1
|
Sadighi R, de Kleijne VH, Vido M, Zioga E, Wouters S, Lubbers K, Haselberg R, Gargano AFG, Somsen GW. Online multimethod platform for comprehensive characterization of monoclonal antibodies in cell culture fluid from injection of crude sample - Incorporation of middle-up and bottom-up workflows. Anal Chim Acta 2025; 1353:343943. [PMID: 40221213 DOI: 10.1016/j.aca.2025.343943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/16/2025] [Accepted: 03/13/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Determination of critical quality attributes (CQAs) of pharmaceutical monoclonal antibodies (mAbs) is an essential part of quality control. Commonly, for each CQA, a separate analytical method and setup is required, making assessment of multiple CQAs time-consuming and labour-intensive. This typically involves offline purification and diverse protein digestion steps, in combination with multiple liquid-chromatographic modes. We developed an integrated, fully online multidimensional platform for direct analysis of mAbs in cell culture fluid (CCF) at an intact, subunit and peptide level from a single injection. RESULTS This paper focuses on the online middle-up and bottom-up workflows. The platform combines Protein A affinity chromatography (ProtA), immobilized enzyme reactors (IMERs), reversed-phase liquid chromatography (RPLC) and high-resolution mass spectrometry (MS) for characterization of mAbs. Online ProtA was used to isolate mAbs directly from CCF. Subsequent online digestion of isolated mAb was accomplished by IMERs featuring either the proteases IdeS or trypsin. Between ProtA and IMERs, buffer exchange and pH adjustment were achieved using a strong cation-exchange (SCX) trap column. RPLC-MS analysis of F(ab)'2 and Fc/2 fragments obtained after IdeS digestion provided information on mAb glycoform compositions and the potential presence of PTMs and subunit variants. RPLC-MS/MS analysis of trypsin-digested peptides provided over 95 % coverage of the mAb's amino acid sequence, but also identification and localization of modifications related to e.g. oxidation and deamidation. Comparisons with established offline methods were made. The overall capacity of the system to perform intact, middle-, and bottom-up analyses in parallel from a single injection is demonstrated for an industrially-relevant mAb in CCF. SIGNIFICANCE The developed multidimensional platform enables the simultaneous characterization of multiple fractions from a single ProtA-isolated mAb band at intact, middle-up, or bottom-up level using various LC modes at a substantially reduced analysis time.
Collapse
Affiliation(s)
- Raya Sadighi
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands.
| | - Vera H de Kleijne
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands
| | - Marek Vido
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Eirini Zioga
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands
| | - Sam Wouters
- Agilent Technologies, R&D and Marketing GmbH, Hewlett-Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Karin Lubbers
- Polpharma Biologics Utrecht B.V., Yalelaan 46, 3584, CM Utrecht, the Netherlands
| | - Rob Haselberg
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands
| | - Andrea F G Gargano
- Centre for Analytical Sciences Amsterdam (CASA), the Netherlands; Analytical Chemistry Group, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94720, 1090, GE Amsterdam, the Netherlands
| | - Govert W Somsen
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands
| |
Collapse
|
2
|
Muriithi B, Ippoliti S, Finny A, Addepalli B, Lauber M. Clean and Complete Protein Digestion with an Autolysis Resistant Trypsin for Peptide Mapping. J Proteome Res 2024; 23:5221-5228. [PMID: 39392678 PMCID: PMC11536465 DOI: 10.1021/acs.jproteome.4c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Peptide mapping requires cleavage of proteins in a predictable fashion so that target protein-specific peptides can be reliably identified and quantified. Trypsin, a commonly used protease in this process, can also undergo self-cleavage or autolysis, thereby reducing the effectivity and even cleavage specificity at lysine and arginine residues. Here, we report highly efficient and reproducible peptide mapping of biotherapeutic monoclonal antibodies. We highlight the properties of a homogeneous chemically modified trypsin on thermal stability, a 54% increase in melting temperature with an 84% increase in energy required for unfolding, an indication of more thermally stable trypsin, >90% retained intact mass peak area after exposure to digestion conditions confirming autolysis resistance, 10× more intensity for intact enzyme compared to trypsin of similar source and narrower molecular weight distribution with LC-MS indicative of low degradation compared to 3 other types of trypsin. Finally, we show the utility of this autolysis-resistant trypsin in characterizing biotherapeutic monoclonal antibodies consistently and reliably showing a >30% reduction in missed cleavage for a short-duration protein digestion time of 30 min compared to heterogeneously modified trypsin of a similar source.
