1
|
Xing R, Du P, Wang Z, Fan Z, Wang L, Huang Y, Chen W, Si X. Porcine Bile Acids Improve Antioxidant Status and Immune Function by Increasing Hungatella Abundance with Different Protein Level Diets in Late-Laying Hens. Animals (Basel) 2025; 15:500. [PMID: 40002981 PMCID: PMC11851759 DOI: 10.3390/ani15040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
The modern livestock industry faces significant challenges due to the extension of production cycles and a growing shortage of feed resources. Low-protein (LP) diets offer potential environmental advantages whereas damage intestinal integrity and increase pro-inflammatory cytokines. Bile acids (BAs), metabolic products of cholesterol in the liver, possess strong antioxidative and immune properties. This study evaluated the effects of dietary porcine BA supplementation at different protein levels on the antioxidant status, immune function, and gut microbiota of late-laying hens. A 2 × 2 factorial design was employed with 198 Hy-Line Brown laying hens (62 weeks old), randomly divided into one of four treatment groups with 8 replicates for each treatment. Diets included normal (16.42%) or low-protein (15.35%) levels, with porcine BAs supplemented at 0 or 120 mg/kg (62-69 weeks) and 0 or 200 mg/kg (70-75 weeks) over 14 weeks. Dietary protein levels and bile acids had no effect on organ development in laying hens. Low-protein diets increased serum anti-inflammatory cytokines IL-4 and IL-10 but elevated pro-inflammatory cytokines IL-1β (p < 0.05), corroborated by higher IL-10 gene expression in the ileum mucosa (p < 0.05). The supplementation of bile acids improved immune function by increasing serum IL-4 and TGF-β while decreasing IL-6 levels (p < 0.05). Moreover, bile acids treatments upregulated IL-10, TGF-β and ZO-1 gene expression in the ileum mucosa (p < 0.05) and alleviated oxidative stress by enhancing serum GSH-Px activity (p < 0.05). Additionally, both low-protein diets and bile acids enriched beneficial cecal bacteria, including Hungatella and Blautia, primarily linked to immune function. These findings demonstrate that porcine bile acids administration improve antioxidant capacity, immune function and gut microbiota dysbiosis. These beneficial effects were associated with Hungatella and Blautia levels, which may be responsible for the porcine bile acids efficacy in poultry nutrition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xuemeng Si
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.X.); (P.D.); (Z.W.); (Z.F.); (L.W.); (Y.H.); (W.C.)
| |
Collapse
|
2
|
Xing R, Fan K, Fan Z, Wang L, Huang Y, Zhang H, Chen W, Si X. Porcine bile acids improve performance by altering hepatic lipid metabolism and amino acid metabolism with different protein level diets in late laying hens. Poult Sci 2025; 104:104777. [PMID: 39808914 PMCID: PMC11782899 DOI: 10.1016/j.psj.2025.104777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
As the extension of the egg-laying cycle, heightened energy and lipid metabolism cause excessive lipid accumulation, resulting in rapid decline in laying performance during the late laying period. Bile acids (BAs), synthesized from cholesterol in the liver, are potent metabolic and immune signaling molecules involved in lipid metabolism and the regulation of energy homeostasis. However, under different dietary protein levels, the role of BAs on hepatic lipid metabolism of laying hens at the late phase remains unclear. This experiment aimed to evaluate the effects of porcine BAs supplementation on performance, lipid metabolism, antioxidant status and amino acid metabolism in late-phase laying hens fed diets with different protein level. A total of 192 Hy-Line Brown laying hens (62 weeks of age) were randomly assigned to one of four treatment groups, in a 2 × 2 factorial design, with 8 replicates per treatment. The hens were fed diets with either normal protein (16.42 %) or low-protein (15.35 %) levels, with or without BAs supplementation (120 mg/kg for the first 56 days, followed by 200 mg/kg for the next 42 days). The results demonstrated that dietary BAs supplementation significantly enhanced egg production and feed intake (P < 0.05) although it has no notable effect on egg quality. Bile acids supplementation effectively reduced liver total cholesterol (TC), triglyceride (TG), as well as malondialdehyde (MDA) levels, while also ameliorating lipid deposition through the regulation of expression of lipid metabolism-related genes in late laying hens (P < 0.05). Additionally, the low-protein diets downregulated amino acid catabolism, thereby reducing serum uric acid content and enhancing protein utilization. Further analysis revealed that BAs also positively influenced trypsin activity and increased the expression of amino acid transporters, thereby improving amino acid availability (P < 0.05). In conclusion, this study demonstrated that dietary BAs supplementation could enhance the laying performance in late laying hens, primarily by improving hepatic lipid metabolism, antioxidant capacity, and amino acid availability.
Collapse
Affiliation(s)
- Ronghui Xing
- Institute of animal science and technology, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Kefeng Fan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Henan, China; Jiu Yi traditional Chinese Medicine Research Institute, Zhengzhou, 450046, Henan, China
| | - Zongze Fan
- Institute of animal science and technology, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Longfei Wang
- Institute of animal science and technology, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Yanqun Huang
- Institute of animal science and technology, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Huaiyong Zhang
- Institute of animal science and technology, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Wen Chen
- Institute of animal science and technology, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Xuemeng Si
- Institute of animal science and technology, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
3
|
Roumain M, Muccioli GG. Development and application of an LC-MS/MS method for the combined quantification of oxysterols and bile acids. J Lipid Res 2025; 66:100697. [PMID: 39557296 PMCID: PMC11761337 DOI: 10.1016/j.jlr.2024.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
Oxysterols and bile acids are interconnected bioactive lipids playing pivotal roles in diverse physiological and pathological processes. For this reason, they are increasingly studied together for their implications in various diseases. However, due to analytical challenges inherent to the nature of these analytes, very few methods have been developed for the simultaneous analysis of these lipids. We here report the development of a sensitive LC-MS/MS method for the combined quantification of 18 oxysterols, 11 unconjugated, 15 conjugated bile acids, and 1 bile acid precursor, using 8 isotope-labeled internal standards, addressing the need for a more comprehensive analysis of these interesting lipid families. During the method development, we investigated different extraction protocols, set up a purification step, and achieved chromatographic separation for these lipids, overcoming challenges such as the large number of analytes, isomers, and wide range of polarity across the analytes. Finally, the method was successfully applied to the analysis of preclinical and clinical samples, quantifying 12 oxysterols and 14 bile acids in human plasma, 10 oxysterols and 18 bile acids in mouse plasma from the vena cava, and 10 oxysterols and 20 bile acids in mouse plasma from the portal vein within a single chromatographic run.
Collapse
Affiliation(s)
- Martin Roumain
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
4
|
Hu Y, Wu A, Yan H, Pu J, Luo J, Zheng P, Luo Y, Yu J, He J, Yu B, Chen D. Secondary bile acids are associated with body lipid accumulation in obese pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:246-256. [PMID: 39281048 PMCID: PMC11402430 DOI: 10.1016/j.aninu.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 09/18/2024]
Abstract
The aim of this study was to investigate the reasons for the differences in lipid accumulation between lean and obese pigs. The bile acids with varying levels within two types of pigs were found and then in vitro experiments were conducted to identify whether these bile acids can directly affect lipid accumulation. Fourteen pigs, including seven lean and seven obese pigs with body weights of approximately 80 kg, were fed the same diet at an amount approximately equivalent to 3% of their respective body weights daily for 42 d. In vitro, 3T3-L1 preadipocytes were cultured in medium with high glucose levels and were differentiated into mature adipocytes using differentiation medium. Then, bile acids were added to mature adipocytes for 4 d. The results showed that there was a difference in body lipids levels and gut microbiota composition between obese and lean pigs (P < 0.05). According to the results of gut microbial function prediction, the bile acid biosynthesis in colonic digesta of obese pigs were different from that in lean pig. Sixty-five bile acids were further screened by metabolomics, of which 4 were upregulated (P < 0.05) and 2 were downregulated (P < 0.05) in obese pigs compared to lean pigs. The results of the correlation analysis demonstrated that chenodeoxycholic acid-3-β-D-glucuronide (CDCA-3Gln) and ω-muricholic acid (ω-MCA) had a negative correlation with abdominal fat weight and abdominal fat rate, while isoallolithocholic acid (IALCA) was positively associated with crude fat in the liver and abdominal fat rate. There was a positive correlation between loin muscle area and CDCA-3Gln and ω-MCA (P < 0.05), however, IALCA and 3-oxodeoxycholic acid (3-oxo-DCA) were negatively associated with loin eye muscle area (P < 0.05). Isoallolithocholic acid increased the gene expression of peroxisome proliferator-activated receptor gamma (PPARG) and the number of lipid droplets (P < 0.05), promoting the lipid storage when IALCA was added to 3T3-L1 mature adipocytes in vitro. In conclusion, the concentration of bile acids, especially gut microbiota related-secondary bile acids, in obese pigs was different from that in lean pigs, which may contribute to lipid accumulation within obese pigs.
Collapse
Affiliation(s)
- Yaolian Hu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Aimin Wu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Hui Yan
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Junning Pu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
5
|
Li G, Xu X, Chai L, Guo Q, Wu W. Increase in bile acids after sleeve gastrectomy improves metabolism by activating GPBAR1 to increase cAMP in mice with nonalcoholic fatty liver disease. Immun Inflamm Dis 2024; 12:e1149. [PMID: 39031498 PMCID: PMC11259005 DOI: 10.1002/iid3.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 11/02/2023] [Accepted: 12/28/2023] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Bile acids (BAs) concentration can affect metabolic improvement caused by bariatric surgery and BA concentrations increase in patients after sleeve gastrectomy (SG). Here, how BAs after SG affect metabolism in nonalcoholic fatty liver disease (NAFLD) was studied. METHODS Mice were given high-fat diet (HFD) to induce NAFLD and received SG surgery. Hepatic and fecal BA concentrations in mice were detected by liquid chromatography-tandem mass spectrometry method. BA-related genes were detected by quantitative real-time polymerase chain reaction. G protein BA receptor 1 (GPBAR1) expression was identified using western blot analysis. NAFLD mice after SG received GPBAR1 inhibitor Triamterene. The weight of mice and mice liver was detected. Mouse liver tissue was observed by hematoxylin-eosin and Oil Red O staining. Triglyceride (TG), nonesterified fatty acid (NEFA), and cyclic adenosine monophosphate (cAMP) levels in mouse liver tissue were analyzed by metabolic assay and enzyme-linked immune sorbent assay. RESULTS SG boosted increase in hepatic total/conjugated BAs and related genes and GPBAR1 expression, and attenuated increase in fecal total BAs/muricholic acid in HFD-induced mice and increased fecal taurine-BAs in HFD-induced mice. Triamterene (72 mg/kg) reversed the inhibitory role of SG in HFD-induced increase of body weight, lipid accumulation, inflammatory cell infiltration, and increase of hepatic weight and TG/NEFA content, and counteracted the positive role of SG in HFD-induced increase of hepatic cAMP concentration in mice. CONCLUSIONS BAs improve metabolism via activating GPBAR1 to increase cAMP in NAFLD mice after SG.
Collapse
Affiliation(s)
- Guoliang Li
- Department of Gastrointestinal Hepatobiliary SurgeryThe Affiliated Hospital of Hangzhou Normal UniversityHangzhou CityChina
| | - Xin Xu
- Department of Gastrointestinal Hepatobiliary SurgeryThe Affiliated Hospital of Hangzhou Normal UniversityHangzhou CityChina
| | - Lixin Chai
- Department of Gastrointestinal Hepatobiliary SurgeryThe Affiliated Hospital of Hangzhou Normal UniversityHangzhou CityChina
| | - Qunhao Guo
- Department of Gastrointestinal Hepatobiliary SurgeryThe Affiliated Hospital of Hangzhou Normal UniversityHangzhou CityChina
| | - Wei Wu
- Department of Gastrointestinal Hepatobiliary SurgeryThe Affiliated Hospital of Hangzhou Normal UniversityHangzhou CityChina
| |
Collapse
|
6
|
Zhao X, Wu X, Hu Q, Yao J, Yang Y, Wan M, Tang W. Yinchenhao Decoction Protects Against Acute Liver Injury in Mice With Biliary Acute Pancreatitis by Regulating the Gut Microflora-Bile Acids-Liver Axis. Gastroenterol Res Pract 2024; 2024:8882667. [PMID: 38966598 PMCID: PMC11223911 DOI: 10.1155/2024/8882667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Background and Aims: Acute liver injury (ALI) often follows biliary acute pancreatitis (BAP), but the exact cause and effective treatment are unknown. The aim of this study was to investigate the role of the gut microflora-bile acids-liver axis in BAP-ALI in mice and to assess the potential therapeutic effects of Yinchenhao decoction (YCHD), a traditional Chinese herbal medicine formula, on BAP-ALI. Methods: Male C57BL/6 mice were allocated into three groups: negative control (NC), BAP model, and YCHD treatment groups. The severity of BAP-ALI, intrahepatic bile acid levels, and the gut microbiota were assessed 24 h after BAP-ALI induction in mice. Results: Our findings demonstrated that treatment with YCHD significantly ameliorated the severity of BAP-ALI, as evidenced by the mitigation of hepatic histopathological changes and a reduction in liver serum enzyme levels. Moreover, YCHD alleviated intrahepatic cholestasis and modified the composition of bile acids, as indicated by a notable increase in conjugated bile acids. Additionally, 16S rDNA sequencing analysis of the gut microbiome revealed distinct alterations in the richness and composition of the microbiome in BAP-ALI mice compared to those in control mice. YCHD treatment effectively improved the intestinal flora disorders induced by BAP-ALI. Spearman's correlation analysis revealed a significant association between the distinct compositional characteristics of the intestinal microbiota and the intrahepatic bile acid concentration. Conclusions: These findings imply a potential link between gut microbiota dysbiosis and intrahepatic cholestasis in BAP-ALI mice and suggest that YCHD treatment may confer protection against BAP-ALI via the gut microflora-bile acids-liver axis.
