 20.4. The assessed diagnostic panel demonstrates combinatorial utility in diagnosing Parkinson's disease, allowing for an integrated interpretation of disease pathophysiology and highlighting the use of multi-tiered panels in neurological disease diagnosis.
Collapse
Affiliation(s)
- Kuan-Wei Peng
- BPGbio, 500 Old Connecticut Path, Framingham, MA, 01701, USA
| | - Allison Klotz
- BPGbio, 500 Old Connecticut Path, Framingham, MA, 01701, USA
| | - Arcan Guven
- BPGbio, 500 Old Connecticut Path, Framingham, MA, 01701, USA
| | - Unnati Kapadnis
- BPGbio, 500 Old Connecticut Path, Framingham, MA, 01701, USA
| | - Shobha Ravipaty
- BPGbio, 500 Old Connecticut Path, Framingham, MA, 01701, USA
| | | | | | | | - Hongyan Li
- BPGbio, 500 Old Connecticut Path, Framingham, MA, 01701, USA
| | - Mark D Kellogg
- BPGbio, 500 Old Connecticut Path, Framingham, MA, 01701, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Department of Laboratory Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Farah Kausar
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Linda Rees
- Neurocrine Biosciences, San Diego, CA, 92130, USA
| | | | - Birgitt Schüle
- Department of Pathology, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - William Langston
- Department of Pathology, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Paula Narain
- BPGbio, 500 Old Connecticut Path, Framingham, MA, 01701, USA
| | - Niven R Narain
- BPGbio, 500 Old Connecticut Path, Framingham, MA, 01701, USA
| | | |
Collapse
|
8
|
Mohajeri M, Ayatollahi SA, Kobarfard F, Goli M, Khandan M, Mokhtari S, Khodadoost M. Wheat germ, a byproduct of the wheat milling industry, as a beneficial source of anti-aging polyamines: A quantitative comparison of various forms. Food Sci Nutr 2023; 11:7242-7254. [PMID: 37970387 PMCID: PMC10630827 DOI: 10.1002/fsn3.3650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 11/17/2023] Open
Abstract
Polyamines have received a lot of attention since the 1990s because of their anti-aging, anti-chronic disease, and proliferative effects. Wheat germ was reported as one of the natural sources of high polyamine, especially spermidine. The current study used three types of wheat germ: group A was industrially separated germ from whole grain, group B was the commercially available germinated wheat germ, and group C was manually separated wheat germ from germinated grain. The polyamine content of putrescine, spermidine, and spermine has been determined using a simplified isocratic LC-MS/MS method. An optimized extraction procedure was performed on all seven samples for obtaining a polyamine-enriched extract. The three dominant carbomylated polyamines were identified by analyzing the extracted samples in order to determine their relative abundance. Wheat germ powders contain the highest amount of polyamines (220-337 μg/g) of which spermidine is one of the most important. Germinated wheat grains, on the other hand, contain the least amount of this polyamine. The commercially available separated wheat germs are suggested as a good nutrition source of these polyamines.
Collapse
Affiliation(s)
- Maryam Mohajeri
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Department of Pharmacognosy, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Farzad Kobarfard
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Department of Medicinal Chemistry, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Goli
- Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | - Maryam Khandan
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Shaya Mokhtari
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Central Research LaboratoriesShahid Beheshti University of Medical SciencesTehranIran
| | - Mahmoud Khodadoost
- Department of Traditional Medicine, School of Traditional MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
9
|
Costa-Machado LF, Garcia-Dominguez E, McIntyre RL, Lopez-Aceituno JL, Ballesteros-Gonzalez Á, Tapia-Gonzalez A, Fabregat-Safont D, Eisenberg T, Gomez J, Plaza A, Sierra-Ramirez A, Perez M, Villanueva-Bermejo D, Fornari T, Loza MI, Herradon G, Hofer SJ, Magnes C, Madeo F, Duerr JS, Pozo OJ, Galindo MI, Del Pino I, Houtkooper RH, Megias D, Viña J, Gomez-Cabrera MC, Fernandez-Marcos PJ. Peripheral modulation of antidepressant targets MAO-B and GABAAR by harmol induces mitohormesis and delays aging in preclinical models. Nat Commun 2023; 14:2779. [PMID: 37188705 PMCID: PMC10185515 DOI: 10.1038/s41467-023-38410-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
Reversible and sub-lethal stresses to the mitochondria elicit a program of compensatory responses that ultimately improve mitochondrial function, a conserved anti-aging mechanism termed mitohormesis. Here, we show that harmol, a member of the beta-carbolines family with anti-depressant properties, improves mitochondrial function and metabolic parameters, and extends healthspan. Treatment with harmol induces a transient mitochondrial depolarization, a strong mitophagy response, and the AMPK compensatory pathway both in cultured C2C12 myotubes and in male mouse liver, brown adipose tissue and muscle, even though harmol crosses poorly the blood-brain barrier. Mechanistically, simultaneous modulation of the targets of harmol monoamine-oxidase B and GABA-A receptor reproduces harmol-induced mitochondrial improvements. Diet-induced pre-diabetic male mice improve their glucose tolerance, liver steatosis and insulin sensitivity after treatment with harmol. Harmol or a combination of monoamine oxidase B and GABA-A receptor modulators extend the lifespan of hermaphrodite Caenorhabditis elegans or female Drosophila melanogaster. Finally, two-year-old male and female mice treated with harmol exhibit delayed frailty onset with improved glycemia, exercise performance and strength. Our results reveal that peripheral targeting of monoamine oxidase B and GABA-A receptor, common antidepressant targets, extends healthspan through mitohormesis.
Collapse
Affiliation(s)
- Luis Filipe Costa-Machado
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM + CSIC, E28049, Madrid, Spain
- Kaertor Foundation, EMPRENDIA Building, Floor 2, Office 4, Campus Vida, E-15706, Santiago de Compostela, Spain, E-15706, Santiago de Compostela, Spain
- BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Esther Garcia-Dominguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jose Luis Lopez-Aceituno
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM + CSIC, E28049, Madrid, Spain
| | - Álvaro Ballesteros-Gonzalez
- Developmental Biology and Disease Models Group, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Andrea Tapia-Gonzalez
- Neural Plasticity Group, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - David Fabregat-Safont
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute - (IMIM), Barcelona, Spain
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12006, Castelló de la Plana, Castellón, Spain
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Jesús Gomez
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Adrian Plaza
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM + CSIC, E28049, Madrid, Spain
| | - Aranzazu Sierra-Ramirez
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM + CSIC, E28049, Madrid, Spain
| | - Manuel Perez
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - David Villanueva-Bermejo
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL UAM-CSIC), C/ Nicolás Cabrera, 9, P.O. Box. 28049, Madrid, Spain
| | - Tiziana Fornari
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL UAM-CSIC), C/ Nicolás Cabrera, 9, P.O. Box. 28049, Madrid, Spain
| | - María Isabel Loza
- Kaertor Foundation, EMPRENDIA Building, Floor 2, Office 4, Campus Vida, E-15706, Santiago de Compostela, Spain, E-15706, Santiago de Compostela, Spain
- BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gonzalo Herradon
- Lab. Pharmacology, Faculty of Pharmacy, Universidad CEU San Pablo, Urb. Montepríncipe, 28668, Boadilla del Monte, Madrid, Spain
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Christoph Magnes
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Janet S Duerr
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA
| | - Oscar J Pozo
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute - (IMIM), Barcelona, Spain
| | - Maximo-Ibo Galindo
- Developmental Biology and Disease Models Group, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain
- UPV-CIPF Joint Research Unit "Disease Mechanisms and Nanomedicine". Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Isabel Del Pino
- Neural Plasticity Group, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550, Alicante, Spain
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Diego Megias
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Jose Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Pablo J Fernandez-Marcos
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM + CSIC, E28049, Madrid, Spain.
| |
Collapse
|
10
|
Pentafluoropropionic Anhydride Derivatization and GC-MS Analysis of Histamine, Agmatine, Putrescine, and Spermidine: Effects of Solvents and Starting Column Temperature. Molecules 2023; 28:molecules28030939. [PMID: 36770607 PMCID: PMC9920471 DOI: 10.3390/molecules28030939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Gas chromatography-mass spectrometry (GC-MS) is useful for the quantitative determination of the polyamines spermidine (SPD) and putrescine (PUT) and of the biogenic amine agmatine (AGM) in biological samples after derivatization. This GC-MS method involves a two-step extraction with n-butanol and hydrochloric acid, derivatization with pentafluoropropionic anhydride (PFPA) in ethyl acetate, and extraction of the pentafluoropropionic (PFP) derivatives by toluene of SPD, PUT, and AGM. We wanted to extend this GC-MS method for the biogenic amine histamine (HA), but we faced serious problems that did not allow reliable quantitative analysis of HA. In the present work, we addressed this issue and investigated the derivatization of HA and the effects of toluene and ethyl acetate, two commonly used water-insoluble organic solvents in GC-MS, and oven temperature program. Derivatization of unlabelled HA (d0-HA) and deuterium-labelled HA (d4-HA) with PFPA in ethyl acetate (PFPA-EA, 1:4, v/v; 30 min, 65 °C) resulted in the formation of d0-HA-(PFP)2 and d4-HA-(PFP)2 derivatives. d4-HA and 13C4-SPD were used as internal standards for the amines after standardization. Considerable quantitative effects of toluene and ethyl acetate were observed. The starting GC column temperature was also found to influence considerably the GC-MS analysis of HA. Our study shows the simultaneous quantitative analysis of HA as HA-(PFP)2, AGM as AGM-(PFP)3, PUT as PUT-(PFP)2, and SPD as SPD-(PFP)3 derivatives requires the use of ethyl acetate for their extraction and injection into the GC-MS apparatus and a starting GC column temperature of 40 °C instead of 70 °C. The PFP derivatives of HA, AGM, PUT, and SPD were found to be stable in ethyl acetate for several hours at room temperature. Analytically satisfactory linearity, precision, and accuracy were observed for HA, AGM, PUT, and SPD in biologically relevant ranges (0 to 700 pmol). The limits of detection of AGM, PUT, and SPD were about two times lower in ethyl acetate compared to toluene (range, 1-22 fmol). The limits of detection were 1670 fmol for d0-HA and 557 fmol for d4-HA. Despite the improvements achieved in the study for HA, its analysis by GC-MS as a PFP derivative is challenging and less efficient than that of PUT, AGM, and SPD.
