1
|
Skok A, Manousi N, Anthemidis A, Bazel Y. Automated Systems with Fluorescence Detection for Metal Determination: A Review. Molecules 2024; 29:5720. [PMID: 39683879 DOI: 10.3390/molecules29235720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Industrialization has led to environmental pollution with various hazardous chemicals including pollution with metals. In this regard, the development of highly efficient analytical methods for their determination has received considerable attention to ensure public safety. Currently, scientists are paying more and more attention to the automation of analytical methods, since it permits fast, accurate, and sensitive analysis with minimal exposure of analysts to hazardous substances. This review discusses the automated methods with fluorescent detection developed for metal determination since 2000. It is evident that flow-injection analysis (FIA) with no preconcentration or with solid-phase preconcentration are predominant compared to liquid-phase preconcentration systems. FIA systems are also more widespread than sequential injection analysis (SIA) systems. Moreover, a significant number of works have been devoted to chromatography-based methods. Atomic fluorescence detectors significantly prevail over molecular fluorescence detectors. It must be highlighted that most of the methods result in good figures of merit and performance characteristics, demonstrating their superiority in comparison with manual systems.
Collapse
Affiliation(s)
- Arina Skok
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Safarik University in Kosice, Moyzesova 11, 040 01 Kosice, Slovakia
| | - Natalia Manousi
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Aristidis Anthemidis
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Yaroslav Bazel
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Safarik University in Kosice, Moyzesova 11, 040 01 Kosice, Slovakia
| |
Collapse
|
2
|
Jiao H, Bi R, Li F, Chao J, Zhang G, Zhai L, Hu L, Wang Z, Dai C, Li B. Rapid, easy and catalyst-free preparation of magnetic thiourea-based covalent organic frameworks at room temperature for enrichment and speciation of mercury with HPLC-ICP-MS. J Chromatogr A 2024; 1717:464683. [PMID: 38295741 DOI: 10.1016/j.chroma.2024.464683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
The complex and cumbersome preparation of magnetic covalent organic frameworks (COFs) nanocomposites on a small scale limits their application. Herein, a rapid and easy route was employed for the preparation of magnetic thiourea-based COFs nanocomposites. COFs were coated on Fe3O4 nanoparticles at room temperature without a catalyst within approximately 30 min. This method is suitable for the large-scale preparation of magnetic adsorbent. Using the as-prepared magnetic adsorbent (Fe3O4@COF-TpTU), we developed a simple, efficient, and sensitive magnetic solid-phase extraction-high performance liquid chromatography-inductively coupled plasma-mass spectrometry (MSPE-HPLC-ICP-MS) for the enrichment and determination of mercury species, including Hg2+, methylmercury (MeHg), and ethylmercury (EtHg). The effects of the experimental parameters on the extraction efficiency, including solution pH, adsorption and desorption time, composition and volume of the elution solvent, salinity, coexisting ions, and dissolved organic matter, were comprehensively investigated. Under optimised conditions, the limits of detection in the developed method were 0.56, 0.34, and 0.47 ng L-1 with enrichment factors of 190, 195, and 180-fold for Hg2+, MeHg, and EtHg, respectively. The satisfactory spiked recoveries (97.0-103%) in real water samples and high consistency between the certified and determined values in a certified reference material demonstrate the high accuracy and reproducibility of the developed method. The as-proposed method with simple operation, high sensitivity, and excellent anti-matrix interference performance was successfully applied to the enrichment and determination of trace levels of mercury species in the natural samples with complicated matrices, such as underground water, surface water, seawater and biological samples.
Collapse
Affiliation(s)
- Heping Jiao
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Ruixiang Bi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Fangli Li
- Shandong Public Health Clinic Center, Jinan 266075, China
| | - Jingbo Chao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Guimin Zhang
- National Engineering and Technology Research Centre of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi 276005, China
| | - Lihai Zhai
- National Engineering and Technology Research Centre of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi 276005, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhenhua Wang
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Caifeng Dai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Bing Li
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Shandong Key Laboratory for Adhesive Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
3
|
Mondal R, Shanmughan A, Murugeswari A, Shanmugaraju S. Recent advances in fluorescence-based chemosensing of organoarsenic feed additives using luminescence MOFs, COFs, HOFs, and QDs. Chem Commun (Camb) 2023; 59:11456-11468. [PMID: 37674461 DOI: 10.1039/d3cc03125j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Organoarsenics are low-toxicity compounds that are used widely as feed additives to promote livestock growth, enhance meat pigmentation, and fight against intestinal parasites. The organoarsenic compounds are commonly found in poultry waste and the degradation of organoarsenic produces the toxic carcinogen inorganic arsenic such as As(V) and As(III), which results in severe arsenic pollution of soil and groundwater. As a consequence, there exists a high necessity to develop suitable sensing methods for the trace detection and quantification of organoarsenic feed additives in wastewater. Among various detection methods, in particular, fluorescence-based sensing has become a popular and efficient method used extensively for sensing water contaminants and environmental contaminants. In the recent past, a wide variety of fluorescence chemosensors have been designed and employed for the efficient sensing and quantification of the concentration of organoarsenic feed additives in different environmental samples. This review article systematically highlights various fluorescence chemosensors reported to date for fluorescence-based sensing of organoarsenic feed additives. The fluorescence sensors discussed in this review are classified and grouped according to their structures and functions, and in each section, we provide a detailed report on the structure, photophysics, and fluorescence sensing properties of different chemosensors. Lastly, the future perspectives on the design and development of practically useful sensor systems for selective and discriminative sensing of organoarsenic compounds have been stated.
Collapse
Affiliation(s)
- Rajdeep Mondal
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India.
| | - Ananthu Shanmughan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India.
| | - A Murugeswari
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India.