Collapse
Affiliation(s)
- Beatrice Muriithi
- Waters
Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Samantha Ippoliti
- Waters
Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Abraham Finny
- Waters
Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | | | - Matthew Lauber
- Waters
Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| |
Collapse
|
3
|
Vosáhlová-Kadlecová Z, Gilar M, Molnárová K, Kozlík P, Kalíková K. Mixed-mode column allows simple direct coupling with immobilized enzymatic reactor for on-line protein digestion. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123866. [PMID: 37657402 DOI: 10.1016/j.jchromb.2023.123866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Liquid chromatography coupled with mass spectrometry is widely used in the field of proteomic analysis after off-line protein digestion. On-line digestion with chromatographic column connected in a series with immobilized enzymatic reactor is not often used approach. In this work we investigated the impact of chromatographic conditions on the protein digestion efficiency. The investigation of trypsin reactor activity was performed by on-line digestion of N-α-benzoyl-L-arginine 4-nitroanilide hydrochloride (BAPNA), followed by separation of the digests on the mixed-mode column. Two trypsin column reactors with the different trypsin coverage on the bridged ethylene hybrid particles were evaluated. To ensure optimal trypsin activity, the separation temperature was set at 37.0 °C and the pH of the mobile phase buffer was maintained at 8.5. The on-line digestion itself ongoing during the initial state of gradient was carried out at a low flow rate using a mobile phase that was free of organic modifiers. Proteins such as cytochrome C, enolase, and myoglobin were successfully digested on-line without prior reduction or alkylation, and the resulting peptides were separated using a mixed-mode column. Additionally, proteins that contain multiple cysteines, such as α-lactalbumin, albumin, β-lactoglobulin A, and conalbumin, were also successfully digested on-line (after reduction and alkylation). Moreover, trypsin immobilized enzymatic reactors were utilized for over 300 injections without any noticeable loss of digestion activity.
Collapse
Affiliation(s)
- Zuzana Vosáhlová-Kadlecová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800 Prague, Czech Republic
| | - Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Katarína Molnárová
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague, Czech Republic
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague, Czech Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800 Prague, Czech Republic.
| |
Collapse
|
4
|
Duong K, Maleknia S, Clases D, Minett A, Padula MP, Doble PA, Gonzalez de Vega R. Immunoaffinity extraction followed by enzymatic digestion for the isolation and identification of proteins employing automated μSPE reactors and mass spectrometry. Anal Bioanal Chem 2023; 415:4173-4184. [PMID: 36369591 PMCID: PMC10328895 DOI: 10.1007/s00216-022-04381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/01/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
Abstract
This work describes a novel automated and rapid method for bottom-up proteomics combining protein isolation with a micro-immobilised enzyme reactor (IMER). Crosslinking chemistry based on 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling was exploited to immobilise trypsin and antibodies onto customisable silica particles coated with carboxymethylated dextran (CMD). This novel silica-CMD solid-phase extraction material was characterised using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), conductometric titrations and enzymatic colorimetric assays. Micro-solid-phase extraction (μSPE) cartridges equipped with the modified CMD material were employed and integrated into an automated and repeatable workflow using a sample preparation workstation to achieve rapid and repeatable protein isolation and pre-concentration, followed by tryptic digestion producing peptide fragments that were identified by liquid chromatography mass spectrometry (LC-MS).
Collapse
Affiliation(s)
- Karen Duong
- The Atomic Medicine Initiative, University of Technology Sydney, Ultimo, Australia
| | - Simin Maleknia
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, Australia
| | - David Clases
- The Atomic Medicine Initiative, University of Technology Sydney, Ultimo, Australia
- Nano Micro LAB, Institute of Chemistry, University of Graz, Graz, Austria
| | | | - Matthew P Padula
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney, Ultimo, Australia
| | - Philip A Doble
- The Atomic Medicine Initiative, University of Technology Sydney, Ultimo, Australia
| | - Raquel Gonzalez de Vega
- The Atomic Medicine Initiative, University of Technology Sydney, Ultimo, Australia.
- TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Graz, Austria.
| |
Collapse
|
5
|
Wu NN, Chen LG, Xiao MZ, Yuan RY, Wang HB. Determination of trypsin using protamine mediated fluorescent enhancement of DNA templated Au nanoclusters. Mikrochim Acta 2023; 190:158. [PMID: 36971858 DOI: 10.1007/s00604-023-05754-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
A fluorescent method is described for trypsin determination through the strong electrostatic interactions between cationic polyelectrolytes and single-stranded DNA (ssDNA) templated Au nanoclusters (AuNCs). The ssDNA-AuNCs display improved fluorescence emission with excitation/emission maxima at 280/475 nm after being incorporated with poly(diallyldimethylammonium chloride) (PDDA). Fluorescent enhancement is mainly attributed to the electrostatic interactions occurring between PDDA and ssDNA templates. This can make the conformation of the ssDNA templates to change. Thus, it offers a better microenvironment for stabilizing and protecting ssDNA-AuNCs, and results in fluorescence emission enhancement. By using protamine as a model, the method is employed for the determination of trypsin. The assay enables trypsin to be determined with good sensitivity and a linear response ranging from 5 ng⋅mL-1 to 60 ng⋅mL-1 with a 1.5 ng⋅mL-1 limit of detection. It is also extended to determine the trypsin contents in human's serum samples with recoveries between 98.7% and 103.5% with relative standard deviations (RSDs) between 3.5% and 4.8%. A novel fluorescent strategy has been developed for of trypsin determination by using protamine mediated fluorescent enhancement of DNA templated Au nanoclusters.
Collapse
Affiliation(s)
- Ning-Ning Wu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Lin-Ge Chen
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Min-Zhi Xiao
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
| | - Rong-Yao Yuan
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China.
| |
Collapse
|
6
|
Butré CI, Delobel A. New 2D-LC–MS Approaches for the Analysis of In-Process Samples and for the Characterization of mAbs in a Regulated Environment. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.ie6781m8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biologics, and in particular monoclonal antibodies (mAbs), are an important class of therapeutics, and their market share keeps growing. The production of antibodies is a complex and lengthy process. In-process characterization of the mAb would help in optimizing the production steps. Efficiency in mAb characterization can be obtained by automating analysis and reducing hands-on time. Although mass spectrometry (MS) is an essential technique for detailed characterization of biomolecules, its use is limited to purified samples. However, the hyphenation of an MS system to two-dimensional liquid chromatography (2D-LC) allows for the analysis of more complex samples. The first dimension of a 2D-LC system can be used to purify the sample from its matrix or separate compounds using mobile phases that are not MS-compatible, whereas the second dimension coupled to MS can be used to desalt or separate the different variants or species obtained on the first dimension. A 2D-LC–MS system installed in a full good manufacturing practice (GMP)-compliant environment using validated software was used for the characterization of mAbs in complex mixtures at the intact and subunit levels using a Protein A affinity column with no sample preparation steps. In the second application, MS characterization of mAb subunits was made possible by digestion of the mAb online by an immobilized IdeS enzyme. The addition of a disulfide bridge reduction step online led to analyzing smaller molecules to access fine characterization.