Collapse
|
11
|
Bui TI, Britt EA, Muthukrishnan G, Gill SR. Probiotic induced synthesis of microbiota polyamine as a nutraceutical for metabolic syndrome and obesity-related type 2 diabetes. Front Endocrinol (Lausanne) 2023; 13:1094258. [PMID: 36714575 PMCID: PMC9880209 DOI: 10.3389/fendo.2022.1094258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
The gut microbiota regulates multiple facets of host metabolism and immunity through the production of signaling metabolites, such as polyamines which are small organic compounds that are essential to host cell growth and lymphocyte activation. Polyamines are most abundant in the intestinal lumen, where their synthesis by the gut microbiota is influenced by microbiome composition and host diet. Disruption of the host gut microbiome in metabolic syndrome and obesity-related type 2 diabetes (obesity/T2D) results in potential dysregulation of polyamine synthesis. A growing body of evidence suggests that restoration of the dysbiotic gut microbiota and polyamine synthesis is effective in ameliorating metabolic syndrome and strengthening the impaired immune responses of obesity/T2D. In this review, we discuss existing studies on gut microbiome determinants of polyamine synthesis, polyamine production in obesity/T2D, and evidence that demonstrates the potential of polyamines as a nutraceutical in obesity/T2D hosts.
Collapse
Affiliation(s)
- Tina I. Bui
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Emily A. Britt
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Gowrishankar Muthukrishnan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, United States
| | - Steven R. Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
12
|
Mohajeri M, Ayatollahi SA, Goli M, Mokhtari S, Khandan M, Nasiri A, Kobarfard F. Comparison of the Polyamine Content of Five Spring Flowers with Wheat Germ as a Rich Anti-aging Polyamine Source for Preparation of Nutraceutical Products. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e134938. [PMID: 38116557 PMCID: PMC10728854 DOI: 10.5812/ijpr-134938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/18/2023] [Accepted: 04/01/2023] [Indexed: 12/21/2023]
Abstract
Polyamines prolong longevity due to their role in cell proliferation and are regarded as an essential group of anti-aging substances that reduce the risk of cardiovascular, neurological, and chronic inflammatory illnesses, as well as cancer. Because of its importance in growth and tissue regeneration, discovering polyamine-rich sources has gotten a lot of interest. Given the role of polyamines in controlling plant growth and physiological changes in the spring after cold winter stress, high polyamine concentrations in quickly growing plant tissues such as flowers, blossoms, and germs are possible. Based on this premise, five different spring flowers were selected and isolated from relevant plants, dried, and then quantified for the first time using an accurate, simple, and repeatable quantification method, liquid chromatography-tandem mass spectrometry. According to the amount of spermidine found in the samples investigated in this study, dried flower powders of Wisteria sinensis (244.18 µg/g), Lonicera caprifolium (217.28 µg/g), and Jasminum officinale (200.33 µg/g) appear to be a good source of spermidine. With additional research, W. sinensis dried flower powder is a good source of polyamines, whereas L. caprifolium and J. officinale dried flower powders are recommended as a rich source of spermidine for the preparation of natural supplements for people over the age of 30 to improve cell proliferation and anti-aging.
Collapse
Affiliation(s)
- Maryam Mohajeri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Goli
- Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Shaya Mokhtari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Central Research Laboratories, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Khandan
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Nasiri
- Vice-Chancellor for Food and Drug Affairs, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Hofer SJ, Simon AK, Bergmann M, Eisenberg T, Kroemer G, Madeo F. Mechanisms of spermidine-induced autophagy and geroprotection. NATURE AGING 2022; 2:1112-1129. [PMID: 37118547 DOI: 10.1038/s43587-022-00322-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/28/2022] [Indexed: 04/30/2023]
Abstract
Aging involves the systemic deterioration of all known cell types in most eukaryotes. Several recently discovered compounds that extend the healthspan and lifespan of model organisms decelerate pathways that govern the aging process. Among these geroprotectors, spermidine, a natural polyamine ubiquitously found in organisms from all kingdoms, prolongs the lifespan of fungi, nematodes, insects and rodents. In mice, it also postpones the manifestation of various age-associated disorders such as cardiovascular disease and neurodegeneration. The specific features of spermidine, including its presence in common food items, make it an interesting candidate for translational aging research. Here, we review novel insights into the geroprotective mode of action of spermidine at the molecular level, as we discuss strategies for elucidating its clinical potential.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Max Delbrück Center, Berlin, Germany
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
14
|
Velenosi TJ, Krausz KW, Hamada K, Dorsey TH, Ambs S, Takahashi S, Gonzalez FJ. Pharmacometabolomics reveals urinary diacetylspermine as a biomarker of doxorubicin effectiveness in triple negative breast cancer. NPJ Precis Oncol 2022; 6:70. [PMID: 36207498 PMCID: PMC9547066 DOI: 10.1038/s41698-022-00313-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022] Open
Abstract
Triple-negative breast cancer (TNBC) patients receive chemotherapy treatment, including doxorubicin, due to the lack of targeted therapies. Drug resistance is a major cause of treatment failure in TNBC and therefore, there is a need to identify biomarkers that determine effective drug response. A pharmacometabolomics study was performed using doxorubicin sensitive and resistant TNBC patient-derived xenograft (PDX) models to detect urinary metabolic biomarkers of treatment effectiveness. Evaluation of metabolite production was assessed by directly studying tumor levels in TNBC-PDX mice and human subjects. Metabolic flux leading to biomarker production was determined using stable isotope-labeled tracers in TNBC-PDX ex vivo tissue slices. Findings were validated in 12-h urine samples from control (n = 200), ER+/PR+ (n = 200), ER+/PR+/HER2+ (n = 36), HER2+ (n = 81) and TNBC (n = 200) subjects. Diacetylspermine was identified as a urine metabolite that robustly changed in response to effective doxorubicin treatment, which persisted after the final dose. Urine diacetylspermine was produced by the tumor and correlated with tumor volume. Ex vivo tumor slices revealed that doxorubicin directly increases diacetylspermine production by increasing tumor spermidine/spermine N1-acetyltransferase 1 expression and activity, which was corroborated by elevated polyamine flux. In breast cancer patients, tumor diacetylspermine was elevated compared to matched non-cancerous tissue and increased in HER2+ and TNBC compared to ER+ subtypes. Urine diacetylspermine was associated with breast cancer tumor volume and poor tumor grade. This study describes a pharmacometabolomics strategy for identifying cancer metabolic biomarkers that indicate drug response. Our findings characterize urine diacetylspermine as a non-invasive biomarker of doxorubicin effectiveness in TNBC.
Collapse
Affiliation(s)
- Thomas J Velenosi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA. .,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Keisuke Hamada
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tiffany H Dorsey
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
15
|
Luo Q, Shi R, Gong P, Liu Y, Chen W, Wang C. Biogenic amines in Huangjiu (Chinese rice wine): Formation, hazard, detection, and reduction. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Novel gluconate stabilized gold nanoparticles as a colorimetric sensor for quantitative evaluation of spermine. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Harms M, von Maltitz P, Groß R, Mayer B, Deniz M, Müller J, Münch J. Utilization of Aminoguanidine Prevents Cytotoxic Effects of Semen. Int J Mol Sci 2022; 23:ijms23158563. [PMID: 35955696 PMCID: PMC9369337 DOI: 10.3390/ijms23158563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
Studies of human semen in cell or tissue culture are hampered by the high cytotoxic activity of this body fluid. The components responsible for the cell damaging activity of semen are amine oxidases, which convert abundant polyamines, such as spermine or spermidine in seminal plasma into toxic intermediates. Amine oxidases are naturally present at low concentrations in seminal plasma and at high concentrations in fetal calf serum, a commonly used cell culture supplement. Here, we show that, in the presence of fetal calf serum, seminal plasma, as well as the polyamines spermine and spermidine, are highly cytotoxic to immortalized cells, primary blood mononuclear cells, and vaginal tissue. Thus, experiments investigating the effect of polyamines and seminal plasma on cellular functions should be performed with great caution, considering the confounding cytotoxic effects. The addition of the amine oxidase inhibitor aminoguanidine to fetal calf serum and/or the utilization of serum-free medium greatly reduced this serum-induced cytotoxicity of polyamines and seminal plasma in cell lines, primary cells, and tissues and, thus, should be implemented in all future studies analyzing the role of polyamines and semen on cellular functions.