Collapse
Affiliation(s)
- Xianlin Zhao
- West China Center of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China HospitalSichuan University, Chengdu 610041, China
- West China School of MedicineSichuan University, Chengdu 610041, China
| | - Xiajia Wu
- West China School of MedicineSichuan University, Chengdu 610041, China
- Institute of Respiratory Health and MultimorbidityWest China HospitalSichuan University, Chengdu 610041, China
| | - Qian Hu
- West China School of MedicineSichuan University, Chengdu 610041, China
| | - Jiaqi Yao
- West China School of MedicineSichuan University, Chengdu 610041, China
| | - Yue Yang
- West China School of MedicineSichuan University, Chengdu 610041, China
| | - Meihua Wan
- West China Center of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China HospitalSichuan University, Chengdu 610041, China
- West China School of MedicineSichuan University, Chengdu 610041, China
| | - Wenfu Tang
- West China Center of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China HospitalSichuan University, Chengdu 610041, China
- West China School of MedicineSichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Karakus E, Proksch AL, Moritz A, Geyer J. Quantitative bile acid profiling in healthy adult dogs and pups from serum, plasma, urine, and feces using LC-MS/MS. Front Vet Sci 2024; 11:1380920. [PMID: 38948668 PMCID: PMC11211631 DOI: 10.3389/fvets.2024.1380920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/29/2024] [Indexed: 07/02/2024] Open
Abstract
Synthesis and secretion of bile acids (BA) is a key physiological function of the liver. In pathological conditions like portosystemic shunt, hepatic insufficiency, hepatitis, or cirrhosis BA metabolism and secretion are disturbed. Quantification of total serum BA is an established diagnostic method to assess the general liver function and allows early detection of abnormalities, liver disease progression and guidance of treatment decisions. To date, data on comparative BA profiles in dogs are limited. However, BA profiles might be even better diagnostic parameters than total BA concentrations. On this background, the present study analyzed and compared individual BA profiles in serum, plasma, urine, and feces of 10 healthy pups and 40 adult healthy dogs using ultra-high performance liquid chromatography coupled to electrospray ionization mass spectrometry. Sample preparation was performed by solid-phase extraction for serum, plasma, and urine samples or by protein precipitation with methanol for the feces samples. For each dog, 22 different BA, including unconjugated BA and their glycine and taurine conjugates, were analyzed. In general, there was a great interindividual variation for the concentrations of single BA, mostly exemplified by the fact that cholic acid (CA) was by far the most prominent BA in blood and urine samples of some of the dogs (adults and pups), while in others, CA was under the detection limit. There were no significant age-related differences in the BA profiles, but pups showed generally lower absolute BA concentrations in serum, plasma, and urine. Taurine-conjugated BA were predominant in the serum and plasma of both pups (68%) and adults (74-75%), while unconjugated BA were predominant in the urine and feces of pups (64 and 95%, respectively) and adults (68 and 99%, respectively). The primary BA chenodeoxycholic acid and taurocholic acid and the secondary BA deoxycholic acid and lithocholic acid were the most robust analytes for potential diagnostic purpose. In conclusion, this study reports simultaneous BA profiling in dog serum, plasma, urine, and feces and provides valuable diagnostic data for subsequent clinical studies in dogs with different kinds of liver diseases.
Collapse
Affiliation(s)
- Emre Karakus
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Anna-Lena Proksch
- Clinic of Small Animals—Internal Medicine, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Andreas Moritz
- Clinic of Small Animals—Internal Medicine, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
8
|
He Q, Xia B, Yang M, Lu K, Fan D, Li W, Liu Y, Pan Y, Yuan J. Alterations in gut microbiota and bile acids by proton-pump inhibitor use and possible mediating effects on elevated glucose levels and insulin resistance. FASEB J 2024; 38:e23541. [PMID: 38498341 DOI: 10.1096/fj.202302558r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/11/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Several observational studies have suggested that proton-pump inhibitor (PPI) use might increase diabetes risk, but the mechanism remains unclear. This study aimed to investigate the effects of PPI use on gut microbiota and bile acids (BAs) profiles, and to explore whether these changes could mediate the association of PPIs use with fasting blood glucose (FBG) levels and insulin resistance (IR) in Chinese population. A cross-sectional study was conducted in Shenzhen, China, from April to August 2021, enrolled 200 eligible patients from the local hospital. Participants completed a questionnaire and provided blood and stool samples. Gut microbiome was measured by16S rRNA gene sequencing, and bile acids were quantified by UPLC-MS/MS. Insulin resistance (IR) was assessed using the Homeostasis Model Assessment 2 (HOMA2-IR). PPI use was positively associated with higher levels of FBG and HOMA2-IR after controlling for possible confounders. PPI users exhibited a decreased Firmicutes and an increase in Bacteroidetes phylum, alongside higher levels of glycoursodeoxycholic acid (GUDCA) and taurochenodeoxycholic acid (TCDCA). Higher abundances of Bacteroidetes and Fusobacterium as well as higher levels of TCDCA in PPI users were positively associated with elevated FBG or HOMA2-IR. Mediation analyses indicated that the elevated levels of FBG and HOMA2-IR with PPI use were partially mediated by the alterations in gut microbiota and specific BAs (i.e., Fusobacterium genera and TCDCA). Long-term PPI use may increase FBG and HOMA2-IR levels, and alterations in gut microbiota and BAs profiles may partially explain this association.
Collapse
Affiliation(s)
- Qiangsheng He
- Scientific Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, Guangdong, China
| | - Bin Xia
- Scientific Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, Guangdong, China
| | - Man Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Kuiqing Lu
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Die Fan
- Clinical Nutrition Department, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Wenjing Li
- Scientific Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuchen Liu
- Scientific Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yihang Pan
- Scientific Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jinqiu Yuan
- Scientific Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Roach J, Mital R, Haffner JJ, Colwell N, Coats R, Palacios HM, Liu Z, Godinho JLP, Ness M, Peramuna T, McCall LI. Microbiome metabolite quantification methods enabling insights into human health and disease. Methods 2024; 222:81-99. [PMID: 38185226 PMCID: PMC11932151 DOI: 10.1016/j.ymeth.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Many of the health-associated impacts of the microbiome are mediated by its chemical activity, producing and modifying small molecules (metabolites). Thus, microbiome metabolite quantification has a central role in efforts to elucidate and measure microbiome function. In this review, we cover general considerations when designing experiments to quantify microbiome metabolites, including sample preparation, data acquisition and data processing, since these are critical to downstream data quality. We then discuss data analysis and experimental steps to demonstrate that a given metabolite feature is of microbial origin. We further discuss techniques used to quantify common microbial metabolites, including short-chain fatty acids (SCFA), secondary bile acids (BAs), tryptophan derivatives, N-acyl amides and trimethylamine N-oxide (TMAO). Lastly, we conclude with challenges and future directions for the field.
Collapse
Affiliation(s)
- Jarrod Roach
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Rohit Mital
- Department of Biology, University of Oklahoma
| | - Jacob J Haffner
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Nathan Colwell
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Randy Coats
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Horvey M Palacios
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma
| | | | - Monica Ness
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Thilini Peramuna
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma; Department of Chemistry and Biochemistry, San Diego State University.
| |
Collapse
|
10
|
Demicheva E, Dordiuk V, Polanco Espino F, Ushenin K, Aboushanab S, Shevyrin V, Buhler A, Mukhlynina E, Solovyova O, Danilova I, Kovaleva E. Advances in Mass Spectrometry-Based Blood Metabolomics Profiling for Non-Cancer Diseases: A Comprehensive Review. Metabolites 2024; 14:54. [PMID: 38248857 PMCID: PMC10820779 DOI: 10.3390/metabo14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Blood metabolomics profiling using mass spectrometry has emerged as a powerful approach for investigating non-cancer diseases and understanding their underlying metabolic alterations. Blood, as a readily accessible physiological fluid, contains a diverse repertoire of metabolites derived from various physiological systems. Mass spectrometry offers a universal and precise analytical platform for the comprehensive analysis of blood metabolites, encompassing proteins, lipids, peptides, glycans, and immunoglobulins. In this comprehensive review, we present an overview of the research landscape in mass spectrometry-based blood metabolomics profiling. While the field of metabolomics research is primarily focused on cancer, this review specifically highlights studies related to non-cancer diseases, aiming to bring attention to valuable research that often remains overshadowed. Employing natural language processing methods, we processed 507 articles to provide insights into the application of metabolomic studies for specific diseases and physiological systems. The review encompasses a wide range of non-cancer diseases, with emphasis on cardiovascular disease, reproductive disease, diabetes, inflammation, and immunodeficiency states. By analyzing blood samples, researchers gain valuable insights into the metabolic perturbations associated with these diseases, potentially leading to the identification of novel biomarkers and the development of personalized therapeutic approaches. Furthermore, we provide a comprehensive overview of various mass spectrometry approaches utilized in blood metabolomics research, including GC-MS, LC-MS, and others discussing their advantages and limitations. To enhance the scope, we propose including recent review articles supporting the applicability of GC×GC-MS for metabolomics-based studies. This addition will contribute to a more exhaustive understanding of the available analytical techniques. The Integration of mass spectrometry-based blood profiling into clinical practice holds promise for improving disease diagnosis, treatment monitoring, and patient outcomes. By unraveling the complex metabolic alterations associated with non-cancer diseases, researchers and healthcare professionals can pave the way for precision medicine and personalized therapeutic interventions. Continuous advancements in mass spectrometry technology and data analysis methods will further enhance the potential of blood metabolomics profiling in non-cancer diseases, facilitating its translation from the laboratory to routine clinical application.
Collapse
Affiliation(s)
- Ekaterina Demicheva
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Vladislav Dordiuk
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Fernando Polanco Espino
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Konstantin Ushenin
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Autonomous Non-Profit Organization Artificial Intelligence Research Institute (AIRI), Moscow 105064, Russia
| | - Saied Aboushanab
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| | - Vadim Shevyrin
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| | - Aleksey Buhler
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Elena Mukhlynina
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Olga Solovyova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Irina Danilova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Elena Kovaleva
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| |
Collapse
|
11
|
Dolbnya AD, Popov IA, Pekov SI. Molecular Biomarkers in Cholangiocarcinoma: Focus on Bile. Curr Top Med Chem 2024; 24:722-736. [PMID: 38303538 DOI: 10.2174/0115680266290367240130054142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Hepatobiliary system cancers have demonstrated an increasing incidence rate in the past years. Without the presence of early symptoms, the majority of such cancers manifest with a set of similar symptoms, such as cholestasis resulting in posthepatic icterus. Differential diagnosis of hepatobiliary cancers is required for the therapy selection, however, the similarity of the symptoms complicates diagnostics. Thus, the search for molecular markers is of high interest for such patients. Cholangiocarcinoma (CCA) is characterized by a poor prognosis due to a low resectability rate, which occurs because this disease is frequently beyond the limits of surgical therapy at the time of diagnosis. The CCA is diagnosed by the combination of clinical/biochemical features, radiological methods, and non-specific serum tumor biomarkers, although invasive examination is still needed. The main disadvantage is limited specificity and sensitivity, which complicates early diagnostics. Therefore, prognostic and predictive biomarkers are still lacking and urgently needed for early diagnosis. In contrast to serum, bile is more accessible to identify biliary disease due to its simpler composition. Moreover, bile can contain higher concentrations of tumor biomarkers due to its direct contact with the tumor. It is known that the composition of the main bile component - bile acids, may vary during different diseases of the biliary tract. This review summarizes the recent developments in the current research on the diagnostic biomarkers for CCA in serum and bile and provides an overview of the methods of bile acids analysis.
