1
|
Li W, Zhang Z, Mi S, Zhao S. Enhancing the High-Solid Anaerobic Digestion of Horticultural Waste by Adding Surfactants. Molecules 2024; 29:4061. [PMID: 39274909 PMCID: PMC11397379 DOI: 10.3390/molecules29174061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/16/2024] Open
Abstract
The influence of adding surfactants on the performance of high-solid anaerobic digestion of horticultural waste was extensively investigated in batch systems. Adding Tween series and polyethylene glycol series non-ionic surfactants had positive effects on biogas production, resulting in 370.1 mL/g VS and 256.6 mL/g VS with Tween 60 and polyethylene glycol 300 at a surfactant-to-grass mass ratio of 0.20, while the biogas production of anaerobic digestion without surfactants was 107.54 mL/g VS. The optimal and economically feasible choice was adding Tween 20 at a ratio of 0.08 g/g grass in high-solid anaerobic digestion. A kinetics model reliably represented the relationship between surfactant concentration and biogas production. The mechanism of surfactants working on lignocellulose was investigated. The improvement in high-solid anaerobic digestion by adding surfactants was attributed to the interaction between lignocelluloses and surfactants and the extraction of biodegradable fractions from the porous structure. An economic analysis showed that adding Tween 20 was likely to make a profit and be more feasible than adding Tween 60 and polyethylene glycol 300. This study confirms the enhancement in biogas production from horticultural waste by adding non-ionic surfactants.
Collapse
Affiliation(s)
- Wangliang Li
- Henan Academy of Sciences, Zhengzhou 450052, China
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhikai Zhang
- Henan Academy of Sciences, Zhengzhou 450052, China
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang 050031, China
| | - Shuzhen Mi
- Henan Vocational College of Water Conservancy and Environment, Zhengzhou 450008, China
| | | |
Collapse
|
2
|
Parodi F, Cacciari RD, Mazalu JN, Montejano HA, Reynoso E, Biasutti MA. UVB light influence on the laccase enzyme catalytic activity in reverse micelles and in homogeneous aqueous medium. Amino Acids 2023; 55:469-479. [PMID: 36695918 DOI: 10.1007/s00726-023-03237-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
Laccase is a versatile enzyme widely used for the oxidation of environmental contaminants and exhibits great potential in many others applications; however, it undergoes photo-degradation when irradiated with UVB light. The photo-stability of this biomolecule can be improved by immobilization in different encapsulation media and reverse micelles have been employed with this purpose. The laccase activity using syringaldazine as substrate has been studied in the absence and in the presence of reverse micelles of 0.15 M of sodium 1,4-bis (2-ethylhexyl) sulfosuccinate (AOT) in isooctane at W0 ([H2O]/[AOT]) = 30, before and after irradiation of the enzyme with UVB light. The kinetic parameters, i.e., Michaelis-Menten constant (KM), catalytic constant (kCAT), and catalytic efficiency (kCAT/KM), were determined by spectroscopic measurements in the micellar system and in homogeneous aqueous medium. The distribution of the substrate in two pseudo-phases (micelle and organic solvent) was taking into account in the kinetic parameters' determinations. The results obtained indicate that the nano-aggregate system confers a solubilization media in the water core of the micelle, both for the enzyme and the substrate, in which the catalytic function of the enzyme is preserved. On the other hand, in homogeneous aqueous medium kCAT/KM value, it is reduced by ~50% after UVB irradiation of the enzyme, while in micellar medium, less than 10% of the activity was affected. This mean that the enzyme achieves a considerably photo-protection when it is irradiated with UVB light in reverse micelles as compared with the homogeneous aqueous medium. This phenomenon can be mainly due to the confinement of the biomolecule inside the micelle. Physical properties of the nano-environment could affect photochemical reactions.
Collapse
Affiliation(s)
- Facundo Parodi
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
- Instituto Para El Desarrollo Agroindustrial y de la Salud (IDAS), CONICET-UNRC, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - R Daniel Cacciari
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET-UNLP, Diagonal 113 y 64, Casco Urbano, B1900, La Plata, Buenos Aires, Argentina
| | - Jeremías N Mazalu
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Hernán A Montejano
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), CONICET-UNRC, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Eugenia Reynoso
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina.
- Instituto Para El Desarrollo Agroindustrial y de la Salud (IDAS), CONICET-UNRC, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina.
| | - M Alicia Biasutti
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina.
- Instituto Para El Desarrollo Agroindustrial y de la Salud (IDAS), CONICET-UNRC, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
3
|
Monti GA, Falcone RD, Moyano F, Correa NM. Green AOT reverse micelles as nanoreactors for alkaline phosphatase. The hydrogen bond "dances" between water and the enzyme, the reaction product, and the reverse micelles interface. RSC Adv 2023; 13:1194-1202. [PMID: 36686944 PMCID: PMC9811498 DOI: 10.1039/d2ra06296h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
In this work, we present an investigation of the influence of water encapsulated in 1,4-bis-2-ethylhexylsulfosuccinate/methyl laurate and 1,4-bis-2-ethylhexylsulfosuccinate/isopropyl myristate reverse micelles on the enzymatic hydrolysis of 1-naphthyl phosphate by alkaline phosphatase. Our results show that the enzyme is active in the biocompatible reverse micelles studied and that the Michaelis-Menten kinetic model is valid in all systems. We found that both micellar systems studied have a particular behavior toward pH and that the penetration of external solvents into the interfaces is crucial to understanding the effect. Methyl laurate does not disrupt the interface and is not necessary to control the pH value since alkaline phosphatase in the center of the micelles is always solvated similarly. In contrast, isopropyl myristate disrupts the interfaces so that the water and 1-naphthol molecules cannot form hydrogen bond interactions with the polar head of the surfactant. Then, when the water is at pH = 7, the 1-naphthol moves away to the interfaces inhibiting alkaline phosphatase which is not observable when the water is at pH = 10. Our study shows that the concept of pH cannot be used directly in a confined environment. In addition, our research is of great importance in the field of reactions that occur in reverse micelles, catalyzed by enzymes.
Collapse
Affiliation(s)
- Gustavo A Monti
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS, CONICET-UNRC), Departamento de Química, Universidad Nacional de Río Cuarto Río Cuarto Argentina
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA, CONICET-UNRC), Departamento de Tecnología Química, Universidad Nacional de Río Cuarto Río Cuarto Argentina
| | - R Darío Falcone
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS, CONICET-UNRC), Departamento de Química, Universidad Nacional de Río Cuarto Río Cuarto Argentina
| | - Fernando Moyano
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS, CONICET-UNRC), Departamento de Química, Universidad Nacional de Río Cuarto Río Cuarto Argentina
| | - N Mariano Correa
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS, CONICET-UNRC), Departamento de Química, Universidad Nacional de Río Cuarto Río Cuarto Argentina
| |
Collapse
|
4
|
Wang S, Li S, Liu R, Zhang W, Xu H, Hu Y. Immobilization of Interfacial Activated Candida rugosa Lipase Onto Magnetic Chitosan Using Dialdehyde Cellulose as Cross-Linking Agent. Front Bioeng Biotechnol 2022; 10:946117. [PMID: 35923578 PMCID: PMC9340543 DOI: 10.3389/fbioe.2022.946117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Candidarugosa lipase (CRL) was activated with surfactants (sodium dodecyl sulfate [SDS]) and covalently immobilized onto a nanocomposite (Fe3O4-CS-DAC) fabricated by combining magnetic nanoparticles Fe3O4 with chitosan (CS) using polysaccharide macromolecule dialdehyde cellulose (DAC) as the cross-linking agent. Fourier transform infrared spectroscopy, transmission electron microscope, thermogravimetric analysis, and X-ray diffraction characterizations confirmed that the organic–inorganic nanocomposite support modified by DAC was successfully prepared. Enzymology experiments confirmed that high enzyme loading (60.9 mg/g) and 1.7 times specific enzyme activity could be obtained under the optimal immobilization conditions. The stability and reusability of immobilized CRL (Fe3O4-CS-DAC-SDS-CRL) were significantly improved simultaneously. Circular dichroism analysis revealed that the active conformation of immobilized CRL was maintained well. Results demonstrated that the inorganic–organic nanocomposite modified by carbohydrate polymer derivatives could be used as an ideal support for enzyme immobilization.
