1
|
Zuo ZC, Liu SS, Ni J, Cao YL, He Z, Yang GP. Effect of organic carbon enrichment on halogenated organic pollutants in wetland sediments of the Yellow River Estuary and Jiaozhou Bay, China. ENVIRONMENTAL RESEARCH 2025:121771. [PMID: 40345414 DOI: 10.1016/j.envres.2025.121771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/18/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025]
Abstract
Coastal wetlands, vital ecosystems, are threatened by anthropogenic activities and act as significant sinks for halogenated organic pollutants (HOPs). Despite the persistent toxicity and ecological risks associated with HOPs, their spatial distribution and environmental behavior in coastal sediments, particularly the role of total organic carbon (TOC) in modulating their fate, remain poorly understood. We investigated the contamination characteristics of 25 halogenated polycyclic aromatic hydrocarbons (HPAHs) in the surface sediments of two coastal wetlands, the Yellow River estuary and Jiaozhou Bay, with different environmental backgrounds. HPAH concentrations were higher in Jiaozhou Bay (23.81-121.78 ng g-1, mean 50.58 ± 28.85 ng g-1) than in the Yellow River estuary (14.69-30.12 ng g-1, mean 23.48 ± 5.42 ng g-1), influenced by hydrodynamic conditions and anthropogenic activities. While TOC showed a weak correlation with HPAHs under the low TOC levels and dynamic sedimentary conditions of the Yellow River estuary, it showed significant positive correlations with most HPAHs in Jiaozhou Bay, where limited water exchange enhanced pollutant accumulation. Risk assessment based on the risk quotient (RQ) indicated that the overall RQ was lower in Jiaozhou Bay, despite the higher mean HPAH concentration (2.2 times higher than in the Yellow River estuary), which may be due to the higher TOC content that enhances adsorption and reduces bioaccessibility. Fish and Daphnia in both wetlands were almost always at minimal risk levels, although localized elevated risks may occur in areas with higher pollution loads. These findings highlight the importance of integrating TOC and hydrodynamic factors in coastal pollution management.
Collapse
Affiliation(s)
- Zi-Cen Zuo
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shan-Shan Liu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jie Ni
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Ya-Li Cao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zhen He
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
2
|
Huang Z, Wang C, Liu G, Yang L, Luo X, Liang Y, Wang P, Zheng M. Unintentionally-produced persistent organic pollutants in the aquatic environment contaminated from historical chlor-alkali production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124882. [PMID: 39241952 DOI: 10.1016/j.envpol.2024.124882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Historical chlor-alkali production has led to substantial concentrations of persistent organic pollutant residues in the environment. This study systematically investigated the distribution of polycyclic aromatic hydrocarbons (PAHs), chlorinated/brominated-PAHs (Cl/Br-PAHs), polychlorinated naphthalenes (PCNs), and hexachlorobutadiene (HCBD) in sediment, lotus (Nelumbo nucifera), and fish samples from Ya-Er Lake, which is a site in China with historical chlor-alkali contamination. The average concentrations [(4.97-1.47) × 103 ng/g dry weight (dw)] of these pollutants in backfill sediments, which were dredged from the lake after chlor-alkali production stopped, were 2.68-70.87 times those in fresh lake sediments (0.622-218 ng/g dw) and reported concentrations in other areas. Correlation analyses indicated that Cl-PAHs, Br-PAHs, and PCNs likely originated from halogenation of parent PAHs in the study area, and the chlorination ratios were larger than those of bromination. The Cl(1/2/3)-PAHs/PAHs and Br(1)-PAHs/PAHs ratios were higher than those for PAHs with more halogen atoms. This contamination extended into the biota, with notable pollutant burdens found in lotus (Nelumbo nucifera, 0.305-77.3 ng/g dw) and even higher concentrations in fish (2.20-345 ng/g lipid weight). Estimated biological soil accumulation factors revealed significant enrichment in lotus organs (mean: 7.19) and fish muscle (mean: 10.65), especially the latter, which highlighted bioaccumulation and potential food chain transfer risks. The estimated daily intakes of PAHs, Cl/Br-PAHs, and HCBD through fish consumption currently pose negligible risks, while dietary intake of PCNs may present health concerns. Continuous monitoring and impact assessments are crucial for developing appropriate risk management strategies to safeguard public health.
Collapse
Affiliation(s)
- Zichun Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chu Wang
- Changjiang Survey, Planning, Design and Research Co., Ltd, Wuhan, 430010, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Luo
- Changjiang Survey, Planning, Design and Research Co., Ltd, Wuhan, 430010, China
| | - Yong Liang
- Jianghan University, Hubei, 430056, China
| | - Pu Wang
- Jianghan University, Hubei, 430056, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Ali L, Alam A, Ali AM, Teoh WY, Altarawneh M. A comprehensive Review into Emission Sources, Formation Mechanisms, Ecological Effects, and Biotransformation Routes of Halogenated Polycyclic Aromatic Hydrocarbons (HPAHs). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117196. [PMID: 39426109 DOI: 10.1016/j.ecoenv.2024.117196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Halogenated polycyclic aromatic hydrocarbons (HPAHs, H = F, Cl, Br) are a new class of PAHs derivatives that mainly originate from the incomplete combustion of halogen-laden materials and via metallurgical operations. These compounds circulate extensively in various environmental matrices. This survey provides a comprehensive review on governing synthesis routes of HPAHs, their environmental occurrence, and their health and ecological effects. The review comprehensively enlists and presents emission sources of these emerging organic pollutants into the air that serves as their main reservoir. The formation of HPAHs ensues through successive addition reactions of related precursors accompanied by ring cyclization steps; in addition to direct unimolecular fragmentation of parents halogenated. Halogenation of parent PAHs rapidly occurs in saline ecosystems, thus multiplying the availability of these notorious compounds in the environment. Certain HPAHs appear to be more carcinogenic than dioxins. Transmission routes of HPAHs from their emission sources to water bodies, soil, aquatic life, plants, terrestrial animals, and humans are well-documented. Later, the direct and indirect diffusion of HPAHs from air to the biotic (plants, animals, humans) and abiotic components (soil, water, sediments) are described in detail. The study concludes that HPAHs are permeable to the carbon matrices resulting in the alleviation of the source-to-sink interface. As a potential future perspective, understanding the transmission interfaces lays a foundation to intervene in the introduction of these toxicants into the food chain.
Collapse
Affiliation(s)
- Labeeb Ali
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates
| | - Ayesha Alam
- United Arab Emirates University, Department of Integrative Agriculture, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates
| | - Abdul Majeed Ali
- Medcare Hospital, Department of Pediatrics and Neonatology, King Faisal Street, Sharjah 15551, United Arab Emirates
| | - Wey Yang Teoh
- Department of Chemical Engineering, Sustainable Process Engineering Centre (SPEC), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
4
|
Downham RP, Gannon B, Lozano DCP, Jones HE, Vane CH, Barrow MP. Tracking the history of polycyclic aromatic compounds in London through a River Thames sediment core and ultrahigh resolution mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134605. [PMID: 38768537 DOI: 10.1016/j.jhazmat.2024.134605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/27/2024] [Accepted: 05/11/2024] [Indexed: 05/22/2024]
Abstract
Polycyclic aromatic compounds (PACs), including polycyclic aromatic hydrocarbons (PAHs) and heteroatom-containing analogues, constitute an important environmental contaminant class. For decades, limited numbers of priority PAHs have been routinely targeted in pollution investigations, however, there is growing awareness for the potential occurrence of thousands of PACs in the environment. In this study, untargeted Fourier transform ion cyclotron resonance mass spectrometry was used for the molecular characterisation of PACs in a sediment core from Chiswick Ait, in the River Thames, London, UK. Using complex mixture analysis approaches, including aromaticity index calculations, the number of molecular PAC components was determined for eight core depths, extending back to the 1930s. A maximum of 1676 molecular compositions representing PACs was detected at the depth corresponding to the 1950s, and a decline in PAC numbers was observed up the core. A case linking the PACs to London's coal consumption history is presented, alongside other possible sources, with some data features indicating pyrogenic origins. The overall core profile trend in PAC components, including compounds with oxygen, sulfur, nitrogen, and chlorine atoms, is shown to broadly correspond to the 16 priority PAH concentration profile trend previously determined for this core. These findings have implications for other industry-impacted environments.