Collapse
Affiliation(s)
- Andrey D Dolbnya
- Siberian State Medical University, Tomsk, 634050, Russian Federation
| | - Igor A Popov
- Siberian State Medical University, Tomsk, 634050, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russian Federation
| | - Stanislav I Pekov
- Siberian State Medical University, Tomsk, 634050, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russian Federation
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russian Federation
| |
Collapse
|
12
|
Xu F, Chen R, Zhang C, Wang H, Ding Z, Yu L, Tian F, Chen W, Zhou Y, Zhai Q. Cholecystectomy Significantly Alters Gut Microbiota Homeostasis and Metabolic Profiles: A Cross-Sectional Study. Nutrients 2023; 15:4399. [PMID: 37892474 PMCID: PMC10609985 DOI: 10.3390/nu15204399] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Cholecystectomy (CCE) is a standard clinical treatment for conditions like gallstones and cholecystitis. However, its link to post-CCE syndrome, colorectal cancer, and nonalcoholic fatty liver disease has raised concerns. Additionally, studies have demonstrated the disruptive effects of CCE on gut microbiota homeostasis and bile acid (BA) metabolism. Considering the role of gut microbiota in regulating host metabolic and immune pathways, the use of dietary and probiotic intervention strategies to maintain a stable gut ecosystem after CCE could potentially reduce associated disease risks. Inter-study variations have made it challenging to identify consistent gut microbiota patterns after CCE, a prerequisite for targeted interventions. In this study, we first meta-analyzed 218 raw 16S rRNA gene sequencing datasets to determine consistent patterns of structural and functional changes in the gut microbiota after CCE. Our results revealed significant alterations in the gut microbiota's structure and function due to CCE. Furthermore, we identified characteristic gut microbiota changes associated with CCE by constructing a random model classifier. In the validation cohort, this classifier achieved an area under the receiver operating characteristic curve (AUC) of 0.713 and 0.683 when distinguishing between the microbiota of the CCE and healthy groups at the family and genus levels, respectively. Further, fecal metabolomics analysis demonstrated that CCE also substantially modified the metabolic profile, including decreased fecal short-chain fatty acid levels and disrupted BA metabolism. Importantly, dietary patterns, particularly excessive fat and total energy intake, influenced gut microbiota and metabolic profile changes post-CCE. These dietary habits were associated with further enrichment of the microbiota related to BA metabolism and increased levels of intestinal inflammation after CCE. In conclusion, our study identified specific alterations in gut microbiota homeostasis and metabolic profiles associated with CCE. It also revealed a potential link between dietary patterns and gut microbiota changes following CCE. Our study provides a theoretical basis for modulating gut microbiota homeostasis after CCE using long-term dietary strategies and probiotic interventions.
Collapse
Affiliation(s)
- Fusheng Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ruimin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Wang
- Department of Hepatobiliary, Wuxi No. 2 People’s Hospital, Jiangnan University Medical Center, Wuxi 214002, China; (H.W.); (Z.D.)
| | - Zhijie Ding
- Department of Hepatobiliary, Wuxi No. 2 People’s Hospital, Jiangnan University Medical Center, Wuxi 214002, China; (H.W.); (Z.D.)
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Yongping Zhou
- Department of Hepatobiliary, Wuxi No. 2 People’s Hospital, Jiangnan University Medical Center, Wuxi 214002, China; (H.W.); (Z.D.)
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Xu F, Yu Z, Liu Y, Du T, Yu L, Tian F, Chen W, Zhai Q. A High-Fat, High-Cholesterol Diet Promotes Intestinal Inflammation by Exacerbating Gut Microbiome Dysbiosis and Bile Acid Disorders in Cholecystectomy. Nutrients 2023; 15:3829. [PMID: 37686860 PMCID: PMC10489946 DOI: 10.3390/nu15173829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Patients with post-cholecystectomy (PC) often experience adverse gastrointestinal conditions, such as PC syndrome, colorectal cancer (CRC), and non-alcoholic fatty liver disease (NAFLD), that accumulate over time. An epidemiological survey further revealed that the risk of cholecystectomy is associated with high-fat and high-cholesterol (HFHC) dietary intake. Mounting evidence suggests that cholecystectomy is associated with disrupted gut microbial homeostasis and dysregulated bile acids (BAs) metabolism. However, the effect of an HFHC diet on gastrointestinal complications after cholecystectomy has not been elucidated. Here, we aimed to investigate the effect of an HFHC diet after cholecystectomy on the gut microbiota-BA metabolic axis and elucidate the association between this alteration and the development of intestinal inflammation. In this study, a mice cholecystectomy model was established, and the levels of IL-Iβ, TNF-α, and IL-6 in the colon were increased in mice fed an HFHC diet for 6 weeks. Analysis of fecal BA metabolism showed that an HFHC diet after cholecystectomy altered the rhythm of the BA metabolism by upregulating liver CPY7A1, CYP8B1, and BSEP and ileal ASBT mRNA expression levels, resulting in increased fecal BA levels. In addition, feeding an HFHC diet after cholecystectomy caused a significant dysbiosis of the gut microbiota, which was characterized by the enrichment of the metabolic microbiota involved in BAs; the abundance of pro-inflammatory gut microbiota and related pro-inflammatory metabolite levels was also significantly higher. In contrast, the abundance of major short-chain fatty acid (SCFA)-producing bacteria significantly decreased. Overall, our study suggests that an HFHC diet after cholecystectomy promotes intestinal inflammation by exacerbating the gut microbiome and BA metabolism dysbiosis in cholecystectomy. Our study also provides useful insights into the maintenance of intestinal health after cholecystectomy through dietary or probiotic intervention strategies.
Collapse
Affiliation(s)
- Fusheng Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Yu
- Wuxi People’s Hospital Afliated to Nanjing Medical University, Wuxi 214023, China;
| | - Yaru Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ting Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
14
|
Qian W, Li M, Yu L, Tian F, Zhao J, Zhai Q. Effects of Taurine on Gut Microbiota Homeostasis: An Evaluation Based on Two Models of Gut Dysbiosis. Biomedicines 2023; 11:biomedicines11041048. [PMID: 37189666 DOI: 10.3390/biomedicines11041048] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Taurine, an abundant free amino acid, plays multiple roles in the body, including bile acid conjugation, osmoregulation, oxidative stress, and inflammation prevention. Although the relationship between taurine and the gut has been briefly described, the effects of taurine on the reconstitution of intestinal flora homeostasis under conditions of gut dysbiosis and underlying mechanisms remain unclear. This study examined the effects of taurine on the intestinal flora and homeostasis of healthy mice and mice with dysbiosis caused by antibiotic treatment and pathogenic bacterial infections. The results showed that taurine supplementation could significantly regulate intestinal microflora, alter fecal bile acid composition, reverse the decrease in Lactobacillus abundance, boost intestinal immunity in response to antibiotic exposure, resist colonization by Citrobacter rodentium, and enhance the diversity of flora during infection. Our results indicate that taurine has the potential to shape the gut microbiota of mice and positively affect the restoration of intestinal homeostasis. Thus, taurine can be utilized as a targeted regulator to re-establish a normal microenvironment and to treat or prevent gut dysbiosis.
Collapse
|
15
|
Sousa Queirós S, von der Lühe B, Silva-Bessa A, Machado Brito-da-Costa A, Morais Caldas I, Dawson L, Madureira-Carvalho Á. Lipidic compounds found in soils surrounding human decomposing bodies and its use in forensic investigations – a narrative review. Sci Justice 2023; 63:303-312. [PMID: 37169455 DOI: 10.1016/j.scijus.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Following decomposition of a human body, a variety of decomposition products, such as lipids, are released into the surrounding environment, e.g. soils. The long-lasting preservation in soils and their high diagnostic potential have been neglected in forensic research. Furthermore, little is known about the preservation, chemical transformation, or degradation of those human derived lipids in soils. To date, several studies identified various lipids such as long-chain free fatty acids and steroids in soils that contained decomposition fluids. Those lipids are preserved in soils over time and could serve as markers of human decomposition in forensic investigations, e.g. for estimating the post-mortem interval or identifying the burial location of a human body. Therefore, this review focuses on the current literature regarding fatty acid and steroid that have been detected in soils and associated with human body decomposition. After a short introduction about human decomposition processes, this review summarises fatty acid and steroid analysis applied in current case studies and studies related to taphonomic research. This review provides an overview of the available studies that have used fatty acids and steroids as identifiers of human decomposition fluid in soils in a forensic context and discusses the potential for developing this innovative field of research with direct application in a forensic context.
Collapse
|
16
|
Li Y, Zhang D, Mo Y, Zeng T, Wu T, Liu L, Zhang H, Chen C. Simultaneous determination of sex hormones and bile acids in rat plasma using a liquid chromatography-tandem mass spectrometry method. J Pharm Biomed Anal 2023; 223:115139. [PMID: 36379100 DOI: 10.1016/j.jpba.2022.115139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/16/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Endogenous steroids, including sex hormones and bile acids, are a group of essential compounds with various biological functions. In this study, we developed an LC-MS method that simultaneously measures 14 sex hormones and metabolites (SH) and 32 bile acids (BA) in rat plasma. Multiple innovative approaches were applied to increase the sensitivity and specificity, including optimization of the mobile phases, gradients, and dynamic multiple reaction monitoring (DMRM) transitions. The method was validated and applied on plasma samples from pregnant rats before and 0.5 h after oral glucose tolerance test (OGTT) at gestational days 0.5 and 18.5. Results showed that the method was applicable, and 9 SH and 30 BA were measurable in the samples. In summary, this method is applicable in studies on SH and BA in rat plasma, and may also be used on other matrix and species.
Collapse
Affiliation(s)
- Yun Li
- First Clinical College, Chongqing Medical University, Chongqing 400016, China
| | - Dan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yan Mo
- First Clinical College, Chongqing Medical University, Chongqing 400016, China
| | - Teng Zeng
- First Clinical College, Chongqing Medical University, Chongqing 400016, China
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia
| | - Lingqiao Liu
- School of Pharmacy, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
17
|
Zhu L, Liao R, Huang J, Xiao C, Yang Y, Wang H, He D, Yan H, Yang C. Lactobacillus salivarius SNK-6 Regulates Liver Lipid Metabolism Partly via the miR-130a-5p/MBOAT2 Pathway in a NAFLD Model of Laying Hens. Cells 2022; 11:cells11244133. [PMID: 36552896 PMCID: PMC9776975 DOI: 10.3390/cells11244133] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Lactobacillus spp., as probiotics, have shown efficacy in alleviating nonalcoholic fatty liver disease (NAFLD). Here, we screened a new probiotic strain, Lactobacillus salivarius SNK-6 (L. salivarius SNK-6), which was isolated from the ileum of healthy Xinyang black-feather laying hens in China. We investigated the beneficial activity of L. salivarius SNK-6 in a NAFLD model in laying hens and found that L. salivarius SNK-6 inhibited liver fat deposition and decreased serum triglyceride levels and activity of aspartate transaminase and alanine transaminase. MBOAT2 (membrane-bound O-acyltransferase domain containing 2) was directly targeted by miR-130a-5p, which was downregulated in the liver of NAFLD laying hens but reversed after L. salivarius SNK-6 treatment. Downregulation of MBOAT2, L. salivarius SNK-6 supplementation in vivo, and L. salivarius SNK-6 cell culture treatment in vitro suppressed the mRNA expression of genes involved in the PPAR/SREBP pathway. In addition, 250 metabolites were identified in the supernatants of L. salivarius SNK-6 culture media, and most of them participated in metabolic pathways, including amino acid, carbohydrate, and lipid metabolism. Targeted metabolomic analysis revealed that acetate, butyrate, and propionate were the most abundant short-chain fatty acids, while cholic acid, ursodeoxycholic acid, chenodeoxycholic acid, and tauroursodeoxycholic acid were the four most-enriched bile acids among L. salivarius SNK-6 metabolites. This may have contributed to the reparative effect of L. salivarius SNK-6 in the NAFLD chicken model. Our study suggested that L. salivarius SNK-6 alleviated liver damage partly via the miR-130a-5p/MBOAT2 signaling pathway.