Collapse
Affiliation(s)
| | | | | | | | - Huajin Xu
- *Correspondence: Huajin Xu, ; Yi Hu,
| | - Yi Hu
- *Correspondence: Huajin Xu, ; Yi Hu,
| |
Collapse
|
5
|
Zhang B, Zhu T, Huang X. Enhanced Soluble Expression of Linoleic Acid Isomerase by Coordinated Regulation of Promoter and Fusion Tag in Escherichia coli. Foods 2022; 11:1515. [PMID: 35627089 PMCID: PMC9141242 DOI: 10.3390/foods11101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
PAI is a linoleic acid isomerase from Propionibacterium acnes and is the key enzyme in the synthesis of trans10, cis12-conjugated linoleic acid. However, the majority of the expressed PAI in Escherichia coli occurs in its nonfunctional form in inclusion bodies, limiting the biosynthesis of conjugated linoleic acid. In an attempt to improve the solubility of recombinant PAI in Escherichia coli, three promoters representing different transcriptional strengths (T7, CspA, and Trc), paired with three fusion tags, (His6, MBP, and Fh8), respectively, were investigated in this study. Among the nine recombinant strains, Escherichia coli BL21 (DE3) (pET24a-Mpai), containing the T7 promoter and MBP fusion tag, led to a considerable increase in PAI solubility to 86.2%. MBP-PAI was purified 41-fold using affinity column chromatography. The optimum catalytical conditions of MBP-PAI were 37 °C and pH 7.5 with the addition of 1 mmol/L Tween-20. Most of the tested metal ions inhibited MBP-PAI activity. The apparent kinetic parameters (Km and Vmax) were measured with linoleic acid concentrations ranging from 71 μM to 1428 μM. The substrate linoleic acid did not exert any inhibitory effect on MBP-PAI. The Km of MBP-PAI was 253.9 μmol/L, and the Vmax was 2253 nmol/min/mg. This study provided a new method for improving the solubility of the recombinant linoleic acid isomerase in Escherichia coli.
Collapse
Affiliation(s)
- Baixi Zhang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (T.Z.); (X.H.)
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Tong Zhu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (T.Z.); (X.H.)
| | - Xintian Huang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (T.Z.); (X.H.)
| |
Collapse
|
6
|
Improved Enzymatic Assay and Inhibition Analysis of Redox Membranotropic Enzymes, AtGALDH and TcGAL, Using a Reversed Micellar System. ANALYTICA 2022. [DOI: 10.3390/analytica3010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Reversed micelles are helpful to solubilize otherwise insoluble membranotropic or membrane-bound enzymes in their functional form, thus enabling activity assay and inhibition analysis. However, in the case of redox enzymes, this task is further complicated by the necessity to select an appropriate electron-acceptor (EA) which, ideally, should be compatible with spectrophotometric measurements in reversed micelles. Here, we have identified such an EA and successfully used it in a reversed micellar environment to assay the activity of two homologous enzymes from mitochondria: l-galactone-1,4-lactone dehydrogenase (EC 1.3.2.3) from Arabidopsis thaliana (AtGALDH) and galactonolactone oxidase (EC 1.3.3.12) from Trypanosoma cruzi (TcGAL), differing in their membranotropic properties, with TcGAL being almost insoluble in water and particularly difficult to assay. Furthermore, we have demonstrated the possibility to use this assay for inhibition analysis, with an elucidation of the mechanism and inhibition parameters, which otherwise could not be possible. In order to perform inhibition analysis, we improved the approach for the determination of activity of such membrane enzymes based on a reversed micellar system as membrane matrix, necessary for the functioning of membrane enzymes. A number of electron acceptors (EA) were tested for AtGALDH and optimal conditions of activity determination for AtGALDH were found. The suggested method was successfully applied to the study of the inhibition of AtGALDH by lycorine, and the mixed competitive mechanism of inhibition of AtGALDH by lycorine was determined. The developed approach to inhibitor analysis was applied for TcGAL, insoluble in water membrane, and the method provides new opportunities for searching effective inhibitors that may be potential drugs. Indeed, galactonolactone oxidase from Trypanosoma cruzi (TcGAL) and AtGALDH are homologues, and the inhibition of TcGAL stops the vital biosynthesis of vitamin C in parasite Trypanosoma cruzi from causing Chagas disease. The approach proposed can be applied for the screening of inhibitors of AtGALDH and TcGAL, as well as to study properties of other membrane enzymes including determination of the mechanisms of inhibition, structure and catalytic properties, the impact of membrane components (for example lipids), and so on.
Collapse
|
7
|
Effects of some phenolic compounds on the inhibition of α-glycosidase enzyme-immobilized on Pluronic®F127 micelles: An in vitro and in silico study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Effect of process parameters and surfactant additives on the obtained activity of recombinant tryptophan hydroxylase (TPH1) for enzymatic synthesis of 5-hydroxytryptophan (5-HTP). Enzyme Microb Technol 2021; 154:109975. [PMID: 34952363 DOI: 10.1016/j.enzmictec.2021.109975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022]
Abstract
5-hydroxytryptophan (5-HTP) is an intermediate molecule in the biosynthesis of serotonin, an important neurotransmitter, regulating a series of metabolic and psychological functions in humans. In this work, we studied the heterologous production of Human tryptophan hydroxylase (TPH1) in Escherichia coli, for the synthesis of 5-hydroxytryptophan (5-HTP) from Tryptophan (Trp). To quantify TPH1 activity, a simple fluorescence-based microtiter plate assay was established, based on the changes in fluorescence emission at 340 nm between substrate and product when excited at 310 nm, allowing quick and reliable quantification of released 5-HTP. To increase enzyme production, heterologous TPH1 production was studied in stirred tank bioreactor scale. The effect of rate of aeration (0.25, 0.50 and 0.75 vvm) and agitation (150, 250 and 500 rpm) was evaluated for biomass production, pH, volumetric oxygen transfer coefficient (kLa) and volumetric TPH1 activity. We determined that high agitation and low aeration allowed reaching the maximum measured enzyme activity. Under such conditions, we observed a 90% substrate conversion, obtaining 90 µM (~0.02 g/L) 5-HTP from a 100 µM Tryptophan substrate solution. Finally, we observed that the addition of Tween 20 (0.1%) in the culture broth under production conditions expanded the pH operation range of TPH1. Our results establish a base for a biocatalytic approach as a potential alternative process for the synthesis of 5-HTP using recombinant TPH1.
Collapse
|
9
|
Costa M, Paiva-Martins F, Losada-Barreiro S, Bravo-Díaz C. Modeling Chemical Reactivity at the Interfaces of Emulsions: Effects of Partitioning and Temperature. Molecules 2021; 26:4703. [PMID: 34361854 PMCID: PMC8348087 DOI: 10.3390/molecules26154703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022] Open
Abstract
Bulk phase chemistry is hardly ever a reasonable approximation to interpret chemical reactivity in compartmentalized systems, because multiphasic systems may alter the course of chemical reactions by modifying the local concentrations and orientations of reactants and by modifying their physical properties (acid-base equilibria, redox potentials, etc.), making them-or inducing them-to react in a selective manner. Exploiting multiphasic systems as beneficial reaction media requires an understanding of their effects on chemical reactivity. Chemical reactions in multiphasic systems follow the same laws as in bulk solution, and the measured or observed rate constant of bimolecular reactions can be expressed, under dynamic equilibrium conditions, in terms of the product of the rate constant and of the concentrations of reactants. In emulsions, reactants distribute between the oil, water, and interfacial regions according to their polarity. However, determining the distributions of reactive components in intact emulsions is arduous because it is physically impossible to separate the interfacial region from the oil and aqueous ones without disrupting the existing equilibria and, therefore, need to be determined in the intact emulsions. The challenge is, thus, to develop models to correctly interpret chemical reactivity. Here, we will review the application of the pseudophase kinetic model to emulsions, which allows us to model chemical reactivity under a variety of experimental conditions and, by carrying out an appropriate kinetic analysis, will provide important kineticparameters.