Collapse
Affiliation(s)
- Rory P Downham
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Benedict Gannon
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | | | - Hugh E Jones
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Christopher H Vane
- British Geological Survey, Organic Geochemistry Facility, Keyworth NG12 5GG, UK
| | - Mark P Barrow
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
5
|
Zuo ZC, Zhang L, Ni J, Zhang XY, Lang XP, He Z, Yang GP. Occurrence of halogenated organic contaminants in surface sediments of the Yangtze River estuary and its adjacent marine area. ENVIRONMENTAL RESEARCH 2024; 251:118579. [PMID: 38423497 DOI: 10.1016/j.envres.2024.118579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Halogenated organic contaminants, such as chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs), are some of the most important emerging environmental pollutants. However, empirical data on Cl/Br-PAHs in estuarine and marine ecosystems are limited, rendering assessments of Cl/Br-PAH contamination in estuarine and offshore environments uncertain. Here the occurrence, sources, and ecological risks of 7 Cl-PAHs and 18 Br-PAHs were determined in surface sediments of the Yangtze River Estuary (YRE), a highly urbanized and industrialized area, and its adjacent marine area. The concentrations of Cl-PAHs ranged from 4.50 to 18.38 ng g-1 (average 7.19 ng g-1), while those of Br-PAHs ranged from 4.80 to 61.18 ng g-1 (average 14.11 ng g-1). The dominant Cl-PAH and Br-PAH in surface sediment were 9-chlorofluorene (17.79%) and 9-bromofluorene (58.49%), respectively. The distributions and compositions of Cl/Br-PAHs in the surface sediments varied considerably due to complex hydrodynamic and depositional conditions in the YRE and its adjacent marine area, as well as differences in physicochemical properties of different Cl/Br-PAHs. Positive matrix factorization revealed that the primary sources of Cl/Br-PAHs in the study area were e-waste dismantling (33.6%), waste incineration (23.2%), and metal smelting (11.0%). According to the risk quotient, the Cl/Br-PAHs in sediments posed no toxic risk to aquatic organisms.
Collapse
Affiliation(s)
- Zi-Cen Zuo
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Ecosystem and Bioresource & Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Ministry of Natural Resources, Beihai 536000, China
| | - Jie Ni
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xiao-Yu Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xiao-Ping Lang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zhen He
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
6
|
Deng W, Wen M, Wang C, Huang J, Zhang S, Ma S, Xiong J, Wang W, Zhang X, An T. Atmospheric occurrences and health risk assessment of polycyclic aromatic hydrocarbons and their derivatives in a typical coking facility and surrounding areas. CHEMOSPHERE 2023; 341:139994. [PMID: 37652242 DOI: 10.1016/j.chemosphere.2023.139994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Coking facilities release large quantities of polycyclic aromatic hydrocarbons (PAHs) and their derivatives into the ambient air. Here we examined the profiles, spatial distributions, and potential sources of atmospheric PAHs and their derivatives in an industrial coking plant and its surrounding environment (gaseous and particulate). The mean concentrations of PAHs, nitrated PAHs (NPAHs), chlorinated PAHs (ClPAHs), and brominated PAHs (BrPAHs) in the air of the coking facility were 923, 23.8, 16.7 and 4.25 ng m-³, respectively, 1-2 orders of magnitude higher than those in the surrounding area and the control area. Linear regressions between contaminant concentrations and distance from the coking facility suggested that the concentrations of PAHs (r2 = 0.82, p < 0.05), NPAHs (r2 = 0.77, p < 0.01), and BrPAHs (r2 = 0.62, p < 0.01) were negatively correlated with distance. Additionally, the particle-bound fractions of PAHs and their derivatives were significantly correlated with their molecular weights (p < 0.01). Based on the calculation of the gas/particle partitioning coefficients (log KP) for PAHs and their derivatives and the corresponding subcooled liquid vapor pressures (log PL), the slope values for PAHs, NPAHs, ClPAHs, and BrPAHs ranged from -1 to -0.6, indicating that deposition of PAHs and their derivatives occurred through both adsorption and absorption. Five emissions sources were identified by positive matrix factorization (PMF), including coking emissions, oil pollution, industrial and combustion sources, secondary formation, and traffic emissions, with coking emissions accounting for more than 50% of total emissions. Furthermore, the results of the health risks assessment suggested that atmospheric PAHs and their derivatives in the coke plant and surrounding area negatively impacted human health.
Collapse
Affiliation(s)
- Weiqiang Deng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Meicheng Wen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Chao Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jin Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shu Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jukun Xiong
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wanjun Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
7
|
Goswami P, Ohura T, Subasinghe S, Wickrama-Arachchige AUK, Takeuchi S, Imaki M, Niizuma Y, Watanabe M, Guruge KS. Voyaging of halogenated polycyclic aromatic hydrocarbons, an emerging group of pollutants, on micro-mesoplastics in the marine environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132502. [PMID: 37703726 DOI: 10.1016/j.jhazmat.2023.132502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
The limited existing research on the accumulation of hazardous chlorinated and brominated polycyclic aromatic hydrocarbons (ClPAHs and BrPAHs) in micro-mesoplastics (mMPs) motivated this investigation. We collected mMPs from the coastal environments of Sri Lanka and Japan. Out of 75 target compounds analyzed, 61 were detected, with total parent PAH concentrations reaching 16,300 and 1770 ng/g plastic in Sri Lanka and Japan, respectively. The total parent PAH concentrations in mMPs from the southern Sri Lankan coastline were relatively higher than those from the eastern coastline. Phenanthrene and naphthalene were the dominant parent PAH congeners in most mMP samples. Chlorinated pyrenes and brominated naphthalene were predominant among halogenated PAHs. The estimated toxic equivalency quotient (TEQ) ranged from 0.67 to 1057 ng-TEQ/g plastic, with the highest levels observed in polystyrene (PS) particles from the southern Sri Lankan coast. Benzo[a]pyrene and dibenzo[a,h]anthracene exhibited elevated TEQ for parent PAHs, whereas dichloropyrene, and dibromopyrene represented the highest TEQs for ClPAHs and BrPAHs, respectively. The data evidenced that several HPAH congeners can increase the PAH-like toxicity (∼86%) in mMPs. This study provides insights into the accumulation of parent and halogenated PAHs in mMPs, highlighting their potential combined implications in marine and terrestrial ecosystems.