Collapse
Affiliation(s)
- Mirja Harms
- Institute of Molecular Virology, University Ulm Medical Center, 89081 Ulm, Germany; (M.H.); (P.v.M.); (R.G.); (J.M.)
| | - Pascal von Maltitz
- Institute of Molecular Virology, University Ulm Medical Center, 89081 Ulm, Germany; (M.H.); (P.v.M.); (R.G.); (J.M.)
| | - Rüdiger Groß
- Institute of Molecular Virology, University Ulm Medical Center, 89081 Ulm, Germany; (M.H.); (P.v.M.); (R.G.); (J.M.)
| | - Benjamin Mayer
- Institute for Epidemiology and Medical Biometry, Ulm University, 89075 Ulm, Germany;
| | - Miriam Deniz
- Department of Gynecology and Obstetrics, Ulm University Hospital, 89075 Ulm, Germany;
| | - Janis Müller
- Institute of Molecular Virology, University Ulm Medical Center, 89081 Ulm, Germany; (M.H.); (P.v.M.); (R.G.); (J.M.)
- Institute of Virology, Philipps University of Marburg, 35043 Marburg, Germany
| | - Jan Münch
- Institute of Molecular Virology, University Ulm Medical Center, 89081 Ulm, Germany; (M.H.); (P.v.M.); (R.G.); (J.M.)
- Correspondence:
| |
Collapse
|
18
|
Langner M, Mateska I, Bechmann N, Wielockx B, Chavakis T, Alexaki VI, Peitzsch M. Liquid chromatography-tandem mass spectrometry based quantification of arginine metabolites including polyamines in different sample matrices. J Chromatogr A 2022; 1671:463021. [DOI: 10.1016/j.chroma.2022.463021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 11/26/2022]
|
19
|
Sternberg Z, Podolsky R, Nir A, Yu J, Nir R, Halvorsen SW, Quinn JF, Kaye J, Kolb C. Elevated spermidine serum levels in mild cognitive impairment, a potential biomarker of progression to Alzheimer dementia, a pilot study. J Clin Neurosci 2022; 100:169-174. [PMID: 35487023 DOI: 10.1016/j.jocn.2022.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/07/2022] [Accepted: 04/22/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND/AIMS There is a close link between iron and polyamine biosynthesis and metabolism. In a recent study, we reported alterations in the serum levels of hepcidin and other iron-related proteins in Alzheimer's disease (AD) patients (Sternberg et al., 2017). Based on these findings, this pilot study compared serum levels of one of the polyamines, Spermidine, between AD, mild cognitive impairment (MCI), and control subjects, correlating the levels with the existing clinical and neuroimaging data. METHODS This cross-sectional study measured Spermidine levels in frozen serum samples of 43 AD patients, 12 MCI patients, and 21 age-matched controls, provided by the Oregon Alzheimer's Disease Center Bio-repository, using enzyme-linked immunosorbent assay. RESULTS MCI patients showed significantly higher mean Spermidine serum levels compared to controls (P = 0.01), with a non-significant trend for higher Spermidine serum levels in pure AD (P = 0.08) participants compared to controls. Spermidine serum levels correlated with the values of cognitive assessment tests including MMSE (r = -0.705, P = 0.003), CDR (r = 0.751, P = 0.002), and CDR-SOB (r = 0.704, P = 0.007), in "pure" AD subgroup, suggesting that higher Spermidine serum levels in MCI can be a potential biomarker of conversion to dementia in subjects with AD underlying pathology. Furthermore, Spermidine serum levels correlated with serum levels of the chief iron regulatory protein, hepcidin in AD participants with a more advanced disease stage, indicated by MMSE (strata of 8-19, P = 0.02), and CDR-SOB (strata of 6-12, P = 0.03). CONCLUSION Studies with larger cohort are warranted for defining the role of Spermidine in AD pathophysiology, and the utility of polyamines as biomarkers of progression of MCI to AD.
Collapse
Affiliation(s)
- Zohara Sternberg
- Department of Neurology, Stroke Center, Buffalo Medical Center, Buffalo, NY, USA.
| | - Rebecca Podolsky
- Department of Neurology, Stroke Center, Buffalo Medical Center, Buffalo, NY, USA
| | | | - Jihnhee Yu
- Department of Biostatistics, University of Buffalo, Buffalo, NY, USA
| | | | - Stanley W Halvorsen
- Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY, USA
| | - Joseph F Quinn
- Layton Aging & Alzheimer's Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Jeffrey Kaye
- Layton Aging & Alzheimer's Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Channa Kolb
- Department of Neurology, Stroke Center, Buffalo Medical Center, Buffalo, NY, USA
| |
Collapse
|
20
|
Zhong AB, Muti IH, Eyles SJ, Vachet RW, Sikora KN, Bobst CE, Calligaris D, Stopka SA, Agar JN, Wu CL, Mino-Kenudson MA, Agar NYR, Christiani DC, Kaltashov IA, Cheng LL. Multiplatform Metabolomics Studies of Human Cancers With NMR and Mass Spectrometry Imaging. Front Mol Biosci 2022; 9:785232. [PMID: 35463966 PMCID: PMC9024335 DOI: 10.3389/fmolb.2022.785232] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/02/2022] [Indexed: 11/22/2022] Open
Abstract
The status of metabolomics as a scientific branch has evolved from proof-of-concept to applications in science, particularly in medical research. To comprehensively evaluate disease metabolomics, multiplatform approaches of NMR combining with mass spectrometry (MS) have been investigated and reported. This mixed-methods approach allows for the exploitation of each individual technique's unique advantages to maximize results. In this article, we present our findings from combined NMR and MS imaging (MSI) analysis of human lung and prostate cancers. We further provide critical discussions of the current status of NMR and MS combined human prostate and lung cancer metabolomics studies to emphasize the enhanced metabolomics ability of the multiplatform approach.
Collapse
Affiliation(s)
- Anya B. Zhong
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Isabella H. Muti
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Stephen J. Eyles
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Richard W. Vachet
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Kristen N. Sikora
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Cedric E. Bobst
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA, United States
| | - David Calligaris
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sylwia A. Stopka
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jeffery N. Agar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States
| | - Chin-Lee Wu
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Nathalie Y. R. Agar
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Dana-Farber Cancer Institute, Boston, MA, United States
| | - David C. Christiani
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Igor A. Kaltashov
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Leo L. Cheng
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Karacay C, Prietl B, Harer C, Ehall B, Haudum CW, Bounab K, Franz J, Eisenberg T, Madeo F, Kolb D, Hingerl K, Hausl M, Magnes C, Mautner SI, Kotzbeck P, Pieber TR. The effect of spermidine on autoimmunity and beta cell function in NOD mice. Sci Rep 2022; 12:4502. [PMID: 35296698 PMCID: PMC8927410 DOI: 10.1038/s41598-022-08168-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
Spermidine is a natural polyamine which was shown to prolong lifespan of organisms and to improve cardiac and cognitive function. Spermidine was also reported to reduce inflammation and modulate T-cells. Autophagy is one of the mechanisms that spermidine exerts its effect. Autophagy is vital for β-cell homeostasis and autophagy deficiency was reported to lead to exacerbated diabetes in mice. The effect of spermidine in type 1 diabetes pathogenesis remains to be elucidated. Therefore, we examined the effect of spermidine treatment in non-obese diabetic (NOD) mice, a mouse model for type 1 diabetes. NOD mice were given untreated or spermidine-treated water ad libitum from 4 weeks of age until diabetes onset or 35 weeks of age. We found that treatment with 10 mM spermidine led to higher diabetes incidence in NOD mice despite unchanged pancreatic insulitis. Spermidine modulated tissue polyamine levels and elevated signs of autophagy in pancreas. Spermidine led to increased proportion of pro-inflammatory T-cells in pancreatic lymph nodes (pLN) in diabetic mice. Spermidine elevated the proportion of regulatory T-cells in early onset mice, whereas it reduced the proportion of regulatory T-cells in late onset mice. In summary spermidine treatment led to higher diabetes incidence and elevated proportion of T-cells in pLN.
Collapse
Affiliation(s)
- Ceren Karacay
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Barbara Prietl
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- CBmed GmbH- Center for Biomarker Research in Medicine, Graz, Austria
| | - Clemens Harer
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Barbara Ehall
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Christoph W Haudum
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- CBmed GmbH- Center for Biomarker Research in Medicine, Graz, Austria
| | - Kaddour Bounab
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Joakim Franz
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Tobias Eisenberg
- BioTechMed Graz, Graz, Austria
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Frank Madeo
- BioTechMed Graz, Graz, Austria
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research (ZMF), Medical University of Graz, Graz, Austria
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Kerstin Hingerl
- Core Facility Ultrastructure Analysis, Center for Medical Research (ZMF), Medical University of Graz, Graz, Austria
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Markus Hausl
- Joanneum Research Forschungsgesellschaft mbH HEALTH - Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Christoph Magnes
- Joanneum Research Forschungsgesellschaft mbH HEALTH - Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Selma I Mautner
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Joanneum Research Forschungsgesellschaft mbH HEALTH - Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Petra Kotzbeck
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University of Graz, Graz, Austria
- Joanneum Research Forschungsgesellschaft mbH COREMED - Cooperative Centre for Regenerative Medicine, Graz, Austria
| | - Thomas R Pieber
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
- CBmed GmbH- Center for Biomarker Research in Medicine, Graz, Austria.