- Department of Physics, Anna University, Chennai 600025, India.
| | | |
Collapse
|
4
|
Sartore DM, Vargas Medina DA, Bocelli MD, Jordan-Sinisterra M, Santos-Neto ÁJ, Lanças FM. Modern automated microextraction procedures for bioanalytical, environmental, and food analyses. J Sep Sci 2023; 46:e2300215. [PMID: 37232209 DOI: 10.1002/jssc.202300215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
Sample preparation frequently is considered the most critical stage of the analytical workflow. It affects the analytical throughput and costs; moreover, it is the primary source of error and possible sample contamination. To increase efficiency, productivity, and reliability, while minimizing costs and environmental impacts, miniaturization and automation of sample preparation are necessary. Nowadays, several types of liquid-phase and solid-phase microextractions are available, as well as different automatization strategies. Thus, this review summarizes recent developments in automated microextractions coupled with liquid chromatography, from 2016 to 2022. Therefore, outstanding technologies and their main outcomes, as well as miniaturization and automation of sample preparation, are critically analyzed. Focus is given to main microextraction automation strategies, such as flow techniques, robotic systems, and column-switching approaches, reviewing their applications to the determination of small organic molecules in biological, environmental, and food/beverage samples.
Collapse
Affiliation(s)
- Douglas M Sartore
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Deyber A Vargas Medina
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Marcio D Bocelli
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Marcela Jordan-Sinisterra
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Álvaro J Santos-Neto
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Fernando M Lanças
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
5
|
Kannouma RE, Hammad MA, Kamal AH, Mansour FR. Miniaturization of Liquid-Liquid extraction; the barriers and the enablers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Nemati I, Faraji M, Jafarinejad S, Shirani M. Development of a deep eutectic solvent-based dispersive liquid–liquid microextraction coupled with spectrophotometer technique for determination of trace amount of Hg(II) in water samples. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Amico D, Tassone A, Pirrone N, Sprovieri F, Naccarato A. Recent applications and novel strategies for mercury determination in environmental samples using microextraction-based approaches: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128823. [PMID: 35405590 DOI: 10.1016/j.jhazmat.2022.128823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
The growing need to monitor Hg levels in the environment to control its emissions and evaluate the effectiveness of reduction policies is driving the scientific community to focus efforts on creating analytical methods that are simpler, lower cost, more performing, and environmentally sustainable. In this context, an important contribution is provided by microextraction techniques, which have long proven to be simple, reliable, and to ensure an environmentally responsible sample preparation. This manuscript reviews the recent progress in the determination of environmental Hg using microextraction techniques. The considered studies involve all environmental compartments (i.e., air, water, soil, and biota) and have been discussed by grouping them according to the employed technique while pointing out the main advances achieved and the most important limitations. The ultimate goal is to provide an up-to-date overview of the analytical potential of microextraction techniques that can be exploited in various investigation fields and to highlight the most important knowledge gaps that should be addressed in the coming years, such as in-situ sampling, the use of natural materials, and the value of metrological support to obtain data SI-traceable and comparable.
Collapse
Affiliation(s)
- Domenico Amico
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy
| | | | - Nicola Pirrone
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy
| | | | - Attilio Naccarato
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy; Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Rende, Italy.
| |
Collapse
|
8
|
Yao Z, Liu J, Mao X, Chen G, Ma Z, Li B. Ultratrace mercury speciation analysis in rice by in-line solid phase extraction - liquid chromatography - atomic fluorescence spectrometry. Food Chem 2022; 379:132116. [PMID: 35063845 DOI: 10.1016/j.foodchem.2022.132116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/13/2021] [Accepted: 01/07/2022] [Indexed: 11/04/2022]
Abstract
For the first time, Hg2+ and methylmercury speciation analysis was accomplished by in-line SPE-LC-AFS. After modification with 0.1 mL of 0.001% (m:v) sodium diethyldithiocarbamate, a C18 microcolumn retained Hg2+ and MetHg in rice extract within 3 min; the captured Hg species were separated within 12 min in 0.25% (v:v) 2-mercaptoethanol + 60 mmol L-1 (m:v) ammonium acetate + 4% (v:v) acetonitrile. Under optimized conditions, the detection limits were 0.3 ng L-1 for Hg2+ and 0.2 ng L-1 for MetHg, respectively, with 10 mL injection vs. 0.1 mL eluent; in-line SPE achieved ∼ 100x enrichment. Method precision and accuracy were satisfactory at < 2% relative standard deviations (RSDs) for 20 ng L-1 of Hg2+ and MetHg and 95-102% recoveries for real rice samples. In-line SPE obviated human involvement and avoided invalid transportation between interfaces, rendering this SPE-LC-AFS method easy, compact, robust, yet sensitive in mercury speciation analysis to uphold food safety.
Collapse
Affiliation(s)
- Zhenzhen Yao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Jixin Liu
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; Beijing Ability Technology Company, Limited, Beijing 100081, China.
| | - Xuefei Mao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Guoying Chen
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Zhihong Ma
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Bingru Li
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| |
Collapse
|
9
|
Su M, Liu C, Liang Y, Zhang Y, Rong X, Wang X, Li X, Wang K, Zhu H, Yu M, Sheng W, Zhu B. A novel water-soluble naphthalimide-based turn-on fluorescent probe for mercury ion detection in living cells and zebrafish. NEW J CHEM 2022. [DOI: 10.1039/d2nj01314b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mercury (Hg), as the only heavy metal that can complete the cycle in the biosphere, can further accumulate in the human body through the food chain, causing irreversible damage to...