Collapse
Affiliation(s)
- Prasun Goswami
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba 305-0856, Ibaraki, Japan
| | - Takeshi Ohura
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan; Graduate School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan.
| | | | | | - Saya Takeuchi
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan
| | - Mayuko Imaki
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan
| | - Yasuaki Niizuma
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan; Graduate School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan
| | - Mafumi Watanabe
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba 305-0856, Ibaraki, Japan
| | - Keerthi S Guruge
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba 305-0856, Ibaraki, Japan; Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan.
| |
Collapse
|
8
|
Xie J, Tao L, Wu Q, Tu S, Liu B, Lin T, Yang L, Li C, Liu G. Global squid contamination by halogenated polycyclic aromatic hydrocarbons and its trade induced risk transfer. ENVIRONMENT INTERNATIONAL 2023; 179:108163. [PMID: 37619253 DOI: 10.1016/j.envint.2023.108163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Squid is traded globally as an important food resource. However, the occurrence of carcinogenic halogenated polycyclic aromatic hydrocarbons (HPAHs) in squid and the risk of their transfer through trade is little understood or recognized. Here, we comprehensively evaluated the occurrence and risk transfer by quantifying the congener-specific concentrations of HPAHs in 121 squid samples collected from the Pacific, Atlantic and Indian oceans. This was the first time that nine of the 36 target chlorinated and brominated PAH congeners had been detected in squid. The HPAHs exhibited growth-dilution effects in the squid. The lipid content of squid was the most significant factor influencing HPAH bioaccumulation, while differences in squid growth and local ocean contamination influenced by geographical distribution also affected HPAH bioaccumulation. The redistribution and risk transfers of HPAHs in squid as a food could be affected by international trading. The cancer risks from squid consumption in China and Mexico were increased by 50 % and 30 %, respectively, because of international squid trading.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ling Tao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiang Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Shuyi Tu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Bilin Liu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
9
|
Jin R, Liu G, Zhou X, Zhang Z, Lin B, Liu Y, Qi Z, Zheng M. Analysis of polycyclic aromatic hydrocarbon derivatives in environment. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Sun Y, Zheng M, Yang L, Jin R, Lin B, Li C, Liu G. Progress of congener specific analysis of polyhalogenated carbazoles in the environment. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Cao S, Hu J, Wu Q, Wei X, Ma G, Yu H. Prediction study on the distribution of polycyclic aromatic hydrocarbons and their halogenated derivatives in the atmospheric particulate phase. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114111. [PMID: 36155337 DOI: 10.1016/j.ecoenv.2022.114111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their halogenated derivatives (X-PAHs), which generally produced from photochemical and thermal reactions of parent PAHs, widely exist in the environment. They are semi-volatile organic chemicals (SVOCs) and the partitioning between gas/particulate phases affects their environmental migration, transformation and fate, which further impacts their toxicity and health risk to human. However, there is a large data missing of the experimental distribution ratio in the atmospheric particulate phase (f), especially for X-PAHs. In this study, we first checked the correlation between experimental f values of 53 PAH derivatives and their octanol-air partitioning coefficients (log KOA), which is frequently used to characterize the distribution of chemicals in organic phase, and yielded R2 = 0.803. Then, quantum chemical descriptors derived from molecular structural optimization by M06-2X/6-311 +G (d,p) method were further employed to develop Quantitative Structure-Property Relationship (QSPR) model. The model contains two descriptors, the average molecular polarizability (α) and the equilibrium parameter of molecular electrostatic potential (τ), and yields better performance with R2 = 0.846 and RMSE = 0.122. The mechanism analysis and validation results by different strategies prove that the model can reveal the molecular properties that dominate the distribution between gas and particulate phases and it can be used to predict f values of other PAHs/X-PAHs, providing basic data for their environmental ecological risk assessment.
Collapse
Affiliation(s)
- Siqi Cao
- Zhejiang Normal University, College of Geography and Environmental Sciences, Jinhua 321004, China
| | - Jue Hu
- Zhejiang Normal University, College of Geography and Environmental Sciences, Jinhua 321004, China
| | - Qiang Wu
- Zhejiang Normal University, College of Geography and Environmental Sciences, Jinhua 321004, China
| | - Xiaoxuan Wei
- Zhejiang Normal University, College of Geography and Environmental Sciences, Jinhua 321004, China
| | - Guangcai Ma
- Zhejiang Normal University, College of Geography and Environmental Sciences, Jinhua 321004, China
| | - Haiying Yu
- Zhejiang Normal University, College of Geography and Environmental Sciences, Jinhua 321004, China.
| |
Collapse
|
12
|
Sun Y, Yang L, Chen C, Li C, Zheng M, Jin R, Wang W, Yang N, Li Y, Liu G. Method development for determination of polyhalogenated carbazoles in industrial waste through gas chromatography/triple quadrupole tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9324. [PMID: 35560965 DOI: 10.1002/rcm.9324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Polyhalogenated carbazoles (PHCZs) are dioxin-like compounds that are ubiquitous in the environment. However, their unintentional emissions from industrial sources have received little attention and there is no method available for determination of PHCZs in industrial waste. This research develops a method for determination of PHCZs in industrial waste. METHODS In this research, a glass column packed with activated silica serves as a rapid and efficient clean-up pretreatment for purification. An isotope dilution gas chromatography/triple quadrupole tandem mass spectrometry method was established for simultaneous determination of eleven PHCZs in industrial samples. RESULTS The regression coefficients of the standard curves for the congeners were all >0.99. The method detection limit ranged from 1.46 to 3.82 ng/mL for liquid samples and from 0.009 to 0.021 ng/g for solid samples. The precision described by the relative standard deviation ranged from 2.4% to 18.4% for liquid samples and from 5.5% to 35.8% for solid samples. The recovery ranges for the liquid and solid samples were 82%-123% and 83%-137%, respectively. 3-Chlorocarbazole (3-CCZ) and 36-dichlorocarbazole (36-CCZ) can be detected in both chemical bottom liquid from vinyl chloride production and fly ash from medical waste incineration by this method. CONCLUSIONS An efficient method is established for determination of PHCZs from industrial waste. The discovery of 3-CCZ and 36-CCZ highlights the importance of identification of potential industrial sources of PHCZs and clarification of their contribution to environmental risks. Our method could be applied to investigate industrial emission of PHCZs.
Collapse
Affiliation(s)
- Yuxiang Sun
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Changzhi Chen
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Minghui Zheng
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Rong Jin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wenwen Wang
- Agilent Technologies (China) Co. Ltd., Beijing, China
| | - Nan Yang
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Science Research, Beijing, China
| | - Yinming Li
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Science Research, Beijing, China
| | - Guorui Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Zhao C, Li C, Wang C, Li Y, Yang R, Zhang Q, Jiang G. Ultrasensitive determination of 39 parent and emerging halogenated polycyclic aromatic hydrocarbons in human serum. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1430-1438. [PMID: 35319554 DOI: 10.1039/d2ay00029f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Halogenated polycyclic aromatic hydrocarbons (HPAHs) have attracted extensive attention because of their high toxicity and bioaccumulation. However, there has been no report on the content of HPAHs in human tissues and the corresponding analytical method. In this study, a method for the simultaneous determination of 16 polycyclic aromatic hydrocarbons (PAHs) and 23 HPAHs in human serum was developed and validated. Simple and stable removal of interfering substances in complex serum and the detection of ultra-trace HPAHs are the key difficulties. After 0.5 mL serum was treated with formic acid and 10% isopropanol, samples were prepared by solid phase extraction (SPE) and analyzed by gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS). The recoveries of the method were 65-103%, with low detection limits of 0.001-0.019 ng mL-1. For HPAHs, the precision was in the range of 0.2-10% according to relative standard deviation (RSD). Subsequently, the developed method was validated for serum samples obtained in hospitals, and 8 PAHs and 12 HPAHs were detected. The concentration of ∑HPAHs was 23 ± 12 ng g-1 lipid in females and 21 ± 10 ng g-1 lipid in males, in which phenanthrene and anthracene halogenated derivatives were the main components. The level of HPAHs was correlated with PAHs, which was 23-119 times higher than that of HPAHs. The detected HPAHs contain highly toxic and persistent components, representing an ongoing human health risk, which should receive more attention.