Collapse
Affiliation(s)
- Marlene Costa
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Fátima Paiva-Martins
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Sonia Losada-Barreiro
- Departamento de Química—Física, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain;
| | - Carlos Bravo-Díaz
- Departamento de Química—Física, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain;
| |
Collapse
|
10
|
Yue Z, Yao M, Bai G, Wang J, Zhuo K, Wang J, Wang Y. Controllable enzymatic superactivity of α-chymotrypsin activated by the electrostatic interaction with cationic gemini surfactants. RSC Adv 2021; 11:7294-7304. [PMID: 35423262 PMCID: PMC8694959 DOI: 10.1039/d0ra09843d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/07/2021] [Indexed: 12/01/2022] Open
Abstract
Surfactant plays a critical role in enzymatic multi-functionalization processes. However, a deep understanding of surfactant-enzyme interactions has been lacking up until now due to the extreme complexity of the mixed system. This work reported the effect of cationic gemini surfactants, alkanediyl-α,ω-bis(dimethyldodecylammonium bromide) (C12C S C12Br2, S = 2, 6, and 10) on the enzymatic activity and conformation of α-chymotrypsin (α-CT) in phosphate buffer solution (PBS, pH 7.3). The enzymatic activity was assessed by the rate of 2-naphthyl acetate (2-NA) hydrolysis measured by UV-vis absorption. The superactivity of α-CT in the presence of C12C S C12Br2 appears in the concentration region below the critical micelle concentration (cmc) of the surfactant, and its maximum superactivity is correlated to the spacer length of C12C S C12Br2. Subtle regulation of the charge density of headgroups of the cationic surfactant can be achieved through partial charge neutralization of cationic headgroups by introducing inorganic counterions or oppositely charged surfactant, demonstrating that the electrostatic interaction plays the crucial role for emergence of the superactivity. The interaction between C12C S C12Br2 (S = 2,6, and 10) and α-CT was characterized by isothermal titration calorimetry (ITC), and the obtained endothermic enthalpy change indicates that the interaction induces the change in conformation and enzymatic superactivity. The methodologies of fluorescence spectroscopy, circular dichroism (CD), and differential scanning calorimetry (DSC) show that the gemini surfactants with different spacer lengths induct and regulate the secondary, tertiary and even fourth structures of the protein. The present work is significant to get deeper insight into the mechanism of the activation and denaturation of enzymes.
Collapse
Affiliation(s)
- Zheng Yue
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Meihuan Yao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Guangyue Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Jiuxia Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
- School of Chemistry and Chemical Engineering, Henan Institute of Science And Technology Xinxiang Henan 453003 P. R. China
| | - Kelei Zhuo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yujie Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science And Technology Xinxiang Henan 453003 P. R. China
| |
Collapse
|
11
|
Rodriguez-Abetxuko A, Sánchez-deAlcázar D, Muñumer P, Beloqui A. Tunable Polymeric Scaffolds for Enzyme Immobilization. Front Bioeng Biotechnol 2020; 8:830. [PMID: 32850710 PMCID: PMC7406678 DOI: 10.3389/fbioe.2020.00830] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
The number of methodologies for the immobilization of enzymes using polymeric supports is continuously growing due to the developments in the fields of biotechnology, polymer chemistry, and nanotechnology in the last years. Despite being excellent catalysts, enzymes are very sensitive molecules and can undergo denaturation beyond their natural environment. For overcoming this issue, polymer chemistry offers a wealth of opportunities for the successful combination of enzymes with versatile natural or synthetic polymers. The fabrication of functional, stable, and robust biocatalytic hybrid materials (nanoparticles, capsules, hydrogels, or films) has been proven advantageous for several applications such as biomedicine, organic synthesis, biosensing, and bioremediation. In this review, supported with recent examples of enzyme-protein hybrids, we provide an overview of the methods used to combine both macromolecules, as well as the future directions and the main challenges that are currently being tackled in this field.
Collapse
Affiliation(s)
| | | | - Pablo Muñumer
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
| | - Ana Beloqui
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, San Sebastián, Spain
- IKERBASQUE, Bilbao, Spain
| |
Collapse
|
12
|
The Immobilization of Lipases on Porous Support by Adsorption and Hydrophobic Interaction Method. Catalysts 2020. [DOI: 10.3390/catal10070744] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Four major enzymes commonly used in the market are lipases, proteases, amylases, and cellulases. For instance, in both academic and industrial levels, microbial lipases have been well studied for industrial and biotechnological applications compared to others. Immobilization is done to minimize the cost. The improvement of enzyme properties enables the reusability of enzymes and facilitates enzymes used in a continuous process. Immobilized enzymes are enzymes physically confined in a particularly defined region with retention to their catalytic activities. Immobilized enzymes can be used repeatedly compared to free enzymes, which are unable to catalyze reactions continuously in the system. Immobilization also provides a higher pH value and thermal stability for enzymes toward synthesis. The main parameter influencing the immobilization is the support used to immobilize the enzyme. The support should have a large surface area, high rigidity, suitable shape and particle size, reusability, and resistance to microbial attachment, which will enhance the stability of the enzyme. The diffusion of the substrate in the carrier is more favorable on hydrophobic supports instead of hydrophilic supports. The methods used for enzyme immobilization also play a crucial role in immobilization performance. The combination of immobilization methods will increase the binding force between enzymes and the support, thus reducing the leakage of the enzymes from the support. The adsorption of lipase on a hydrophobic support causes the interfacial activation of lipase during immobilization. The adsorption method also causes less or no change in enzyme conformation, especially on the active site of the enzyme. Thus, this method is the most used in the immobilization process for industrial applications.
Collapse
|
13
|
Effect of cyclic and acyclic surfactants on the activity of Candida rugosa lipase. Bioprocess Biosyst Eng 2020; 43:2085-2093. [DOI: 10.1007/s00449-020-02397-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/23/2020] [Indexed: 10/24/2022]
|
14
|
Chen S, Li J, Fu Z, Wei G, Li H, Zhang B, Zheng L, Deng Z. Enzymatic Synthesis of β-Sitosterol Laurate by Candida rugosa Lipase AY30 in the Water/AOT/Isooctane Reverse Micelle. Appl Biochem Biotechnol 2020; 192:392-414. [DOI: 10.1007/s12010-020-03302-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
|
15
|
|
16
|
Xu P, Du H, Peng X, Tang Y, Zhou Y, Chen X, Fei J, Meng Y, Yuan L. Degradation of several polycyclic aromatic hydrocarbons by laccase in reverse micelle system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134970. [PMID: 31740057 DOI: 10.1016/j.scitotenv.2019.134970] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 05/22/2023]
Abstract
Remediation of polycyclic aromatic hydrocarbons (PAHs) in oily sludge has become the focus of attention. UV spectrophotometer analysis showed that four types of PAHs were found in sample, which including phenanthrene, anthracene, benzo(a)anthracene and benzo(b)fluoranthene. In order to degrade PAH effectively, the laccase reverse micelles system was proposed. The system protects laccase from being affected by organic phase. Reverse micelles were prepared by using isooctane to simulate oil. The optimum water content W0 was 10 by measuring the electrical conductivity of the system. Under this condition, the effects of pH, temperature and ionic strength on the degradation rate of PAHs were investigated. Also, compared with that of non-immobilized laccase, the ratio between the secondary structures of laccase under different conditions was studied. The results showed that the highest laccase activity was obtained at pH 4.2 and 30 °C with 60 mmol/L KCl. Meanwhile, the structure of α-helix accounts for the largest proportion, and the ratio of α-helix in the laccase secondary structure in the laccase-reverse micelle system was higher than that of the non-immobilized one under this condition. Finally, predicting the reactive site of the degradation of polycyclic aromatic hydrocarbons was simulated by ORCA (Version 4.2.0). The application in oily sludge was further conducted. This study provides an effective method and basis for the degradation of PAHs in oily sludge.