Collapse
|
10
|
Aghayan M, Mahmoudi A, Sazegar MR, Adhami F. A novel colorimetric sensor for naked-eye detection of cysteine and Hg 2+ based on "on-off" strategy using Co/Zn-grafted mesoporous silica nanoparticles. Dalton Trans 2021; 50:13345-13356. [PMID: 34608914 DOI: 10.1039/d1dt02084f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In an attempt to explore the significance of inorganic mimetic enzymes as sensors, this study introduces a naked-eye analytical sensing platform for the detection of L-cysteine (cys), mercury ions (Hg2+) based on (turn off/turn-on) catalytic activity of zinc and cobalt grafted mesoporous silica nanoparticles (MSNs). To this end, Zn-MSN and Co/Zn-MSN catalysts were synthesized and characterized using XRD, FT-IR, FESEM, TEM, and nitrogen adsorption-desorption methods. Then, using the intrinsic peroxidase-like activity of as-synthesized samples, the oxidation reactions of the chromogenic substrate (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS)) was designed using H2O2, which produced green colored cation radical of ABTS. Considering the high peroxidase-like activity of Co/Zn-MSN in comparison to Zn-MSN, it was employed to detect cys and then Hg2+. The results indicated that the strong interaction between cys and Co/Zn-MSN was proved by a limit of detection (LOD) down to 0.24 nM and the linear relationship from 0.8-50 nM (turn off). Given the fact that Hg2+ has a high-affinity tendency to combine with cys, we were suggested a novel colorimetric path for sensing of Hg2+ in the presence of cys (turn on). Based on this method, LOD was found 0.17 nM with the linear range of 0.57-50 nM. Taken together, results showed that the as-prepared catalysts are superior to other nanoparticles as a sensor to measure the target molecules in biological monitoring and clinical diagnostics.
Collapse
Affiliation(s)
- Morvarid Aghayan
- Dept. of Chemistry, Faculty of science, Islamic Azad University, North Tehran Branch, Tehran, Iran.
| | - Ali Mahmoudi
- Dept. of Chemistry, Faculty of science, Islamic Azad University, North Tehran Branch, Tehran, Iran.
| | - Mohammad Reza Sazegar
- Dept. of Chemistry, Faculty of science, Islamic Azad University, North Tehran Branch, Tehran, Iran.
| | - Forogh Adhami
- Dep. of chemistry, Faculty of science, Islamic Azad University, Yadegar-e-Imam Khomeini (RAH), Shahre rey Branch, Tehran, Iran
| |
Collapse
|
11
|
Zhou DB, Xiao YB, Han F, Lv YN, Ding L, Song W, Liu YX, Zheng P, Chen D. Magnetic solid-phase extraction based on sulfur-functionalized magnetic metal-organic frameworks for the determination of methylmercury and inorganic mercury in water and fish samples. J Chromatogr A 2021; 1654:462465. [PMID: 34416446 DOI: 10.1016/j.chroma.2021.462465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/28/2021] [Accepted: 08/07/2021] [Indexed: 11/15/2022]
Abstract
A novel magnetic metal-organic frameworks (Fe3O4@UiO-66-SH) was successfully prepared by coating Fe3O4 nanospheres with sulfur-functionalized UiO-66. The Fe3O4@UiO-66-SH possesses both the magnetic properties of Fe3O4 and the diverse properties of metal-organic framework (MOF) in one material, which has the superiority of high surface area, easy-operation and strong adsorb ability with mercury, is used for the magnetic solid-phase extraction of methylmercury (MeHg+) and inorganic mercury (Hg2+) in water and fish samples. The analyzes were conducted by high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS). The different pretreatment conditions influencing the extraction recoveries of Hg2+ and MeHg+, including adsorbent amount, pH, extraction time, elution solvent, elution volume, desorption time, co-existing ions and dissolved organic materials were investigated. Under the optimized conditions, the limits of detection (LODs) of Hg2+ and MeHg+ for water samples were 1.4 and 2.6 ng L-1, and the limits of quantification (LOQs) of Hg2+ and MeHg+ for water samples were 4.7 and 8.7 ng L-1. The enrichment factors (EFs) were 45.7 and 47.6 fold for Hg2+ and MeHg+, respectively. The accuracy of the proposed method was demonstrated by analyzing the certified reference material of fish tissue (GBW10029) and by determining the analyte content in spiked water and fish samples. The determined values were in good agreement with the certified values and the recoveries for the spiked samples were in the range of 84.5-96.8%.
Collapse
Affiliation(s)
- Dian-Bing Zhou
- Technology Center of Hefei Customs, and Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, Anhui 230022, PR China.
| | - Ya-Bing Xiao
- Animal, Plant and Foodstuffs Inspection Center of Tianjin Customs, Tianjin 300461, PR China; School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, PR China
| | - Fang Han
- Technology Center of Hefei Customs, and Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, Anhui 230022, PR China
| | - Ya-Ning Lv
- Technology Center of Hefei Customs, and Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, Anhui 230022, PR China
| | - Lei Ding
- Technology Center of Hefei Customs, and Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, Anhui 230022, PR China
| | - Wei Song
- Technology Center of Hefei Customs, and Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, Anhui 230022, PR China
| | - Yu-Xin Liu
- Technology Center of Hefei Customs, and Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, Anhui 230022, PR China
| | - Ping Zheng
- Technology Center of Hefei Customs, and Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, Anhui 230022, PR China
| | - Da Chen
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
12
|
Chen D, Lu L, Zhang H, Lu B, Feng J, Zeng D. Sensitive Mercury Speciation Analysis in Water by High-Performance Liquid Chromatography-Atomic Fluorescence Spectrometry Coupling with Solid-Phase Extraction. ANAL SCI 2021; 37:1235-1240. [PMID: 33518585 DOI: 10.2116/analsci.20p398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An efficient method based on high-performance liquid chromatography coupled with atomic fluorescence spectrometry (HPLC-AFS) was successfully developed for the simultaneous determination of four mercury species including Hg2+, methylmercury (MeHg), ethylmercury (EtHg), and phenylmercury (PhHg) in water. Samples were enriched and cleaned up with a solid-phase extraction (SPE) pretreatment using a thiol cartridge. Some key parameters including the selection of a SPE cartridge, eluent type, eluent volume, and interference factors were systematically investigated. Chromatographic separation was achieved on a C18 column using a mobile phase consisting of methanol and 60 mmol L-1 ammonium acetate with 10 mmol L-1 L-cysteine by gradient elution. Under the optimized conditions, good linearity (r ≥ 0.9991) was observed between 0.20 to 10.0 μg L-1. The limits of detection were in the range of 0.001 - 0.002 μg L-1. High recoveries (87.2 to 111%) and good reproducibility (1.1 - 6.5%) were obtained. Such a method is sensitive, selective and accurate, which can be applied to the quantification of mercury species in water samples.