Collapse
Affiliation(s)
- Chuxuan Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengxin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Chu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Du Y, Xu X, Liu Q, Lin L, Bai L, Wang D. Contribution of atmospheric deposition to halogenated polycyclic aromatic hydrocarbons in surface sediments: A validation study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152889. [PMID: 34998763 DOI: 10.1016/j.scitotenv.2021.152889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Surface sediments are both sinks and sources of chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) in the environment. It is important to study the source of Cl/Br-PAHs in the surface sediment for controlling the ecological risk of Cl/Br-PAHs. Clues from the previous research suggested that atmospheric deposition may be one of the main sources of Cl/Br-PAHs in sediment. However, due to the lack of matched sediment and atmospheric Cl/Br-PAHs data, the contribution of atmospheric deposition to Cl/Br-PAHs in sediment has not been confirmed. This study investigated the characteristics of 37 Cl/Br-PAHs and validated the contribution of atmospheric sedimentation to Cl/Br-PAHs in sediment by a case study in the surface sediments of the Chaobai River, China. To the best of our knowledge, four Cl-PAHs and eleven Br-PAHs were found in the sediments for the first time. The total concentrations of 18 Cl-PAH species were 76-2301 pg/g, while those of Br-PAHs were 6-238 pg/g. The toxic equivalent quantities (TEQ) of the Cl-PAHs in surface sediments in the water conservation area and in the urban comparison area were 0.73 pg TEQ/g and 2.21 pg TEQ/g, respectively. The TEQ of the Br-PAHs in surface sediments in the water conservation area and in the urban comparison area were 2.85 × 10-2 pg TEQ/g and 6.6 × 10-2 pg TEQ/g, respectively. Based on the characteristics comparison and correlation analysis of Cl/Br-PAHs in both sediment and ambient air, it was initially confirmed the contribution of atmospheric deposition to Cl-PAHs in sediments. However, there was no conclusion of Br-PAHs in sediment similar to Cl-PAHs in sediment. It was inferred that the sources of Br-PAHs in sediment were different from Cl-PAHs in sediment.
Collapse
Affiliation(s)
- Yanjun Du
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 100021 Beijing, China
| | - Xiong Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Quanzhen Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lihua Lin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Lu Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Donghong Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
15
|
Yang L, Shen J, Zheng M, Yang Q, Li D, Liu G. Occurrence of chlorinated and brominated polycyclic aromatic hydrocarbons from electric arc furnace for steelmaking. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118663. [PMID: 34896218 DOI: 10.1016/j.envpol.2021.118663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) are persistent organic pollutants with potential carcinogenic toxicities that are even higher than those of their parent PAH congeners. Current knowledge of Cl/Br-PAH sources and emission characteristics is lacking. Electric arc furnace (EAF) steelmaking is a potential source for Cl/Br-PAHs, considering that preheating of raw materials before they enter the EAF could produce suitable conditions for Cl/Br-PAHs formation. In this field study, we identified EAFs as an important source of Cl/Br-PAHs and clarified their emission concentrations, fingerprints by gas chromatography coupled with high-resolution magnetic mass spectrometry. Potential formation mechanisms of Cl/Br-PAHs were also proposed. The mass concentration ranges for Σ18Cl-PAHs and Σ18Br-PAHs in stack gas were 25.85-4191 ng Nm-3 and 1.02-341 ng Nm-3, respectively. The variation of concentration indicated that the steel scrap composition greatly affected the production of Cl/Br-PAHs. The congener ratios including 6-chlorobenzo [a]pyrene/3-chlorofluoranthene and 1-chloroanthracene/1-chloropyrene could be used to estimate the influence of industrial sources on Cl-PAH occurrences in the air. Ring structure growth was the dominant formation pathway for Cl/Br-PAHs, distinctly different from dioxin formation mechanisms dominated by precursor dimerization and chlorination.
Collapse
Affiliation(s)
- Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
| | - Jia Shen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Qiuting Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, 310000, China.
| |
Collapse
|
16
|
Liu X, Yang L, Wang M, Zheng M, Li C, Qin L, Liu G. Insights into the Formation and Profile of Chlorinated Polycyclic Aromatic Hydrocarbons during Chlorobenzene and Chloroethylene Manufacturing Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15929-15939. [PMID: 34812043 DOI: 10.1021/acs.est.1c05688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chlorinated polycyclic aromatic hydrocarbons including chlorinated naphthalenes and congeners with three to five rings are ubiquitous atmospheric pollutants. Congener profiles and formation mechanisms from typical chemical manufacturing have not been researched extensively. We measured the concentrations of 75 chlorinated naphthalenes and 18 chlorinated polycyclic aromatic hydrocarbons in raw materials, intermediates, products, and bottom residues from chemical plants producing monochlorobenzene and chloroethylene by different techniques. The findings confirmed that these chemical manufacturing processes are newly identified sources of atmospheric emissions of these compounds. More-chlorinated naphthalenes were formed from chloroethylene production than from monochlorobenzene production, which could be explained by the higher temperatures in the former process. Successive chlorination appeared to be an important formation pathway of polychlorinated naphthalenes according to their congener profiles and was supported by quantum chemical calculations of electrophilic chlorination on various positions of naphthalene. Chlorinated polycyclic aromatic hydrocarbons were more likely to be formed during the production of monochlorobenzene than chloroethylene. Moreover, we suggested that ring rearrangement and ring coupling are important transformation reactions between polychlorinated naphthalenes and chlorinated polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Xiaoyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minxiang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
| | - Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linjun Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
17
|
Jin R, Bandowe BAM, Zheng M, Liu G, Nežiková B, Prokeš R, Čupr P, Klánová J, Lammel G. Atmospheric deposition of chlorinated and brominated polycyclic aromatic hydrocarbons in central Europe analyzed by GC-MS/MS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61360-61368. [PMID: 34173951 PMCID: PMC8580896 DOI: 10.1007/s11356-021-15038-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Chlorinated and brominated polycyclic aromatic hydrocarbons (ClPAHs and BrPAHs) are persistent organic pollutants that are ubiquitous in the atmospheric environment. The sources, fate, and sinks in the atmosphere of these substances are largely unknown. One of the reasons is the lack of widely accessible analytical instrumentation. In this study, a new analytical method for ClPAHs and BrPAHs using gas-chromatography coupled with triple quadrupole mass spectrometry is presented. The method was applied to determine ClPAHs and BrPAHs in total deposition samples collected at two sites in central Europe. Deposition fluxes of ClPAHs and BrPAHs ranged 580 (272-962) and 494 (161-936) pg m-2 day-1, respectively, at a regional background site, Košetice, and 547 (351-724) and 449 (202-758) pg m-2 day-1, respectively, at a semi-urban site, Praha-Libuš. These fluxes are similar to those of PCBs and more than 2 orders of magnitude lower than those of the parent PAHs in the region. Seasonal variations of the deposition fluxes of these halogenated PAHs were found with maxima in summer and autumn, and minima in winter at Košetice, but vice versa at Praha-Libuš. The distribution of ClPAHs and BrPAHs between the particulate and dissolved phases in deposition samples suggests higher degradability of particulate BrFlt/Pyr and BrBaA than of the corresponding ClPAHs. A number of congeners were detected for the first time in the atmospheric environment.
Collapse
Affiliation(s)
- Rong Jin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Multiphase Chemistry Department, Max-Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| | - Benjamin A Musa Bandowe
- Multiphase Chemistry Department, Max-Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| | - Minghui Zheng
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guorui Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Barbora Nežiková
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Roman Prokeš
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Pavel Čupr
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Jana Klánová
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Gerhard Lammel
- Multiphase Chemistry Department, Max-Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany.