Collapse
|
7
|
Guo D, Deng X, Gu S, Chen N, Zhang X, Wang S. Online trypsin digestion coupled with LC-MS/MS for detecting of A1 and A2 types of β-casein proteins in pasteurized milk using biomarker peptides. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2983-2991. [PMID: 35872738 PMCID: PMC9304457 DOI: 10.1007/s13197-022-05376-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Bovine A1-or A2-type β-caseins have attracted a growing interest due to their variation in beta-casomorphin-7 (BCM-7) formation, which may affect health. In the present work, identification and quantification of A1 and A2 types of β-casein proteins at the peptide level was achieved for the first time. An automated and online immobilized trypsin digestion system was employed for high throughput digesting of proteins into peptides. Tryptic peptides were separated and analyzed subsequently by liquid chromatography coupled to mass spectrometry platform. Two specific peptides ranging from the position of 49 to 97 in the peptide chain were selected for the identification and quantification of A1 and A2 β-casein, which covered the different amino acids between them. Synthetic isotopically labeled winged peptides were used for absolute quantification. Compared with traditional in-solution digestion, online digestion shortens digestion times from 2 to 24 h to 4 min. The limits of quantification (LOQ) of A1 and A2 β-casein in pasteurized milk are 0.8 and 2.4 µg/g, respectively. To further demonstrate the applicability of the proposed method, commercial pasteurized milk tests were performed with satisfactory results. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13197-022-05376-6.
Collapse
Affiliation(s)
- Dehua Guo
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, 200135 Shanghai, China
| | - Xiaojun Deng
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, 200135 Shanghai, China
| | - Shuqing Gu
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, 200135 Shanghai, China
| | - Niannian Chen
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, 200135 Shanghai, China
| | - Xiaomei Zhang
- Technology Center of Qingdao Customs District, 266002 Qingdao, China
| | - Shuo Wang
- School of Medicine, NanKai University, 300071 Tianjin, China
| |
Collapse
|
8
|
Bathke A, Hoelterhoff S, Oezipak S, Grunert I, Heinrich K, Winter M. The Power of Trypsin Immobilized Enzyme Reactors (IMERs) Deployed in Online MDLC–MS Applications. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.hl9986s4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immobilized enzyme reactors (IMERs) are a powerful and essential part of multidimensional liquid chromatography–tandem mass spectrometry (MDLC–MS/MS) approaches that enable online identification, characterization, and quantification of post-translational modifications of therapeutic antibodies. This review gives an overview of commercially available and selected trypsin IMERs in regard to their application in LC-based and automated sample preparation. Additionally, we address the challenges of IMER application in online systems and the advantages of self-made IMERs.
Collapse
|
9
|
Urban J. A review on recent trends in the phosphoproteomics workflow. From sample preparation to data analysis. Anal Chim Acta 2022; 1199:338857. [PMID: 35227377 DOI: 10.1016/j.aca.2021.338857] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
|
10
|
Reinders LMH, Klassen MD, Teutenberg T, Jaeger M, Schmidt TC. Development of a multidimensional online method for the characterization and quantification of monoclonal antibodies using immobilized flow-through enzyme reactors. Anal Bioanal Chem 2021; 413:7119-7128. [PMID: 34628527 DOI: 10.1007/s00216-021-03683-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 01/06/2023]
Abstract
Complete characterization and quantification of monoclonal antibodies often rely on enzymatic digestion with trypsin. In order to accelerate and automate this frequently performed sample preparation step, immobilized enzyme reactors (IMER) compatible with standard HPLC systems were used. This allows an automated online approach in all analytical laboratories. We were able to demonstrate that the required digestion time for the model monoclonal antibody rituximab could be reduced to 20 min. Nevertheless, a previous denaturation of the protein is required, which also needs 20 min. Recoveries were determined at various concentrations and were 100% ± 1% at 100 ng on column, 96% ± 7% at 250 ng on column and 98% ± 2% at 450 ng on column. Despite these good recoveries, complete digestion was not achieved, resulting in a poorer limit of quantification. This is 50 ng on column under optimized IMER conditions, whereas an offline digest on the same system achieved 0.3 ng on column. Furthermore, our work revealed that TRIS buffers, when used with an IMER system, led to alteration of the peptides and induced modifications in the peptides. Therefore, the addition of TRIS should be avoided when working at elevated temperatures of about 60 °C. Nevertheless, our results have shown that the recovery is not significantly influenced whether TRIS is used or not (recovery: 96 ± 7% with TRIS vs. 100 ± 9% without TRIS).