Collapse
Affiliation(s)
- Dongyang Chen
- Hunan Provincial Center for Disease Control and Prevention
| | - Lan Lu
- Hunan Provincial Center for Disease Control and Prevention
| | - Hao Zhang
- Hunan Provincial Center for Disease Control and Prevention
| | - Bing Lu
- Hunan Provincial Center for Disease Control and Prevention
| | - Jiali Feng
- Hunan Provincial Center for Disease Control and Prevention
| | - Dong Zeng
- Hunan Provincial Center for Disease Control and Prevention
| |
Collapse
|
13
|
Xie M, Hao X, Jiang X, Liu W, Liu T, Zheng H, Wang M. Ultrasound-assisted dual-cloud point extraction with high-performance liquid chromatography-hydride generation atomic fluorescence spectrometry for mercury speciation analysis in environmental water and soil samples. J Sep Sci 2021; 44:2457-2464. [PMID: 33857354 DOI: 10.1002/jssc.202100088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/10/2022]
Abstract
A method for simultaneous preconcentration and determination of mercury species in water and soil samples was established using high-performance liquid chromatography with hydride generation atomic fluorescence spectrometry after ultrasound-assisted dual-cloud point extraction. The extraction process was divided into two steps. In the first cloud point extraction, inorganic mercury and methylmercury formed chelates with sodium diethyldithiocarbamate and were extracted into Triton X-114 micelles. In the second stage, a displacement reaction between sodium diethyldithiocarbamate-inorganic mercury/methylmercury and l-cysteine occurred, and the analytes entered the l-cysteine aqueous solution under ultrasonication. This aqueous solution was directly introduced to the high-performance liquid chromatography with hydride generation atomic fluorescence spectrometry and the detection was completed within 6 min. Under the optimum experimental conditions, the linear range was 0.10-5.0 μg/L (r ≥0.9993) for inorganic mercury and methylmercury, and the enhancement factors were 15.7 for inorganic mercury and 6.35 for methylmercury. The limits of detection for inorganic mercury and methylmercury were 0.004 and 0.016 μg/L, respectively. The approach was successfully applied to the determination of trace inorganic mercury and methylmercury in water and soil samples with good recoveries (85.3-110%). This method solved the problem of peak fusion of the two analytes and was successfully applied to the speciation analysis of mercury.
Collapse
Affiliation(s)
- Meiyi Xie
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Xiaotang Hao
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Xun Jiang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Weiting Liu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Tiantian Liu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Han Zheng
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Mei Wang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| |
Collapse
|
14
|
Preparation of environmental samples for chemical speciation of metal/metalloids: A review of extraction techniques. Talanta 2021; 226:122119. [PMID: 33676674 DOI: 10.1016/j.talanta.2021.122119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/20/2022]
Abstract
Chemical speciation is a relevant topic in environmental chemistry since the (eco)toxicity, bio (geo)chemical cycles, and mobility of a given element depend on its chemical forms (oxidation state, organic ligands, etc.). Maintaining the chemical stability of the species and avoiding equilibrium disruptions during the sample treatment is one of the biggest challenges in chemical speciation, especially in environmental matrices where the level of concomitants/interferents is normally high. To achieve this task, strategies based on chemical properties of the species can be carried out and pre-concentration techniques are often needed due to the low concentration ranges of many species (μg L-1 - ng L-1). Due to the significance of the topic and the lack of reviews dealing with sample preparation of metal (loid)s (usually, sample preparation reviews focus on the total metal content), this work is presented. This review gives an up-to-date overview of the most common sample preparation techniques for environmental samples (water, soil, and sediments), with a focus on speciation of metal/metalloids and determination by spectrometric techniques. Description of the methods is given, and the most recent applications (last 10 years) are presented.
Collapse
|
15
|
Tang W, An Y, Row KH. Emerging applications of (micro) extraction phase from hydrophilic to hydrophobic deep eutectic solvents: opportunities and trends. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116187] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Ghodsi S, Behbahani M, Yegane Badi M, Ghambarian M, Sobhi HR, Esrafili A. A new dendrimer-functionalized magnetic nanosorbent for the efficient adsorption and subsequent trace measurement of Hg (II) ions in wastewater samples. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Bi R, Li F, Chao J, Dong H, Zhang X, Wang Z, Li B, Zhao N. Magnetic solid-phase extraction for speciation of mercury based on thiol and thioether-functionalized magnetic covalent organic frameworks nanocomposite synthesized at room temperature. J Chromatogr A 2020; 1635:461712. [PMID: 33229010 DOI: 10.1016/j.chroma.2020.461712] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023]
Abstract
A simple and practical magnetic solid-phase extraction high-performance liquid chromatography-inductively coupled plasma mass spectrometry (MSPE-HPLC-ICP-MS) method for extraction and determination of trace mercury species, including inorganic mercury (IHg), monomethylmercury (MeHg) and ethylmercury (EtHg), was developed. The MSPE adsorbent, urchin-like thiol and thioether-functionalized magnetic covalent organic frameworks (Fe3O4@COF-S-SH), was synthesized by coating covalent organic frameworks (COFs) on the surface of Fe3O4 nanoparticles at room temperature and then easily grafting 1,2-Ethanedithiol on the COFs. The as-prepared Fe3O4@COF-S-SH has strong adsorption capacity for IHg, MeHg and EtHg, with excellent static adsorption capacity: 571, 559 and 564 mg g-1, respectively. The parameters influencing the extraction and enrichment had been optimized, including pH, adsorption and desorption time, composition and amount of the eluent, co-existing ions and dissolved organic materials etc. Under the optimized condition, the limit of detection (3δ) of the proposed method were 0.96, 0.17 and 0.47 ng L-1 for IHg, MeHg and EtHg, and the developed method has high actual enrichment factors of 370, 395, 365-fold for IHg, MeHg and EtHg based on 200 mL samples, respectively. The high accuracy and reproducibility has been proved by the spiked recoveries (96.0‒108 %) in real water samples and determination of the certified reference material. Both the adsorption and desorption process can be completed within 5 min. The proposed method with simple operation, short pre-concentration time and high sensitivity has been successfully applied to mercury speciation at trace levels in the samples with complicated matrices, including underground water, surface water, sea water and fish samples.