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| |
Collapse
|
18
|
Xie J, Tao L, Wu Q, Lei S, Lin T. Environmental profile, distributions and potential sources of halogenated polycyclic aromatic hydrocarbons. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126164. [PMID: 34323730 DOI: 10.1016/j.jhazmat.2021.126164] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/04/2021] [Accepted: 05/16/2021] [Indexed: 05/04/2023]
Abstract
Halogenated polycyclic aromatic hydrocarbons (HPAHs) are high lipophilic and degradation-resistant, which have been detected in the air, water, sediment and biota. HPAHs tend to have strong adverse effects on animals and humans. Although we have realized HPAHs are emerging contaminants which needs to be paid attention, there is still a lack of their individual commercial standards. This makes it difficult for understanding HPAHs comprehensively. This review is devoted to collect all the results have reported, and give a systemic look of their global distributions, influence factors and sources. Compared with air, studies on other environmental matrices (water and sediment) are more limited. The researches on organisms are fewest. Comparing the studied congeners, there are more studies on ClPAHs than BrPAHs. Human activities contribute mostly to their occurrence. Further, we then also introduce the toxicity and analytical methods to better understand HPAHs. The future research directions are also provided. Through this review, we can conclude there is an urgent need to develop analysis methods and ecologic risk assessment for better exploring HPAHs. Effective methods should be done to control HPAHs. Therefore, this review can provide a good basis for researchers to understand and control global pollution.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Skate Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Ling Tao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Qiang Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Shiming Lei
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
19
|
Gioda A, Beringui K, Justo EPS, Ventura LMB, Massone CG, Costa SSL, Oliveira SS, Araujo RGO, Nascimento NDM, Severino HGS, Duyck CB, de Souza JR, Saint Pierre TD. A Review on Atmospheric Analysis Focusing on Public Health, Environmental Legislation and Chemical Characterization. Crit Rev Anal Chem 2021; 52:1772-1794. [PMID: 34092145 DOI: 10.1080/10408347.2021.1919985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Atmospheric pollution has been considered one of the most important topics in environmental science once it can be related to the incidence of respiratory diseases, climate change, and others. Knowing the composition of this complex and variable mixture of gases and particulate matter is crucial to understand the damages it causes, help establish limit levels, reduce emissions, and mitigate risks. In this work, the current scenario of the legislation and guideline values for indoor and outdoor atmospheric parameters will be reviewed, focusing on the inorganic and organic compositions of particulate matter and on biomonitoring. Considering the concentration level of the contaminants in air and the physical aspects (meteorological conditions) involved in the dispersion of these contaminants, different approaches for air sampling and analysis have been developed in recent years. Finally, this review presents the importance of data analysis, whose main objective is to transform analytical results into reliable information about the significance of anthropic activities in air pollution and its possible sources. This information is a useful tool to help the government implement actions against atmospheric air pollution.
Collapse
Affiliation(s)
- Adriana Gioda
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Karmel Beringui
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Elizanne P S Justo
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Luciana M B Ventura
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil.,Instituto Estadual do Ambiente (INEA), Rio de Janeiro, RJ, Brazil
| | - Carlos G Massone
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Silvânio Silvério Lopes Costa
- Núcleo de Petróleo e Gás, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil.,Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Sidimar Santos Oliveira
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Rennan Geovanny Oliveira Araujo
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brazil.,Instituto Nacional de Ciência e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Nivia de M Nascimento
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil.,Departamento de Geoquímica e Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Hemmely Guilhermond S Severino
- Departamento de Geoquímica e Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Christiane B Duyck
- Departamento de Geoquímica e Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Jefferson Rodrigues de Souza
- Laboratório de Ciências Químicas, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Tatiana D Saint Pierre
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
20
|
Sei K, Wang Q, Tokumura M, Miyake Y, Amagai T. Accurate and ultrasensitive determination of 72 parent and halogenated polycyclic aromatic hydrocarbons in a variety of environmental samples via gas chromatography-triple quadrupole mass spectrometry. CHEMOSPHERE 2021; 271:129535. [PMID: 33453482 DOI: 10.1016/j.chemosphere.2021.129535] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their halogenated derivatives (XPAHs) are ubiquitous in various environmental media. Analytical problems, however, make it difficult to accurately determine their concentrations. To develop a satisfactory analytical method suitable for a diversity of PAHs and XPAHs in multiple environmental samples, we evaluated three commercial analytical columns (DB-5MS, Select PAH, and Rxi-PAH) for better chromatographic separation and optimized the analytical conditions for gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS). Comparison of the abilities of the columns to separate peaks revealed that the Rxi-PAH was the best column for both PAH and XPAH analyses. Optimization of analytical conditions for GC-MS/MS resulted in sensitivities for PAHs and XPAHs that were 4.2-fold-2600-fold higher than the sensitivities of GC-high-resolution MS (GC-HRMS) (an example of a traditional analytical method). Although there were no statistically significant differences between the instrumental detection limits (IDLs) of PAHs and XPAHs measured by GC-HRMS, the IDLs of XPAHs were significantly lower than those of PAHs when measured by GC-MS/MS. This difference could be attributed to the unique ionization patterns of XPAHs in the GC-MS/MS analysis, which suppressed background noise and increased the analytical sensitivity. Analyses of PAHs and XPAHs in grilled chicken, vehicle exhaust, sea sediment, ambient air, and indoor dust via the analytical method optimized in this study revealed that the proposed method was sufficiently sensitive, comprehensive, and versatile for risk assessment purposes, and could eliminate interferences associated with the co-elution of target PAHs and XPAHs.
Collapse
Affiliation(s)
- Kento Sei
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Qi Wang
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Masahiro Tokumura
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yuichi Miyake
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Takashi Amagai
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
21
|
Liu R, Ma S, Yu Y, Li G, Yu Y, An T. Field study of PAHs with their derivatives emitted from e-waste dismantling processes and their comprehensive human exposure implications. ENVIRONMENT INTERNATIONAL 2020; 144:106059. [PMID: 32882668 DOI: 10.1016/j.envint.2020.106059] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/01/2020] [Accepted: 08/14/2020] [Indexed: 05/24/2023]
Abstract
Extensive electronic waste (e-waste) recycling might be an important emission source of polycyclic aromatic hydrocarbons (PAHs) mixture, which might induce negative effects on the employees. In the present work, atmospheric pollution patterns of PAHs and their derivatives were determined in five different workshops to dismantle waste printed circuit boards (WPCBs) via thermal treatment. The results showed that mass concentrations of PAHs, chlorinated PAHs (ClPAHs), brominated PAHs (BrPAHs), oxy-PAHs (OPAHs) as well as carbazole (CBZ) were ranged from 1.53 × 104-2.02 × 105, 32.3-364, 8.29-1.13 × 103, 923-1.39 × 104 and 225-1.95 × 103 pg·m-3, respectively. Electric heating furnaces (EHF) workshops emitted relatively higher contaminants than other disposal sectors. OPAHs was found to be the most predominant derivatives of PAHs with 9,10-anthraquinone (83.0%) has the absolute superior in EHFTV, while benzo(a)anthracene-7,12-dione (>45.0%) was found to be the highest congener in other workshops, respectively. 9,10-Cl2Phe exhibited the largest contributions to the ΣClPAHs whereas the composition profiles of BrPAHs varied among five workshops. In addition to direct chlorination of parent PAHs, thermal degradation of halogenated flame retardants incorporated into plastic materials might dominate the generation of Cl/BrPAHs from e-waste dismantling activities. The specific isomeric ratios of BrPAHs (3-BrFlu/1-BrPyr and 1-BrPyr/3-BrFlu) might be used to discriminate other emission sources from pyrolysis of WPCBs. However, their specific application as novel tracers for source identification should be further verified with more studies. The emitted PAHs mixture with their derivatives in all dismantling workshops posed carcinogenic risks to these dismantling workers via inhalation, particularly the workshop using electric heating furnaces to treat router. Nevertheless, new loadings of PAHs derivatives observed from e-waste dismantling activities, as well as their comprehensive health risk assessment provides us with a fresh perspective on the source appointment and potential adverse consequences of PAHs. More attention needs to be paid to the potential carcinogenic risks of exposure to PAHs and their derivatives from e-waste dismantling processes.
