1
|
Chaudhary K, Rajora A. Elevating Therapeutic Penetration: Innovations in Drug Delivery for Enhanced Permeation and Skin Cancer Management. Crit Rev Ther Drug Carrier Syst 2025; 42:1-34. [PMID: 39819462 DOI: 10.1615/critrevtherdrugcarriersyst.2024047670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Skin cancer stands as a challenging global health concern, necessitating innovative approaches to cure deficiencies within traditional therapeutic modalities. While conventional drug delivery methods through injection or oral administration have long prevailed, the emergence of topical drug administration presents a compelling alternative. The skin, aside from offering a swift and painless procedure, serves as a reservoir, maintaining drug efficacy over extended durations. This comprehensive review seeks to shed light on the potential of nanotechnology as a promising avenue for efficacious cancer treatment, with a particular emphasis on skin cancer. Additionally, it underscores the transdermal approach as a viable strategy for addressing various types of cancer. This work also explores into the delivery of peptides and proteins along with in-depth explanations of different delivery systems currently under investigation for localized skin cancer treatment. Furthermore, the review discusses the formidable challenges that must be surmounted before these innovations can find their way into clinical practice, offering a roadmap for future research and therapeutic development.
Collapse
Affiliation(s)
- Kajal Chaudhary
- Ram-Eesh Institute of Pharmacy, Knowledge Park I, Greater Noida, Uttar Pradesh 201306, India
| | | |
Collapse
|
2
|
Delfi M, Sartorius R, Ashrafizadeh M, Sharifi E, Zhang Y, De Berardinis P, Zarrabi A, Varma RS, Tay FR, Smith BR, Makvandi P. Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. NANO TODAY 2021; 38:101119. [PMID: 34267794 PMCID: PMC8276870 DOI: 10.1016/j.nantod.2021.101119] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Self-assembled peptides and proteins possess tremendous potential as targeted drug delivery systems and key applications of these well-defined nanostructures reside in anti-cancer therapy. Peptides and proteins can self-assemble into nanostructures of diverse sizes and shapes in response to changing environmental conditions such as pH, temperature, ionic strength, as well as host and guest molecular interactions; their countless benefits include good biocompatibility and high loading capacity for hydrophobic and hydrophilic drugs. These self-assembled nanomaterials can be adorned with functional moieties to specifically target tumor cells. Stimuli-responsive features can also be incorporated with respect to the tumor microenvironment. This review sheds light on the growing interest in self-assembled peptides and proteins and their burgeoning applications in cancer treatment and immunotherapy.
Collapse
Affiliation(s)
- Masoud Delfi
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia, Naples 80126, Italy
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples 80131, Italy
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736, Hamadan, Iran
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples 80125, Italy
| | - Yapei Zhang
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, USA
| | - Bryan Ronain Smith
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology and the Molecular Imaging Program, Stanford University, Stanford, CA, 94305, USA
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
3
|
Benizri S, Gaubert A, Soulard C, Gontier É, Svahn I, Rocchi P, Vacher G, Barthélémy P. Hydrogel based lipid-oligonucleotides: a new route to self-delivery of therapeutic sequences. Biomater Sci 2021; 9:3638-3644. [PMID: 33949449 DOI: 10.1039/d1bm00273b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Synthetic OligoNucleotides (ON) provide promising therapeutic tools for controlling specifically genetic expression in a broad range of diseases from cancers to viral infections. Beside their chemical stability and intracellular delivery, the controlled release of therapeutic sequences remains an important challenge for successful clinical applications. In this work, Lipid-OligoNucleotide (LON) conjugates stabilizing hydrogels are reported and characterized by rheology and cryo-scanning electron microscopy (cryo-SEM). These studies revealed that lipid conjugation of antisense oligonucleotides featuring partial self-complementarity resulted in entangled pearl-necklace networks, which were obtained through micelle-micelle interaction driven by duplex formation. Owing to these properties, the Lipid AntiSense Oligonucleotide (LASO) sequences exhibited a prolonged release after subcutaneous administration compared to the non-lipidic antisense (ASO) one. The LASO self-assembly based hydrogels obtained without adjuvant represent an innovative approach for the sustained self-delivery of therapeutic oligonucleotides.