Collapse
Affiliation(s)
- Ruixiang Bi
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Fangli Li
- Jinan Infectious Disease Hospital, Jinan 250021, China
| | - Jingbo Chao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Houhuan Dong
- Taizhou Product Quality Supervision & Inspection Institute, Taizhou 225300, China
| | - Xiaolai Zhang
- College of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhenhua Wang
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China..
| | - Bing Li
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.; Shandong Key Laboratory for Adhesive Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China..
| | - Ning Zhao
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.; Shandong Key Laboratory for Adhesive Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China..
| |
Collapse
|
18
|
Gupta SK, Tapadia K, Sharma A. Selective Fluorometric Analysis of Hg(II) in Industrial Waste Water Samples. J Fluoresc 2020; 30:1375-1381. [PMID: 32996105 DOI: 10.1007/s10895-020-02627-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 11/29/2022]
Abstract
The highly selective and sensitive fluorometric method has been developed for trace level determination of Hg(II) is based on photo-induced electron transfer between rhodamine-6G dye and metal complex. Quenching in fluorescence intensity by fluorescence resonance energy transfer (FRET) is due to interaction between metal ion complex and dye. The fluorescence emitted was measured at 510 and 550 nm, for excitation and emission wavelengths respectively. Possible interferences present in water samples, which could affect the analytical response are studied and determined. The calibration graph was dynamically linear from 0.002 to 0.05 mgL-1 of Hg(II) with limit of detection 7 × 10-4 mgL-1 and limit of quantitation 1.9 × 10-3 mgL-1. The Stern-Volmer constant (KSV) calculated for the quenching of R-6G with Hg (II) was 8.47 Lmg-1 s-1 at optimized reaction conditions. The proposed FRET based fluorometric method was applied successfully in different industrial wastewater samples with satisfactory outcome.
Collapse
Affiliation(s)
- Saurabh Kumar Gupta
- Department of Chemistry, National Institute of Technology, Raipur, CG, India
| | - Kavita Tapadia
- Department of Chemistry, National Institute of Technology, Raipur, CG, India.
| | - Ashima Sharma
- Department of Chemistry, National Institute of Technology, Raipur, CG, India
| |
Collapse
|
19
|
Yuan M, Peng X, Ge F, Zhao M, Li Q, Wang Z. Ultrasensitive determination of mercury by solution anode glow discharge atomic emission spectrometry coupled with hydride generation. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Mello IS, Targanski S, Pietro-Souza W, Frutuoso Stachack FF, Terezo AJ, Soares MA. Endophytic bacteria stimulate mercury phytoremediation by modulating its bioaccumulation and volatilization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110818. [PMID: 32590206 DOI: 10.1016/j.ecoenv.2020.110818] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 05/27/2023]
Abstract
The quantification, efficiency, and possible mechanisms of mercury phytoremediation by endophytic bacteria are poorly understood. Here we selected 8 out of 34 previously isolated endophytic bacterial strains with a broad resistance profile to metals and 11 antibiotics: Acinetobacter baumannii BacI43, Bacillus sp. BacI34, Enterobacter sp. BacI14, Klebsiella pneumoniae BacI20, Pantoea sp. BacI23, Pseudomonas sp. BacI7, Pseudomonas sp. BacI38, and Serratia marcescens BacI56. Except for Klebsiella pneumoniae BacI20, the other seven bacterial strains promoted maize growth on a mercury-contaminated substrate. Acinetobacter baumannii BacI43 and Bacillus sp. BacI34 increased total dry biomass by approximately 47%. The bacteria assisted mercury remediation by decreasing the metal amount in the substrate, possibly by promoting its volatilization. The plants inoculated with Serratia marcescens BacI56 and Pseudomonas sp. BacI38 increased mercury volatilization to 47.16% and 62.42%, respectively. Except for Bacillus sp. BacI34 and Pantoea sp. BacI23, the other six bacterial strains favored mercury bioaccumulation in plant tissues. Endophytic bacteria-assisted phytoremediation contributed to reduce the substrate toxicity assessed in different model organisms. The endophytic bacterial strains selected herein are potential candidates for assisted phytoremediation that shall help reduce environmental toxicity of mercury-contaminated soils.
Collapse
Affiliation(s)
- Ivani Souza Mello
- Laboratório de Biotecnologia e Ecologia Microbiana, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Sabrina Targanski
- Laboratório de Biotecnologia e Ecologia Microbiana, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - William Pietro-Souza
- Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | | | - Ailton Jose Terezo
- Central Analítica de Combustíveis, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Marcos Antônio Soares
- Laboratório de Biotecnologia e Ecologia Microbiana, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil.
| |
Collapse
|
21
|
Highly Sensitive and Selective Colorimetric Sensor of Mercury (II) based on Layer-by-Layer Deposition of Gold/Silver Bimetallic Nanoparticles. Molecules 2020; 25:molecules25194443. [PMID: 32992632 PMCID: PMC7583855 DOI: 10.3390/molecules25194443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 11/16/2022] Open
Abstract
A new colorimetric sensor based on gold/silver bimetallic nanoparticles (Au-Ag BNPs) for the sensitive and selective detection of mercury (II) was developed. Gold nanoparticles (AuNPs) were synthesized by Turkevich method. The surface modification of AuNPs was modified by the layer-by-layer technique using poly(diallyl dimethylammonium chloride) which provided positively charged of AuNPs. Negatively charged silver nanoparticles (AgNPs) were synthesized by chemical reduction using poly(4-styrenesulfonic acid-co-maleic acid) as the stabilizing agent. The layer-by-layer assembly deposition technique was used to prepare Au-Ag BNPs of positively and negatively charged of AuNPs and AgNPs, respectively. The synthesized Au-Ag BNPs were characterized by a UV-visible spectrophotometer, zeta potential analyzer, FT-IR, TEM, XRD, and EDX. The Au-Ag BNPs sensor was able to detect mercury (II) in aqueous solution, visibly changing from brownish-orange to purple. The linear relationships of the UV-visible spectrometry demonstrate that the Au-Ag BNPs-based colorimetric sensor can be used for the quantitative analysis of mercury (II) in the range of 0.5-80 mg L-1, with the correlation coefficient, r2 = 0.9818. The limit of detection (LOD) of mercury (II) was found to be 0.526 + 0.001 mg L-1. The BNPs is also verified to have a good practical applicability for mercury (II) detection in the real samples.
