1
|
El-Deen AK, Hussain CM. Advances in magnetic analytical extraction techniques for detecting antibiotic residues in edible samples. Food Chem 2024; 450:139381. [PMID: 38653048 DOI: 10.1016/j.foodchem.2024.139381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
The widespread use of antibiotics in agricultural and animal husbandry to treat bacterial illnesses has resulted in a rise in antibiotic-resistant bacteria. These bacteria can grow when antibiotic residues are present in food items, especially in edible animal products. As a result, it is crucial to monitor and regulate the amounts of antibiotics in food. Magnetic analytical extractions (MAEs) have emerged as a potential approach for extracting antibiotic residues from food using magnetic nanoparticles (MNPs). Recent improvements in MAEs have resulted in the emergence of novel MNPs with better selectivity and sensitivity for the extraction of antibiotic residues from food samples. Consequently, this review paper addresses current developments in MAE for extracting antibiotic residues from edible samples. It also provides a critical analysis of contemporary MAE practices. The current issues and potential future developments in this field are also discussed, thereby providing a framework for future study paths.
Collapse
Affiliation(s)
- Asmaa Kamal El-Deen
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
2
|
Ma L, Gu Y, Guo L, Wang K. The determination of 11 sulfonamide antibiotics in water and foods by developing a N-rich magnetic covalent organic framework combined with ultra-high performance liquid chromatography-tandem mass spectrometry. RSC Adv 2024; 14:21318-21327. [PMID: 38979455 PMCID: PMC11228574 DOI: 10.1039/d4ra02530j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024] Open
Abstract
The concentration of antibiotic residues in water and animal-derived foods is low and the matrix is complex, and effective extraction of antibiotic residues in them is a key factor for accurate quantification. It is important to establish a rapid and effective method for the analytical determination of antibiotics in water and foods. In this study, a type of novel magnetic COF (Fe3O4@SiO2@PDE-TAPB-COF) was synthesized and characterized. Moreover, Fe3O4@SiO2@PDE-TAPB-COF combined with ultra-high performance liquid chromatography-tandem mass spectrometry was used to determine the 11 sulfonamide antibiotics (SAs) in water and food. The parameters including pH, adsorption amount, adsorption time, type of elution solvent and elution time were optimized. Under the optimal conditions, the standard curves of 11 SAs showed good linearity (R 2 > 0.999) in their respective concentration ranges and had lower detection and quantification limits. The spiked recoveries of the developed MSPE-UPLC-MS/MS method for the 11 SAs in water and foods were 74.3-107.2% and 75.1-102.5%, respectively. And the relative standard deviations (RSDs) were less than 9.56% (n = 7). The results indicated that the method can be used for the determination of SAs in foods and water with low detection limits and high sensitivity.
Collapse
Affiliation(s)
- Ling Ma
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| | - Yue Gu
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| | | | - Ke Wang
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| |
Collapse
|
3
|
Matyszczak G, Plocinski T, Dluzewski P, Fidler A, Jastrzebski C, Lawniczak-Jablonska K, Drzewiecka-Antonik A, Wolska A, Krawczyk K. Sonochemical synthesis of SnS and SnS 2 quantum dots from aqueous solutions, and their photo- and sonocatalytic activity. ULTRASONICS SONOCHEMISTRY 2024; 105:106834. [PMID: 38522262 PMCID: PMC10981103 DOI: 10.1016/j.ultsonch.2024.106834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/11/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
Our study reports the ultrasound-assisted synthesis of SnS and SnS2 in the form of nanoparticles using aqueous solutions of respective tin chloride and thioacetamide varying sonication time. The presence of both compounds is confirmed by powder X-ray diffraction, energy-dispersive X-ray spectroscopy, as well as Raman and FT-IR spectroscopic techniques. The existence of nanoparticles is proven by powder X-ray diffraction investigation and by high resolution transmission electron microscopy observations. The size of nanocrystallites are in the range of 3-8 nm and 30 50 nm for SnS, and 1.5-10 nm for SnS2. X-ray photoelectron spectroscopy measurements, used to investigate the chemical state of tin and sulphur atoms on the surface of nanoparticles, reveal that they are typically covered with tin on the same oxidation degree as respective bulk compound. Values of optical bandgaps of synthesized nanoparticles, according to the Tauc method, were 2.31, 1.47 and 1.05 eV for SnS (60, 90 and 120 min long synthesis, respectively), and 2.81, 2.78 and 2.70 eV for SnS2 (60, 90 and 120 min long synthesis, respectively). Obtained nanoparticles were utilized as photo- and sonocatalysts in the process of degradation of model azo-dye molecules by UV-C light or ultrasound. Quantum dots of SnS2 obtained under sonication lasting 120 min were the best photocatalyst (66.9 % color removal), while quantum dots of SnS obtained under similar sonication time were the best sonocatalyst (85.2 % color removal).