Collapse
Affiliation(s)
- Lars M H Reinders
- Institut für Energie und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229, Duisburg, Germany.,Hochschule Niederrhein, University of Applied Science, Reinarzstr. 49, 47805, Krefeld, Germany.,Faculty of Chemistry, Instrumental Analytical Chemistry, University Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Martin D Klassen
- Institut für Energie und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229, Duisburg, Germany
| | - Thorsten Teutenberg
- Institut für Energie und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229, Duisburg, Germany.
| | - Martin Jaeger
- Hochschule Niederrhein, University of Applied Science, Reinarzstr. 49, 47805, Krefeld, Germany
| | - Torsten C Schmidt
- Faculty of Chemistry, Instrumental Analytical Chemistry, University Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| |
Collapse
|
11
|
Camperi J, Grunert I, Heinrich K, Winter M, Özipek S, Hoelterhoff S, Weindl T, Mayr K, Bulau P, Meier M, Mølhøj M, Leiss M, Guillarme D, Bathke A, Stella C. Inter-laboratory study to evaluate the performance of automated online characterization of antibody charge variants by multi-dimensional LC-MS/MS. Talanta 2021; 234:122628. [PMID: 34364437 DOI: 10.1016/j.talanta.2021.122628] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022]
Abstract
An international study was conducted to evaluate the performance and reliability of an online multi-dimensional (mD)-LC-MS/MS approach for the characterization of antibody charge variants. The characterization of antibody charge variants is traditionally performed by time-consuming, offline isolation of charge variant fractions by ion exchange chromatography (IEC) that are subsequently subjected individually to LC-MS/MS peptide mapping. This newly developed mD-LC-MS/MS approach enables automated and rapid characterization of charge variants using much lower sample requirements. This online workflow includes sample reduction, digestion, peptide mapping, and subsequent mass spectrometric analysis within a single, fully-automated procedure. The benefits of using online mD-LC-MS/MS for variant characterization include fewer handling steps, a more than 10-fold reduction in required sample amount, reduced sample hold time as well as a shortening of the overall turnaround time from weeks to few days compared to standard offline procedures. In this site-to-site comparison study, we evaluated the online peptide mapping data collected from charge variants of trastuzumab (Herceptin®) across three international laboratories. The purpose of this study was to compare the overall performance of the online mD-LC-MS/MS approach for antibody charge variant characterization, with all participating sites employing different mD-LC-MS/MS setups (e.g., instrument vendors, modules, columns, CDS software). The high sequence coverage (95%-97%) obtained in each laboratory, enabled a reproducible generation of tryptic peptides and the comparison of values of the charge variants. Results obtained at all three participating sites were in good agreement, highlighting the reliability and performance of this approach, and correspond with data gained by the standard offline procedure. Overall, our results underscore of the benefit mD-LC-MS/MS technology for therapeutic antibody characterization, confirming its potential to become an important tool in the toolbox of protein characterization scientists.
Collapse
Affiliation(s)
- Julien Camperi
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ingrid Grunert
- Pharma Technical Development, Roche, Nonnenwald 2, 82377, Penzberg, Germany
| | - Katrin Heinrich
- Pharma Technical Development, Roche, Nonnenwald 2, 82377, Penzberg, Germany
| | - Martin Winter
- Pharma Technical Development, Roche, Nonnenwald 2, 82377, Penzberg, Germany
| | - Saban Özipek
- Pharma Technical Development, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Sina Hoelterhoff
- Pharma Technical Development, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Thomas Weindl
- Pharma Research and Early Development, Roche, Nonnenwald 2, 82377, Penzberg, Germany
| | - Kilian Mayr
- Pharma Research and Early Development, Roche, Nonnenwald 2, 82377, Penzberg, Germany
| | - Patrick Bulau
- Pharma Technical Development, Roche, Nonnenwald 2, 82377, Penzberg, Germany
| | - Monika Meier
- Pharma Technical Development, Roche, Nonnenwald 2, 82377, Penzberg, Germany
| | - Michael Mølhøj
- Pharma Research and Early Development, Roche, Nonnenwald 2, 82377, Penzberg, Germany
| | - Michael Leiss
- Pharma Technical Development, Roche, Nonnenwald 2, 82377, Penzberg, Germany
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet, 1, 1206, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU-Rue Michel Servet 1, 1211, Geneva 4, Switzerland
| | - Anja Bathke
- Pharma Technical Development, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Cinzia Stella
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
12
|