Collapse
|
22
|
Fan J, Zhang S, Li F, Shi J. Cellulose-based sensors for metal ions detection. CELLULOSE 2020; 27:5477-5507. [PMID: 0 DOI: 10.1007/s10570-020-03158-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/08/2020] [Indexed: 05/27/2023]
|
23
|
Ultrasound assisted-dispersive-modification solid-phase extraction using task-specific ionic liquid immobilized on multiwall carbon nanotubes for speciation and determination mercury in water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104632] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Sotolongo AC, Messina MM, Ibañez FJ, Wuilloud RG. Hybrid ionic liquid-3D graphene-Ni foam for on-line preconcentration and separation of Hg species in water with atomic fluorescence spectrometry detection. Talanta 2020; 210:120614. [DOI: 10.1016/j.talanta.2019.120614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
|
25
|
Verma MS, Chandra M. Nonlinear Plasmonic Sensing for Label-Free and Selective Detection of Mercury at Picomolar Level. ACS Sens 2020; 5:645-649. [PMID: 32067451 DOI: 10.1021/acssensors.9b02404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present the concept of a nonlinear plasmonic sensing approach for rapid, sensitive, and label-free detection of mercury. Nonlinear plasmonic sensing of mercury relies on a systematic combination of nonlinear optics (NLO) with well-known concepts of amalgamation chemistry and plasmonic properties of gold nanorods. Exploiting the extreme sensitivity of the NLO process toward Hg-induced change in the local electric field of plasmonic nanorods, we succeed in improving the limit of detection (LOD) of mercury by 2-3 orders of magnitude as compared to the commonly used linear localized surface plasmon resonance (LSPR) based sensing. Using our method, an LOD of as low as 58 pM (11 ppt) has been achieved with high selectivity. Nonlinear plasmonic sensing aproach is found to work excellently for detecting mercury in real samples like blood plasma.
Collapse
Affiliation(s)
- Mrigank Singh Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh − 208016, India
| | - Manabendra Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh − 208016, India
| |
Collapse
|
26
|
Speciation analysis of mercury in wild edible mushrooms by high-performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry. Anal Bioanal Chem 2020; 412:2829-2840. [DOI: 10.1007/s00216-020-02515-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
|
27
|
Laosuwan M, Mukdasai S, Srijaranai S. A Simple in Syringe Low Density Solvent-Dispersive Liquid Liquid Microextraction for Enrichment of Some Metal Ions Prior to Their Determination by High Performance Liquid Chromatography in Food Samples. Molecules 2020; 25:E552. [PMID: 32012808 PMCID: PMC7037012 DOI: 10.3390/molecules25030552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 02/04/2023] Open
Abstract
A simple and highly sensitive method is developed for the simultaneous determination of Ni2+, Cr2O72-, Co2+, and Hg2+ by using in syringe low density solvent-dispersive liquid liquid microextraction (ISLD-DLLME), followed by high performance liquid chromatography with a UV detector. The four metal ions were derivatized with pyrrolidine dithiocarbamate (PDC) based on complexation before their enrichment by ISLD-DLLME in which 1-octanol and methanol were used as the extraction solvent and the dispersive solvent, respectively. The extraction was performed in a commercially available syringe under vortex agitation. Phase separation was achieved without centrifugation, and the extraction phase was easily collected by moving the syringe plunger. Parameters affecting the extraction efficiency were studied and optimized. Under the optimum conditions, the four metal-PDC complexes were detected within 18 min, and ISLD-DLLME could increase the detection sensitivity in the range of 64-230 times compared to the direct HPLC analysis. The obtained limits of detection (LODs) were found to be in the range of 0.011-2.0 µg L-1. The applicability of the method is demonstrated for freshwater fish, shrimp, and shellfish samples. In addition, the results are in good agreement with those obtained by inductively-coupled plasma-optical emission spectrometry (ICP-OES).
Collapse
Affiliation(s)
| | | | - Supalax Srijaranai
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (M.L.); (S.M.)
| |
Collapse
|
28
|
|
29
|
Zhang Y, Zeng X, Jiang X, Chen H, Long Z. Ce-based UiO-66 metal-organic frameworks as a new redox catalyst for atomic spectrometric determination of Se(VI) and colorimetric sensing of Hg(II). Microchem J 2019. [DOI: 10.1016/j.microc.2019.103967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Hui Y, Liu Y, Tang WC, Song D, Madou M, Xia S, Wu T. Determination of Mercury(II) on A Centrifugal Microfluidic Device Using Ionic Liquid Dispersive Liquid-Liquid Microextraction. MICROMACHINES 2019; 10:mi10080523. [PMID: 31398936 PMCID: PMC6723164 DOI: 10.3390/mi10080523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022]
Abstract
An integrated centrifugal microfluidic device was developed to preconcentrate and detect hazardous mercury (II) in water with ionic liquid as environmentally friendly extractant. An automatically salt-controlled ionic liquid dispersive liquid–liquid microextraction on a centrifugal microfluidic device was designed, fabricated, and characterized. The entire liquid transport mixing and separation process was controlled by rotation speed, siphon valves, and capillary valves. Still frame images on the rotating device showed the process in detail, revealing the sequential steps of mixing, siphon priming, transportation between chambers, and phase separation. The preconcentration of red dye could be clearly observed with the naked eye. By combining fluorescence probe and microscopy techniques, the device was tested to determine ppb-level mercury (II) in water, and was found to exhibit good linearity and low detection limit.