- Joanneum Research Forschungsgesellschaft mbH HEALTH - Institute for Biomedicine and Health Sciences, Graz, Austria.
| |
Collapse
|
22
|
Gassen NC, Papies J, Bajaj T, Emanuel J, Dethloff F, Chua RL, Trimpert J, Heinemann N, Niemeyer C, Weege F, Hönzke K, Aschman T, Heinz DE, Weckmann K, Ebert T, Zellner A, Lennarz M, Wyler E, Schroeder S, Richter A, Niemeyer D, Hoffmann K, Meyer TF, Heppner FL, Corman VM, Landthaler M, Hocke AC, Morkel M, Osterrieder N, Conrad C, Eils R, Radbruch H, Giavalisco P, Drosten C, Müller MA. SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals. Nat Commun 2021; 12:3818. [PMID: 34155207 PMCID: PMC8217552 DOI: 10.1038/s41467-021-24007-w] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
Viruses manipulate cellular metabolism and macromolecule recycling processes like autophagy. Dysregulated metabolism might lead to excessive inflammatory and autoimmune responses as observed in severe and long COVID-19 patients. Here we show that SARS-CoV-2 modulates cellular metabolism and reduces autophagy. Accordingly, compound-driven induction of autophagy limits SARS-CoV-2 propagation. In detail, SARS-CoV-2-infected cells show accumulation of key metabolites, activation of autophagy inhibitors (AKT1, SKP2) and reduction of proteins responsible for autophagy initiation (AMPK, TSC2, ULK1), membrane nucleation, and phagophore formation (BECN1, VPS34, ATG14), as well as autophagosome-lysosome fusion (BECN1, ATG14 oligomers). Consequently, phagophore-incorporated autophagy markers LC3B-II and P62 accumulate, which we confirm in a hamster model and lung samples of COVID-19 patients. Single-nucleus and single-cell sequencing of patient-derived lung and mucosal samples show differential transcriptional regulation of autophagy and immune genes depending on cell type, disease duration, and SARS-CoV-2 replication levels. Targeting of autophagic pathways by exogenous administration of the polyamines spermidine and spermine, the selective AKT1 inhibitor MK-2206, and the BECN1-stabilizing anthelmintic drug niclosamide inhibit SARS-CoV-2 propagation in vitro with IC50 values of 136.7, 7.67, 0.11, and 0.13 μM, respectively. Autophagy-inducing compounds reduce SARS-CoV-2 propagation in primary human lung cells and intestinal organoids emphasizing their potential as treatment options against COVID-19.
Collapse
Affiliation(s)
- Nils C Gassen
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany.
| | - Jan Papies
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Thomas Bajaj
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Jackson Emanuel
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | | | - Robert Lorenz Chua
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Nicolas Heinemann
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Christine Niemeyer
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Friderike Weege
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Katja Hönzke
- Molecular Imaging of Immunoregulation, Medizinische Klinik m.S. Infektiologie & Pneumologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tom Aschman
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel E Heinz
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Katja Weckmann
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Tim Ebert
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Andreas Zellner
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Martina Lennarz
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Simon Schroeder
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Anja Richter
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Karen Hoffmann
- Molecular Imaging of Immunoregulation, Medizinische Klinik m.S. Infektiologie & Pneumologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas F Meyer
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, UKSH, Christian Albrechts University of Kiel, Kiel, Germany
| | - Frank L Heppner
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- IRI Life Sciences, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas C Hocke
- Molecular Imaging of Immunoregulation, Medizinische Klinik m.S. Infektiologie & Pneumologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Morkel
- Institute for Pathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nikolaus Osterrieder
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Christian Conrad
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
- Data Science Unit, Heidelberg University Hospital and BioQuant, Heidelberg, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Marcel A Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany.
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.
| |
Collapse
|
23
|
Ploskonos MV. Polyamines of biological fluids of the body and the diagnostic value of their determination in clinical and laboratory researches (review of literature). Klin Lab Diagn 2021; 66:197-204. [PMID: 33878239 DOI: 10.51620/0869-2084-2021-66-4-197-204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The review provides the analysis of the content of the main polyamines (PA) - spermine, spermidine and putrescine in the most important biological fluids of the human body (blood, urine, seminal fluid, etc.). The assessment of their diagnostic and prognostic value in clinical practice is carried out. The novelty and value of assessing of the level of PA metabolites as new diagnostic markers of various diseases has been shown. Among such diseases as cancer, stroke, renal failure, for which the search for early markers is especially relevant. This survey data can be of practical interest and taken into account in estimating the level of PA and its derivatives in clinical and laboratory reseaches. The literature search for the review was carried out using the Scopus, Web of Science, MedLine, RSCI databases.
Collapse
Affiliation(s)
- M V Ploskonos
- Astrakhan State Medical University Health Ministry of Russian Federation
| |
Collapse
|
24
|
Schroeder S, Hofer SJ, Zimmermann A, Pechlaner R, Dammbrueck C, Pendl T, Marcello GM, Pogatschnigg V, Bergmann M, Müller M, Gschiel V, Ristic S, Tadic J, Iwata K, Richter G, Farzi A, Üçal M, Schäfer U, Poglitsch M, Royer P, Mekis R, Agreiter M, Tölle RC, Sótonyi P, Willeit J, Mairhofer B, Niederkofler H, Pallhuber I, Rungger G, Tilg H, Defrancesco M, Marksteiner J, Sinner F, Magnes C, Pieber TR, Holzer P, Kroemer G, Carmona-Gutierrez D, Scorrano L, Dengjel J, Madl T, Sedej S, Sigrist SJ, Rácz B, Kiechl S, Eisenberg T, Madeo F. Dietary spermidine improves cognitive function. Cell Rep 2021; 35:108985. [PMID: 33852843 DOI: 10.1016/j.celrep.2021.108985] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 02/08/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Decreased cognitive performance is a hallmark of brain aging, but the underlying mechanisms and potential therapeutic avenues remain poorly understood. Recent studies have revealed health-protective and lifespan-extending effects of dietary spermidine, a natural autophagy-promoting polyamine. Here, we show that dietary spermidine passes the blood-brain barrier in mice and increases hippocampal eIF5A hypusination and mitochondrial function. Spermidine feeding in aged mice affects behavior in homecage environment tasks, improves spatial learning, and increases hippocampal respiratory competence. In a Drosophila aging model, spermidine boosts mitochondrial respiratory capacity, an effect that requires the autophagy regulator Atg7 and the mitophagy mediators Parkin and Pink1. Neuron-specific Pink1 knockdown abolishes spermidine-induced improvement of olfactory associative learning. This suggests that the maintenance of mitochondrial and autophagic function is essential for enhanced cognition by spermidine feeding. Finally, we show large-scale prospective data linking higher dietary spermidine intake with a reduced risk for cognitive impairment in humans.
Collapse
Affiliation(s)
- Sabrina Schroeder
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Raimund Pechlaner
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - G Mark Marcello
- Department of Anatomy and Histology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Viktoria Pogatschnigg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Melanie Müller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Verena Gschiel
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Selena Ristic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Keiko Iwata
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Research Center for Child Mental Development, University of Fukui, 910-1193 Fukui, Japan; Department of Biology, University of Padova, 35121 Padova, Italy
| | - Gesa Richter
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biochemistry Medical University of Graz, 8010 Graz, Austria
| | - Aitak Farzi
- Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Division of Pharmacology, Medical University of Graz (MUG), 8010 Graz, Austria
| | - Muammer Üçal
- Department of Neurosurgery, RU Experimental Neurotraumatology, Medical University Graz, 8036 Graz, Austria
| | - Ute Schäfer
- Department of Neurosurgery, RU Experimental Neurotraumatology, Medical University Graz, 8036 Graz, Austria
| | - Michael Poglitsch
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Philipp Royer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Ronald Mekis
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Marlene Agreiter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Regine C Tölle
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Péter Sótonyi
- Department of Anatomy and Histology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Johann Willeit
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | | | | | | | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michaela Defrancesco
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Josef Marksteiner
- Department of Psychiatry and Psychotherapy A, Hall State Hospital, 6060 Hall in Tirol, Austria
| | - Frank Sinner
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria; Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Christoph Magnes
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria
| | - Thomas R Pieber
- BioTechMed-Graz, 8010 Graz, Austria; HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria; Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Peter Holzer
- Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Division of Pharmacology, Medical University of Graz (MUG), 8010 Graz, Austria
| | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Descartes, Université Paris Diderot, Université Sorbonne Paris Cité, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94 805 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Suzhou Institute for Systems Biology, Chinese Academy of Sciences, 215123 Suzhou, China; Department of Women's and Children's Health, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | | | - Luca Scorrano
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Biology, University of Padova, 35121 Padova, Italy
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Tobias Madl
- BioTechMed-Graz, 8010 Graz, Austria; Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biochemistry Medical University of Graz, 8010 Graz, Austria
| | - Simon Sedej
- BioTechMed-Graz, 8010 Graz, Austria; Department of Cardiology, Medical University of Graz, 8036 Graz, Austria; Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Stephan J Sigrist
- Institute of Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria; VASCage, Research Centre on Vascular Ageing and Stroke, 6020 Innsbruck, Austria.
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria.
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria.
| |
Collapse
|
25
|
Qin ZN, Yu QW, Zhou P, Feng YQ. C 60-based chemical labeling strategy for the determination of polyamines in biological samples using matrix-assisted laser desorption/ionization mass spectrometry. Talanta 2021; 224:121790. [PMID: 33379019 DOI: 10.1016/j.talanta.2020.121790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
Bioactive polyamines play important roles in many biological processes such as gene expression, cell growth, protein synthesis, and signal transduction. Accurate determination of polyamines is helpful for studying their biological functions. Herein, a C60-based chemical labeling strategy was proposed for the determination of polyamines (putrescine, cadaverine, spermidine, and spermine) in biological samples using matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). An N-hydroxysuccinimide ester functionalized C60 (NHS-C60) was used as a labeling reagent and the m/z of the labeled polyamines reached up to more than 900 Da, which avoided matrix interferences in the low m/z region. In addition, as NHS-C60 derivatives, mono- and bis-substituted polyamines were produced simultaneously, which benefited the qualitative analysis of polyamines. The analytical method was validated using NHS-C60 labeled polyamines in cells and mice feces samples. Good linearities were obtained with correlation coefficients ranging from 0.9786 to 0.9982. The limits of quantification were in the range of 0.68-1.48 pmol. Good reproducibility and reliability of our proposed method were confirmed by intra- and inter-day precisions ranged from 2.8 to 16.6%, and the recoveries ranged between 81.8 and 119.9%. Finally, the proposed method was applied to determine polyamines in cells and mice feces. Three polyamines were detected in the cells, and the contents of cadaverine and spermidine in the feces of high-fat diet mice were found to be significantly lower than those in the normal diet mice. The results show that the proposed NHS-C60 labeling coupled with MALDI MS strategy is suitable for the determination of polyamines in biological samples.