Siddiqui I, Husain Q, Azam A. Exploring the antioxidant effects of peptides from almond proteins using PAni-Ag-GONC conjugated trypsin by improving enzyme stability & applications. Int J Biol Macromol 2020; 158:150-158. [PMID: 32344094 DOI: 10.1016/j.ijbiomac.2020.04.188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 01/11/2023]
Abstract
Functionalized graphene oxide nano-sheets (PAni-Ag-GONC) were prepared and employed as carrier for covalent immobilization of trypsin. This low cost setting, which involves loading of high amount of enzyme on the matrix, displayed significantly enhanced thermo-stability and pH resistance. The nano-composite (NC) bound trypsin preserved 90% of activity whereas native trypsin retained only 44% of activity after 60 days of storage at a temperature of 4°C. Immobilized trypsin conserved 80.5% of activity even after its ten repeated uses. Almond protein hydrolysates prepared by native and conjugated enzyme was investigated for antioxidant activities and found that peptides resulted from NC bound trypsin displayed increase in radical scavenging activity (i.e. around 30% and 37% scavenging activity observed, respectively by native and NC bound trypsin from same concentration of peptides). This strategy provides a new approach for production of potential biopeptides which may be incorporated in drugs and functional food industries applying PAni-Ag-GONC based biocatalysis. CHEMICAL COMPOUNDS: Trichloroacetic acid (PubChem CID: 6421); Tris (hydroxymethyl)aminomethane (PubChem CID: 6503); Glycine (PubChem CID: 750); and 2,2'-diphenyl-1-picrylhydrazyl (PubChem CID: 74358); Nα- Benzoyl-DL-arginine 4-nitroanilide hydrochloride (PubChem CID: 2724371); Ammonium sulphate (PubChem CID: 6097028).
Collapse
Affiliation(s)
- Irfanah Siddiqui
- Department of Biochemistry, Faculty of life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Qayyum Husain
- Department of Biochemistry, Faculty of life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| | - Ameer Azam
- Department of Biochemistry, Faculty of life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
13
|
From proof of concept to the routine use of an automated and robust multi-dimensional liquid chromatography mass spectrometry workflow applied for the charge variant characterization of therapeutic antibodies. J Chromatogr A 2020; 1615:460740. [DOI: 10.1016/j.chroma.2019.460740] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/05/2019] [Accepted: 11/26/2019] [Indexed: 11/24/2022]
|
14
|
Development of Immobilized Enzyme Reactors for the characterization of the glycosylation heterogeneity of a protein. Talanta 2020; 206:120171. [DOI: 10.1016/j.talanta.2019.120171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 11/19/2022]
|
15
|
Ferey J, Da Silva D, Colas C, Lafite P, Topalis D, Roy V, Agrofoglio LA, Daniellou R, Maunit B. Monitoring of phosphorylation using immobilized kinases by on-line enzyme bioreactors hyphenated with High-Resolution Mass Spectrometry. Talanta 2019; 205:120120. [PMID: 31450426 DOI: 10.1016/j.talanta.2019.120120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 11/18/2022]
Abstract
Nucleosides analogues are the cornerstone of the treatment of several human diseases. They are especially at the forefront of antiviral therapy. Their therapeutic efficiency depends on their capacity to be converted to the active nucleoside triphosphate form through successive phosphorylation steps catalyzed by nucleoside/nucleotide kinases. In this context, it is mandatory to develop a rapid, reliable and sensitive enzyme activity test to evaluate their metabolic pathways. In this study, we report a proof of concept to directly monitor on-line nucleotide multiple phosphorylation. The methodology was developed by on-line enzyme bioreactors hyphenated with High-Resolution Mass Spectrometry detection. Human Thymidylate Kinase (hTMPK) and human Nucleoside Diphosphate Kinase (hNDPK) were covalently immobilized on functionalized silica beads, and packed into micro-bioreactors (40 μL). By continuous infusion of substrate into the bioreactors, the conversion of thymidine monophosphate (dTMP) into its di- (dTDP) and tri-phosphorylated (dTTP) forms was visualized by monitoring their Extracted Ion Chromatogram (EIC) of their [M - H]- ions. Both bioreactors were found to be robust and durable over 60 days (storage at 4 °C in ammonium acetate buffer), after 20 uses and more than 750 min of reaction, making them suitable for routine analysis. Each on-line conversion step was shown rapid (<5 min), efficient (conversion efficiency > 55%), precise and repeatable (CV < 3% for run-to-run analysis). The feasibility of the on-line multi-step conversion from dTMP to dTTP was also proved. In the context of selective antiviral therapy, this proof of concept was then applied to the monitoring of specificity of conversion of two synthesized Acyclic Nucleosides Phosphonates (ANPs), regarding human Thymidylate Kinase (hTMPK) and vaccina virus Thymidylate Kinase (vvTMPK).