Collapse
Affiliation(s)
- Sébastien Benizri
- University of Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France.
| | - Alexandra Gaubert
- University of Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France.
| | - Charlotte Soulard
- University of Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France.
| | - Étienne Gontier
- Bordeaux Imaging Center, UMS3420 CNRS, University of Bordeaux, US4 INSERM, Bordeaux, France
| | - Isabelle Svahn
- Bordeaux Imaging Center, UMS3420 CNRS, University of Bordeaux, US4 INSERM, Bordeaux, France
| | - Palma Rocchi
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, Marseille, France
| | - Gaëlle Vacher
- University of Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France.
| | - Philippe Barthélémy
- University of Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France.
| |
Collapse
|
4
|
Löffler PMG, Rabe A, Vogel S. Lipid-Modified Peptide Nucleic Acids: Synthesis and Application to Programmable Liposome Fusion. Methods Mol Biol 2021; 2105:75-96. [PMID: 32088865 DOI: 10.1007/978-1-0716-0243-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Peptide nucleic acids (PNAs) can be modified with aliphatic lipid chains and designed to be water soluble and able to spontaneously insert into phospholipid bilayers. Liposomes with 1.5% negatively charged POPG can be driven to fuse and mix their inner content volumes via functionalization with such lipidated peptide nucleic acids (LiPNAs). During fusion, only low amounts of leakage occur (<5%). We describe here the synthesis and purification of such LiPNAs using an automated peptide synthesizer and the preparation of LiPNA functionalized liposomes. Further, we describe the measurement of LiPNA-induced fusion using a fluorescence-based assay for the content mixing between a liposome population with an encapsulated self-quenching fluorescent dye (SRB) and a buffer-filled liposome population.
Collapse
Affiliation(s)
- Philipp M G Löffler
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Alexander Rabe
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Stefan Vogel
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
5
|
Bhatia D, Wunder C, Johannes L. Self-assembled, Programmable DNA Nanodevices for Biological and Biomedical Applications. Chembiochem 2021; 22:763-778. [PMID: 32961015 DOI: 10.1002/cbic.202000372] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/19/2020] [Indexed: 12/28/2022]
Abstract
The broad field of structural DNA nanotechnology has diverged into various areas of applications ranging from computing, photonics, synthetic biology, and biosensing to in-vivo bioimaging and therapeutic delivery, to name but a few. Though the field began to exploit DNA to build various nanoscale architectures, it has now taken a new path to diverge from structural DNA nanotechnology to functional or applied DNA nanotechnology. More recently a third sub-branch has emerged-biologically oriented DNA nanotechnology, which seeks to explore the functionalities of combinatorial DNA devices in various biological systems. In this review, we summarize the key developments in DNA nanotechnology revealing a current trend that merges the functionality of DNA devices with the specificity of biomolecules to access a range of functions in biological systems. This review seeks to provide a perspective on the evolution and biological applications of DNA nanotechnology, where the integration of DNA structures with biomolecules can now uncover phenomena of interest to biologists and biomedical scientists. Finally, we conclude with the challenges, limitations, and perspectives of DNA nanodevices in fundamental and applied research.
Collapse
Affiliation(s)
- Dhiraj Bhatia
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, 382330, Gandhinagar, India
| | - Christian Wunder
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team U1143 INSERM UMR 3666 CNRS, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team U1143 INSERM UMR 3666 CNRS, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| |
Collapse
|
6
|
Löffler PMG, Ries O, Vogel S. DNA-Mediated Liposome Fusion Observed by Fluorescence Spectrometry. Methods Mol Biol 2019; 2063:101-118. [PMID: 31667766 DOI: 10.1007/978-1-0716-0138-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
DNA-programmed and controlled fusion of lipid membranes have recently been optimized to reliably mix the contents between two populations of liposomes, each functionalized with complementary lipidated DNA (LiNA) oligomer. In this chapter we describe a procedure for DNA-controlled fusion of liposomes mediated by LiNAs that are designed to force bilayers into close proximity. Using a self-quenching fluorescent dye (Sulforhodamine B) to monitor both the mixing of the internal volumes and leakage of the dye into the outer volume we measure the efficiency of content mixing in the bulk population, allowing for direct comparison between different LiNA designs. By generating samples for calibration corresponding to different amounts of content mixing, the average number of fusion events per labeled liposome can be estimated.