Collapse
Affiliation(s)
- Pengfei Xu
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Hao Du
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xin Peng
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Yu Tang
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410028, China
| | - Xiangyan Chen
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jia Fei
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yong Meng
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Lu Yuan
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
17
|
Beuning CN, Barkley NE, Basa PN, Burdette SC, Levinger NE, Crans DC. Coordination Chemistry of a Controlled Burst of Zn 2+ in Bulk Aqueous and Nanosized Water Droplets with a Zincon Chelator. Inorg Chem 2020; 59:184-188. [DOI: 10.1021/acs.inorgchem.9b02848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cheryle N. Beuning
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Noah E. Barkley
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Prem N. Basa
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Shawn C. Burdette
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Nancy E. Levinger
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
18
|
Gomez Rodríguez EI, Falcone RD, Beassoni PR, Moyano F, Correa NM. Supramolecular Systems as an Alternative for Enzymatic Degradation of 1‐Naphthyl Methylcarbamate (Carbaryl) Pesticide. ChemistrySelect 2019. [DOI: 10.1002/slct.201901735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Esteban I. Gomez Rodríguez
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS)UNRC-CONICET Facultad de Ciencias ExactasFísico-Químicas y Naturales Agencia Postal # 3 C.P. X5804BYA Río Cuarto ARGENTINA
- Departamento de QuímicaUniversidad Nacional de Río CuartoFacultad de Ciencias ExactasFísico-Químicas y Naturales, Agencia Postal # 3 C.P. X5804BYA Río Cuarto ARGENTINA
| | - R. Darío Falcone
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS)UNRC-CONICET Facultad de Ciencias ExactasFísico-Químicas y Naturales Agencia Postal # 3 C.P. X5804BYA Río Cuarto ARGENTINA
- Departamento de QuímicaUniversidad Nacional de Río CuartoFacultad de Ciencias ExactasFísico-Químicas y Naturales, Agencia Postal # 3 C.P. X5804BYA Río Cuarto ARGENTINA
| | - Paola R. Beassoni
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS)UNRC-CONICET Facultad de Ciencias ExactasFísico-Químicas y Naturales Agencia Postal # 3 C.P. X5804BYA Río Cuarto ARGENTINA
- Departamento de Biologia Molecular Universidad Nacional de Río CuartoFacultad de Ciencias ExactasFísico-Químicas y Naturales. Agencia Postal # 3 C.P. X5804BYA Río Cuarto ARGENTINA
| | - Fernando Moyano
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS)UNRC-CONICET Facultad de Ciencias ExactasFísico-Químicas y Naturales Agencia Postal # 3 C.P. X5804BYA Río Cuarto ARGENTINA
- Departamento de QuímicaUniversidad Nacional de Río CuartoFacultad de Ciencias ExactasFísico-Químicas y Naturales, Agencia Postal # 3 C.P. X5804BYA Río Cuarto ARGENTINA
| | - N. Mariano Correa
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS)UNRC-CONICET Facultad de Ciencias ExactasFísico-Químicas y Naturales Agencia Postal # 3 C.P. X5804BYA Río Cuarto ARGENTINA
- Departamento de QuímicaUniversidad Nacional de Río CuartoFacultad de Ciencias ExactasFísico-Químicas y Naturales, Agencia Postal # 3 C.P. X5804BYA Río Cuarto ARGENTINA
| |
Collapse
|
19
|
Gabriele F, Spreti N, Del Giacco T, Germani R, Tiecco M. Effect of Surfactant Structure on the Superactivity of Candida rugosa Lipase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11510-11517. [PMID: 30152702 DOI: 10.1021/acs.langmuir.8b02255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, we present the effects of ionic and zwitterionic surfactants on the hydrolytic activity of Candida rugosa lipase (CRL), one of the most important and widely used microbial lipases. A series of amine N-oxide surfactants was studied to explore the relationship between their molecular structures and their effect on catalytic properties of CRL. These zwitterionic amphiphiles are known for their ability to form aggregates that can increase their size, thanks to a sphere-rod transition, without any additive. Enzyme activity seemed to be improved by morphological changes of micelles from spherical to rod-like, and the structure of the monomers played a crucial role in this transition. In fact, all the amine oxides investigated provoked superactivation, but the CRL activity increased by lengthening the alkyl chain of N-oxide surfactants, whereas it decreased in the presence of bulky head groups. Superactivity was mainly because of an increase in kcat (0.57 s-1 in buffer, 0.80-1.99 s-1 in surfactant solutions) and, in some cases, a decrease in KM (2 × 10-3 M in buffer, 1.08-4.28 × 10-3 M in surfactant solutions). Micelles seemed to play a dual role: superactivity occurred at surfactant concentrations higher than their critical micelle concentration, but, on the other hand, micelles subtracted the substrate from the bulk, making it unavailable for the catalysis.
Collapse
Affiliation(s)
- Francesco Gabriele
- Department of Physical and Chemical Sciences , University of L'Aquila , Via Vetoio , Coppito, 67100 L'Aquila , Italy
| | - Nicoletta Spreti
- Department of Physical and Chemical Sciences , University of L'Aquila , Via Vetoio , Coppito, 67100 L'Aquila , Italy
| | - Tiziana Del Giacco
- CEMIN, Centre of Excellence on Nanostructured Innovative Materials, Department of Chemistry, Biology and Biotechnology , University of Perugia , Via Elce di Sotto 8 , 06123 Perugia , Italy
| | - Raimondo Germani
- CEMIN, Centre of Excellence on Nanostructured Innovative Materials, Department of Chemistry, Biology and Biotechnology , University of Perugia , Via Elce di Sotto 8 , 06123 Perugia , Italy
| | - Matteo Tiecco
- CEMIN, Centre of Excellence on Nanostructured Innovative Materials, Department of Chemistry, Biology and Biotechnology , University of Perugia , Via Elce di Sotto 8 , 06123 Perugia , Italy
| |
Collapse
|
20
|
Endo A, Kurinomaru T, Shiraki K. Hyperactivation of serine proteases by the Hofmeister effect. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Das S, Balasubramanian S. pH-Induced Rotation of Lidless Lipase LipA from Bacillus subtilis at Lipase-Detergent Interface. J Phys Chem B 2018; 122:4802-4812. [PMID: 29623706 DOI: 10.1021/acs.jpcb.8b02296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lipases exhibit a unique process during the catalysis of the hydrolysis of triglyceride substrates called interfacial activation. Surfactants are used as cosolvents with water not only to offer a less polar environment to the lipases needed for their interfacial activation but also to solvate the substrate which are poorly soluble in water. However, the presence of detergent in the medium can affect both the lipase and the substrate, making the construction of a microkinetic model for lipase activity in the presence of the detergent difficult. Herein, we study the interfacial activation of a lidless lipase LipA from Bacillus subtilis using extensive atomistic molecular dynamics simulations at different concentrations of the surfactant, Thesit (C12E8), at two pH values. Residues which bind to the monomeric detergent are found to be the same as the ones which have been reported earlier to bind to the substrate. Very importantly, a pH-induced rotation of the enzyme with respect to surfactant aggregate has been observed which not only explains the experimentally observed pH-dependent enzymatic activity of this lidless lipase, but also suggests its reorientation at an aqueous-lipodophilic interface.