Collapse
Affiliation(s)
- Lihui Zhu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- National Poultry Research Center for Engineering and Technology, Shanghai 201106, China
| | - Rongrong Liao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Jiwen Huang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Changfeng Xiao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- National Poultry Research Center for Engineering and Technology, Shanghai 201106, China
| | - Yunzhou Yang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Huiying Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Daqian He
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Huaxiang Yan
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- Correspondence: (H.Y.); (C.Y.); Tel.: +86-216-220-5472 (H.Y. & C.Y.)
| | - Changsuo Yang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- National Poultry Research Center for Engineering and Technology, Shanghai 201106, China
- Correspondence: (H.Y.); (C.Y.); Tel.: +86-216-220-5472 (H.Y. & C.Y.)
| |
Collapse
|
18
|
Stürznickel J, Behler-Janbeck F, Baranowsky A, Schmidt T, Schwinge D, John C, Lohse AW, Schramm C, Heeren J, Schinke T, Amling M. Increased concentrations of conjugated bile acids are associated with osteoporosis in PSC patients. Sci Rep 2022; 12:16491. [PMID: 36192408 PMCID: PMC9530206 DOI: 10.1038/s41598-022-20351-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Primary sclerosing cholangitis (PSC) is an idiopathic cholestatic liver disease characterized by chronic inflammation and progressive fibrosis of intra- and extrahepatic bile ducts. Osteoporosis is a frequent comorbidity in PSC, and we could previously demonstrate that IL17-dependent activation of bone resorption is the predominant driver of bone loss in PSC. Since we additionally observed an unexpected heterogeneity of bone mineral density in our cohort of 238 PSC patients, the present study focused on a comparative analysis of affected individuals with diagnosed osteoporosis (PSCOPO, n = 10) or high bone mass (PSCHBM, n = 7). The two groups were not distinguishable by various baseline characteristics, including liver fibrosis or serum parameters for hepatic function. In contrast, quantification of serum bile acid concentrations identified significant increases in the PSCOPO group, including glycoursodeoxycholic acid (GUDCA), an exogenous bile acid administered to both patient groups. Although cell culture experiments did not support the hypothesis that an increase in circulating bile levels is a primary cause of PSC-associated osteoporosis, the remarkable differences of endogenous bile acids and GUDCA in the serum of PSCOPO patients strongly suggest a yet unknown impairment of biliary metabolism and/or hepatic bile acid clearance in this patient subgroup, which is independent of liver fibrosis.
Collapse
Affiliation(s)
- Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestraße 59, 22529, Hamburg, Germany.,Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Friederike Behler-Janbeck
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tobias Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestraße 59, 22529, Hamburg, Germany
| | - Dorothee Schwinge
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg Center for Translational Immunology (HCTI), University Medical Centre Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Clara John
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg Center for Translational Immunology (HCTI), University Medical Centre Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christoph Schramm
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg Center for Translational Immunology (HCTI), University Medical Centre Hamburg-Eppendorf, 20246, Hamburg, Germany.,Martin Zeitz Centre for Rare Diseases, University Medical Centre Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestraße 59, 22529, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestraße 59, 22529, Hamburg, Germany.
| |
Collapse
|
19
|
Qin S, Tian J, Wang L, Zhao Y, Wang D, Wang F, Meng J, Liu M, Liang A. Ultra-performance chromatography-electrospray tandem mass spectrometry analysis of bile acid profiles in the enterohepatic circulation following geniposide and acetaminophen-induced liver injury. J Chromatogr A 2022; 1680:463417. [PMID: 35985151 DOI: 10.1016/j.chroma.2022.463417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Bile acids (BAs) play an important role in pre-diagnosing drug-induced liver injury (DILI). However, in clinical practice, different types of liver injury are characterized by different pathogeneses and pathological manifestations. Therefore, whether BAs can be used as biomarkers across different DILIs remains unclear. In this study, an ultra-performance chromatography-mass spectrometry (MS)/MS-based technique was developed for the simultaneous quantitative analysis of 31 BAs in the serum, liver, feces, urine, and intestinal contents of rats treated with acetaminophen (APAP) and geniposide to induce liver injury. The total extraction recovery for representative analytes ranged between 80.60% and 99.23% in the serum, urine, liver, feces, and intestinal contents. The correlation coefficients for all standard curves of the different matrices were at least 0.99. Validation of the BA analytical method including selectivity, residue, lower limit of quantification, accuracy, precision, matrix effect, and stability conformed with the biospecimen quality control standards of the Chinese Pharmacopoeia (version 2020). Serum biochemical and pathohistological analyses revealed APAP- and geniposide-induced hepatocellular and cholestatic DILI, respectively, with different effects on BA profiles in the enterohepatic circulation. Metabolomics further revealed that the trends in BA changes in the serum, feces, urine, and intestinal tissues were consistent between the geniposide- and APAP-treated groups. However, in the liver, the total BAs (TBA) concentration increased by 1.70 fold in the geniposide group but decreased by 43% in the APAP group compared with the control group. Multivariate analysis revealed differentially expressed BAs, including TCA, CA, and GCA, which are potential biomarkers for DILI, in the serum, liver, and urine following treatment with geniposide. Interestingly, the differentially expressed BAs in the APAP group were similar to those in the control group. Additionally, the magnitude of changes in the TBA in the urine (3.3 fold and 15.5 fold in the APAP and geniposide groups, respectively) was higher than that in the blood (290 fold and 640 fold in the APAP and geniposide groups, respectively). However, given the BA profiles after geniposide- and APAP-induced liver injury, BAs were found to be more suitable as biomarkers for diagnosing cholestatic liver injury. Overall, the BA assay developed in this study is rapid, simple, accurate, validated, sensitive, and suitable for analyzing the levels and distribution of BAs in various parts of the enterohepatic circulation.
Collapse
Affiliation(s)
- Shasha Qin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Jingzhuo Tian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Lianmei Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Yong Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Dunfang Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Fang Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Jing Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Meiting Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China.
| |
Collapse
|
20
|
Yang B, Huang S, Zhao G, Ma Q. Dietary supplementation of porcine bile acids improves laying performance, serum lipid metabolism and cecal microbiota in late-phase laying hens. ANIMAL NUTRITION 2022; 11:283-292. [PMID: 36263401 PMCID: PMC9576542 DOI: 10.1016/j.aninu.2022.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/23/2022]
Abstract
Due to the exceptional laying performance of hens, the demand on lipid metabolism and oxidation in vivo is vigorous, resulting in excessive lipid accumulation in late-phase hens, which lowers the production performance. Bile acids regulate lipid metabolism and gut microbiota in humans and animals. However, the effect of porcine bile acids on lipid metabolism and cecal microbiota in laying hens in the late phase is still unclear. A total of 360 healthy 45-week-old laying hens were chosen for a 24-week feeding trial, where 0, 30, 60 and 90 mg/kg porcine bile acids were added to a basal diet, respectively. The results showed that dietary supplementation of 60 mg/kg bile acids increased egg production and feed conversion (P < 0.05). Also, 60 and 90 mg/kg porcine bile acids reduced abdominal fat percentage and body weight (P < 0.05). The levels of serum total cholesterol, triglyceride, and low-density lipoprotein cholesterol of hens decreased (P < 0.05) in bile acids supplement groups. As for cecal microbiota, bile acids supplementation did not affect the alpha diversity of cecal microbiota at the genus level. Moreover, dietary supplementation of 90 mg/kg bile acids resulted in an increase in the abundance of beneficial bacteria in the cecum, such as Lactobacillus, Bifidobacterium and Turicibacter. The changes in the cecal microbiota caused by bile acids supplementation correlated with serum lipid indexes. According to KEGG pathway analysis, dietary supplementation of 60 and 90 mg/kg bile acids promoted structural transformation of the cecal microbiota to down-regulate steroid biosynthesis, up-regulate fatty acid degradation and up-regulate unsaturated fatty acid biosynthesis. Meanwhile, bile acids bio-isomerization function of cecal microbiota was enhanced in 60 and 90 mg/kg bile acids treatment, and the short-chain fatty acid metabolism was also affected. In conclusion, the present study revealed dietary supplementation of porcine bile acids enriched probiotics in the gut and improved serum lipid metabolism of laying hens. These findings demonstrate that porcine bile acids can be a potential gut beneficial promoter for late-phase laying hens.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoxian Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Corresponding author.
| |
Collapse
|
21
|
Yan X, Zhang Y, Peng Y, Li X. The water extract of Radix scutellariae, its total flavonoids and baicalin inhibited CYP7A1 expression, improved bile acid, and glycolipid metabolism in T2DM mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115238. [PMID: 35351576 DOI: 10.1016/j.jep.2022.115238] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix scutellariae (the root of Scutellaria baicalensis Georgi), is a traditional Chinese medicine (TCM) used to treat type 2 diabetes mellitus (T2DM). Abundant flavonoids are the antidiabetic components of Radix scutellariae, of which baicalin (Baicalein 7-O-glucuronide, BG) is the major bioactive component. Our previous studies found that the water extract of Radix scutellariae (WESB) could exert hypoglycemic and hypolipidemic efficacies by adjusting the ileum FXR-medicated interaction between gut microbiota and bile acid (BA) metabolism. However, it remains unclear whether WESB and its biologically active ingredients exert an antidiabetic effect through bile acid signaling mediated by FXR-CYP7A1. AIMS OF THE STUDY To explore the mechanism of WESB and its total flavonoids (TF) further and BG on BA signals and glycolipid metabolism in T2DM mice. MATERIALS AND METHODS The antidiabetic effects of WESB, TF and BG were evaluated by indexing the body weight, fasting blood glucose (FBG) and oral glucose tolerance test (OGTT) in HFD/STZ-induced (high-fat diet and streptozocin) diabetic mice, and comparing them with the positive control (metformin). The lipids in the mouse liver and the total bile acids (TBA) in the mouse liver and bile were detected by commercial kits. The concentration of BAs in the mouse feces was determined by liquid chromatography-tandem mass spectrometry. The protein expression levels of cholesterol 7α-hydroxylase (CYP7A1), farnesol X receptor (FXR), etc., in the liver and/or ileum, play a key role in the BAs metabolism of T2DM mice were evaluated by immunoblot analysis. RESULTS The hyperglycemia and impaired glucose tolerance of T2DM mice were improved after WESB, TF and BG treatment. Especially after BG administration, the levels of low-density lipoprotein-cholesterol (LDL-c) and total glyceride (TG) in the T2DM mouse liver were significantly decreased (p < 0.05). While the level of high-density lipoprotein cholesterol (HDL-c) was significant increased (p < 0.001). Meanwhile, the levels of TBA in both the liver and bile of T2DM mice were significantly decreased by BG (p < 0.05). Moreover, the high expression of CYP7A1 in the liver of T2DM mice was significantly inhibited by WESB, TF and BG (p < 0.05), and the high expression of FXR in the ileum of T2DM mice was significantly inhibited by TF (p < 0.05). CONCLUSION These results indicated that the hypoglycemic effects of WESB, TF and BG might be exerted by inhibiting the expression of CYP7A1 in T2DM mice, and TF inhibited expression of intestinal FXR by inducing changes in fecal BA profile. BG significantly improved hepatic lipid metabolism. Moreover, BG reduced lipid accumulation in the liver and bile by inhibiting the expression of CYP7A1 in T2DM mice. These findings provide useful explanations for the antidiabetic mechanism of Radix scutellariae.