Collapse
Affiliation(s)
- Philipp M G Löffler
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Oliver Ries
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Stefan Vogel
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
7
|
Löffler PMG, Hansen AH, Ries O, Jakobsen U, Rabe A, Sørensen KT, Glud K, Vogel S. Lipidated Polyaza Crown Ethers as Membrane Anchors for DNA-Controlled Content Mixing between Liposomes. Sci Rep 2019; 9:13856. [PMID: 31554826 PMCID: PMC6761097 DOI: 10.1038/s41598-019-49862-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/23/2019] [Indexed: 01/21/2023] Open
Abstract
The ability to manipulate and fuse nano-compartmentalized volumes addresses a demand for spatiotemporal control in the field of synthetic biology, for example in the bottom-up construction of (bio)chemical nanoreactors and for the interrogation of enzymatic reactions in confined space. Herein, we mix entrapped sub-attoliter volumes of liposomes (~135 nm diameter) via lipid bilayer fusion, facilitated by the hybridization of membrane-anchored lipidated oligonucleotides. We report on an improved synthesis of the membrane-anchor phosphoramidites that allows for a flexible choice of lipophilic moiety. Lipid-nucleic acid conjugates (LiNAs) with and without triethylene glycol spacers between anchor and the 17 nt binding sequence were synthesized and their fusogenic potential evaluated. A fluorescence-based content mixing assay was employed for kinetic monitoring of fusion of the bulk liposome populations at different temperatures. Data obtained at 50 °C indicated a quantitative conversion of the limiting liposome population into fused liposomes and an unprecedently high initial fusion rate was observed. For most conditions and designs only low leakage during fusion was observed. These results consolidate LiNA-mediated membrane fusion as a robust platform for programming compartmentalized chemical and enzymatic reactions.
Collapse
Affiliation(s)
- Philipp M G Löffler
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark University of Southern Denmark, Odense M, Denmark
| | - Anders Højgaard Hansen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark University of Southern Denmark, Odense M, Denmark
| | - Oliver Ries
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark University of Southern Denmark, Odense M, Denmark
| | - Ulla Jakobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark University of Southern Denmark, Odense M, Denmark.,PET & Cyclotron Unit, Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Alexander Rabe
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark University of Southern Denmark, Odense M, Denmark
| | - Kristian T Sørensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark University of Southern Denmark, Odense M, Denmark
| | - Kasper Glud
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark University of Southern Denmark, Odense M, Denmark
| | - Stefan Vogel
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
8
|
Jumeaux C, Kim E, Howes PD, Kim H, Chandrawati R, Stevens MM. Detection of microRNA biomarkers via inhibition of DNA-mediated liposome fusion. NANOSCALE ADVANCES 2019; 1:532-536. [PMID: 36132259 PMCID: PMC9473185 DOI: 10.1039/c8na00331a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 06/01/2023]
Abstract
We report the specific and sensitive detection of microRNA using an inverse DNA-mediated liposome fusion assay. This assay is homogeneous, and does not require washing, separation, or enzyme-associated amplification steps. By fine-tuning the surface functionalisation of the liposomes, liposome concentration, and assay temperature, we demonstrated a sub-nanomolar limit of detection for the target.
Collapse
Affiliation(s)
- Coline Jumeaux
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London London SW7 2AZ UK
| | - Eunjung Kim
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London London SW7 2AZ UK
| | - Philip D Howes
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London London SW7 2AZ UK
| | - Hyemin Kim
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London London SW7 2AZ UK
| | - Rona Chandrawati
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London London SW7 2AZ UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London London SW7 2AZ UK
| |
Collapse
|
9
|
Vybornyi M, Vyborna Y, Häner R. DNA-inspired oligomers: from oligophosphates to functional materials. Chem Soc Rev 2019; 48:4347-4360. [DOI: 10.1039/c8cs00662h] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Replacement of the natural nucleotides in DNA by non-nucleosidic building blocks leads to phosphodiester-linked oligomers with a high functional diversity.
Collapse
Affiliation(s)
- Mykhailo Vybornyi
- Laboratoire de Biochimie (LBC)
- ESPCI Paris
- PSL Research University
- CNRS UMR8231 Chimie Biologie Innovation
- 75005 Paris
| | - Yuliia Vyborna
- Sorbonne Université
- Laboratoire Jean Perrin
- 75005 Paris
- France
| | - Robert Häner
- Department of Chemistry and Biochemistry
- University of Bern
- Freiestrasse 3
- Switzerland
| |
Collapse
|
10
|
Arnott PM, Joshi H, Aksimentiev A, Howorka S. Dynamic Interactions between Lipid-Tethered DNA and Phospholipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15084-15092. [PMID: 30350681 PMCID: PMC6458106 DOI: 10.1021/acs.langmuir.8b02271] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Lipid-anchored DNA can attach functional cargo to bilayer membranes in DNA nanotechnology, synthetic biology, and cell biology research. To optimize DNA anchoring, an understanding of DNA-membrane interactions in terms of binding strength, extent, and structural dynamics is required. Here we use experiments and molecular dynamics (MD) simulations to determine how the membrane binding of cholesterol-modified DNA depends on electrostatic and steric factors involving the lipid headgroup charge, duplexed or single-stranded DNA, and the buffer composition. The experiments distinguish between free and membrane vesicle-bound DNA and thereby reveal the surface density of anchored DNA and its binding affinity, something which had previously not been known. The Kd values range from 8.5 ± 4.9 to 466 ± 134 μM whereby negatively charged headgroups led to weak binding due to the electrostatic repulsion with respect to the negatively charged DNA. Atomistic MD simulations explain the findings and elucidate the dynamic nature of anchored DNA such as the mushroom-like conformation of single-stranded DNA hovering over the bilayer surface in contrast to a straight-up conformation of double-stranded DNA. The biophysical insight into the binding strength to membranes as well as the molecular accessibility of DNA for hybridization to molecular cargo is expected to facilitate the creation of biomimetic DNA versions of natural membrane nanopores and cytoskeletons for research and nanobiotechnology.