Collapse
Affiliation(s)
- Sudip Das
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064 , India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064 , India
| |
Collapse
|
22
|
Borunda T, Myers AJ, Mary Fisher J, Crans DC, Johnson MD. Confinement Effects on Chemical Equilibria: Pentacyano(Pyrazine)Ferrate(II) Stability Changes within Nanosized Droplets of Water. Molecules 2018; 23:E858. [PMID: 29642558 PMCID: PMC6016957 DOI: 10.3390/molecules23040858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 11/16/2022] Open
Abstract
Nanoscale confinement is known to impact properties of molecules and we observed changes in the reactivity of an iron coordination complex, pentacyano(pyrazine)ferrate(II). The confinement of two coordination complexes in a sodium AOT/isooctane reverse micellar (RM) water droplet was found to dramatically increase the hydrolysis rate of [Fe(CN)₅pyz]3- and change the monomer-dimer equilibria between [Fe(CN)₅pyz]3- and [Fe₂(CN)10pyz]6-. Combined UV-Vis and ¹H-NMR spectra of these complexes in RMs were analyzed and the position of the monomer-dimer equilibrium and the relative reaction times were determined at three different RM sizes. The data show that the hydrolysis rates (loss of pyrazine) are dramatically enhanced in RMs over bulk water and increase as the size of the RM decreases. Likewise, the monomer-dimer equilibrium changes to favor the formation of dimer as the RM size decreases. We conclude that the effects of the [Fe(CN)₅pyz]3- stability is related to its solvation within the RM.
Collapse
Affiliation(s)
- Teofilo Borunda
- Department of Chemistry & Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA.
| | - Alexander J Myers
- Department of Chemistry & Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA.
| | - J Mary Fisher
- Department of Chemistry, Colorado State University, Ft. Collins, CO 80523, USA.
| | - Debbie C Crans
- Department of Chemistry, Colorado State University, Ft. Collins, CO 80523, USA.
| | - Michael D Johnson
- Department of Chemistry & Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
23
|
Peroxidase chemically attached on polymeric micelle and its reaction with phenolic compounds. Enzyme Microb Technol 2018; 109:43-50. [DOI: 10.1016/j.enzmictec.2017.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 11/20/2022]
|
24
|
Ali Z, Tian L, Zhang B, Ali N, Khan M, Zhang Q. Synthesis of fibrous and non-fibrous mesoporous silica magnetic yolk–shell microspheres as recyclable supports for immobilization of Candida rugosa lipase. Enzyme Microb Technol 2017; 103:42-52. [DOI: 10.1016/j.enzmictec.2017.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/05/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|
25
|
Patel V, Deshpande M, Madamwar D. Increasing esterification efficiency by double immobilization of lipase-ZnO bioconjugate into sodium bis (2-ethylhexyl) sulfosuccinate (AOT)- reverse micelles and microemulsion based organogels. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Patra A, Samanta N, Das DK, Mitra RK. Enhanced Catalytic Activity of α-Chymotrypsin in Cationic Surfactant Solutions: The Component Specificity Revisited. J Phys Chem B 2017; 121:1457-1465. [PMID: 28151666 DOI: 10.1021/acs.jpcb.6b10472] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enhanced catalytic activity (super activity) of enzymes in the presence of surfactants is of key importance in "micellar enzymology"; such super activity is not very trivial, it is highly system specific, and the mechanism behind the activity enhancement is not always well apprehended. We report the catalytic activity of α-chymotrypsin (CHT) on ala-ala-phe-7-amido-4-methylcoumarin (AMC) in the presence of cationic surfactants of different hydrophobic chain lengths: dodecyltrimethylammonium bromide (DTAB), cetyltrimethylammonium bromide (CTAB) and octadecyltrimethylammonium bromide (OTAB). It is observed that in comparison to buffer the catalytic activity of CHT is enhanced 5-fold in premicellar DTAB solutions, while negligible changes are observed in CTAB and OTAB. Activity decreases considerably in the post micellar concentration, specifically for the latter two surfactants. A similar trend is also obtained in another substrate 2-napthyal acetate hydrolysis. Such surfactant specific superactivity is intriguing. The protein's secondary and tertiary structures in the presence of these surfactants are determined using circular dichroism (CD) spectroscopy and it is found that both CTAB and OTAB perturb the protein structure significantly, especially in the post micellar concentrations. DTAB, on the other hand, does not produce noticeable changes in the protein structure. The various pairwise interactions present in the system have been underlined using both steady-state and time-resolved fluorescence spectroscopy. Assuming a three-step kinetics model, we determine the free energy changes of the reaction, and the observations have been discussed in the light of the various interactions among the components.
Collapse
Affiliation(s)
- Animesh Patra
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences , Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Nirnay Samanta
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences , Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Dipak Kumar Das
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences , Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Rajib Kumar Mitra
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences , Block JD, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
27
|
Kübler D, Bergmann A, Weger L, Ingenbosch KN, Hoffmann-Jacobsen K. Kinetics of Detergent-Induced Activation and Inhibition of a Minimal Lipase. J Phys Chem B 2017; 121:1248-1257. [DOI: 10.1021/acs.jpcb.6b11037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Kübler
- Department of Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798 Krefeld, Germany
| | - Anna Bergmann
- Department of Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798 Krefeld, Germany
| | - Lukas Weger
- Department of Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798 Krefeld, Germany
| | - Kim N. Ingenbosch
- Department of Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798 Krefeld, Germany
| | - Kerstin Hoffmann-Jacobsen
- Department of Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798 Krefeld, Germany
| |
Collapse
|
28
|
Yin T, Wang M, Tao X, Shen W. Liquid-Liquid Phase Equilibria and Interactions between Droplets in Water-in-Oil Microemulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13464-13471. [PMID: 27936772 DOI: 10.1021/acs.langmuir.6b03496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The liquid-liquid phase equilibria of [water/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/n-decane] with the molar ratio w0 of water to AOT being 37.9 and [water/AOT/ethoxylated-2,5,8,11-tetramethyl-6-dodecyne-5,8-diol(Dynol-604)/n-decane] with w0 = 37.9 and the mole fraction α of Dynol-604 in the total surfactants being 0.158 were measured in this study. From the data collected in the critical region, the critical exponent β corresponding to the width of the coexistence curve was determined, which showed good agreement with the 3D-Ising value. A thermodynamic approach based on the Carnahan-Starling-van der Waals type equation was proposed to describe the coexistence curves and to deduce the interaction properties between droplets in the microemulsions. The interaction enthalpies were found to be positive for the studied systems, which evidenced that the entropy effect dominated the phase separations as the temperature increased. The addition of Dynol-604 into the (water/AOT/n-decane) microemulsion resulted in the decrease in the critical temperature and the interaction enthalpy. Combining the liquid-liquid equilibrium data for (water/AOT/n-decane) microemulsions with various w0 values determined previously, it was shown that the interaction enthalpy decreased with w0 and tended to change its sign at low w0, which coincided with the results from the isothermal titration calorimetry investigation. All of these behaviors were interpreted by the effects of entropy and enthalpy and their competition, which resulted from the release of solvent molecules entrapped in the interface of microemulsion droplets and were dependent on the rigidity of the surfactant layers and the size of the droplet.
Collapse
Affiliation(s)
- Tianxiang Yin
- School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Mingjie Wang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Xiaoyi Tao
- School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Weiguo Shen
- School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, China
- Department of Chemistry, Lanzhou University , Lanzhou, Gansu 730000, China
| |
Collapse
|
29
|
Soto D, Escobar S, Guzmán F, Cárdenas C, Bernal C, Mesa M. Structure-activity relationships on the study of β-galactosidase folding/unfolding due to interactions with immobilization additives: Triton X-100 and ethanol. Int J Biol Macromol 2016; 96:87-92. [PMID: 27965126 DOI: 10.1016/j.ijbiomac.2016.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/28/2022]
Abstract
Improving the enzyme stability is a challenge for allowing their practical application. The surfactants are stabilizing agents, however, there are still questions about their influence on enzyme properties. The structure-activity/stability relationship for β-galactosidase from Bacillus circulans is studied here by Circular Dichroism and activity measurements, as a function of temperature and pH. The tendency of preserving the β-sheet and α-helix structures at temperatures below 65°C and different pH is the result of the balance between the large- and short-range effects, respecting to the active site. This information is fundamental for explaining the structural changes of this enzyme in the presence of Triton X-100 surfactant and ethanol. The enzyme thermal stabilization in the presence of this surfactant responds to the rearrangement of the secondary structure for having optimal activity/stability. The effect of ethanol is more related with changes in the dielectric properties of the aqueous solution than with protein structural transformations. These results contribute to understand the effects of surfactant-enzyme interactions on the enzyme behavior, from the structural point of view and to rationalize the surfactant-based stabilizing strategies for β-galactosidades.