Collapse
Affiliation(s)
- Ranran Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515100, China
| | - Yangyi Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515100, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
22
|
Tang J, Ma S, Liu R, Yue C, Li G, Yu Y, Yang Y, An T. The pollution profiles and human exposure risks of chlorinated and brominated PAHs in indoor dusts from e-waste dismantling workshops: Comparison of GC-MS, GC-MS/MS and GC × GC-MS/MS determination methods. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122573. [PMID: 32278123 DOI: 10.1016/j.jhazmat.2020.122573] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/05/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
The toxicities of some chlorinated and brominated polycyclic aromatic hydrocarbons (X-PAHs) are higher than their corresponding parent PAHs. However, the identification and quantitation of X-PAHs in environment are still changeable and limitedly reported. To develop a robust method for routine analysis of X-PAHs in environmental samples, the determination of 34 X-PAHs was performed and compared using different instruments, including gas chromatography-mass spectrometry (GC-MS), gas chromatography-tandem mass spectrometry (GC-MS/MS) in both electron ionization (EI) and negative chemical ionization (NCI) modes, and comprehensive two-dimensional gas chromatograph-tandem mass spectrometer (GC × GC-MS/MS). GC-EI-MS/MS possessed the highest sensitivity with method detection limits of 2.00-40.0 and 2.00-20.0 pg/g dry weight (dw) for Cl-PAHs and Br-PAHs, respectively. This validated method was then applied to analyze X-PAHs in indoor dusts from a typical e-waste dismantling workshop, and the concentrations of Σ18Br-PAHs (8.80-399 ng/g dw) were higher than Σ16Cl-PAHs (7.91-137 ng/g dw). The toxicity equivalency quantities (TEQs) of Cl-PAHs at e-waste dismantling workshop and Br-PAHs at raw materials crushing workshop showed the highest values of 176 and 453 pg·TEQ/g, respectively. Cl-PAHs and Br-PAHs posed a potential health risk to workers through dust ingestion in workshops. Further attention should be payed to the formation mechanism of X-PAHs and the health risk.
Collapse
Affiliation(s)
- Jian Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515100, China
| | - Ranran Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Congcong Yue
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515100, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yan Yang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515100, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
23
|
Yan K, Wu S, Gong G, Sun Y. A new approach of specific determination for 6-chlorobenzo[a]pyrene and 7-chlorobenzo[a]anthracene in six different oils. Food Chem 2020; 316:126344. [DOI: 10.1016/j.foodchem.2020.126344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/24/2019] [Accepted: 01/31/2020] [Indexed: 01/28/2023]
|
24
|
Jin R, Bu D, Liu G, Zheng M, Lammel G, Fu J, Yang L, Li C, Habib A, Yang Y, Liu X. New classes of organic pollutants in the remote continental environment - Chlorinated and brominated polycyclic aromatic hydrocarbons on the Tibetan Plateau. ENVIRONMENT INTERNATIONAL 2020; 137:105574. [PMID: 32078871 DOI: 10.1016/j.envint.2020.105574] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Halogenated polycyclic aromatic hydrocarbons are carcinogenic and ubiquitous environmental organic pollutants. The abundance and sources of these compounds have not been studied in remote environments. We collected and analyzed air, soil, lichen, and moss samples from the Tibetan Plateau. Concentrations of chlorinated polycyclic aromatic hydrocarbons were 0.78-4.16 pg/m3 in air, 3.11-297 pg/g in soil, 260-741 pg/g in lichens, and 338-934 pg/g in mosses. Concentrations of brominated polycyclic aromatic hydrocarbons were 0.15-0.59 pg/m3 in air, 0.61-72.3 pg/g in soil, 33.5-64.9 pg/g in lichens, and 20.5-72.5 pg/g in mosses. The dominant congeners were 9- and 2-chlorophenanthrene, 1-chloropyrene, 3-chlorofluoranthene, and 1-bromopyrene. We found correlations between congener concentrations in lichens and in air, and lichens effectively predicted near-ground atmospheric concentrations of the pollutants. The enrichment of photochemically stable compounds in high-altitude environments is influenced by their physicochemical properties. Principal component analysis with multivariate linear regression of chlorinated polycyclic aromatic hydrocarbons measured in lichens provided an assessment of the relative source contributions, and suggested that in Medog County of Tibetan Plateau, 48% was likely from long-range combustion sources, 26% was from local burning sources, and 26% was from photochemical formation.
Collapse
Affiliation(s)
- Rong Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Duo Bu
- Department of Chemistry & Environmental Science, Tibet University, Lhasa, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Gerhard Lammel
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Ahsan Habib
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Yuanping Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Xiaoyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| |
Collapse
|
25
|
Jin R, Fu J, Zheng M, Yang L, Habib A, Li C, Liu G. Polychlorinated Naphthalene Congener Profiles in Common Vegetation on the Tibetan Plateau as Biomonitors of Their Sources and Transportation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2314-2322. [PMID: 31951122 DOI: 10.1021/acs.est.9b06668] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polychlorinated naphthalenes (PCNs) are globally transported, carcinogenic, persistent organic pollutants (POPs) that were recently added to the Stockholm Convention with 184 parties. The Tibetan Plateau plays an important role in the global transportation and distribution of POPs. Knowledge of PCN sources and transportation on the Tibetan Plateau is important for their control globally. In this study, we quantified the congener-specific concentrations of PCNs in lichen, moss, soil, and air samples collected on the Tibetan plateau and found that common lichens were effective biomonitors for predicting atmospheric PCNs in this area. The physiochemical properties of the PCNs, the temperatures, and the lichen lipid contents were identified as important factors influencing PCN partitioning between lichens and air. Lichen-air partitioning equations were established and used to predict PCN concentrations in air in Southeast Tibet. The lichens could be used as PCN biomonitors to clarify their spatial variations, sources, and transportation in the southeast of the plateau. PCN concentrations in lichens increased with altitude, suggesting that high-mountain cold-trapping influenced the PCN transportation behavior. Principal component analysis and linear discriminant analysis showed that the major source of PCNs in this region was long-range atmospheric transportation via the Indian monsoon in summer and wind from Southwest Asia in winter. This study provides a novel method using PCN congener profiles as fingerprints and statistical models for studying the geochemical effects of conditions in high-mountain regions on the contamination behaviors of 75 congeners of the notorious PCNs.
Collapse
Affiliation(s)
- Rong Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study , University of Chinese Academy of Sciences , Hangzhou 310024 , China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study , University of Chinese Academy of Sciences , Hangzhou 310024 , China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
| | - Ahsan Habib
- Department of Chemistry , University of Dhaka , Dhaka 1000 , Bangladesh
| | - Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study , University of Chinese Academy of Sciences , Hangzhou 310024 , China
| |
Collapse
|
26
|
Maceira A, Marcé RM, Borrull F. Analytical methods for determining organic compounds present in the particulate matter from outdoor air. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Wickrama-Arachchige AUK, Hirabayashi T, Imai Y, Guruge KS, Dharmaratne TS, Ohura T. Accumulation of halogenated polycyclic aromatic hydrocarbons by different tuna species, determined by high-resolution gas chromatography Orbitrap mass spectrometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113487. [PMID: 31679876 DOI: 10.1016/j.envpol.2019.113487] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/30/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Halogenated polycyclic aromatic hydrocarbon (HPAH) concentrations in tissues from three tuna species Thunnus albacares (yellowfin tuna), Katsuwonus pelamis (skipjack tuna), and Auxis thazard (frigate tuna) were determined by high-resolution gas chromatography Orbitrap mass spectrometry. The tuna samples were collected from the Indian Ocean. The instrument conditions gave high mass accuracy at 0.9 m/z isolation width of the mass filter and a mass error of <±1.0 ppm for many HPAHs. A total of 29 of the 30 targets chlorinated PAHs (ClPAHs) and 20 of the 21 targets brominated PAHs (BrPAHs) were detected in the tuna muscle samples. The mean total ClPAH, BrPAH and PAH concentrations for tuna were 127.2, 156.6 and 682.8 ng/g lipid weight, respectively. The mean total ClPAH and BrPAH concentrations (ng/g lipid weight) in the tuna were considerably lower than that of PAH concentrations. The mean total ClPAH, BrPAH and PAH concentrations in T. albacares respectively were 185.8, 249.2 and 784.1 ng/g lipid weight, irrespective of the body sizes. The mean total ClPAH, BrPAH and PAH concentrations in K. pelamis respectively were 45.1, 24.8 and 555.6 ng/g lipid weight. The mean total ClPAH, BrPAH and PAH concentrations in A. thazard respectively were 34.09, 4.73 and 433.24 ng/g lipid weight. The total ClPAH concentrations and body weights significantly positively correlated for T. albacares. The mean total ClPAH concentration in white muscles was significantly higher (p < 0.05) for large than for small T. albacares. This suggests ClPAHs could bioaccumulate in T. albacares, possibly because they are poorly metabolized. The chlorinated phenanthrene and pyrene concentrations indicated tuna accumulate these compounds increasingly effectively as the tuna grow. This was the first time large numbers of HPAHs were found in biological samples. HPAHs may adversely affect the health of humans consuming tuna.