Collapse
Affiliation(s)
- Grzegorz Matyszczak
- Department of Chemical Technology, Faculty of Chemistry, Warsaw University of Technology, Noakowski street 3, 00-664 Warsaw, Poland.
| | - Tomasz Plocinski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska street 141A, 02-507 Warsaw, Poland
| | - Piotr Dluzewski
- Institute of Physics Polish Academy of Sciences, Poland, Lotników avenue 32/46, 02-668 Warsaw, Poland
| | - Aleksandra Fidler
- Institute of Physics Polish Academy of Sciences, Poland, Lotników avenue 32/46, 02-668 Warsaw, Poland
| | - Cezariusz Jastrzebski
- Faculty of Physics, Warsaw University of Technology, Koszykowa street 75, 00-662 Warsaw, Poland
| | | | | | - Anna Wolska
- Institute of Physics Polish Academy of Sciences, Poland, Lotników avenue 32/46, 02-668 Warsaw, Poland
| | - Krzysztof Krawczyk
- Department of Chemical Technology, Faculty of Chemistry, Warsaw University of Technology, Noakowski street 3, 00-664 Warsaw, Poland
| |
Collapse
|
4
|
Gao SW, Chen LH, Cui YY, Yang CX. Sacrificial template synthesis of hollow sulfonate group functionalized microporous organic network for efficient solid phase extraction of sulfonamide antibiotics from milk and honey samples. J Chromatogr A 2024; 1721:464844. [PMID: 38547678 DOI: 10.1016/j.chroma.2024.464844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
The highly conjugated and hydrophobic characteristics of microporous organic networks (MONs) have largely impeded their broad applications in sample pretreatment especially for the polar or ionic analytes. In this work, a novel uniform hollow shaped sulfonate group functionalized MON (H-MON-SO3H-2) was synthesized via the sacrificial template method for the efficient solid phase extraction (SPE) of sulfonamides (SAs) from environmental water, milk, and honey samples prior to HPLC analysis. H-MON-SO3H-2 exhibited large specific surface area, penetrable space, good stability, and numerous hydrogen bonding, electrostatic, hydrophobic and π-π interaction sites, allowing sensitive SPE of SAs with wide linear range (0.150-1000 μg L-1), low limit of detection (0.045-0.188 μg L-1), good precisions (intra-day and inter-day RSD < 7.3%, n = 5), large enrichment factors (95.7-98.5), high adsorption capacities (250.4-545.0 mg g-1), and satisfactory reusability (more than 80 times). Moreover, the established method was successfully applied to extract SAs from spiked samples with the recoveries of 86.1-104.3%. This work demonstrated the great potential of H-MON-SO3H-2 in the efficient SPE of trace SAs in complex environmental water and food samples and revealed the prospect of hollow MONs in sample pretreatment.
Collapse
Affiliation(s)
- Shuo-Wen Gao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Li-Hua Chen
- The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
5
|
Matyszczak G, Jóźwik P, Zybert M, Yedzikhanau A, Krawczyk K. Dye-Modified, Sonochemically Obtained Nano-SnS 2 as an Efficient Photocatalyst for Metanil Yellow Removal. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5774. [PMID: 37687465 PMCID: PMC10488508 DOI: 10.3390/ma16175774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 09/10/2023]
Abstract
We investigate the possibility of modification of SnS2 powder through sonochemical synthesis with the addition of an organic ligand. For that purpose, two organic dyes are used, Phenol Red and Anthraquinone Violet. All obtained powders are characterized using XRD, SEM, EDX, FT-IR, and UV-Vis investigations. Synthesized samples showed composition and structural properties typical for sonochemically synthesized SnS2. However, investigation with the Tauc method revealed that SnS2 powder modified with Phenol Red exhibits a significant shift in value of optical bandgap to 2.56 eV, while unmodified SnS2 shows an optical bandgap value of 2.42 eV. The modification of SnS2 powder with Anthraquinone Violet was unsuccessful. The obtained nanopowders were utilized as photocatalysts in the process of Metanil Yellow degradation, revealing that SnS2 modified with Phenol Red shows about 23% better performance than the unmodified one. The mean sonochemical efficiency of the performed synthesis is also estimated as 9.35 µg/W.