Collapse
Affiliation(s)
- Yun Hui
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yujia Liu
- Department of Mechanical & Aerospace Engineering, University of California, Irvine, CA 92697, USA
| | - William C Tang
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Dian Song
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
| | - Marc Madou
- Department of Mechanical & Aerospace Engineering, University of California, Irvine, CA 92697, USA
| | - Shanhong Xia
- Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
| | - Tianzhun Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
31
|
Iglesias-Mayor A, Amor-Gutiérrez O, Bouzas-Ramos D, Encinar JR, Costa-Fernández JM, de la Escosura-Muñiz A, Costa-García A. Simple and rapid electrochemical quantification of water-stabilized HgSe nanoparticles of great concern in environmental studies. Talanta 2019; 200:72-77. [PMID: 31036227 DOI: 10.1016/j.talanta.2019.03.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 11/16/2022]
Abstract
The sensitive monitoring of mercury (II) selenide nanoparticles (HgSe NPs) is of great potential relevance in environmental studies, since such NPs are believed to be the ultimate metabolic product of the lifesaving mechanism pathway of Hg detoxification in biological systems. In this context, we take advantage of using gold-nanostructured screen-printed carbon electrodes (SPCE-Au) for the rapid, simple and sensitive electrochemical quantification of engineered water-stable HgSe NPs, as an advantageous alternative to conventional elemental analysis techniques. HgSe NPs are first treated in an optimized oxidative/acidic medium for Hg2+ release, followed by sensitive electrochemical detection by anodic stripping voltammetry (ASV). To the best of our knowledge, this is the first time that water-stable HgSe NPs are quantified using electrochemical techniques. The low limit of detection achieved (3.86 × 107 HgSe NPs/mL) together with the excellent repeatability (RSD: 3%), reproducibility (RSD: 5%) and trueness (relative error: 10%), the good performance in real sea water samples (recoveries of the analytical signal higher than 90%) and the simplicity/low cost of analysis make our method an ideal candidate for HgSe NPs monitoring in future environmental studies.
Collapse
Affiliation(s)
- Alba Iglesias-Mayor
- NanoBioAnalysis Group-Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Olaya Amor-Gutiérrez
- NanoBioAnalysis Group-Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Diego Bouzas-Ramos
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - José M Costa-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Alfredo de la Escosura-Muñiz
- NanoBioAnalysis Group-Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Agustín Costa-García
- NanoBioAnalysis Group-Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| |
Collapse
|
32
|
Sorouraddin SM, Farajzadeh MA, Najafpour Qarajeh H. Phthalic acid as complexing agent and co-disperser for analysis of zinc and cadmium at trace levels from high volumes of sample on the base of an effervescence-assisted dispersive liquid-liquid microextraction. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Altunay N, Elik A, Gürkan R. Natural deep eutectic solvent-based ultrasound-assisted-microextraction for extraction, pre-concentration and analysis of methylmercury and total mercury in fish and environmental waters by spectrophotometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1079-1097. [DOI: 10.1080/19440049.2019.1619939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nail Altunay
- Faculty of Sciences, Department of Chemistry, Cumhuriyet University, Sivas, Turkey
| | - Adil Elik
- Faculty of Sciences, Department of Chemistry, Cumhuriyet University, Sivas, Turkey
| | - Ramazan Gürkan
- Faculty of Sciences, Department of Chemistry, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
34
|
Speciation of mercury in water and biological samples by eco-friendly ultrasound-assisted deep eutectic solvent based on liquid phase microextraction with electrothermal atomic absorption spectrometry. Talanta 2019; 197:310-318. [DOI: 10.1016/j.talanta.2019.01.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 01/10/2023]
|
35
|
Makoś P, Przyjazny A, Boczkaj G. Methods of assaying volatile oxygenated organic compounds in effluent samples by gas chromatography—A review. J Chromatogr A 2019; 1592:143-160. [DOI: 10.1016/j.chroma.2019.01.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/13/2022]
|
36
|
Yu X, Liu C, Guo Y, Deng T. Speciation Analysis of Trace Arsenic, Mercury, Selenium and Antimony in Environmental and Biological Samples Based on Hyphenated Techniques. Molecules 2019; 24:E926. [PMID: 30866421 PMCID: PMC6429259 DOI: 10.3390/molecules24050926] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
In order to obtain a well understanding of the toxicity and ecological effects of trace elements in the environment, it is necessary to determine not only the total amount, but also their existing species. Speciation analysis has become increasingly important in making risk assessments of toxic elements since the toxicity and bioavailability strongly depend on their chemical forms. Effective separation of different species in combination with highly sensitive detectors to quantify these particular species is indispensable to meet this requirement. In this paper, we present the recent progresses on the speciation analysis of trace arsenic, mercury, selenium and antimony in environmental and biological samples with an emphasis on the separation and detection techniques, especially the recent applications of high performance liquid chromatography (HPLC) hyphenated to atomic spectrometry or mass spectrometry.