Collapse
Affiliation(s)
- Zhang-Na Qin
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Qiong-Wei Yu
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Ping Zhou
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
26
|
Coradduzza D, Azara E, Medici S, Arru C, Solinas T, Madonia M, Zinellu A, Carru C. A preliminary study procedure for detection of polyamines in plasma samples as a potential diagnostic tool in prostate cancer. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1162:122468. [PMID: 33370684 DOI: 10.1016/j.jchromb.2020.122468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Many scientific contributions recognize polyamines as important biomarkers for the diagnosis and treatment of cancer. Several authors have suggested the use of LC/MS instruments as an elective method for their measurement, providing good detection limits and specificity; however, many of these procedures suffer from long chromatographic run times, high detection limits and lengthy and expensive sample pre-treatment steps. METHODS UHPLC coupled with high-resolution Orbitrap mass spectrometry (UHPLC/Orbitrap) was set up for the identification and separation ofpolyamines, together with some of their metabolites and catabolites, in the plasma of healthy and prostate cancer human patients. Thirteen metabolites were measured in deproteinized plasma samples through a new analytical approach known as the parallel reaction monitoring (PRM) for targeted quantitative analysis. RESULTS The calibration curves were linear and R2 ranged from 0.9913 to 0.9995 for all analytes. LOQ values are between 0.382 and 25 ng mL-1 and LOD values are between 0.109 and 7.421 ng mL-1. The method shows an accuracy and precision for intra-day and inter-day < 15% RSD and R.E.% for all the QC samples. The matrix effect calculated at different concentration levels did not exceed 15%. CONCLUSIONS The method developed provides rapid, easy and robust identification and measurement of a wide range of polyamines, and some of their metabolites that can be evaluated as biomarkers to predict the clinical features of prostate cancer patients, avoiding invasive diagnostic procedures.
Collapse
Affiliation(s)
| | - Emanuela Azara
- Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Italy
| | - Caterina Arru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Tatiana Solinas
- Urologic Clinic, Dep. of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Massimo Madonia
- Urologic Clinic, Dep. of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
27
|
Su X, Li X, Wang H, Cai Z. Simultaneous determination of methionine cycle metabolites, urea cycle intermediates and polyamines in serum, urine and intestinal tissue by using UHPLC-MS/MS. Talanta 2020; 224:121868. [PMID: 33379078 DOI: 10.1016/j.talanta.2020.121868] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/08/2023]
Abstract
Metabolites of methionine cycle, urea cycle and polyamine metabolism play important roles in regulating the metabolic processes and the development of diseases. It is rewarding and interesting to monitor the levels of the above metabolites in biological matrices to investigate pathological mechanisms. However, their quantitation is still unsatisfactory due to the poor retention behavior of the analytes on the traditional reversed-phase column. And never a single analytical method simultaneously quantify these three classes of metabolites. Besides, the concentrations of some metabolites are too low to be detected in the biological samples. In this study, we developed a UHPLC-ESI-MS/MS method to simultaneously determine the levels of 14 metabolites, including 4 methionine metabolism metabolites (methionine, homocysteine, S-adenosylmethionine and S-adenosylhomocysteine), 3 urea cycle intermediates (arginine, citrulline and ornithine) and 7 polyamines (putrescine, spermidine, spermine, N1-acetylputrescine, N1-acetylspermidine, N1-acetylspermine and N1,N12-diacetylspermine). The chromatographic separation was performed on the BEH amide column within 14 min using water and acetonitrile (both with 0.1% formic acid) as the mobile phases. The results of method validation showed good selectivity, linearity (r2 > 0.99), recovery (93.1%-112.1%), inter-day and intra-day precision (RSD < 13.6% and RSD < 11.0%, respectively), stability (RSD < 15.1%) and matrix effect (76.0%-113.2%). The method is simple, quick and sensitive without derivatization processes and the use of ion-pairing reagents. This approach was successfully applied in urine, serum and tissue matrices, as well as in identifying potential biomarkers for hyperthyroidism and hypothyroidism. The method is promising to provide more information on pathophysiological mechanisms in metabolomics study.
Collapse
Affiliation(s)
- Xiuli Su
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Xiaona Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China; Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
| | - Haojiang Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China.
| |
Collapse
|
28
|
Anti-GD2 induced allodynia in rats can be reduced by pretreatment with DFMO. PLoS One 2020; 15:e0236115. [PMID: 32697811 PMCID: PMC7375533 DOI: 10.1371/journal.pone.0236115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Background Anti-GD2 therapy with dinutuximab is effective in improving the survival of high-risk neuroblastoma patients in remission and after relapse. However, allodynia is the major dose-limiting side effect, hindering its use for neuroblastoma patients at higher doses and for other GD2-expressing malignancies. As polyamines can enhance neuronal sensitization, including development of allodynia and other forms of pathological pain, we hypothesized that polyamine depletion might prove an effective strategy for relief of anti-GD2 induced allodynia. Method Sprague-Dawley rats were allowed to drink water containing various concentrations of difluoromethylornithine (DFMO) for several days prior to behavioral testing. Anti-GD2 (14G2a) was injected into the tail vein of lightly sedated animals and basal mechanical hindpaw withdrawal threshold assessed by von Frey filaments. Endpoint serum DFMO and polyamines, assessed 24h after 14G2a injection, were measured by HPLC and mass spectrometry. Results An i.v. injection of 14G2a causes increased paw sensitivity to light touch in this model, a response that closely mimics patient allodynia. Animals allowed to drink water containing 1% DFMO exhibited a significant reduction of 14G2a-induced pain sensitivity (allodynia). Increasing the dosage of the immunotherapeutic increased the magnitude (intensity and duration) of the pain behavior. Administration of DFMO attenuated the enhanced sensitivity. Consistent with the known actions of DFMO on ornithine decarboxylase (ODC), serum putrescene and spermidine levels were significantly reduced by DFMO, though the decrease in endpoint polyamine levels did not directly correlate with the behavioral changes. Conclusions Our results demonstrate that DFMO is an effective agent for reducing anti-GD2 -induced allodynia. Using DFMO in conjunction with dinutuximab may allow for dose escalation in neuroblastoma patients. The reduction in pain may be sufficient to allow new patient populations to utilize this therapy given the more acceptable side effect profile. Thus, DFMO may be an important adjunct to anti-GD2 immunotherapy in addition to a role as a potential anti-cancer therapeutic.
Collapse
|
29
|
Ahrendt N, Steingrüber T, Rajces A, Lopez-Rodriguez E, Eisenberg T, Magnes C, Madeo F, Sedej S, Schmiedl A, Ochs M, Mühlfeld C, Schipke J. Spermidine supplementation and voluntary activity differentially affect obesity-related structural changes in the mouse lung. Am J Physiol Lung Cell Mol Physiol 2020; 319:L312-L324. [PMID: 32521164 DOI: 10.1152/ajplung.00423.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obesity is associated with lung function impairment and respiratory diseases; however, the underlying pathophysiological mechanisms are still elusive, and therapeutic options are limited. This study examined the effects of prolonged excess fat intake on lung mechanics and microstructure and tested spermidine supplementation and physical activity as intervention strategies. C57BL/6N mice fed control diet (10% fat) or high-fat diet (HFD; 60% fat) were left untreated or were supplemented with 3 mM spermidine, had access to running wheels for voluntary activity, or a combination of both. After 30 wk, lung mechanics was assessed, and left lungs were analyzed by design-based stereology. HFD exerted minor effects on lung mechanics and resulted in higher body weight and elevated lung, air, and septal volumes. The number of alveoli was higher in HFD-fed animals. This was accompanied by an increase in epithelial, but not endothelial, surface area. Moreover, air-blood barrier and endothelium were significantly thicker. Neither treatment affected HFD-related body weights. Spermidine lowered lung volumes as well as endothelial and air-blood barrier thicknesses toward control levels and substantially increased the endothelial surface area under HFD. Activity resulted in decreased volumes of lung, septa, and septal compartments but did not affect vascular changes in HFD-fed mice. The combination treatment showed no additive effect. In conclusion, excess fat consumption induced alveolar capillary remodeling indicative of impaired perfusion and gas diffusion. Spermidine alleviated obesity-related endothelial alterations, indicating a beneficial effect, whereas physical activity reduced lung volumes apparently by other, possibly systemic effects.