Collapse
Affiliation(s)
- Grzegorz Matyszczak
- Department of Chemical Technology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland
| | - Paweł Jóźwik
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, Gen. Sylwester Kaliski Street 2, 00-908 Warsaw, Poland
| | - Magdalena Zybert
- Department of Chemical Technology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland
| | - Albert Yedzikhanau
- Department of Chemical Technology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland
| | - Krzysztof Krawczyk
- Department of Chemical Technology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland
| |
Collapse
|
6
|
Xu R, Tao Y, Yao W, Qin H, Qiao L. Three-dimensional flower-like SnS 2 materials for dispersive solid-phase extraction of endocrine-disrupting phenols. J Sep Sci 2022; 45:4224-4235. [PMID: 36189856 DOI: 10.1002/jssc.202200419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 12/13/2022]
Abstract
In this study, three-dimensional flower-like tin disulfide materials were prepared, and a highly efficient dispersive solid-phase extraction method was developed using the obtained three-dimensional tin disulfide adsorbents for the preconcentration and determination of six endocrine-disrupting phenols in combination with high-performance liquid chromatography-ultraviolet detection. Several important experimental parameters influencing extraction efficiency were investigated, including the amount of adsorbent, ultrasound time, sample solution pH, sample volume, type of elution solvent, desorption time, and the number of desorption times. Under the optimized experimental conditions, the developed method showed good linearity with the determination coefficients of 0.993-0.998 in the linear range of 0.5-400 ng/ml and low limits of detection in the range of 0.15-1.0 ng/ml, as well as satisfactory intra-day and inter-day precisions with relative standard deviations of 0.1-9.8%. Finally, the proposed method was successfully applied for the enrichment and determination of trace endocrine-disrupting phenols in milk, tea beverage, and plastic bottled water samples, and acceptable recoveries were obtained from 70.1% to 119.1% under four different spiked concentration levels. The results showed that the three-dimensional tin disulfide materials had great potential for the extraction of endocrine-disrupting phenols contaminants in environmental and food samples.
Collapse
Affiliation(s)
- Ruozhu Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin, P. R. China
| | - Yuan Tao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin, P. R. China
| | - Wang Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin, P. R. China
| | - Honglin Qin
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin, P. R. China
| | - Lizhen Qiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin, P. R. China
| |
Collapse
|
7
|
Qiao L, Tao Y, Yao W, Zhao J, Yan Y. A magnetic ionic liquid based vortex-assisted dispersive liquid-liquid microextraction coupled with back-extraction for the enrichment of fluoroquinolone antibiotics. J Pharm Biomed Anal 2022; 219:114903. [PMID: 35759827 DOI: 10.1016/j.jpba.2022.114903] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022]
Abstract
In the present work, a magnetic ionic liquid (MIL) ([Co(DMBG)2][Co(hfaca)3]) was designed and synthesized with both the cation and anion respectively containing a paramagnetic component. With the prepared MIL as the extraction solvent, a vortex-assisted dispersive liquid-liquid microextraction (VA-DLLME) method was developed and combined with back-extraction for the enrichment of five fluoroquinolone antibiotics (FQs). The MIL can be easily collected and separated from the aqueous phase under an external magnetic field due to the strong magnetic susceptibility and red color. Some experimental factors affecting the extraction efficiency were investigated, and the optimum extraction efficiency was obtained in a basic solution (pH=9) for the extraction process and with 2% (v/v) formic acid as the back-extraction solvent. Under the optimized extraction and back-extraction conditions, the proposed method was validated and exhibited good linearity with coefficients of determination (R2) above 0.9956 in the range of 2.5-800 ng·mL-1 and 5.0-800 ng·mL-1, low limits of detection (LODs) within 0.75-1.5 ng·mL-1 and satisfactory intra-day and inter-day precisions with relative standard deviations (RSDs) respectively less than 10.6% and 8.6%. Finally, the method was applied for the determination of five FQs in four samples of tap water, milk, honey and chicken, and good precision with RSDs of 0.5-9.5% and acceptable recoveries (73.8-114.3%) were obtained.
Collapse
Affiliation(s)
- Lizhen Qiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China.
| | - Yuan Tao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Wang Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Jieyu Zhao
- Department of Environmental Engineering, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Yang Yan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
8
|
Peanut shells-derived biochars as adsorbents for the pipette-tip solid-phase extraction of endocrine-disrupting phenols in water, milk and beverage. J Chromatogr A 2022; 1673:463101. [DOI: 10.1016/j.chroma.2022.463101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/29/2022] [Accepted: 04/28/2022] [Indexed: 01/29/2023]
|
9
|
A review of green solvent extraction techniques and their use in antibiotic residue analysis. J Pharm Biomed Anal 2021; 209:114487. [PMID: 34864593 DOI: 10.1016/j.jpba.2021.114487] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022]
Abstract
Antibiotic residues are being continuously recognized in the aquatic environment and in food. Though the concentration of antibiotic residues is typically low, adverse effects on the environment and human health have been observed. Hence, an efficient method to determine numerous antibiotic residues should be simple, inexpensive, selective, with high throughput and with low detection limits. Liquid-based extractions have been exceedingly used for clean-up and preconcentration of antibiotics prior to chromatographic analysis. In order to make methods more green and environmentally sustainable, conventional hazardous organic solvents can be replaced with green solvents. This review presents sampling strategies as well as comprehensive and up-to-date methods for chemical analysis of antibiotic residues in different sample matrices. Particularly, solvent-based sample preparation techniques using green solvents are discussed along with applications in antibiotic residue analysis.
Collapse
|