Collapse
Affiliation(s)
- Xiaoping Yu
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Chenglong Liu
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Yafei Guo
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Tianlong Deng
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
37
|
Yamini Y, Rezazadeh M, Seidi S. Liquid-phase microextraction – The different principles and configurations. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.06.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Zheng H, Hong J, Luo X, Li S, Wang M, Yang B, Wang M. Combination of sequential cloud point extraction and hydride generation atomic fluorescence spectrometry for preconcentration and determination of inorganic and methyl mercury in water samples. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.057] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Leng G, Hu Q, He WF, Liu Z, Chen WJ, Xu WB, Yang QH, Sun J. A simple field method for the determination of sulfite in natural waters: Based on automated dispersive liquid-liquid microextraction coupled with ultraviolet-visible spectrophotometry. J Chromatogr A 2019; 1584:72-79. [DOI: 10.1016/j.chroma.2018.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/24/2018] [Accepted: 11/10/2018] [Indexed: 12/14/2022]
|
40
|
Covaci E, Angyus SB, Senila M, Ponta M, Darvasi E, Frentiu M, Frentiu T. Eco-scale non-chromatographic method for mercury speciation in fish using formic acid extraction and UV–Vis photochemical vapor generation capacitively coupled plasma microtorch optical emission spectrometry. Microchem J 2018. [DOI: 10.1016/j.microc.2018.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Akramipour R, Golpayegani MR, Gheini S, Fattahi N. Speciation of organic/inorganic mercury and total mercury in blood samples using vortex assisted dispersive liquid-liquid microextraction based on the freezing of deep eutectic solvent followed by GFAAS. Talanta 2018; 186:17-23. [DOI: 10.1016/j.talanta.2018.04.042] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 11/28/2022]
|
42
|
Wang T, Chen Y, Ma J, Jin Z, Chai M, Xiao X, Zhang L, Zhang Y. A polyethyleneimine-modified attapulgite as a novel solid support in matrix solid-phase dispersion for the extraction of cadmium traces in seafood products. Talanta 2018; 180:254-259. [DOI: 10.1016/j.talanta.2017.12.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 01/13/2023]
|
43
|
Ion-pairing reversed-phase chromatography coupled to inductively coupled plasma mass spectrometry as a tool to determine mercurial species in freshwater fish. J Chromatogr A 2018; 1531:104-111. [DOI: 10.1016/j.chroma.2017.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/17/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022]
|
44
|
Gao X, Dai J, Zhao H, Zhu J, Luo L, Zhang R, Zhang Z, Li L. Synthesis of MoS2 nanosheets for mercury speciation analysis by HPLC-UV-HG-AFS. RSC Adv 2018; 8:18364-18371. [PMID: 35541115 PMCID: PMC9080583 DOI: 10.1039/c8ra01891j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/11/2018] [Indexed: 11/25/2022] Open
Abstract
Mercury species have aroused wide concern in the past several decades due to their high toxicity. However, it is still difficult to detect ultra-trace mercury species due to their biochemical transformation in complex samples. To establish a simpler and more sensitive method for pre-concentration and determination of trace mercury species, molybdenum disulfide (MoS2) nanosheets with sulfur-rich characteristics and enlarged interlayer spacing were prepared by a hydrothermal method coupled with a sonication-assisted liquid exfoliation method and acted as solid-phase extraction adsorbent. The nano-MoS2 had high adsorption capacity, fast adsorption rate and excellent selectivity towards mercury ions (Hg2+), methyl mercury (MeHg+) and ethyl mercury (EtHg+) in a wide pH range and complex matrices. And it could be easily regenerated by 4 mol L−1 HCl and reused several times. After optimizing HPLC-UV-HG-AFS conditions, a great linearity (1.0–10.0 μg L−1, R2 = 0.999 for Hg2+, MeHg+ and EtHg+), lower detection limits (0.017, 0.037 and 0.021 ng mL−1 for Hg2+, MeHg+ and EtHg+, respectively), relative standard deviations (<5%) and addition recoveries of the samples within 82.75–113.38% were observed. In summary, trace inorganic and organic mercury species in environmental and biological samples could be selectively enriched by the prepared nano-MoS2 and efficiently seperated and detected by HPLC-UV-HG-AFS. The present study will help provide a better strategy for environmental monitoring and health assessment of mercury pollutants. As-synthesized few-layered molybdenum disulfide nanosheets were used as solid-phase extraction absorbent for ultra-trace mercury speciation analysis by HPLC-UV-HG-AFS.![]()
Collapse
Affiliation(s)
- Xingsu Gao
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Jiayong Dai
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Hongyan Zhao
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Jun Zhu
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Lan Luo
- Nanjing Entry-exit Inspection and Quarantine Bureau
- Nanjing 211106
- P. R. China
| | - Rui Zhang
- Nanjing Entry-exit Inspection and Quarantine Bureau
- Nanjing 211106
- P. R. China
| | - Zhan Zhang
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Lei Li
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| |
Collapse
|
45
|
Zhu S, Chen B, He M, Huang T, Hu B. Speciation of mercury in water and fish samples by HPLC-ICP-MS after magnetic solid phase extraction. Talanta 2017; 171:213-219. [PMID: 28551131 DOI: 10.1016/j.talanta.2017.04.068] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/20/2017] [Accepted: 04/30/2017] [Indexed: 01/11/2023]
Abstract
In this paper, Fe3O4@SiO2@γ-mercaptopropyltrimethoxysilane (γ-MPTS) magnetic nanoparticles was prepared and a new method of magnetic solid phase extraction (MSPE)-high performance liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry (ICP-MS) was developed for the speciation of mercury including inorganic mercury (Hg2+), methylmercury (MeHg+) and phenylmercury (PhHg+) in environmental water, wastewater, tap water and fish samples. A rapid separation of three target mercury species was achieved in 8min by employing relatively high ratio of methanol in HPLC mobile phase. Various parameters affecting Fe3O4@SiO2@γ-MPTS-based MSPE of target mercury species have been investigated. Under the optimized conditions, the limits of detection for Hg2+, MeHg+ and PhHg+ were in the range of 0.49-0.74ngL-1. The intra- and inter-day relative standard deviations (n=5) were less than 9.0% and 12%, respectively. The developed MSPE-HPLC-ICP-MS method was validated by the speciation of mercury in the Certified Reference Material of DORM-2 dogfish as well as real-world samples including environmental water, wastewater, tap water and fish samples, and it has the advantages of simple operation, rapid separation, high sensitivity, high enrichment factor and is suitable for the analysis of mercury species in samples with complex matrix.
Collapse
Affiliation(s)
- Siqi Zhu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Tong Huang
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|