Collapse
Affiliation(s)
- Nancy Ahrendt
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Tobias Steingrüber
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Alexandra Rajces
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany.,Institute of Vegetative Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Christoph Magnes
- Joanneum Research, HEALTH-Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Andreas Schmiedl
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany.,Institute of Vegetative Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| |
Collapse
|
30
|
Gender-Related Differences on Polyamine Metabolome in Liquid Biopsies by a Simple and Sensitive Two-Step Liquid-Liquid Extraction and LC-MS/MS. Biomolecules 2019; 9:biom9120779. [PMID: 31779105 PMCID: PMC6995533 DOI: 10.3390/biom9120779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 01/15/2023] Open
Abstract
Polyamines are involved in the regulation of many cellular functions and are promising biomarkers of numerous physiological conditions. Since the concentrations of these compounds in biological fluids are low, sample extraction is one of the most critical steps of their analysis. Here, we developed a comprehensive, sensitive, robust, and high-throughput LC-MS/MS stable-isotope dilution method for the simultaneous determination of 19 metabolites related to polyamine metabolism, including polyamines, acetylated and diacetylated polyamines, precursors, and catabolites from liquid biopsies. The sample extraction was optimized to remove interfering compounds and to reduce matrix effects, thus being useful for large clinical studies. The method consists of two-step liquid-liquid extraction with a Folch extraction and ethyl acetate partitioning combined with dansyl chloride derivatization. The developed method was applied to a small gender-related trial concerning human serum and urine samples from 40 obese subjects. Sex differences were found for cadaverine, putrescine, 1,3-diaminopropane, γ-aminobutyric acid, N8-acetylspermidine, and N-acetylcadaverine in urine; N1-acetylspermine in serum; and spermine in both serum and urine. The results demonstrate that the developed method can be used to analyze biological samples for the study of polyamine metabolism and its association with human diseases.
Collapse
|
31
|
GC-MS measurement of spermidine and putrescine in serum of elderly subjects: intriguing association between spermidine and homoarginine. Amino Acids 2019; 52:225-234. [PMID: 31541302 DOI: 10.1007/s00726-019-02786-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022]
Abstract
Gas chromatography-mass spectrometry (GC-MS) methods were developed, validated and used to measure serum spermidine (SPD) and putrescine (PUT) in 9 seropositive Helicobacter pylori (Hp +) and 18 seronegative Helicobacter pylori (Hp -) subjects (31-105 years). Homoarginine (hArg) was also measured by GC-MS. There were no statistical differences (unpaired t test) between the Hp + and Hp - subjects with respect to the serum concentrations of SPD (67.6 ± 40.3 vs. 93.7 ± 37.7 nM, P = 0.109), PUT (220 ± 139 vs. 236 ± 85 nM, P = 0.708) and hArg (1.60 ± 0.64 µM vs. 1.83 ± 0.74 µM, P = 0.554). Serum SPD and hArg concentrations correlated with each other (r = 0.426, P = 0.026, n = 27). The PUT/SPD molar ratio correlated inversely with the hArg concentration (r = - 0.406, P = 0.034, n = 27) and proteinic citrulline (r = - 0.487, P = 0.01, n = 27). These results suggest that SPD and PUT synthesis is associated with hArg formation and protein citrullination in healthy elderly subjects. The mechanisms underlying these associations and their significance remain to be elucidated.
Collapse
|
32
|
Lee YR, Lew BL, Sim WY, Lee J, Hong J, Chung BC. Altered polyamine profiling in the hair of patients with androgenic alopecia and alopecia areata. J Dermatol 2019; 46:985-992. [PMID: 31464015 DOI: 10.1111/1346-8138.15063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/30/2019] [Indexed: 11/30/2022]
Abstract
Hair follicles are among the most highly proliferative tissues. Polyamines are associated with proliferation, and several polyamines including spermidine and spermine play anti-inflammatory roles. Androgenic alopecia results from increased dihydrotestosterone metabolism, and alopecia areata is an autoimmune disease. This study aimed to investigate differences in polyamine profiles in hair samples between patients with androgenic alopecia and alopecia areata. Polyamine concentrations were determined through high-performance liquid chromatography-mass spectrometry. Hair samples were derivatized with isobutyl chloroformate. Differences in polyamine levels were observed between androgenic alopecia and alopecia areata compared with normal controls. In particular, polyamine levels were higher in alopecia areata patients than in normal controls. Certain polyamines displayed different concentrations between the androgenic alopecia and alopecia areata groups, suggesting that some polyamines, particularly N-acetyl putrescine (P = 0.007) and N-acetyl cadaverine (P = 0.0021), are significantly different in androgenic alopecia. Furthermore, spermidine (P = 0.021) was significantly different in alopecia areata. Our findings suggest that non-invasive quantification of hair polyamines may help distinguish between androgenic alopecia and alopecia areata. Our study provides novel insights into physiological alterations in patients with androgenic alopecia and those with alopecia areata and reveals some differences in polyamine levels in hair loss diseases with two different modes of action.
Collapse
Affiliation(s)
- Yu Ra Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Korea
| | - Bark Lynn Lew
- Department of Dermatology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, Korea
| | - Woo Young Sim
- Department of Dermatology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, Korea
| | - Jeongae Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Jongki Hong
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Korea.,College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Bong Chul Chung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Korea
| |
Collapse
|
33
|
Scott AM, Zhang Z, Jia L, Li K, Zhang Q, Dexheimer T, Ellsworth E, Ren J, Chung-Davidson YW, Zu Y, Neubig RR, Li W. Spermine in semen of male sea lamprey acts as a sex pheromone. PLoS Biol 2019; 17:e3000332. [PMID: 31287811 PMCID: PMC6615597 DOI: 10.1371/journal.pbio.3000332] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Semen is fundamental for sexual reproduction. The non-sperm part of ejaculated semen, or seminal plasma, facilitates the delivery of sperm to the eggs. The seminal plasma of some species with internal fertilization contains anti-aphrodisiac molecules that deter promiscuity in post-copulatory females, conferring fitness benefits to the ejaculating male. By contrast, in some taxa with external fertilization such as fish, exposure to semen promotes spawning behaviors. However, no specific compounds in semen have been identified as aphrodisiac pheromones. We sought to identify a pheromone from the milt (fish semen) of sea lamprey (Petromyzon marinus), a jawless fish that spawns in lek-like aggregations in which each spermiating male defends a nest, and ovulatory females move from nest to nest to mate. We postulated that milt compounds signal to ovulatory females the presence of spawning spermiating males. We determined that spermine, an odorous polyamine initially identified from human semen, is indeed a milt pheromone. At concentrations as low as 10-14 molar, spermine stimulated the lamprey olfactory system and attracted ovulatory females but did not attract males or pre-ovulatory females. We found spermine activated a trace amine-associated receptor (TAAR)-like receptor in the lamprey olfactory epithelium. A novel antagonist to that receptor nullified the attraction of ovulatory females to spermine. Our results elucidate a mechanism whereby a seminal plasma pheromone attracts ready-to-mate females and implicates a possible conservation of the olfactory detection of semen from jawless vertebrates to humans. Milt pheromones may also have management implications for sea lamprey populations.
Collapse
Affiliation(s)
- Anne M. Scott
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| | - Zhe Zhang
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Liang Jia
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| | - Ke Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| | - Qinghua Zhang
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Thomas Dexheimer
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Edmund Ellsworth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jianfeng Ren
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| | - Yao Zu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Richard R. Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail: (RRN); (WL)
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail: (RRN); (WL)
| |
Collapse
|
34
|
Saiki S, Sasazawa Y, Fujimaki M, Kamagata K, Kaga N, Taka H, Li Y, Souma S, Hatano T, Imamichi Y, Furuya N, Mori A, Oji Y, Ueno SI, Nojiri S, Miura Y, Ueno T, Funayama M, Aoki S, Hattori N. A metabolic profile of polyamines in parkinson disease: A promising biomarker. Ann Neurol 2019; 86:251-263. [PMID: 31155745 PMCID: PMC6772170 DOI: 10.1002/ana.25516] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022]
Abstract
Objective Aging is the highest risk factor for Parkinson disease (PD). Under physiological conditions, spermidine and spermine experimentally enhance longevity via autophagy induction. Accordingly, we evaluated the ability of each polyamine metabolite to act as an age‐related, diagnostic, and severity‐associated PD biomarker. Methods Comprehensive metabolome analysis of plasma was performed in Cohort A (controls, n = 45; PD, n = 145), followed by analysis of 7 polyamine metabolites in Cohort B (controls, n = 49; PD, n = 186; progressive supranuclear palsy, n = 19; Alzheimer disease, n = 23). Furthermore, 20 patients with PD who were successively examined within Cohort B were studied using diffusion tensor imaging (DTI). Association of each polyamine metabolite with disease severity was assessed according to Hoehn and Yahr stage (H&Y) and Unified Parkinson's Disease Rating Scale motor section (UPDRS‐III). Additionally, the autophagy induction ability of each polyamine metabolite was examined in vitro in various cell lines. Results In Cohort A, N8‐acetylspermidine and N‐acetylputrescine levels were significantly and mildly elevated in PD, respectively. In Cohort B, spermine levels and spermine/spermidine ratio were significantly reduced in PD, concomitant with hyperacetylation. Furthermore, N1,N8‐diacetylspermidine levels had the highest diagnostic value, and correlated with H&Y, UPDRS‐III, and axonal degeneration quantified by DTI. The spermine/spermidine ratio in controls declined with age, but was consistently suppressed in PD. Among polyamine metabolites, spermine was the strongest autophagy inducer, especially in SH‐SY5Y cells. No significant genetic variations in 5 genes encoding enzymes associated with spermine/spermidine metabolism were detected compared with controls. Interpretation Spermine synthesis and N1,N8‐diacetylspermidine may respectively be useful diagnostic and severity‐associated biomarkers for PD. ANN NEUROL 2019;86:251–263
Collapse
Affiliation(s)
- Shinji Saiki
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yukiko Sasazawa
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Motoki Fujimaki
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Naoko Kaga
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hikari Taka
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Sanae Souma
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Imamichi
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norihiko Furuya
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Division for Development of Autophagy Modulating Drugs, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akio Mori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yutaka Oji
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shin-Ichi Ueno
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shuko Nojiri
- Clinical Research Center, Juntendo University, Tokyo, Japan
| | - Yoshiki Miura
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Ueno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Manabu Funayama
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory of Genomic Medicine, Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Division for Development of Autophagy Modulating Drugs, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory of Genomic Medicine, Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
35
|
Yu Z, Huang H, Zhang H, Kessler BM. Improved profiling of polyamines using two-dimensional gas chromatography mass spectrometry. Talanta 2019; 199:184-188. [PMID: 30952244 DOI: 10.1016/j.talanta.2019.02.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
Abstract
Polyamines are a class of poly-cationic aliphatic amines, playing a role in different cellular processes such as maintaining intracellular pH and membrane potential that are relevant for general cellular physiology and ageing. The development of analytical methods for detection and quantitation of this class of compounds has been challenging due to the basic nature of these species. Both liquid chromatography (LC) and gas chromatography (GC) have been applied for separation, mostly coupled to mass spectrometry (MS) for detection. However, current methodologies suffer from lengthy extraction protocols and limitations in separation and detection levels. Here, we present a simplified and optimised method for straightforward extraction of polyamine metabolites including spermine, spermidine, norspermidine, cadaverine and putrescine from cellular and tissue material. We demonstrate that strong acid-based extraction and chemical derivatisation not only improves isolation, but also recovery. Combined with two-dimensional gas chromatography, this method provides clear separation and femtomole sensitivity for the profiling of polyamines.