Collapse
Affiliation(s)
- Xiumei Yan
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Yulong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
22
|
Wang Z, Li H, Yun Y, Wang H, Meng B, Mu Y, Gao S, Tao X, Chen W. A dynamic multiple reaction monitoring strategy to develop and optimize targeted metabolomics methods: Analyzing bile acids in capecitabine-induced diarrhea. J Pharm Biomed Anal 2022; 219:114938. [PMID: 35850015 DOI: 10.1016/j.jpba.2022.114938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE We sought to develop and optimize a targeted bile acids (BAs) metabolomics method based on a dynamic multiple reaction monitoring (dMRM) strategy and explored the dynamic alterations of BAs in diarrhea induced by capecitabine in a mouse model. METHOD The targeted metabolomics method was developed using an Agilent 6460A triple quadrupole mass spectrometer, and 41 types of BAs were monitored in negative ionization mode. The mass spectrometer detection was optimized using dMRM to enhance the responses, separation, and peak shape and to shorten the analysis time. A mouse model of diarrhea was established by multiple administration of capecitabine, and plasma samples were collected at baseline and the end of drug administration for subsequent BAs analysis. RESULTS The targeted BA metabolomics method achieved shorter chromatographic separation time (10 min) for 41 BAs, with good peak shapes and response increases of 3- to 10-fold after application of dMRM. The mouse model of capecitabine-induced diarrhea was established, and the three BAs 23-norcholic acid, isolithocholic acid, and isodeoxycholic acid in the baseline samples contributed the most to differentiating mice with diarrhea from those without diarrhea. For mice that ultimately developed diarrhea, apocholic acid, isodeoxycholic acid, and 7-ketodeoxycholic acid exhibited the largest change in concentrations compared with their baseline concentrations. CONCLUSION The dMRM strategy has obvious advantages compared with common MRM. The results in model mice showed that a differentiated profile of BAs in the baseline may indicate biomarkers of diarrhea induced by capecitabine, and disturbed homeostasis may explain the metabolomic mechanism of diarrhea occurrence.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Hanglin Li
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; Chemistry and Biological Engineering College, Yichun University, Yichun 336000, China
| | - Yunlei Yun
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Hongsen Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; Chemistry and Biological Engineering College, Yichun University, Yichun 336000, China
| | - Bosu Meng
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Yuhui Mu
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Shouhong Gao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Xia Tao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Wansheng Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
23
|
Yang B, Huang S, Li S, Feng Z, Zhao G, Ma Q. Safety Evaluation of Porcine Bile Acids in Laying Hens: Effects on Laying Performance, Egg Quality, Blood Parameters, Organ Indexes, and Intestinal Development. Front Vet Sci 2022; 9:895831. [PMID: 35685343 PMCID: PMC9171047 DOI: 10.3389/fvets.2022.895831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 01/14/2023] Open
Abstract
Bile acids (BAs) have long been known to facilitate digestion, transport, and absorption of lipids in the small intestine as well as regulate host lipid metabolic homeostasis. However, excessive BAs may lead to long-term damage to tissue. Also, it is unknown whether different levels of porcine BAs supplementation could improve performance, host metabolism, intestinal functions in laying hens. Hence, this study was aimed to investigate the potential effects of BAs addition on laying performance, egg quality, blood parameters, organ indexes, and intestinal histopathology of hens in the late phase. A total of 300 58-week-old Hy-line Gray hens were randomly divided into five groups which fed a basal diet (control) or basal diets supplemented with 60, 300, 600, and 3,000 mg/kg BAs for 56 days. Compared with the control group, no significant differences (P > 0.05) were observed in egg production, egg weight, ADFI, and FCR of hens in 60, 300, 600, and 3,000 mg/kg BAs groups. Dietary 60 mg/kg BAs supplementation resulted in a significant increase (P < 0.05) in egg mass. Meanwhile, no significant differences were observed in egg quality, including eggshell strength, eggshell thickness, albumen height, and Haugh unit among any treatment groups (P > 0.05). Dramatically, dietary 3,000 mg/kg BAs supplement decreased yolk color (P < 0.05). There was no significant difference in the blood parameters such as WBC, RBC, HGB, HCT, and PLT among any treatments. However, in 3,000 mg/kg BAs group, ovary coefficient was lower than the control (P < 0.05), and serum urea and creatinine were higher than the control (P < 0.05). Also, kidney and oviduct injury appeared in 3,000 mg/kg BAs group. These results indicated that a porcine BAs concentration of 3,000 mg/kg may cause harmful effects while 600 mg/kg was non-deleterious to laying hens after a daily administration for 56 days, namely that dietary supplement of up to 10 times the recommended dose of BAs was safely tolerated by laying hens.
Collapse
Affiliation(s)
- Bowen Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shupeng Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Zhihua Feng
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guoxian Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- *Correspondence: Guoxian Zhao
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Qiugang Ma
| |
Collapse
|
24
|
Kawamura S, Matsushita Y, Kurosaki S, Tange M, Fujiwara N, Hayata Y, Hayakawa Y, Suzuki N, Hata M, Tsuboi M, Kishikawa T, Kinoshita H, Nakatsuka T, Sato M, Kudo Y, Hoshida Y, Umemura A, Eguchi A, Ikenoue T, Hirata Y, Uesugi M, Tateishi R, Tateishi K, Fujishiro M, Koike K, Nakagawa H. Inhibiting SCAP/SREBP exacerbates liver injury and carcinogenesis in murine nonalcoholic steatohepatitis. J Clin Invest 2022; 132:151895. [PMID: 35380992 PMCID: PMC9151706 DOI: 10.1172/jci151895] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Enhanced de novo lipogenesis mediated by sterol regulatory element-binding proteins (SREBPs) is thought to be involved in nonalcoholic steatohepatitis (NASH) pathogenesis. In this study, we assessed the impact of SREBP inhibition on NASH and liver cancer development in murine models. Unexpectedly, SREBP inhibition via deletion of the SREBP cleavage-activating protein (SCAP) in the liver exacerbated liver injury, fibrosis, and carcinogenesis, despite markedly reduced hepatic steatosis. These phenotypes were ameliorated by restoring SREBP function. Transcriptome and lipidome analyses revealed that SCAP-SREBP pathway inhibition altered the fatty acid (FA) composition of phosphatidylcholines due to both impaired FA synthesis and disorganized FA incorporation into phosphatidylcholine via lysophosphatidylcholine acyltransferase 3 (LPCAT3) downregulation, which led to endoplasmic reticulum (ER) stress and hepatocyte injury. Supplementation of phosphatidylcholines significantly improved liver injury and ER stress induced by SCAP deletion. The activity of SCAP-SREBP-LPCAT3 axis was found inversely associated with liver fibrosis severity in human NASH. SREBP inhibition also cooperated with impaired autophagy to trigger liver injury. Thus, excessively strong and broad lipogenesis inhibition was counterproductive for NASH therapy, which will have important clinical implications in NASH treatment.
Collapse
Affiliation(s)
- Satoshi Kawamura
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Yuki Matsushita
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | | | - Mizuki Tange
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Naoto Fujiwara
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Yuki Hayata
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Nobumi Suzuki
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Masahiro Hata
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Mayo Tsuboi
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | | | - Hiroto Kinoshita
- Division of Gastroenterology, Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Takuma Nakatsuka
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Masaya Sato
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Yotaro Kudo
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Atsushi Umemura
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akiko Eguchi
- Department of Gastroenterology and Hepatology, Mie University, Tsu, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Hirata
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Motonari Uesugi
- Institute for Chemical Research and Institute for Integrated Cell-Material , Kyoto University, Kyoto, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | | | - Kazuhiko Koike
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
25
|
Lyu H, Wu X, Yang Y, Chen H, Dang X, Liu X. Preparation, characterization and application of double yolk–shell structure magnetic molecularly imprinted polymers for extraction of 17β-estradiol. NEW J CHEM 2022. [DOI: 10.1039/d2nj00237j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel double yolk–shell structure molecularly imprinted polymers were synthesized by surface polymerization with 17β-estradiol as the template, followed by chemical etching.
Collapse
Affiliation(s)
- Hui Lyu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430063, China
| | - Xinze Wu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430063, China
| | - Yinpeng Yang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430063, China
| | - Huaixia Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430063, China
| | - Xueping Dang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430063, China
| | - Xiaolan Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430063, China
| |
Collapse
|
26
|
Zhao WW, Xiao M, Wu X, Li XW, Li XX, Zhao T, Yu L, Chen XQ. Ilexsaponin A 1 Ameliorates Diet-Induced Nonalcoholic Fatty Liver Disease by Regulating Bile Acid Metabolism in Mice. Front Pharmacol 2022; 12:771976. [PMID: 34970143 PMCID: PMC8712733 DOI: 10.3389/fphar.2021.771976] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Bile acid (BA) metabolism is an attractive therapeutic target in nonalcoholic fatty liver disease (NAFLD). We aimed to investigate the effect of ilexsaponin A1 (IsA), a major bioactive ingredient of Ilex, on high-fat diet (HFD)-induced NAFLD in mice with a focus on BA homeostasis. Male C57BL/6J mice were fed an HFD to induce NAFLD and were treated with IsA (120 mg/kg) for 8 weeks. The results showed that administration of IsA significantly decreased serum total cholesterol (TC), attenuated liver steatosis, and decreased total hepatic BA levels in HFD-induced NAFLD mice. IsA-treated mice showed increased BA synthesis in the alternative pathway by upregulating the gene expression levels of sterol 27-hydroxylase (CYP27A1) and cholesterol 7b-hydroxylase (CYP7B1). IsA treatment accelerated efflux and decreased uptake of BA in liver by increasing hepatic farnesoid X receptor (FXR) and bile salt export pump (BSEP) expression, and reducing Na+-taurocholic acid cotransporting polypeptide (NTCP) expression. Alterations in the gut microbiota and increased bile salt hydrolase (BSH) activity might be related to enhanced fecal BA excretion in IsA-treated mice. This study demonstrates that consumption of IsA may prevent HFD-induced NAFLD and exert cholesterol-lowering effects, possibly by regulating the gut microbiota and BA metabolism.
Collapse
Affiliation(s)
- Wen-Wen Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children Health, Beijing, China
| | - Meng Xiao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,National Institutes for Food and Drug Control, Beijing, China
| | - Xia Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiu-Wei Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiao-Xi Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ting Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lan Yu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiao-Qing Chen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Oxysterol 7-α Hydroxylase (CYP7B1) Attenuates Metabolic-Associated Fatty Liver Disease in Mice at Thermoneutrality. Cells 2021; 10:cells10102656. [PMID: 34685636 PMCID: PMC8534379 DOI: 10.3390/cells10102656] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022] Open
Abstract
Ambient temperature is an important determinant of both the alternative bile acid synthesis pathway controlled by oxysterol 7-α hydroxylase (CYP7B1) and the progression of metabolic-associated fatty liver disease (MAFLD). Here, we investigated whether CYP7B1 is involved in the etiology of MAFLD under conditions of low and high energy expenditure. For this, Cyp7b1−/− and wild type (WT) mice were fed a choline-deficient high-fat diet and housed either at 30 °C (thermoneutrality) or at 22 °C (mild cold). To study disease phenotype and underlying mechanisms, plasma and organ samples were analyzed to determine metabolic parameters, immune cell infiltration by immunohistology and flow cytometry, lipid species including hydroxycholesterols, bile acids and structural lipids. In WT and Cyp7b1−/− mice, thermoneutral housing promoted MAFLD, an effect that was more pronounced in CYP7B1-deficient mice. In these mice, we found higher plasma alanine aminotransferase activity, hyperlipidemia, hepatic accumulation of potentially harmful lipid species, aggravated liver fibrosis, increased inflammation and immune cell infiltration. Bile acids and hydroxycholesterols did not correlate with aggravated MAFLD in Cyp7b1−/− mice housed at thermoneutrality. Notably, an up-regulation of lipoprotein receptors was detected at 22 °C but not at 30 °C in livers of Cyp7b1−/− mice, suggesting that accelerated metabolism of lipoproteins carrying lipotoxic molecules counteracts MAFLD progression.
Collapse
|
28
|
Zhou L, Yu D, Zheng S, Ouyang R, Wang Y, Xu G. Gut microbiota-related metabolome analysis based on chromatography-mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Reiter S, Dunkel A, Metwaly A, Panes J, Salas A, Haller D, Hofmann T. Development of a Highly Sensitive Ultra-High-Performance Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry Quantitation Method for Fecal Bile Acids and Application on Crohn's Disease Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5238-5251. [PMID: 33890469 DOI: 10.1021/acs.jafc.1c00769] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In addition to their important role in fat digestion, bile acids are increasingly being used as markers for various diseases. The large diversity of bile acids results from the conversion of primary and conjugated bile acids into secondary bile acids by deconjugation and dehydroxylation reactions mediated by the intestinal microbiota. Here, we describe a fast and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for absolute quantitation of 45 bile acids in human or mouse feces in combination with a simple workup and extraction procedure. Method validation outlined excellent limits of detection and quantitation, linearity, selectivity, recovery, extraction loss, and precision. To investigate the connection between microbiome alterations and bile acid metabolism, the method was applied on a Crohn's disease study including patients with histologically documented active disease or remission as well as on a model using humanized mice. As the complex mechanism including genetic and environmental factors leading to the development of Crohn's disease is so far not completely understood, the study investigates the microbial metabolism of bile acids and the potential use of bile acid profiles to predict disease state.