Collapse
Affiliation(s)
| | - Takuma Hirabayashi
- Graduate School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan
| | - Yuki Imai
- Graduate School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan
| | - Keerthi S Guruge
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba 305-0856, Japan
| | - Tilak S Dharmaratne
- Ocean University of Sri Lanka, No. 15, Crow Island, Mattakkuliya, Colombo 15, CO 01500, Sri Lanka
| | - Takeshi Ohura
- Graduate School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan.
| |
Collapse
|
28
|
Tan J, Lu X, Fu L, Yang G, Chen J. Quantification of Cl-PAHs and their parent compounds in fish by improved ASE method and stable isotope dilution GC-MS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109775. [PMID: 31614299 DOI: 10.1016/j.ecoenv.2019.109775] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/25/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
This study aimed at developing a simple and accurate method for determination of emerging chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) in fish by stable isotope dilution gas chromatography tandem mass spectrometry. Fish samples were extracted by improved accelerated solvent extraction (ASE) method. Matrix effects were observed, and matrix-matched calibration was verified with good intra-day and inter day precisions (lower than 16.1% and 15.1% respectively). Method detection limits were 0.10-5.62 ng g-1 (dry weight) with satisfactory linearity, and recoveries ranged from 50% to 150%, with relative standard deviation values less than 18.5% at different concentration levels. This improved ASE method was proved to be suitable for analyzing Cl-PAHs in fish samples, with good analytical selectivity, linearity, recovery and precision. Furthermore, the composition analysis revealed that chlorinated compounds of phenanthrene, pyrene and acenaphthene were dominated in Cl-PAHs contaminants. The correlationship between the pollution of Cl-PAHs and their corresponding parent structures in fish samples was also analyzed in detail.
Collapse
Affiliation(s)
- Jun Tan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Hunan Engineering and Technology Research Center for Grapes, Hunan Agricultural University, Changsha, 410128, China.
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Lei Fu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Guoshun Yang
- Hunan Engineering and Technology Research Center for Grapes, Hunan Agricultural University, Changsha, 410128, China.
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
29
|
Affiliation(s)
- Patricia Forbes
- Department of Chemistry, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
| |
Collapse
|
30
|
Wu X, Wu G, Xie J, Wang Q, Liu G, Liu W, Yang L, Zheng M. Thermochemical formation of multiple unintentional persistent organic pollutants on metallurgical fly ash and their correlations. CHEMOSPHERE 2019; 226:492-501. [PMID: 30953894 DOI: 10.1016/j.chemosphere.2019.03.166] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/16/2019] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
Metallurgical processes are currently the predominant anthropogenic sources of multiple unintentional persistent organic pollutants (POPs), including polycyclic aromatic hydrocarbons (PAHs), chlorinated and brominated PAHs (Cl-PAHs and Br-PAHs), polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), and polybrominated diphenyl ether (PBDEs). Understanding the formation of multiple POPs is important for source control. These POPs could be formed through fly ash-mediated heterogeneous reactions. In this study, we comprehensively investigated the thermochemical (150-450 °C) formation of these POPs on fly ash samples collected from a secondary aluminum smelter, secondary lead smelter, and iron ore sintering plant. The maximum concentrations of PCNs and PCBs were 154.5 and 181.3 times those in the original fly ash, respectively. Formation variations of PAHs, Cl-PAHs and Br-PAHs, and PBDEs were different from that of PCBs and PCNs. The PAHs concentration, which was the highest among the POPs in the original fly ash, decreased sharply by 95% at 150 °C. The ∑19Cl-PAHs and ∑19Br-PAHs increased marginally at 250 °C before decreasing slightly at 350 °C. The PBDE concentrations decreased under 250 °C and increased at 350 °C. PCNs, PCBs, and PCDD/Fs showed good correlations, all of which had a negative relationship with the PAHs. There were no significant correlations between PAHs and Cl/Br-PAHs. Low brominated congeners could be formed by destruction of higher brominated congeners because of thermal instability of the PBDEs.
Collapse
Affiliation(s)
- Xiaolin Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanglong Wu
- Foreign Economic Cooperation Office, Ministry of Environmental Protection of China, Beijing, 100035, China
| | - Jiahong Xie
- Foreign Economic Cooperation Office, Ministry of Environmental Protection of China, Beijing, 100035, China
| | - Qingjie Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenbin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
31
|
Dong W, Wang F, Fang M, Wu J, Wang S, Li M, Yang J, Chernick M, Hinton DE, Pei DS, Chen H, Zheng N, Mu J, Xie L, Dong W. Use of biological detection methods to assess dioxin-like compounds in sediments of Bohai Bay, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:339-346. [PMID: 30784797 DOI: 10.1016/j.ecoenv.2019.01.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Bohai Bay, in the western region of northeastern China's Bohai Sea, receives water from large rivers containing various pollutants including dioxin-like compounds (DLCs). This study used the established zebrafish (Danio rerio) model, its known developmental toxicity endpoints and sensitive molecular analyses to evaluate sediments near and around an industrial effluent site in Bohai Bay. The primary objective was to assess the efficacy of rapid biological detection methods as an addition to chemical analyses. Embryos were exposed to various concentrations of sediment extracts as well as a 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) positive control. Exposure to sediment extract nearest the discharge site (P1) resulted in the most severe- and highest rates of change in embryos and larvae, suggesting that DLC contaminated sediment probably did not occur much beyond it. P1 extract resulted in concentration dependent increases in mortality and pericardial edema. Its highest concentration caused up-regulation of P-450 (CYP)-1A1(CYP1A) mRNA expression at 72 h post fertilization (hpf), an increase in its expression in gill arches as observed by whole mount in situ hybridization, and an increased signal in the Tg(cyp1a: mCherry) transgenic line. The pattern and magnitude of response was very similar to that of TCDD and supported the presence of DLCs in these sediment samples. Follow-up chemical analysis confirmed this presence and identified H7CDF, O8CDF and O8CDD as the main components in P1 extract. This study validates the use of biological assays as a rapid, sensitive, and cost-effective method to evaluate DLCs and their effects in sediment samples. Additionally, it provides support for the conclusion that DLCs have limited remobilization capacity in marine sediments.