Collapse
Affiliation(s)
- Zhanru Yu
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Honglei Huang
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Hanlin Zhang
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY
| | - Benedikt M Kessler
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| |
Collapse
|
36
|
Kailasa SK, Desai ML, Baek SH, Phan LMT, Nguyen TP, Rafique R, Park TJ. Independent spectral characteristics of functionalized silver nanoparticles for colorimetric assay of arginine and spermine in biofluids. NEW J CHEM 2019. [DOI: 10.1039/c9nj04132j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A colorimetric assay for selective and sensitive detection of arginine and spermine using 6-ATT-AgNPs as a probe.
Collapse
Affiliation(s)
- Suresh Kumar Kailasa
- Department of Applied Chemistry
- Sardar Vallabhbhai National Institute of Technology
- Surat-395 007
- India
| | - Mittal L. Desai
- Department of Applied Chemistry
- Sardar Vallabhbhai National Institute of Technology
- Surat-395 007
- India
| | - Seung Hoon Baek
- Department of Chemistry
- Institute of Interdisciplinary Convergence Research
- Research Institute of Chem-Bio Diagnostic Technology
- Chung-Ang University
- Seoul 06974
| | - Le Minh Tu Phan
- Department of Chemistry
- Institute of Interdisciplinary Convergence Research
- Research Institute of Chem-Bio Diagnostic Technology
- Chung-Ang University
- Seoul 06974
| | - Thang Phan Nguyen
- Department of Chemistry
- Institute of Interdisciplinary Convergence Research
- Research Institute of Chem-Bio Diagnostic Technology
- Chung-Ang University
- Seoul 06974
| | - Rafia Rafique
- Department of Chemistry
- Institute of Interdisciplinary Convergence Research
- Research Institute of Chem-Bio Diagnostic Technology
- Chung-Ang University
- Seoul 06974
| | - Tae Jung Park
- Department of Chemistry
- Institute of Interdisciplinary Convergence Research
- Research Institute of Chem-Bio Diagnostic Technology
- Chung-Ang University
- Seoul 06974
| |
Collapse
|
37
|
Polyamines in Microalgae: Something Borrowed, Something New. Mar Drugs 2018; 17:md17010001. [PMID: 30577419 PMCID: PMC6356823 DOI: 10.3390/md17010001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/13/2023] Open
Abstract
Microalgae of different evolutionary origins are typically found in rivers, lakes, and oceans, providing more than 45% of global primary production. They provide not only a food source for animals, but also affect microbial ecosystems through symbioses with microorganisms or secretion of some metabolites. Derived from amino acids, polyamines are present in almost all types of organisms, where they play important roles in maintaining physiological functions or against stress. Microalgae can produce a variety of distinct polyamines, and the polyamine content is important to meet the physiological needs of microalgae and may also affect other species in the environment. In addition, some polyamines produced by microalgae have medical or nanotechnological applications. Previous studies on several types of microalgae have indicated that the putative polyamine metabolic pathways may be as complicated as the genomes of these organisms, which contain genes originating from plants, animals, and even bacteria. There are also several novel polyamine synthetic routes in microalgae. Understanding the nature of polyamines in microalgae will not only improve our knowledge of microalgal physiology and ecological function, but also provide valuable information for biotechnological applications.
Collapse
|
38
|
Jain A, Verma KK. Strategies in liquid chromatographic methods for the analysis of biogenic amines without and with derivatization. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Sphingopyxis lindanitolerans sp. nov. strain WS5A3pT enriched from a pesticide disposal site. Int J Syst Evol Microbiol 2018; 68:3935-3941. [DOI: 10.1099/ijsem.0.003094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Yoon SP, Kim J. Exogenous spermidine ameliorates tubular necrosis during cisplatin nephrotoxicity. Anat Cell Biol 2018; 51:189-199. [PMID: 30310711 PMCID: PMC6172597 DOI: 10.5115/acb.2018.51.3.189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 11/27/2022] Open
Abstract
The hallmark of cisplatin-induced acute kidney injury is the necrotic cell death in the kidney proximal tubules. However, an effective approach to limit cisplatin nephrotoxicity remains unknown. Spermidine is a polyamine that protects against oxidative stress and necrosis in aged yeasts, and the present study found that exogenous spermidine markedly attenuated tubular necrosis and kidney dysfunction, but not apoptosis, during cisplatin nephrotoxicity. In addition, exogenous spermidine potently inhibited oxidative/nitrative DNA damage, poly(ADP-ribose) polymerase 1 (PARP1) activation and ATP depletion after cisplatin injection. Conversely, inhibition of ornithine decarboxylase (ODC) via siRNA transfection in vivo significantly increased DNA damage, PARP1 activation and ATP depletion, resulting in acceleration of tubular necrosis and kidney dysfunction. Finally, exogenous spermidine removed severe cisplatin injury induced by ODC inhibition. In conclusion, these data suggest that spermidine protects kidneys against cisplatin injury through DNA damage and tubular necrosis, and this finding provides a novel target to prevent acute kidney injury including nephrotoxicity.
Collapse
Affiliation(s)
- Sang Pil Yoon
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| | - Jinu Kim
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
41
|
Zhang Q, Xu H, Liu R, Gao P, Yang X, Li P, Wang X, Zhang Y, Bi K, Li Q. Highly Sensitive Quantification Method for Amine Submetabolome Based on AQC-Labeled-LC-Tandem-MS and Multiple Statistical Data Mining: A Potential Cancer Screening Approach. Anal Chem 2018; 90:11941-11948. [PMID: 30208276 DOI: 10.1021/acs.analchem.8b02372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The relationship between amine submetabolome and cancer has been increasingly investigated. However, no study was performed to evaluate the current methods of amine submetabolomics comprehensively, or to use such quantification results to provide an applicable approach for cancer screening. In this study, a highly sensitive and practical workflow for quantifying amine submetabolome, which was based on 6-aminoquinolyl- N-hydroxysuccinimidyl carbamate (AQC)-labeled-HPLC-MS/MS analysis combined with multiple statistical data processing approach, was established and optimized. Comparison and optimization of two analytical approaches, HILIC separation and precolumn derivatization, and three types of surrogate matrices of plasma were performed systematically. The detection sensitivities of AQC-labeled amines were increased by 50-1000-fold compared with the underivatization-HILIC method. Surrogate matrix was also used to verify the method after a large dilution factor was employed. In data analysis, the specific amino-index for each cancer sample was identified and validated by univariate receiver operating characteristic (ROC) curve analysis, partial least-squares discrimination analysis (PLS-DA), and multivariate ROC curve analysis. These amino indexes were innovatively quantified by multiplying the raised markers and dividing the reduced markers. As a result, the numerical intervals of amino indexes for healthy volunteers and cancer patients were provided, and their clinical value was also improved. Finally, the integrated workflow successfully differentiated the value of the amino index for plasma of lung, breast, colorectal, and gastric cancer samples from controls and among different types of cancer. Furthermore, it was also used to evaluate therapeutic effects. Taken together, the developed methodology, which was characterized by high sensitivity, high throughput, and high practicality, is suitable for amine submetabolomics in studying cancer biomarkers and could also be applied in many other clinical and epidemiological research.