Collapse
Affiliation(s)
- Dayana Soto
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia - UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Sindy Escobar
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia - UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Fanny Guzmán
- Laboratorio de Síntesis de Péptidos e Inmunología Molecular, Pontificia Universidad Católica de Valparaíso, Núcleo de Biotecnología Curauma, Valparaíso, Chile
| | - Constanza Cárdenas
- Laboratorio de Síntesis de Péptidos e Inmunología Molecular, Pontificia Universidad Católica de Valparaíso, Núcleo de Biotecnología Curauma, Valparaíso, Chile
| | - Claudia Bernal
- Departamento de Ingeniería de Alimentos, Universidad de La Serena, Raul Bitran 1305, La Serena, Chile
| | - Monica Mesa
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia - UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
30
|
|
31
|
Valle L, Morán Vieyra FE, Borsarelli CD. Nanoenvironmental effect in AOT reverse micelles on the triplet excited state properties of flavins and quenching by molecular oxygen. J PHYS ORG CHEM 2016. [DOI: 10.1002/poc.3575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Lorena Valle
- Instituto de Bionanotecnología, INBIONATEC-CONICET; Universidad Nacional de Santiago del Estero (UNSE); RN9, Km 1125 G4206XCP Santiago del Estero Argentina
| | - Faustino E. Morán Vieyra
- Instituto de Bionanotecnología, INBIONATEC-CONICET; Universidad Nacional de Santiago del Estero (UNSE); RN9, Km 1125 G4206XCP Santiago del Estero Argentina
| | - Claudio D. Borsarelli
- Instituto de Bionanotecnología, INBIONATEC-CONICET; Universidad Nacional de Santiago del Estero (UNSE); RN9, Km 1125 G4206XCP Santiago del Estero Argentina
| |
Collapse
|
32
|
Odella E, Falcone RD, Silber JJ, Correa NM. Nanoscale Control Over Interfacial Properties in Mixed Reverse Micelles Formulated by Using Sodium 1,4-bis-2-ethylhexylsulfosuccinate and Tri-n-octyl Phosphine Oxide Surfactants. Chemphyschem 2016; 17:2407-14. [PMID: 27128745 DOI: 10.1002/cphc.201600216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Indexed: 11/11/2022]
Abstract
The interfacial properties of pure reverse micelles (RMs) are a consequence of the magnitude and nature of noncovalent interactions between confined water and the surfactant polar head. Addition of a second surfactant to form mixed RMs is expected to influence these interactions and thus affect these properties at the nanoscale level. Herein, pure and mixed RMs stabilized by sodium 1,4-bis-2-ethylhexylsulfosuccinate and tri-n-octyl phosphine oxide (TOPO) surfactants in n-heptane were formulated and studied by varying both the water content and the TOPO mole fraction. The microenvironment generated was sensed by following the solvatochromic behavior of the 1-methyl-8-oxyquinolinium betaine probe and (31) P NMR spectroscopy. The results reveal unique properties of mixed RMs and we give experimental evidence that free water can be detected in the polar core of the mixed RMs at very low water content. We anticipate that these findings will have an impact on the use of such media as nanoreactors for many types of chemical reactions, such as enzymatic reactions and nanoparticle synthesis.
Collapse
Affiliation(s)
- Emmanuel Odella
- Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal # 3. C.P., X5804BYA, Río Cuarto, Argentinia
| | - R Darío Falcone
- Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal # 3. C.P., X5804BYA, Río Cuarto, Argentinia
| | - Juana J Silber
- Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal # 3. C.P., X5804BYA, Río Cuarto, Argentinia
| | - N Mariano Correa
- Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal # 3. C.P., X5804BYA, Río Cuarto, Argentinia.
| |
Collapse
|
33
|
Tang LL, Ryabov AD, Collins TJ. Kinetic Evidence for Reactive Dimeric TAML Iron Species in the Catalytic Oxidation of NADH and a Dye by O2 in AOT Reverse Micelles. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liang L. Tang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander D. Ryabov
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Terrence J. Collins
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
34
|
Sarkar S, Das K, Das PK. Hydrophobically Tailored Carbon Dots toward Modulating Microstructure of Reverse Micelle and Amplification of Lipase Catalytic Response. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3890-3900. [PMID: 27035762 DOI: 10.1021/acs.langmuir.5b04750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This article delineates the modulation of microstructure of cationic reverse micelle utilizing hydrophobically modified carbon dots (CDs) with varying surface functionalizations. Citric acid was used as the source of the carbon core, and Na-salt of glycine, glycine, Na-salt of 11-aminoundecanoic acid, 11-aminoundecanoic acid, and n-hexadecylamine were used for the surface fabrication of CDs to produce CD 1s, CD 1a, CD 2s, CD 2a, and CD 3, respectively. All these CDs having dimension of 5-7 nm were characterized by spectroscopic and microscopic techniques. The hydrodynamic diameter of cetyltrimethylammonium bromide (CTAB) reverse micelle (CTAB/isooctane/n-hexanol/water) at z ([cosurfactant]/[surfactant]) = 6.4 and W0 ([water]/[surfactant]) = 44 is around 15-20 nm. Interestingly, the size of the water-in-oil (w/o) microemulsions dramatically increased up to 120-200 nm upon doping hydrophobic surface functionalized CD 2a and CD 3. This is possibly due to change in the micellar exchange dynamics and reorganization of the micellar aggregates via hydrophobic interaction between surfactant (CTAB) tail and hydrophobic surface modifier of the carbon dots. However, no alteration in the size of reverse micelles was noted in the presence of carbon dots CD 1s, CD 1a, and CD 2s. Spectroscopic and microscopic investigations confirmed that the hydrophobic CD 2a and CD 3 were localized at the interface of reverse micelles whereas CD 1s, CD 1a, and CD 2s were possibly located in the water pool (away from interface). The activity of Chromobacterium viscosum lipase encapsulated within CD 3 and CD 2a doped significantly large CTAB reverse micelles showed remarkable improvement (3.7-fold and 3.4-fold) in its catalytic response. However, hydrophilic carbon dots CD 1s and CD 2s as well as moderately hydrophobic CD 1a had no significant effect on the microstructure of reverse micelles as well as on the lipase activity.
Collapse
Affiliation(s)
- Saheli Sarkar
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Krishnendu Das
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Prasanta Kumar Das
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| |
Collapse
|
35
|
Durantini AM, Falcone RD, Silber JJ, Correa NM. Effect of Confinement on the Properties of Sequestered Mixed Polar Solvents: Enzymatic Catalysis in Nonaqueous 1,4-Bis-2-ethylhexylsulfosuccinate Reverse Micelles. Chemphyschem 2016; 17:1678-85. [PMID: 26891863 DOI: 10.1002/cphc.201501190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/10/2016] [Indexed: 11/06/2022]
Abstract
The influence of different glycerol, N,N-dimethylformamide (DMF) and water mixtures encapsulated in 1,4-bis-2-ethylhexylsulfosuccinate (AOT)/n-heptane reverse micelles (RMs) on the enzymatic hydrolysis of 2-naphthyl acetate by α-chymotrypsin is demonstrated. In the case of the mixtures with DMF and protic solvents it has been previously shown, using absorption, emission and dynamic light-scattering techniques, that solvents are segregated inside the polar core of the RMs. Protic solvents anchor to the AOT, whereas DMF locates to the polar core of the aggregate. Thus, DMF not only helps to solubilize the hydrophobic substrate, increasing its effective concentrations but surprisingly, it does not affect the enzyme activity. The importance of ensuring the presence of RMs, encapsulation of the polar solvents and the corrections by substrate partitioning in order to obtain reliable conclusions is highlighted. Moreover, the effect of a constrained environment on solvent-solvent interactions in homogenous media and its impact on the use of RMs as nanoreactors is stressed.