Collapse
Affiliation(s)
- Sinah Reiter
- Chair for Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
- ZIEL-Institute for Food and Health, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany
| | - Andreas Dunkel
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Amira Metwaly
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Julian Panes
- Inflammatory Bowel Disease Unit, Hospital Clínic de Barcelona, IDIBAPS, CIBERehd, c/ Rosselló 149-153, 08036 Barcelona, Spain
| | - Azucena Salas
- Inflammatory Bowel Disease Unit, Hospital Clínic de Barcelona, IDIBAPS, CIBERehd, c/ Rosselló 149-153, 08036 Barcelona, Spain
| | - Dirk Haller
- ZIEL-Institute for Food and Health, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Thomas Hofmann
- Chair for Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| |
Collapse
|
30
|
Zhao L, Ma P, Peng Y, Wang M, Peng C, Zhang Y, Li X. Amelioration of hyperglycaemia and hyperlipidaemia by adjusting the interplay between gut microbiota and bile acid metabolism: Radix Scutellariae as a case. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 83:153477. [PMID: 33545549 DOI: 10.1016/j.phymed.2021.153477] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/06/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Our previous clinical research showed that the interaction between gut microbiota and bile acids (BAs) in patients with type 2 diabetes mellitus (T2DM) changed significantly. We hypothesized that T2DM could be improved by adjusting this interaction mediated by farnesoid X receptor (FXR). T2DM belongs to the category of "xiaoke" in traditional Chinese medicine. Radix scutellariae has the effects of clearing away heat and eliminating dampness, curing jaundice and quenching thirst and is widely used alone or in combination with other medicines for the treatment of T2DM in China and throughout Asia. Additionally, the interaction between Radix scutellariae and gut microbiota may influence its efficacy in the treatment of T2DM. PURPOSE This study chose Radix scutellariae to validate that T2DM could improve by adjusting the interaction between gut microbiota and bile acid metabolism. STUDY DESIGN AND METHODS Radix scutellariae water extract (WESB) was administered to a T2DM rat model established by a high-fat diet combined with streptozotocin. The body weight and blood glucose and insulin levels were measured. The levels of serum lipids, creatinine, uric acid, albumin and total bile acid were also detected. Changes in the pathology and histology of the pancreas, liver and kidney were observed by haematoxylin-eosin staining. The 16S rRNAs of gut microbiota were sequenced, and the faecal and serum BAs were determined by liquid chromatography tandem mass spectrometry. The expression levels of BA metabolism-associated proteins in the liver and intestine were evaluated by immunoblot analysis. RESULTS The results showed that WESB improved hyperglycaemia, hyperlipaemia, and liver and kidney damage in T2DM rats. In addition, the abundances of key gut microbiota and the concentrations of certain secondary BAs in faeces and serum were restored. Moreover, there was a significant correlation between the restored gut microbiota and BAs, which might be related to the activation of liver cholesterol 7α-hydroxylase (CYP7A1) and the inhibition of FXR expression in the intestine rather than the liver. CONCLUSIONS This study provided new ideas for the prevention or treatment of clinical diabetes and its complications by adjusting the interaction between gut microbiota and bile acid metabolism.
Collapse
Affiliation(s)
- Lijuan Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Ping Ma
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Mengyue Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chongsheng Peng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yulong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
31
|
Gaikwad NW. Bileome: The bile acid metabolome of rat. Biochem Biophys Res Commun 2020; 533:458-466. [PMID: 32977942 DOI: 10.1016/j.bbrc.2020.06.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 02/08/2023]
Abstract
Bile acids (BA) play a vital physiological role in vivo. They are not only detergent of dietary lipids and nutrients, but also important hormones or nutrient signaling molecules in metabolic regulation process. Recent studies have also shown BA involvement in various cancers and diseases such as Parkinson's and Alzheimer's and liver diseases. However, majority of the reported literature about BA is restricted to enterohepatic circulation. Hitherto, there has been no comprehensive study of the BA profile in all the major tissue and biofluids in rat has been reported. In this first bileomics study, BA profile of 14 different rat biological specimens (liver, serum, kidney, heart, stomach, ovary, mammary, uterus, small intestine, big intestine, spleen, brain, feces and urine) were studied by ultra-performance liquid chromatography (UPLC)-tandem mass spectrometry (MS/MS). Here I report the comprehensive identification and measurements of bile acids, the bileome, in rat. PCA analysis show distinct separate clusters of tissues as well as biofluids based on BA composition profile. Furthermore, we found that BA profiles of the organs that are involved in enterohepatic circulation were different than the other organs. Most of BA in brain, spleen, heart, ovary, urine, feces and uterus were in the unamidated form, and LCA and MOCA are the most abundant BAs in these organs. Whereas, most of BAs in liver, serum, mammary, large intestine, small intestine, stomach and kidney existed in amidated form, and TCA and T-β-MCA are primary BAs. Finally, first time, BAs are found and measured in kidney, heart, stomach, ovary, mammary, uterus, and spleen of rats.
Collapse
|
32
|
Qiu J, Li T, Zhu ZJ. Multi-dimensional characterization and identification of sterols in untargeted LC-MS analysis using all ion fragmentation technology. Anal Chim Acta 2020; 1142:108-117. [PMID: 33280688 DOI: 10.1016/j.aca.2020.10.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022]
Abstract
Sterols are an important type of lipids, and play many important roles in physiological and pathological processes. However, comprehensive analysis of sterols especially identification of unknown sterols is challenging. In this work, LC-MS with all ion fragmentation (AIF) technology was developed for untargeted analysis of sterols in biological samples. AIF technology provided holistic and multi-dimensional characterization for both knowns and unknowns sterols, including accurate m/z, isotope pattern, retention time (RT), and co-eluted peak profiles between MS1 and MS2 ions in one analysis. We further developed an analysis strategy by integrating the multi-dimensional properties to support unambiguous identification of sterols, including distinguishing sterol isomers. The developed strategy enabled to identify a total of 23 sterols in mouse samples, and quantified 19 sterols in mouse liver tissues. More importantly, we demonstrated that AIF based multi-dimensional analysis provided a possibility to identify sterols without chemical standards and facilitated to discover novel compounds with sterol-like structures in biological samples. In summary, we employed the LC-MS based AIF technology to develop multi-dimensional characterization and identification of both known and unknown sterols in complex biological samples. The comprehensive analysis of sterols facilitates to provide molecular insights to many physiological and pathological activities in biology.
Collapse
Affiliation(s)
- Jiaqian Qiu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tongzhou Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, PR China.
| |
Collapse
|
33
|
Zheng J, Ye C, Hu B, Yang H, Yao Q, Ma J, Liu Y, Liu H. Bile acid profiles in bile and feces of obese mice by a high-performance liquid chromatography-tandem mass spectrometry. Biotechnol Appl Biochem 2020; 68:1332-1341. [PMID: 33140486 DOI: 10.1002/bab.2055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022]
Abstract
Bile acids (BAs) play a pivotal role in manipulating the development of metabolic diseases. However, due to the compositional complexity and functional variation of BAs, it remains unclear about the changes in BA pool for individuals with obesity or metabolic syndrome. We established a high-performance liquid chromatography-mass spectrometer detection system for the simultaneous analysis of both unconjugated and conjugated BAs in the bile and feces of mice. Ten BAs were completely separated, identified, and quantified with low limit of detection (0.5 ng/mL) and inter/intraday precision (relative standard deviation < 12%). By using this method, these BAs in bile and feces of mice were quantified. The result showed that taurochenodeoxycholic acid, taurine-conjugated α-muricholic acids, and taurine-conjugated β-muricholic acids were the dominated BAs in bile, whereas deoxycholic acid and chenodeoxycholic acid predominated in feces. Further, most of the BA levels were significantly elevated in either bile or fecal samples of high-fat diet-fed mice as compared with those in normal chow diet-fed mice, indicating that excessive production of BAs was closely associated with the occurrence of lipid metabolism disorders. In summary, the present method is practicable for analysis of BAs in bile and fecal samples of patients with obesity.
Collapse
Affiliation(s)
- Junping Zheng
- College of Life Sciences, Wuchang University of Technology, Wuhan, People's Republic of China.,College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Cheng Ye
- Wuhan Customs Technology Center, Wuhan, People's Republic of China
| | - Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Huabing Yang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Qunfeng Yao
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Jun Ma
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Yang Liu
- College of Life Sciences, Wuchang University of Technology, Wuhan, People's Republic of China
| | - Hongtao Liu
- College of Life Sciences, Wuchang University of Technology, Wuhan, People's Republic of China.,College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| |
Collapse
|
34
|
Hakkola S, Nylund L, Rosa-Sibakov N, Yang B, Nordlund E, Pahikkala T, Kalliomäki M, Aura AM, Linderborg KM. Effect of oat β-glucan of different molecular weights on fecal bile acids, urine metabolites and pressure in the digestive tract - A human cross over trial. Food Chem 2020; 342:128219. [PMID: 33077284 DOI: 10.1016/j.foodchem.2020.128219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/28/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
While the development of oat products often requires altered molecular weight (MW) of β-glucan, the resulting health implications are currently unclear. This 3-leg crossover trial (n = 14) investigated the effects of the consumption of oat bran with High, Medium and Low MW β-glucan (average > 1000, 524 and 82 kDa respectively) with 3 consequent meals on oat-derived phenolic compounds in urine (UHPLC-MS/MS), bile acids in feces (UHPLC-QTOF), gastrointestinal conditions (ingestible capsule), and perceived gut well-being. Urine excretion of ferulic acid was higher (p < 0.001, p < 0.001), and the fecal excretion of deoxycholic (p < 0.03, p < 0.02) and chenodeoxycholic (p < 0.06, p < 0.02) acids lower after consumption of Low MW β-glucan compared with both Medium and High MW β-glucan. Duodenal pressure was higher after consumption of High MW β-glucan compared to Medium (p < 0.041) and Low (p < 0.022) MW β-glucan. The MW of β-glucan did not affect gut well-being, but the perceptions between females and males differed.
Collapse
Affiliation(s)
- Salla Hakkola
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Lotta Nylund
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | | | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Emilia Nordlund
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Tapio Pahikkala
- Department of Future Technologies, University of Turku, Turku, Finland
| | - Marko Kalliomäki
- Department of Pediatrics, University of Turku, Turku, Finland; Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| | - Anna-Marja Aura
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Kaisa M Linderborg
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
35
|
Dosedělová V, Itterheimová P, Kubáň P. Analysis of bile acids in human biological samples by microcolumn separation techniques: A review. Electrophoresis 2020; 42:68-85. [PMID: 32645223 DOI: 10.1002/elps.202000139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Bile acids are a group of compounds essential for lipid digestion and absorption with a steroid skeleton and a carboxylate side chain usually conjugated to glycine or taurine. Bile acids are regulatory molecules for a number of metabolic processes and can be used as biomarkers of various disorders. Since the middle of the twentieth century, the detection of bile acids has evolved from simple qualitative analysis to accurate quantification in complicated mixtures. Advanced methods are required to characterize and quantify individual bile acids in these mixtures. This article overviews the literature from the last two decades (2000-2020) and focuses on bile acid analysis in various human biological samples. The methods for sample preparation, including the sample treatment of conventional (blood plasma, blood serum, and urine) and unconventional samples (bile, saliva, duodenal/gastric juice, feces, etc.) are shortly discussed. Eventually, the focus is on novel analytical approaches and methods for each particular biological sample, providing an overview of the microcolumn separation techniques, such as high-performance liquid chromatography, gas chromatography, and capillary electrophoresis, used in their analysis. This is followed by a discussion on selected clinical applications.
Collapse
Affiliation(s)
- Věra Dosedělová
- Department of Bioanalytical Instrumentation, CEITEC Masaryk University, Brno, Czech Republic
| | - Petra Itterheimová
- Department of Bioanalytical Instrumentation, CEITEC Masaryk University, Brno, Czech Republic
| | - Petr Kubáň
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| |
Collapse
|
36
|
Aldana J, Romero-Otero A, Cala MP. Exploring the Lipidome: Current Lipid Extraction Techniques for Mass Spectrometry Analysis. Metabolites 2020; 10:metabo10060231. [PMID: 32503331 PMCID: PMC7345237 DOI: 10.3390/metabo10060231] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, high-throughput lipid profiling has contributed to understand the biological, physiological and pathological roles of lipids in living organisms. Across all kingdoms of life, important cell and systemic processes are mediated by lipids including compartmentalization, signaling and energy homeostasis. Despite important advances in liquid chromatography and mass spectrometry, sample extraction procedures remain a bottleneck in lipidomic studies, since the wide structural diversity of lipids imposes a constrain in the type and amount of lipids extracted. Differences in extraction yield across lipid classes can induce a bias on down-stream analysis and outcomes. This review aims to summarize current lipid extraction techniques used for untargeted and targeted studies based on mass spectrometry. Considerations, applications, and limitations of these techniques are discussed when used to extract lipids in complex biological matrices, such as tissues, biofluids, foods, and microorganisms.