Collapse
Affiliation(s)
- Justine Ferey
- Univ. Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France.
| | - David Da Silva
- Univ. Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France
| | - Cyril Colas
- Univ. Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France; CNRS, CBM, UPR 4301, Univ-Orléans, F-45071, Orléans, France
| | - Pierre Lafite
- Univ. Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France
| | - Dimitrios Topalis
- Rega Institute for Medical Research, KU Leuven, Herestraat 49 - Box 1043, 3000, Leuven, Belgium
| | - Vincent Roy
- Univ. Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France
| | | | | | - Benoît Maunit
- Univ. Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France
| |
Collapse
|
16
|
Dagley LF, Infusini G, Larsen RH, Sandow JJ, Webb AI. Universal Solid-Phase Protein Preparation (USP3) for Bottom-up and Top-down Proteomics. J Proteome Res 2019; 18:2915-2924. [DOI: 10.1021/acs.jproteome.9b00217] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Laura F. Dagley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Giuseppe Infusini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Rune H. Larsen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jarrod J. Sandow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Andrew I. Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
17
|
A fluorometric and colorimetric method for determination of trypsin by exploiting the gold nanocluster-induced aggregation of hemoglobin-coated gold nanoparticles. Mikrochim Acta 2019; 186:272. [DOI: 10.1007/s00604-019-3380-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022]
|
18
|
Chen C, Liu W, Hong T. Novel approaches for biomolecule immobilization in microscale systems. Analyst 2019; 144:3912-3924. [DOI: 10.1039/c9an00212j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This manuscript reviews novel approaches applied for biomolecule immobilization in microscale systems.
Collapse
Affiliation(s)
- Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Tingting Hong
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| |
Collapse
|
19
|
Naldi M, Tramarin A, Bartolini M. Immobilized enzyme-based analytical tools in the -omics era: Recent advances. J Pharm Biomed Anal 2018; 160:222-237. [DOI: 10.1016/j.jpba.2018.07.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 02/01/2023]
|
20
|
Blue LE, Franklin EG, Godinho JM, Grinias JP, Grinias KM, Lunn DB, Moore SM. Recent advances in capillary ultrahigh pressure liquid chromatography. J Chromatogr A 2017; 1523:17-39. [PMID: 28599863 DOI: 10.1016/j.chroma.2017.05.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 11/28/2022]
Abstract
In the twenty years since its initial demonstration, capillary ultrahigh pressure liquid chromatography (UHPLC) has proven to be one of most powerful separation techniques for the analysis of complex mixtures. This review focuses on the most recent advances made since 2010 towards increasing the performance of such separations. Improvements in capillary column preparation techniques that have led to columns with unprecedented performance are described. New stationary phases and phase supports that have been reported over the past decade are detailed, with a focus on their use in capillary formats. A discussion on the instrument developments that have been required to ensure that extra-column effects do not diminish the intrinsic efficiency of these columns during analysis is also included. Finally, the impact of these capillary UHPLC topics on the field of proteomics and ways in which capillary UHPLC may continue to be applied to the separation of complex samples are addressed.
Collapse
Affiliation(s)
- Laura E Blue
- Process Development, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Edward G Franklin
- HPLC Research & Development, Restek Corp., Bellefonte, PA 16823, USA
| | - Justin M Godinho
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James P Grinias
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA.
| | - Kaitlin M Grinias
- Department of Product Development & Supply, GlaxoSmithKline, King of Prussia, PA 19406, USA
| | - Daniel B Lunn
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|