Collapse
Affiliation(s)
- Andres M Durantini
- Department of Chemistry and Center for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - R Dario Falcone
- Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal # 3. C.P., X5804BYA, Río Cuarto, Argentina
| | - Juana J Silber
- Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal # 3. C.P., X5804BYA, Río Cuarto, Argentina
| | - N Mariano Correa
- Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal # 3. C.P., X5804BYA, Río Cuarto, Argentina.
| |
Collapse
|
36
|
Yu X, Li Q, Wang M, Du N, Huang X. Study on the catalytic performance of laccase in the hydrophobic ionic liquid-based bicontinuous microemulsion stabilized by polyoxyethylene-type nonionic surfactants. SOFT MATTER 2016; 12:1713-1720. [PMID: 26686358 DOI: 10.1039/c5sm02704g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To formulate a compatible green medium for the conversion of a hydrophobic substrate by a hydrophilic enzyme, we investigated the phase behavior of pseudo ternary hydrophobic ionic liquid (HIL)/buffer/polyoxyethylene-type nonionic surfactant (CnEm)/n-alcohol system and the effects of the components on the formulation of the HIL-based bicontinuous microemulsion. It is found that small head group of the surfactant, high concentration of n-alcohol (medium/long alkyl chain) and low cohesive energy density of the HIL result in low phase transition temperature. In the CnEm stabilized compatible bicontinuous microemulsion, the kinetics of laccase catalyzed oxidation of 2,6-dimethoxyphenol were also investigated. It is found that in addition to temperature, n-alcohol is the key parameter affecting the catalytic performance of laccase, and the optimum n-alcohol depends on the type of HIL as an oil phase. All the kinetic parameters, such as Km, kcat, kcat/Km, and Ea (apparent activation energy), indicate that the bicontinuous microemulsion consisting of [Omim]NTf2/buffer/CnEm/n-hexanol is a suitable medium for the laccase-catalyzed reaction. To the best of our knowledge, this is the first report on the formulation of HIL-based bicontinuous microemulsion for enzyme catalysis.
Collapse
Affiliation(s)
- Xinxin Yu
- Key Laboratory of Colloid & Interface Chemistry of the Education Ministry of China, School of Chemistry and Chemical Engineering Shandong University, Jinan 250100, P. R. China.
| | | | | | | | | |
Collapse
|
37
|
Modulation of anionic reverse micellar interface with non-ionic surfactants can regulate enzyme activity within the micellar waterpool. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-3829-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
De Matteis L, Di Renzo F, Germani R, Goracci L, Spreti N, Tiecco M. α-Chymotrypsin superactivity in quaternary ammonium salt solution: kinetic and computational studies. RSC Adv 2016. [DOI: 10.1039/c6ra07425a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ammonium salts determine an increase of the hydrophobicity of the α-chymotrypsin catalytic site and therefore an improvement of its activity.
Collapse
Affiliation(s)
- Laura De Matteis
- Department of Physical and Chemical Sciences
- University of L'Aquila
- I-67100 Coppito
- Italy
| | - Francesca Di Renzo
- Department of Physical and Chemical Sciences
- University of L'Aquila
- I-67100 Coppito
- Italy
| | - Raimondo Germani
- CEMIN, Centre of Excellence on Nanostructured Innovative Materials
- Department of Chemistry
- Biology and Biotechnology
- University of Perugia
- I-06123 Perugia
| | - Laura Goracci
- Laboratory for Chemoinformatics and Molecular Modelling
- Department of Chemistry
- Biology and Biotechnology
- University of Perugia
- I-06123 Perugia
| | - Nicoletta Spreti
- Department of Physical and Chemical Sciences
- University of L'Aquila
- I-67100 Coppito
- Italy
| | - Matteo Tiecco
- CEMIN, Centre of Excellence on Nanostructured Innovative Materials
- Department of Chemistry
- Biology and Biotechnology
- University of Perugia
- I-06123 Perugia
| |
Collapse
|
39
|
Enhancing the performance of a phospholipase A1 for oil degumming by bio-imprinting and immobilization. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Dutta Choudhury S, Vir P, Mohanty J, Bhasikuttan AC, Pal H. Selective prototropism of lumichrome in cationic micelles and reverse micelles: a photophysical perspective. RSC Adv 2016. [DOI: 10.1039/c5ra23562f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BHDC micelles and reverse micelles selectively transform the alloxazine form of lumichrome to the anionic isoalloxazine form, around neutral pH.
Collapse
Affiliation(s)
| | - Praveen Vir
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Jyotirmayee Mohanty
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | | | - Haridas Pal
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| |
Collapse
|
41
|
Park KM, Lee JH, Hong SC, Kwon CW, Jo M, Choi SJ, Kim K, Chang PS. Selective production of 1-monocaprin by porcine liver carboxylesterase-catalyzed esterification: Its enzyme kinetics and catalytic performance. Enzyme Microb Technol 2015; 82:51-57. [PMID: 26672448 DOI: 10.1016/j.enzmictec.2015.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/04/2015] [Accepted: 08/21/2015] [Indexed: 10/23/2022]
Abstract
Porcine liver carboxylesterase (PLE) belongs to carboxylesterase family (EC 3.1.1.1) as a serine-type esterase. The PLE-catalyzed esterification of capric acid with glycerol in reverse micelles was investigated on the catalytic performance and enzyme kinetics. The most suitable structure of reverse micelles was comprised of isooctane (reaction medium) and bis(2-ethylhexyl) sodium sulfosuccinate (AOT, anionic surfactant) with 0.1 of R-value ([water]/[surfactant]) and 3.0 of G/F-value ([glycerol]/[fatty acid]) for the PLE-catalyzed esterification. In the aspect of regio-selectivity, the PLE mainly produced 1-monocaprin without any other products (di- and/or tricaprins of subsequent reactions). Furthermore, the degree of esterification at equilibrium state (after 4 h from the initiation) was 62.7% under the optimum conditions at pH 7.0 and 60 °C. Based on Hanes-Woolf plot, the apparent Km and Vmax values were calculated to be 16.44 mM and 38.91 μM/min/mg protein, respectively.
Collapse
Affiliation(s)
- Kyung-Min Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jong-Hyuk Lee
- Research Institute of Food and Biotechnology, SPC group, Seoul 137-887, Republic of Korea
| | - Sung-Chul Hong
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Chang Woo Kwon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Minje Jo
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Seung Jun Choi
- Department of Food Science and Technology, and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Republic of Korea
| | - Keesung Kim
- Institute of Advanced Machinery and Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea; Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
42
|
Torres JA, Chagas PMB, Silva MC, Dos Santos CD, Corrêa AD. Evaluation of the protective effect of chemical additives in the oxidation of phenolic compounds catalysed by peroxidase. ENVIRONMENTAL TECHNOLOGY 2015; 37:1288-95. [PMID: 26502790 DOI: 10.1080/09593330.2015.1112433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The use of oxidoredutive enzymes in removing organic pollutants has been the subject of much research. The oxidation of phenolic compounds in the presence of chemical additives has been the focus of this study. In this investigation, the influence of the additives polyethylene glycol and Triton X-100 was evaluated in the phenol oxidation, caffeic acid, chlorogenic acid and total phenolic compounds present in coffee processing wastewater (CPW) at different pH values, performed by turnip peroxidase and peroxidase extracted from soybean seed hulls. The influence of these additives was observed only in the oxidation of phenol and caffeic acid. In the oxidation of other studied phenolic compounds, the percentage of oxidation remained unchanged in the presence of these chemical additives. In the oxidation of CPW in the presence of additives, no change in the oxidation of phenolic compounds was observed. Although several studies show the importance of evaluating the influence of additives on the behaviour of enzymes, this study found a positive response from the economic point of view for the treatment of real wastewater, since the addition of these substances showed no influence on the oxidation of phenolic compounds, which makes the process less costly.