Collapse
|
37
|
Advances in Liquid Chromatography–Mass Spectrometry-Based Lipidomics: A Look Ahead. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00135-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Parabacteroides distasonis Alleviates Obesity and Metabolic Dysfunctions via Production of Succinate and Secondary Bile Acids. Cell Rep 2020; 26:222-235.e5. [PMID: 30605678 DOI: 10.1016/j.celrep.2018.12.028] [Citation(s) in RCA: 722] [Impact Index Per Article: 144.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/11/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
We demonstrated the metabolic benefits of Parabacteroides distasonis (PD) on decreasing weight gain, hyperglycemia, and hepatic steatosis in ob/ob and high-fat diet (HFD)-fed mice. Treatment with live P. distasonis (LPD) dramatically altered the bile acid profile with elevated lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) and increased the level of succinate in the gut. In vitro cultivation of PD demonstrated its capacity to transform bile acids and production of succinate. Succinate supplementation in the diet decreased hyperglycemia in ob/ob mice via the activation of intestinal gluconeogenesis (IGN). Gavage with a mixture of LCA and UDCA reduced hyperlipidemia by activating the FXR pathway and repairing gut barrier integrity. Co-treatment with succinate and LCA/UDCA mirrored the benefits of LPD. The binding target of succinate was identified as fructose-1,6-bisphosphatase, the rate-limiting enzyme in IGN. The succinate and secondary bile acids produced by P. distasonis played key roles in the modulation of host metabolism.
Collapse
|
39
|
Choucair I, Nemet I, Li L, Cole MA, Skye SM, Kirsop JD, Fischbach MA, Gogonea V, Brown JM, Tang WHW, Hazen SL. Quantification of bile acids: a mass spectrometry platform for studying gut microbe connection to metabolic diseases. J Lipid Res 2019; 61:159-177. [PMID: 31818878 DOI: 10.1194/jlr.ra119000311] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/24/2019] [Indexed: 02/07/2023] Open
Abstract
Bile acids (BAs) serve multiple biological functions, ranging from the absorption of lipids and fat-soluble vitamins to serving as signaling molecules through the direct activation of dedicated cellular receptors. Synthesized by both host and microbial pathways, BAs are increasingly understood as participating in the regulation of numerous pathways relevant to metabolic diseases, including lipid and glucose metabolism, energy expenditure, and inflammation. Quantitative analyses of BAs in biological matrices can be problematic due to their unusual and diverse physicochemical properties, making optimization of a method that shows good accuracy, precision, efficiency of extraction, and minimized matrix effects across structurally distinct human and murine BAs challenging. Herein we develop and clinically validate a stable-isotope-dilution LC/MS/MS method for the quantitative analysis of numerous primary and secondary BAs in both human and mouse biological matrices. We also utilize this tool to investigate gut microbiota participation in the generation of structurally specific BAs in both humans and mice. We examine circulating levels of specific BAs and in a clinical case-control study of age- and gender-matched type 2 diabetes mellitus (T2DM) versus nondiabetics. BAs whose circulating levels are associated with T2DM include numerous 12α-hydroxyl BAs (taurocholic acid, taurodeoxycholic acid, glycodeoxycholic acid, deoxycholic acid, and 3-ketodeoxycholic acid), while taurohyodeoxycholic acid was negatively associated with diabetes. The LC/MS/MS-based platform described should serve as a robust, high-throughput investigative tool for studying the potential involvement of structurally specific BAs and the gut microbiome on both physiological and disease processes.
Collapse
Affiliation(s)
- Ibrahim Choucair
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195.,Heart and Vascular Institute, and Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195.,Heart and Vascular Institute, and Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
| | - Ina Nemet
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195 .,Heart and Vascular Institute, and Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
| | - Lin Li
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195.,Heart and Vascular Institute, and Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
| | - Margaret A Cole
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195.,Heart and Vascular Institute, and Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
| | - Sarah M Skye
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195.,Heart and Vascular Institute, and Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
| | - Jennifer D Kirsop
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195.,Heart and Vascular Institute, and Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
| | - Michael A Fischbach
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305
| | - Valentin Gogonea
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195.,Heart and Vascular Institute, and Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195.,Department of Chemistry, Cleveland State University, Cleveland, OH 44115
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195.,Heart and Vascular Institute, and Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
| | - W H Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195.,Heart and Vascular Institute, and Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195.,Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195.,Heart and Vascular Institute, and Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195.,Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
40
|
Zeng X, Sheng Z, Li X, Fan X, Jiang W. In vitro studies on the interactions of blood lipid level-related biological molecules with gallic acid and tannic acid. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6882-6892. [PMID: 31386202 DOI: 10.1002/jsfa.9974] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND To provide the scientific evidence for a possible new mechanism of hypolipidemic effects of gallic acid (GA) and tannic acid (TA), the binding capacity of GA and TA with blood lipid level-related biological molecules, including fat, cholesterol and cholates, were investigated in vitro. Additionally, we attempted to study the interactions of cholates with GA and TA by spectroscopic methods, high-performance liquid chromatography electrospray-ionization mass spectrometry (HPLC-ESI-MS) analysis and molecular modeling studies. RESULTS Our results demonstrated that both GA and TA were capable of binding with the blood lipid level-related biological molecules in vitro. The fat-binding capacity of TA was 122.1% that of GA when the addition of polyphenol was 90 mg. The inhibitory effects of GA and TA on the cholesterol solubility in mixed micelles and liquid egg yolk exhibited a dose-dependent relationship (0.5-2.0 mg mL-1 ). In cholate-binding tests, TA showed higher affinity for sodium cholate than GA at a concentration of 2.0 mg mL-1 , while no significant difference in the affinity for sodium deoxycholate was found between GA and TA. Moreover, the data of spectroscopic methods, HPLC-ESI-MS analysis and molecular modeling studies indicated that GA and TA might precipitate cholates through hydrophobic interactions and intermolecular hydrogen bonds rather than covalent bonds. CONCLUSION The findings of the present study suggested that the binding capacity of GA and TA with blood lipid level-related biological molecules might play a crucial role in their hypolipidemic effects in animals. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangquan Zeng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhongting Sheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiangxin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xinguang Fan
- College of Food Engineering, Ludong University, Yantai, China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
41
|
Glaser F, John C, Engel B, Höh B, Weidemann S, Dieckhoff J, Stein S, Becker N, Casar C, Schuran FA, Wieschendorf B, Preti M, Jessen F, Franke A, Carambia A, Lohse AW, Ittrich H, Herkel J, Heeren J, Schramm C, Schwinge D. Liver infiltrating T cells regulate bile acid metabolism in experimental cholangitis. J Hepatol 2019; 71:783-792. [PMID: 31207266 DOI: 10.1016/j.jhep.2019.05.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS T cells are central mediators of liver inflammation and represent potential treatment targets in cholestatic liver disease. Whereas emerging evidence shows that bile acids (BAs) affect T cell function, the role of T cells for the regulation of BA metabolism is unknown. In order to understand this interplay, we investigated the influence of T cells on BA metabolism in a novel mouse model of cholangitis. METHODS Mdr2-/- mice were crossed with transgenic K14-OVAp mice, which express an MHC class I restricted ovalbumin peptide on biliary epithelial cells (Mdr2-/-xK14-OVAp). T cell-mediated cholangitis was induced by the adoptive transfer of antigen-specific CD8+ T cells. BA levels were quantified using a targeted liquid chromatography-mass spectrometry-based approach. RESULTS T cell-induced cholangitis resulted in reduced levels of unconjugated BAs in the liver and significantly increased serum and hepatic levels of conjugated BAs. Genes responsible for BA synthesis and uptake were downregulated and expression of the bile salt export pump was increased. The transferred antigen-specific CD8+ T cells alone were able to induce these changes, as demonstrated using Mdr2-/-xK14-OVAp recipient mice on the Rag1-/- background. Mechanistically, we showed by depletion experiments that alterations in BA metabolism were partly mediated by the proinflammatory cytokines TNF and IFN-γ in an FXR-dependent manner, a process that in vitro required cell contact between T cells and hepatocytes. CONCLUSION Whereas it is known that BA metabolism is dysregulated in sepsis and related conditions, we have shown that T cells are able to control the synthesis and metabolism of BAs, a process which depends on TNF and IFN-γ. Understanding the effect of lymphocytes on BA metabolism will help in the design of combined treatment strategies for cholestatic liver diseases. LAY SUMMARY Dysregulation of bile acid metabolism and T cells can contribute to the development of cholangiopathies. Before targeting T cells for the treatment of cholangiopathies, it should be determined whether they exert protective effects on bile acid metabolism. Herein, we demonstrate that T cell-induced cholangitis resulted in decreased levels of harmful unconjugated bile acids. T cells were able to directly control synthesis and metabolism of bile acids, a process which was dependent on the proinflammatory cytokines TNF and IFN-γ. Understanding the effect of lymphocytes on bile acid metabolism will help in the design of combined treatment strategies for cholestatic liver diseases.
Collapse
Affiliation(s)
- Fabian Glaser
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clara John
- Department of Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Engel
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benedikt Höh
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Dieckhoff
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Stein
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Becker
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Casar
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fenja Amrei Schuran
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Wieschendorf
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Max Preti
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Jessen
- Department of Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Antonella Carambia
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harald Ittrich
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Herkel
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Martin Zeitz Centre for Rare Diseases, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
| | - Dorothee Schwinge
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
42
|
Fiori J, Turroni S, Candela M, Gotti R. Assessment of gut microbiota fecal metabolites by chromatographic targeted approaches. J Pharm Biomed Anal 2019; 177:112867. [PMID: 31614303 DOI: 10.1016/j.jpba.2019.112867] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023]
Abstract
Gut microbiota, the specific microbial community of the gastrointestinal tract, by means of the production of microbial metabolites provides the host with several functions affecting metabolic and immunological homeostasis. Insights into the intricate relationships between gut microbiota and the host require not only the understanding of its structure and function but also the measurement of effector molecules acting along the gut microbiota axis. This article reviews the literature on targeted chromatographic approaches in analysis of gut microbiota specific metabolites in feces as the most accessible biological matrix which can directly probe the connection between intestinal bacteria and the (patho)physiology of the holobiont. Together with a discussion on sample collection and preparation, the chromatographic methods targeted to determination of some classes of microbiota-derived metabolites (e.g., short-chain fatty acids, bile acids, low molecular masses amines and polyamines, vitamins, neurotransmitters and related compounds) are discussed and their main characteristics, summarized in Tables.
Collapse
Affiliation(s)
- Jessica Fiori
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Roberto Gotti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| |
Collapse
|
43
|
Chen F, Wang J, Lu R, Chen H, Xie X. Fast and high-efficiency magnetic surface imprinting based on microwave-accelerated reversible addition fragmentation chain transfer polymerization for the selective extraction of estrogen residues in milk. J Chromatogr A 2018; 1562:19-26. [DOI: 10.1016/j.chroma.2018.05.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 01/13/2023]
|
44
|
Liu Y, Rong Z, Xiang D, Zhang C, Liu D. Detection technologies and metabolic profiling of bile acids: a comprehensive review. Lipids Health Dis 2018; 17:121. [PMID: 29792192 PMCID: PMC5966875 DOI: 10.1186/s12944-018-0774-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/10/2018] [Indexed: 12/15/2022] Open
Abstract
Bile acids (BAs) are important regulatory factors of life activities, which are involved in the regulation of glucose, lipid and energy metabolisms, and closely associated with intestinal hormones, microbiotas and energy balance. BAs abnormalities easily lead to inflammation and metabolic diseases, in turn, the progress of diseases could influence characteristics of BAs. Therefore, accurate detection of BAs contents is of great significance to disease prevention, diagnosis and treatment. At present, the most widely used enzymatic method in clinical practice is applicable to the detection of total bile acid (TBA). In laboratory research, different types of BAs can be accurately separated and quantified by liquid chromatography-mass spectrometry (LC-MS). The metabolic profiling of BAs based on detection technologies can completely and accurately monitor their types and contents, playing a crucial role in disease prevention, diagnosis and treatment. We herein reviewed the main detection technologies of BAs and the application of metabolic profiling in related diseases in recent years.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Pharmacy of Tongji Hospital, Tongji Medical School, Huazhong Science and Technology University, Wuhan, 430030, China
| | - Zhihui Rong
- Department of Paediatrics of Tongji Hospital, Tongji Medical School, Huazhong Science and Technology University, Wuhan, 430030, China
| | - Dong Xiang
- Department of Pharmacy of Tongji Hospital, Tongji Medical School, Huazhong Science and Technology University, Wuhan, 430030, China
| | - Chengliang Zhang
- Department of Pharmacy of Tongji Hospital, Tongji Medical School, Huazhong Science and Technology University, Wuhan, 430030, China.