Collapse
Affiliation(s)
- Qian Zhang
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Huarong Xu
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Ran Liu
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Peng Gao
- Metabolomics Core Facility of RHLCCC , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
| | - Xiao Yang
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Pei Li
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Xiaotong Wang
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Yiwen Zhang
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Kaishun Bi
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Qing Li
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| |
Collapse
|
42
|
Faustmann G, Meinitzer A, Magnes C, Tiran B, Obermayer-Pietsch B, Gruber HJ, Ribalta J, Rock E, Roob JM, Winklhofer-Roob BM. Progesterone-associated arginine decline at luteal phase of menstrual cycle and associations with related amino acids and nuclear factor kB activation. PLoS One 2018; 13:e0200489. [PMID: 29990354 PMCID: PMC6039037 DOI: 10.1371/journal.pone.0200489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/27/2018] [Indexed: 11/18/2022] Open
Abstract
Background/Objectives Given their role in female reproduction, the effects of progesterone on arginine and related amino acids, polyamines and NF-κB p65 activation were studied across the menstrual cycle. Methods Arginine, ornithine and citrulline as well as putrescine, spermidine, spermine, and N-acetyl-putrescine were determined in plasma, NF-κB p65 activation in peripheral blood mononuclear cells and progesterone in serum of 28 women at early (T1) and late follicular (T2) and mid (T3) and late (T4) luteal phase. Results Arginine and related amino acids declined from T1 and T2 to T3 and T4, while progesterone increased. At T3, arginine, ornithine, and citrulline were inversely related with progesterone. Changes (ΔT3-T2) in arginine, ornithine, and citrulline were inversely related with changes (ΔT3-T2) in progesterone. Ornithine and citrulline were positively related with arginine, as were changes (ΔT3-T2) in ornithine and citrulline with changes (ΔT3-T2) in arginine. At T2, NF-κB p65 activation was positively related with arginine. Polyamines did not change and were not related to progesterone. All results described were significant at P < 0.001. Conclusions This study for the first time provides data, at the plasma and PBMC level, supporting a proposed regulatory node of arginine and related amino acids, progesterone and NF-κB p65 at luteal phase of the menstrual cycle, aimed at successful preparation of pregnancy.
Collapse
Affiliation(s)
- Gernot Faustmann
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, Karl-Franzens University, Graz, Austria
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University, Graz, Austria
| | - Christoph Magnes
- Institute for Biomedicine and Health Sciences, HEALTH, Joanneum Research Forschungsgesellschaft m.b.H., Graz, Austria
| | - Beate Tiran
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University, Graz, Austria
| | | | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University, Graz, Austria
| | - Josep Ribalta
- Unitat de Recerca de Lipids I Arteriosclerosi, Facultat de Medicina, Universitat Rovira I Virgili, Facultat Medicina i Ciències de la Salut, Reus, Spain
| | - Edmond Rock
- Unité de Nutrition Humaine, Centre Auvergne Rhône-Alpes, Institut National de la Recherche Agronomique, Saint-Gènes-Champanelle, France
| | - Johannes M. Roob
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University, Graz, Austria
| | - Brigitte M. Winklhofer-Roob
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, Karl-Franzens University, Graz, Austria
- * E-mail:
| |
Collapse
|
43
|
Kemaladewi DU, Benjamin JS, Hyatt E, Ivakine EA, Cohn RD. Increased polyamines as protective disease modifiers in congenital muscular dystrophy. Hum Mol Genet 2018; 27:1905-1912. [PMID: 29566247 DOI: 10.1093/hmg/ddy097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/12/2018] [Indexed: 12/17/2023] Open
Abstract
Most Mendelian disorders, including neuromuscular disorders, display extensive clinical heterogeneity that cannot be solely explained by primary genetic mutations. This phenotypic variability is largely attributed to the presence of disease modifiers, which can exacerbate or lessen the severity and progression of the disease. LAMA2-deficient congenital muscular dystrophy (LAMA2-CMD) is a fatal degenerative muscle disease resulting from mutations in the LAMA2 gene encoding Laminin-α2. Progressive muscle weakness is predominantly observed in the lower limbs in LAMA2-CMD patients, whereas upper limbs muscles are significantly less affected. However, very little is known about the molecular mechanism underlying differential pathophysiology between specific muscle groups. Here, we demonstrate that the triceps muscles of the dy2j/dy2j mouse model of LAMA2-CMD demonstrate very mild myopathic findings compared with the tibialis anterior (TA) muscles that undergo severe atrophy and fibrosis, suggesting a protective mechanism in the upper limbs of these mice. Comparative gene expression analysis reveals that S-Adenosylmethionine decarboxylase (Amd1) and Spermine oxidase (Smox), two components of polyamine pathway metabolism, are downregulated in the TA but not in the triceps of dy2j/dy2j mice. As a consequence, the level of polyamine metabolites is significantly lower in the TA than triceps. Normalization of either Amd1 or Smox expression in dy2j/dy2j TA ameliorates muscle fibrosis, reduces overactive profibrotic TGF-β pathway and leads to improved locomotion. In summary, we demonstrate that a deregulated polyamine metabolism is a characteristic feature of severely affected lower limb muscles in LAMA2-CMD. Targeted modulation of this pathway represents a novel therapeutic avenue for this devastating disease.
Collapse
Affiliation(s)
- D U Kemaladewi
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - J S Benjamin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - E Hyatt
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - E A Ivakine
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - R D Cohn
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Pediatrics, University of Toronto, and The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
44
|
Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science 2018; 359:359/6374/eaan2788. [DOI: 10.1126/science.aan2788] [Citation(s) in RCA: 438] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Schwarz C, Stekovic S, Wirth M, Benson G, Royer P, Sigrist SJ, Pieber T, Dammbrueck C, Magnes C, Eisenberg T, Pendl T, Bohlken J, Köbe T, Madeo F, Flöel A. Safety and tolerability of spermidine supplementation in mice and older adults with subjective cognitive decline. Aging (Albany NY) 2018; 10:19-33. [PMID: 29315079 PMCID: PMC5807086 DOI: 10.18632/aging.101354] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/23/2017] [Indexed: 04/14/2023]
Abstract
Supplementation of spermidine, an autophagy-inducing agent, has been shown to protect against neurodegeneration and cognitive decline in aged animal models. The present translational study aimed to determine safety and tolerability of a wheat germ extract containing enhanced spermidine concentrations. In a preclinical toxicity study, supplementation of spermidine using this extract did not result in morbidities or changes in behavior in BALBc/Rj mice during the 28-days repeated-dose tolerance study. Post mortem examination of the mice organs showed no increase in tumorigenic and fibrotic events. In the human cohort (participants with subjective cognitive decline, n=30, 60 to 80 years of age), a 3-month randomized, placebo-controlled, double-blind Phase II trial was conducted with supplementation of the spermidine-rich plant extract (dosage: 1.2 mg/day). No differences were observed between spermidine and placebo-treated groups in vital signs, weight, clinical chemistry and hematological parameters of safety, as well as in self-reported health status at the end of intervention. Compliance rates above 85% indicated excellent tolerability. The data demonstrate that spermidine supplementation using a spermidine-rich plant extract is safe and well-tolerated in mice and older adults. These findings allow for longer-term intervention studies in humans to investigate the impact of spermidine treatment on cognition and brain integrity.
Collapse
Affiliation(s)
- Claudia Schwarz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
- Equal contribution
| | - Slaven Stekovic
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
- Equal contribution
| | - Miranka Wirth
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Stroke Research Berlin, Berlin, Germany
- Equal contribution
| | - Gloria Benson
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Philipp Royer
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
| | - Stephan J Sigrist
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Thomas Pieber
- BioTechMed, Graz, Austria
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Joanneum Research Forschungsgesellschaft m.b.H., HEALTH, Institute for Biomedicine and Health Sciences, Graz, Austria
| | | | - Christoph Magnes
- Joanneum Research Forschungsgesellschaft m.b.H., HEALTH, Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
| | - Jens Bohlken
- Medical Practice Bohlken for Neurology and Psychiatry, Berlin, Germany
| | - Theresa Köbe
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
46
|
Some Applications of Liquid Chromatography-Mass Spectrometry in the Biomedical Field. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/bs.coac.2017.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
47
|
Selective colorimetric analysis of spermine based on the cross-linking aggregation of gold nanoparticles chain assembly. Talanta 2017; 167:193-200. [DOI: 10.1016/j.talanta.2017.01.085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 11/21/2022]
|
48
|
Gong X, Liu JH. Detection of Free Polyamines in Plants Subjected to Abiotic Stresses by High-Performance Liquid Chromatography (HPLC). Methods Mol Biol 2017; 1631:305-311. [PMID: 28735406 DOI: 10.1007/978-1-4939-7136-7_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High-performance liquid chromatography (HPLC) is a sensitive, rapid, and accurate technique to detect and characterize various metabolites from plants. The metabolites are extracted with different solvents and eluted with appropriate mobile phases in a designed HPLC program. Polyamines are known to accumulate under abiotic stress conditions in various plant species and thought to provide protection against oxidative stress by scavenging reactive oxygen species. Here, we describe a common method to detect the free polyamines in plant tissues both qualitatively and quantitatively.
Collapse
Affiliation(s)
- Xiaoqing Gong
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ji-Hong Liu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
49
|
HAYAMA T, TAMASHIMA E, YOSHIDA H, YAMAGUCHI M, NOHTA H. Multi-Perfluoroalkyl Derivatization of Polyamines for Selective Liquid Chromatography-Tandem Mass Spectrometric Analysis Utilizing Fluorous Affinity. CHROMATOGRAPHY 2017. [DOI: 10.15583/jpchrom.2017.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | | | | | | | - Hitoshi NOHTA
- Faculty of Pharmaceutical Sciences, Fukuoka University
| |
Collapse
|
50
|
Fumes BH, Andrade MA, Franco MS, Lanças FM. On-line approaches for the determination of residues and contaminants in complex samples. J Sep Sci 2016; 40:183-202. [DOI: 10.1002/jssc.201600867] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Bruno Henrique Fumes
- Institute of Chemistry of São Carlos; University of São Paulo, São Carlos; SP Brasil
| | - Mariane Aissa Andrade
- Institute of Chemistry of São Carlos; University of São Paulo, São Carlos; SP Brasil
| | - Maraíssa Silva Franco
- Institute of Chemistry of São Carlos; University of São Paulo, São Carlos; SP Brasil
| | - Fernando Mauro Lanças
- Institute of Chemistry of São Carlos; University of São Paulo, São Carlos; SP Brasil
| |
Collapse
|