Collapse
Affiliation(s)
| | | | - Maria Cristina Silva
- b Departamento de Química , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | | | | |
Collapse
|
43
|
Tang LL, Gunderson WA, Weitz AC, Hendrich MP, Ryabov AD, Collins TJ. Activation of Dioxygen by a TAML Activator in Reverse Micelles: Characterization of an Fe(III)Fe(IV) Dimer and Associated Catalytic Chemistry. J Am Chem Soc 2015; 137:9704-15. [PMID: 26161504 DOI: 10.1021/jacs.5b05229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Iron TAML activators of peroxides are functional catalase-peroxidase mimics. Switching from hydrogen peroxide (H2O2) to dioxygen (O2) as the primary oxidant was achieved by using a system of reverse micelles of Aerosol OT (AOT) in n-octane. Hydrophilic TAML activators are localized in the aqueous microreactors of reverse micelles where water is present in much lower abundance than in bulk water. n-Octane serves as a proximate reservoir supplying O2 to result in partial oxidation of Fe(III) to Fe(IV)-containing species, mostly the Fe(III)Fe(IV) (major) and Fe(IV)Fe(IV) (minor) dimers which coexist with the Fe(III) TAML monomeric species. The speciation depends on the pH and the degree of hydration w0, viz., the amount of water in the reverse micelles. The previously unknown Fe(III)Fe(IV) dimer has been characterized by UV-vis, EPR, and Mössbauer spectroscopies. Reactive electron donors such as NADH, pinacyanol chloride, and hydroquinone undergo the TAML-catalyzed oxidation by O2. The oxidation of NADH, studied in most detail, is much faster at the lowest degree of hydration w0 (in "drier micelles") and is accelerated by light through NADH photochemistry. Dyes that are more resistant to oxidation than pinacyanol chloride (Orange II, Safranine O) are not oxidized in the reverse micellar media. Despite the limitation of low reactivity, the new systems highlight an encouraging step in replacing TAML peroxidase-like chemistry with more attractive dioxygen-activation chemistry.
Collapse
Affiliation(s)
- Liang L Tang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - William A Gunderson
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Andrew C Weitz
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander D Ryabov
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Terrence J Collins
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
44
|
Subinya M, Steudle AK, Jurkowski TP, Stubenrauch C. Conformation and activity of lipase B from Candida antarctica in bicontinuous microemulsions. Colloids Surf B Biointerfaces 2015; 131:108-14. [DOI: 10.1016/j.colsurfb.2015.04.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/16/2022]
|
45
|
Effects of multivalency and hydrophobicity of polyamines on enzyme hyperactivation of α-chymotrypsin. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Fan D, Zheng P, Ma Y, Yin T, Zhao J, Shen W. Effects of water content and chain length of n-alkane on the interaction enthalpy between the droplets in water/sodium bis(2-ethylhexyl)-sulfosuccinate/n-alkane microemulsions. SOFT MATTER 2015; 11:2885-2892. [PMID: 25727484 DOI: 10.1039/c5sm00319a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The concentration-dependent enthalpies of mixing for water/sodium bis(2-ethylhexyl)-sulfosuccinate (AOT)/n-alkane microemulsions with different water contents ω0 and chain lengths n of n-alkane were determined by isothermal titration microcalorimetry (ITC) and flow-mixing microcalorimetry at 298.15 K and used to calculate the interaction enthalpies (-ΔH(C)) between the droplets. It was found that -ΔH(C) increased with ω0, and changed from negative to positive at about ω0 = 10. The investigation of the dependence of -ΔH(C) on n revealed that the values of -ΔH(C) were negative and had a minimum for ω0 = 5; while they were positive and had a maximum for ω0 = 15. These phenomena were discussed based on the competition of the overlapping contribution of the surfactant tails between two neighbouring droplets and the penetration contribution of the solvent molecules into the surfactant tails. These results indicated the important role of entropy in the stability of the microemulsion systems.
Collapse
Affiliation(s)
- Dashuang Fan
- Department of Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China.
| | | | | | | | | | | |
Collapse
|
47
|
A novel aqueous micellar two-phase system composed of surfactant and sorbitol for purification of pectinase enzyme from Psidium guajava and recycling phase components. BIOMED RESEARCH INTERNATIONAL 2015; 2015:815413. [PMID: 25756051 PMCID: PMC4338374 DOI: 10.1155/2015/815413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/23/2015] [Accepted: 02/01/2015] [Indexed: 11/24/2022]
Abstract
A novel aqueous two-phase system composed of a surfactant and sorbitol was employed for the first time to purify pectinase from Psidium guajava. The influences of different parameters, including the type and concentration of the surfactant and the concentration and composition of the surfactant/sorbitol ratio, on the partitioning behavior and recovery of pectinase were investigated. Moreover, the effects of system pH and the crude load on purification fold and the yield of purified pectinase were studied. The experimental results indicated that the pectinase was partitioned into surfactant-rich top phase, and the impurities were partitioned into the sorbitol-rich bottom phase with the novel method involving an ATPS composed of 26% (w/w) Triton X-100 and 23% (w/w) sorbitol at 54.2% of the TLL crude load of 20% (w/w) at pH 6.0. The enzyme was successfully recovered by this method with a high purification factor of 15.2 and a yield of 98.3%, whereas the phase components were also recovered and recycled at rates above 96%. This study demonstrated that this novel ATPS method can be used as an efficient and economical alternative to the traditional ATPS for the purification and recovery of the valuable enzyme.
Collapse
|
48
|
Peng X, Yuan XZ, Liu H, Zeng GM, Chen XH. Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Laccase in Rhamnolipid Reversed Micellar System. Appl Biochem Biotechnol 2015; 176:45-55. [PMID: 25637508 DOI: 10.1007/s12010-015-1508-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/21/2015] [Indexed: 12/01/2022]
Abstract
Rhamnolipid was applied to degrade anthracene and pyrene in reversed micelles. The parameters in degradation were optimized for the purpose of improving degradation rates. The proper amount of rhamnolipid (RL) used for degrading anthracene was 0.065 mM, while 0.075 mM for pyrene. However, reaction time for degrading both anthracene and pyrene was 48 h. The optimum water content, pH, laccase concentration, polycyclic aromatic hydrocarbon (PAH) initial concentration, and volume ratio of n-hexanol to isooctane for both were found out. The highest degradation rates of anthracene and pyrene were 37.52 and 25.58%, respectively. Although the degradation rates were not higher than the results previous literatures reported, this method was of novelty and provided guidance in application in degrading PAHs by reversed micellar system, especially for biosurfactant-based reversed micelles.
Collapse
Affiliation(s)
- Xin Peng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China,
| | | | | | | | | |
Collapse
|
49
|
Gupta BS, Taha M, Lee MJ. Buffers more than buffering agent: introducing a new class of stabilizers for the protein BSA. Phys Chem Chem Phys 2015; 17:1114-33. [DOI: 10.1039/c4cp04663c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we have analyzed the influence of four biological buffers on the thermal stability of bovine serum albumin (BSA) using dynamic light scattering (DLS).
Collapse
Affiliation(s)
- Bhupender S. Gupta
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 106-07
- Taiwan
| | - Mohamed Taha
- CICECO
- Departamento de Química
- Universidade de Aveiro
- Portugal
| | - Ming-Jer Lee
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 106-07
- Taiwan
| |
Collapse
|
50
|
Silva OF, de Rossi RH, Correa NM. The hydrolysis of phenyl trifluoroacetate in AOT/n-heptane RMs as a sensor of the encapsulated water structure. RSC Adv 2015. [DOI: 10.1039/c5ra03532e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A study was carried out on the hydrolysis of phenyl trifluoroacetate (PTFA) in AOT/n-heptane/water reverse micelles.
Collapse
Affiliation(s)
- O. Fernando Silva
- Instituto de Investigaciones en Físico-Química de Córdoba
- INFIQC-CONICET
- Facultad de Ciencias Químicas
- Departamento de Química Orgánica
- Universidad Nacional de Córdoba
| | - Rita H. de Rossi
- Instituto de Investigaciones en Físico-Química de Córdoba
- INFIQC-CONICET
- Facultad de Ciencias Químicas
- Departamento de Química Orgánica
- Universidad Nacional de Córdoba
| | - N. Mariano Correa
- Departamento de Química
- Universidad Nacional de Río Cuarto
- Río Cuarto
- Argentina
| |
Collapse
|