Collapse
Affiliation(s)
- Wenjing Dong
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China
| | - Feng Wang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jie Wu
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China
| | - Shuaiyu Wang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China
| | - Ming Li
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China
| | - Jingfeng Yang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 130021, China
| | - Jingli Mu
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Wu Dong
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China.
| |
Collapse
|
32
|
Jin R, Yang L, Zheng M, Xu Y, Li C, Liu G. Source identification and quantification of chlorinated and brominated polycyclic aromatic hydrocarbons from cement kilns co-processing solid wastes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1346-1352. [PMID: 30125845 DOI: 10.1016/j.envpol.2018.08.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) are widespread persistent organic pollutants (POPs) in environments. Identifying the new sources of Cl/Br-PAHs is important for implementing source control and reducing environmental risk. Although co-processing of solid wastes by cement kilns increased recently, the occurrences and characteristics of Cl/Br-PAHs as emerging POPs during cement kiln co-processing solid wastes have not been investigated. This study firstly investigated the occurrences, characteristics, and variations of Cl/Br-PAHs from four cement kilns co-processing different solid wastes. The concentration ranges of Cl-PAHs and Br-PAHs in stack gas samples from the investigated cement kilns were 15.6-94.1 ng m-3 and 1.04-4.28 ng m-3, respectively. Emission factors of Cl-PAHs and Br-PAHs through stack gases were 29.9-275 μg t-1 and 3.0-8.3 μg t-1, respectively. Variations of Cl/Br-PAHs in particle samples collected from different process stages within the cement kiln system indicated that the kiln end was the major formation zone for Cl/Br-PAHs. Congener profiles of Cl/Br-PAHs varied with the co-processed solid waste types, indicating the important influence of raw material compositions. Calculations of net emissions of Cl/Br-PAHs within the cement kiln systems suggested efficient destruction (87.6%-98.8%) of Cl/Br-PAHs by the cement kilns.
Collapse
Affiliation(s)
- Rong Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, PR China
| | - Yang Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Huang C, Xu X, Wang D, Ma M, Rao K, Wang Z. The aryl hydrocarbon receptor (AhR) activity and DNA-damaging effects of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs). CHEMOSPHERE 2018; 211:640-647. [PMID: 30098559 DOI: 10.1016/j.chemosphere.2018.07.087] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
An increasing number of studies have indicated that environmental contamination with chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) has been underestimated. However, insufficient available toxicological information on Cl-PAHs makes evaluating their risks to health challenging. Two in vitro bioassays were used in the present study to characterize the aryl hydrocarbon receptor (AhR) activity and DNA-damaging effects of 22 low-molecular-weight PAHs and their Cl-PAHs by using the EROD assay in rat hepatoma (H4IIE) cells and the SOS/umu test (S. typhimurium TA1535/pSK1002). Compared with their parent PAHs, most of the Cl-PAHs enhanced AhR-mediated activity in the EROD assay. 1,3,6,8-Tetrachloro-pyrene (1,3,6,8-Tetracl-Py) induced the greatest potency of EROD activity (83.1%-TCDD-max) and its single point ReP was 6.64 × 10-6. Compared with their parent PAHs, several Cl-PAHs showed significant DNA-damaging effects in the SOS/umu test with the addition of S9, and the toxic equivalency of benzo[a]pyrene (TEQBaP) was calculated for them. 9-Chloroanthracene (9-Ant) and 5,6-Dichloroacenaphthene (5,6-Dicl-Ace) had relatively high TEQBaP (0.62 and 0.54, respectively). However, only 1,3,6,8-Tetracl-Py elicited strong DNA-damaging effects in the absence of S9. The degree of chlorination, the position of chlorine substitutions, and the structure of parent PAHs influenced the potency of low-molecular-weight PAHs with regard to their AhR activity and DNA-damaging effects. More concern should be raised for these environmentally relevant pollutants.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiong Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Donghong Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Kaifeng Rao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| |
Collapse
|
34
|
In-situ growth of iron-based metal-organic framework crystal on ordered mesoporous carbon for efficient electrocatalysis of p -nitrotoluene and hydrazine. Anal Chim Acta 2018; 1024:73-83. [DOI: 10.1016/j.aca.2018.03.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 11/17/2022]
|
35
|
Solyanikova IP, Suzina NE, Golovleva LA. The role of non-spore-forming actinobacteria in cleaning up sites contaminated by persistent pollutants and the ability of these microorganisms to survive under unfavourable conditions. MICROBIOLOGY AUSTRALIA 2018. [DOI: 10.1071/ma18043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Years of research has shown that actinobacteria, including Rhodococcus, Gordonia, Arthrobacter, Microbacteria, play an important role in cleaning up sites contaminated by persistent organic pollutants. Under special conditions, actinobacteria of different genera are able to form specific forms, cyst-like resting cells (CLC), which maintain the viability during long-term storage (for at least 5–6 years, our unpublished results). These cells quickly germinate when conditions become favourable for growth. As a result, actinobacteria can be used as a basis for creating highly efficient biological preparations for cleaning up the soil with high levels of toxic contaminants such as (chloro)phenols, (chloro)biphenyls, polycyclic hydrocarbons, oil1.
Collapse
|
36
|
Špánik I, Machyňáková A. Recent applications of gas chromatography with high-resolution mass spectrometry. J Sep Sci 2017; 41:163-179. [PMID: 29111584 DOI: 10.1002/jssc.201701016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 12/11/2022]
Abstract
Gas chromatography coupled to high-resolution mass spectrometry is a powerful analytical method that combines excellent separation power of gas chromatography with improved identification based on an accurate mass measurement. These features designate gas chromatography with high-resolution mass spectrometry as the first choice for identification and structure elucidation of unknown volatile and semi-volatile organic compounds. Gas chromatography with high-resolution mass spectrometry quantitative analyses was previously focused on the determination of dioxins and related compounds using magnetic sector type analyzers, a standing requirement of many international standards. The introduction of a quadrupole high-resolution time-of-flight mass analyzer broadened interest in this method and novel applications were developed, especially for multi-target screening purposes. This review is focused on the development and the most interesting applications of gas chromatography coupled to high-resolution mass spectrometry towards analysis of environmental matrices, biological fluids, and food safety since 2010. The main attention is paid to various approaches and applications of gas chromatography coupled to high-resolution mass spectrometry for non-target screening to identify contaminants and to characterize the chemical composition of environmental, food, and biological samples. The most interesting quantitative applications, where a significant contribution of gas chromatography with high-resolution mass spectrometry over the currently used methods is expected, will be discussed as well.
Collapse
Affiliation(s)
- Ivan Špánik
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Bratislava, Slovakia
| | - Andrea Machyňáková
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Bratislava, Slovakia
| |
Collapse
|
37
|
Jin R, Zheng M, Yang H, Yang L, Wu X, Xu Y, Liu G. Gas-particle phase partitioning and particle size distribution of chlorinated and brominated polycyclic aromatic hydrocarbons in haze. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1601-1608. [PMID: 28964608 DOI: 10.1016/j.envpol.2017.09.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) are emerging semi-volatile organic pollutants in haze-associated particulate matter (PM). Their gas-particle phase partitioning and distribution among PM fractions have not been clarified. Clarification would increase understanding of atmospheric behavior and health risks of Cl/Br-PAHs. In this study, samples of the gas phase and 4 PM phases (aerodynamic diameters (dae) > 10 μm, 2.5-10 μm, 1.0-2.5 μm, and <1.0 μm) were collected simultaneously during haze events in Beijing and analyzed. Normalized histogram distribution indicated that the Cl/Br-PAHs tended to adhere to fine particles. Over 80% of the Cl-PAHs and 70% of the Br-PAHs were associated with fine PM (dae < 2.5 μm). The gas-particle phase partitioning and PM distribution of Cl/Br-PAHs when heating of buildings was required, which was associated with haze events, were obviously different from those when heating was not required. The relationship between the logarithmic geometric mean diameters of the Cl/Br-PAH congeners and reciprocal of the temperature (1/T) suggested that low air temperatures during the heating period could lead to high proportions of Cl/Br-PAHs in the fine particles. Increased coal burning during the heating period also contributed to high Cl/Br-PAH loads in the fine particles.
Collapse
Affiliation(s)
- Rong Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbo Yang
- Guizhou Academy of Testing and Analysis, Guiyang 550008, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|