| | - Dong Liu
- Department of Pharmacy of Tongji Hospital, Tongji Medical School, Huazhong Science and Technology University, Wuhan, 430030, China.
| |
Collapse
|
45
|
Gu Y, Wang X, Li J, Zhang Y, Zhong H, Liu R, Zhang D, Feng Q, Xie X, Hong J, Ren H, Liu W, Ma J, Su Q, Zhang H, Yang J, Wang X, Zhao X, Gu W, Bi Y, Peng Y, Xu X, Xia H, Li F, Xu X, Yang H, Xu G, Madsen L, Kristiansen K, Ning G, Wang W. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat Commun 2017; 8:1785. [PMID: 29176714 PMCID: PMC5702614 DOI: 10.1038/s41467-017-01682-2] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Antidiabetic medication may modulate the gut microbiota and thereby alter plasma and faecal bile acid (BA) composition, which may improve metabolic health. Here we show that treatment with Acarbose, but not Glipizide, increases the ratio between primary BAs and secondary BAs and plasma levels of unconjugated BAs in treatment-naive type 2 diabetes (T2D) patients, which may beneficially affect metabolism. Acarbose increases the relative abundances of Lactobacillus and Bifidobacterium in the gut microbiota and depletes Bacteroides, thereby changing the relative abundance of microbial genes involved in BA metabolism. Treatment outcomes of Acarbose are dependent on gut microbiota compositions prior to treatment. Compared to patients with a gut microbiota dominated by Prevotella, those with a high abundance of Bacteroides exhibit more changes in plasma BAs and greater improvement in metabolic parameters after Acarbose treatment. Our work highlights the potential for stratification of T2D patients based on their gut microbiota prior to treatment.
Collapse
Affiliation(s)
- Yanyun Gu
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Xiaokai Wang
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China.,BGI Education Centre, University of Chinese Academy of Sciences, 518083, Shenzhen, China
| | - Junhua Li
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China.,Shenzhen Key Laboratory of Human commensal microorganisms and Health Research, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yifei Zhang
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Huanzi Zhong
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Ruixin Liu
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Dongya Zhang
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China
| | - Qiang Feng
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China
| | - Xiaoyan Xie
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Jie Hong
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Huahui Ren
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China.,Shenzhen Key Laboratory of Human commensal microorganisms and Health Research, BGI-Shenzhen, Shenzhen, 518083, China.,Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome, BGI-Shenzhen, Shenzhen, 518083, China
| | - Wei Liu
- Renji Hospital affiliated to Shanghai Jiaotong University Medical School, 200127, Shanghai, China
| | - Jing Ma
- Renji Hospital affiliated to Shanghai Jiaotong University Medical School, 200127, Shanghai, China
| | - Qing Su
- Xinhua Hospital affiliated to Shanghai Jiaotong University Medical School, 200092, Shanghai, China
| | - Hongmei Zhang
- Xinhua Hospital affiliated to Shanghai Jiaotong University Medical School, 200092, Shanghai, China
| | - Jialin Yang
- MinHang Central Hospital affiliated to Fudan University Medical School, 201100, Shanghai, China
| | - Xiaoling Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Science, 116011, Dalian, China
| | - Xinjie Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Science, 116011, Dalian, China
| | - Weiqiong Gu
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Yufang Bi
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Yongde Peng
- Shanghai General Hospital, Shanghai Jiaotong University, 200080, Shanghai, China
| | - Xiaoqiang Xu
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China.,BGI Education Centre, University of Chinese Academy of Sciences, 518083, Shenzhen, China
| | - Huihua Xia
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China.,Shenzhen Key Laboratory of Human commensal microorganisms and Health Research, BGI-Shenzhen, Shenzhen, 518083, China
| | - Fang Li
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China.,Shenzhen Key Laboratory of Human commensal microorganisms and Health Research, BGI-Shenzhen, Shenzhen, 518083, China.,Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xun Xu
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China
| | - Huanming Yang
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, 310008, China
| | - Guowang Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Science, 116011, Dalian, China
| | - Lise Madsen
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China.,BGI Education Centre, University of Chinese Academy of Sciences, 518083, Shenzhen, China.,National Institute of Nutrition and Seafood Research (NIFES), 5817, Bergen, Norway
| | - Karsten Kristiansen
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China. .,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Guang Ning
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China.
| | - Weiqing Wang
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
46
|
Determination of sterols and steroid hormones in surface water and wastewater using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Microchem J 2017. [DOI: 10.1016/j.microc.2017.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-elicited effects on bile acid homeostasis: Alterations in biosynthesis, enterohepatic circulation, and microbial metabolism. Sci Rep 2017; 7:5921. [PMID: 28725001 PMCID: PMC5517430 DOI: 10.1038/s41598-017-05656-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/01/2017] [Indexed: 01/14/2023] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant which elicits hepatotoxicity through activation of the aryl hydrocarbon receptor (AhR). Male C57BL/6 mice orally gavaged with TCDD (0.01–30 µg/kg) every 4 days for 28 days exhibited bile duct proliferation and pericholangitis. Mass spectrometry analysis detected a 4.6-fold increase in total hepatic bile acid levels, despite the coordinated repression of genes involved in cholesterol and primary bile acid biosynthesis including Cyp7a1. Specifically, TCDD elicited a >200-fold increase in taurolithocholic acid (TLCA), a potent G protein-coupled bile acid receptor 1 (GPBAR1) agonist associated with bile duct proliferation. Increased levels of microbial bile acid metabolism loci (bsh, baiCD) are consistent with accumulation of TLCA and other secondary bile acids. Fecal bile acids decreased 2.8-fold, suggesting enhanced intestinal reabsorption due to induction of ileal transporters (Slc10a2, Slc51a) and increases in whole gut transit time and intestinal permeability. Moreover, serum bile acids were increased 45.4-fold, consistent with blood-to-hepatocyte transporter repression (Slco1a1, Slc10a1, Slco2b1, Slco1b2, Slco1a4) and hepatocyte-to-blood transporter induction (Abcc4, Abcc3). These results suggest that systemic alterations in enterohepatic circulation, as well as host and microbiota bile acid metabolism, favor bile acid accumulation that contributes to AhR-mediated hepatotoxicity.
Collapse
|
48
|
Worthmann A, John C, Rühlemann MC, Baguhl M, Heinsen FA, Schaltenberg N, Heine M, Schlein C, Evangelakos I, Mineo C, Fischer M, Dandri M, Kremoser C, Scheja L, Franke A, Shaul PW, Heeren J. Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis. Nat Med 2017; 23:839-849. [PMID: 28604703 DOI: 10.1038/nm.4357] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
Abstract
Adaptive thermogenesis is an energy-demanding process that is mediated by cold-activated beige and brown adipocytes, and it entails increased uptake of carbohydrates, as well as lipoprotein-derived triglycerides and cholesterol, into these thermogenic cells. Here we report that cold exposure in mice triggers a metabolic program that orchestrates lipoprotein processing in brown adipose tissue (BAT) and hepatic conversion of cholesterol to bile acids via the alternative synthesis pathway. This process is dependent on hepatic induction of cytochrome P450, family 7, subfamily b, polypeptide 1 (CYP7B1) and results in increased plasma levels, as well as fecal excretion, of bile acids that is accompanied by distinct changes in gut microbiota and increased heat production. Genetic and pharmacological interventions that targeted the synthesis and biliary excretion of bile acids prevented the rise in fecal bile acid excretion, changed the bacterial composition of the gut and modulated thermogenic responses. These results identify bile acids as important metabolic effectors under conditions of sustained BAT activation and highlight the relevance of cholesterol metabolism by the host for diet-induced changes of the gut microbiota and energy metabolism.
Collapse
Affiliation(s)
- Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clara John
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte C Rühlemann
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Miriam Baguhl
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Femke-Anouska Heinsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Nicola Schaltenberg
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ioannis Evangelakos
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Markus Fischer
- Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
| | - Maura Dandri
- Department of Internal Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
49
|
Festa C, De Marino S, Carino A, Sepe V, Marchianò S, Cipriani S, Di Leva FS, Limongelli V, Monti MC, Capolupo A, Distrutti E, Fiorucci S, Zampella A. Targeting Bile Acid Receptors: Discovery of a Potent and Selective Farnesoid X Receptor Agonist as a New Lead in the Pharmacological Approach to Liver Diseases. Front Pharmacol 2017; 8:162. [PMID: 28424617 PMCID: PMC5371667 DOI: 10.3389/fphar.2017.00162] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
Bile acid (BA) receptors represent well-defined targets for the development of novel therapeutic approaches to metabolic and inflammatory diseases. In the present study, we report the generation of novel C-3 modified 6-ethylcholane derivatives. The pharmacological characterization and molecular docking studies for the structure-activity rationalization, allowed the identification of 3β-azido-6α-ethyl-7α-hydroxy-5β-cholan-24-oic acid (compound 2), a potent and selective FXR agonist with a nanomolar potency in transactivation assay and high efficacy in the recruitment of SRC-1 co-activator peptide in Alfa Screen assay. In vitro, compound 2 was completely inactive towards common off-targets such as the nuclear receptors PPARα, PPARγ, LXRα, and LXRβ and the membrane G-coupled BA receptor, GPBAR1. This compound when administered in vivo exerts a robust FXR agonistic activity increasing the liver expression of FXR-target genes including SHP, BSEP, OSTα, and FGF21, while represses the expression of CYP7A1 gene that is negatively regulated by FXR. Collectively these effects result in a significant reshaping of BA pool in mouse. In summary, compound 2 represents a promising candidate for drug development in liver and metabolic disorders.
Collapse
Affiliation(s)
- Carmen Festa
- Department of Pharmacy, University of Naples "Federico II"Naples, Italy
| | - Simona De Marino
- Department of Pharmacy, University of Naples "Federico II"Naples, Italy
| | - Adriana Carino
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di MedicinaPerugia, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II"Naples, Italy
| | - Silvia Marchianò
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di MedicinaPerugia, Italy
| | - Sabrina Cipriani
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di MedicinaPerugia, Italy
| | | | - Vittorio Limongelli
- Department of Pharmacy, University of Naples "Federico II"Naples, Italy.,Institute of Computational Science - Center for Computational Medicine in Cardiology, Faculty of Informatics, Università della Svizzera ItalianaLugano, Switzerland
| | - Maria C Monti
- Department of Pharmacy, University of SalernoFisciano, Italy
| | - Angela Capolupo
- Department of Pharmacy, University of SalernoFisciano, Italy
| | - Eleonora Distrutti
- Ospedale S. Maria della Misericordia, Azienda Ospedaliera di PerugiaPerugia, Italy
| | - Stefano Fiorucci
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di MedicinaPerugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II"Naples, Italy
| |
Collapse
|
50
|
BAR502, a dual FXR and GPBAR1 agonist, promotes browning of white adipose tissue and reverses liver steatosis and fibrosis. Sci Rep 2017; 7:42801. [PMID: 28202906 PMCID: PMC5311892 DOI: 10.1038/srep42801] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/13/2017] [Indexed: 12/31/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a highly prevalent chronic liver disease. Here, we have investigated whether BAR502, a non-bile acid, steroidal dual ligand for FXR and GPBAR1, reverses steato-hepatitis in mice fed a high fat diet (HFD) and fructose. After 9 week, mice on HFD gained ≈30% of b.w (P < 0.01 versus naïve) and were insulin resistant. These overweighting and insulin resistant mice were randomized to receive HFD or HFD in combination with BAR502. After 18 weeks, HFD mice developed NASH like features with severe steato-hepatitis and fibrosis, increased hepatic content of triacylglycerol and cholesterol and expression of SREPB1c, FAS, ApoC2, PPARα and γ, α-SMA, α1 collagen and MCP1 mRNAs. Treatment with BAR502 caused a ≈10% reduction of b.w., increased insulin sensitivity and circulating levels of HDL, while reduced steatosis, inflammatory and fibrosis scores and liver expression of SREPB1c, FAS, PPARγ, CD36 and CYP7A1 mRNA. BAR502 increased the expression of SHP and ABCG5 in the liver and SHP, FGF15 and GLP1 in intestine. BAR502 promoted the browning of epWAT and reduced liver fibrosis induced by CCl4. In summary, BAR502, a dual FXR and GPBAR1 agonist, protects against liver damage caused by HFD by promoting the browning of adipose tissue.
Collapse
|