Collapse
Affiliation(s)
- Patrick M Arnott
- Department of Chemistry, Institute of Structural and Molecular Biology , University College London , London WC1H 0AJ , United Kingdom
| | - Himanshu Joshi
- Department of Physics, and Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Aleksei Aksimentiev
- Department of Physics, and Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Stefan Howorka
- Department of Chemistry, Institute of Structural and Molecular Biology , University College London , London WC1H 0AJ , United Kingdom
| |
Collapse
|
11
|
Lee TH, Hirst DJ, Kulkarni K, Del Borgo MP, Aguilar MI. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem Rev 2018; 118:5392-5487. [PMID: 29793341 DOI: 10.1021/acs.chemrev.7b00729] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| |
Collapse
|
12
|
Jumeaux C, Wahlsten O, Block S, Kim E, Chandrawati R, Howes PD, Höök F, Stevens MM. MicroRNA Detection by DNA-Mediated Liposome Fusion. Chembiochem 2018; 19:434-438. [PMID: 29333674 PMCID: PMC5861668 DOI: 10.1002/cbic.201700592] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Indexed: 12/17/2022]
Abstract
Membrane fusion is a process of fundamental importance in biological systems that involves highly selective recognition mechanisms for the trafficking of molecular and ionic cargos. Mimicking natural membrane fusion mechanisms for the purpose of biosensor development holds great potential for amplified detection because relatively few highly discriminating targets lead to fusion and an accompanied engagement of a large payload of signal-generating molecules. In this work, sequence-specific DNA-mediated liposome fusion is used for the highly selective detection of microRNA. The detection of miR-29a, a known flu biomarker, is demonstrated down to 18 nm within 30 min with high specificity by using a standard laboratory microplate reader. Furthermore, one order of magnitude improvement in the limit of detection is demonstrated by using a novel imaging technique combined with an intensity fluctuation analysis, which is coined two-color fluorescence correlation microscopy.
Collapse
Affiliation(s)
- Coline Jumeaux
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Olov Wahlsten
- Department of PhysicsChalmers University of Technology41296GöteborgSweden
| | - Stephan Block
- Department of PhysicsChalmers University of Technology41296GöteborgSweden
- Present address: Department of Chemistry and BiochemistryFreie Universität Berlin14195BerlinGermany
| | - Eunjung Kim
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Rona Chandrawati
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
- Present address: School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| | - Philip D. Howes
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Fredrik Höök
- Department of PhysicsChalmers University of Technology41296GöteborgSweden
| | - Molly M. Stevens
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| |
Collapse
|
13
|
Avakyan N, Conway JW, Sleiman HF. Long-Range Ordering of Blunt-Ended DNA Tiles on Supported Lipid Bilayers. J Am Chem Soc 2017; 139:12027-12034. [PMID: 28783358 DOI: 10.1021/jacs.7b06572] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nicole Avakyan
- Department of Chemistry, McGill University, 801
Sherbrooke Street West, Montreal QC H3A 0B8, Canada
| | - Justin W. Conway
- Department of Chemistry, McGill University, 801
Sherbrooke Street West, Montreal QC H3A 0B8, Canada
| | - Hanadi F. Sleiman
- Department of Chemistry, McGill University, 801
Sherbrooke Street West, Montreal QC H3A 0B8, Canada
| |
Collapse
|
14
|
Wamberg MC, Pedersen PL, Löffler PMG, Albertsen AN, Maurer SE, Nielsen KA, Monnard PA. Synthesis of Lipophilic Guanine N-9 Derivatives: Membrane Anchoring of Nucleobases Tailored to Fatty Acid Vesicles. Bioconjug Chem 2017; 28:1893-1905. [PMID: 28587449 DOI: 10.1021/acs.bioconjchem.7b00228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Covalent or noncovalent surface functionalization of soft-matter structures is an important tool for tailoring their function and stability. Functionalized surfaces and nanoparticles have found numerous applications in drug delivery and diagnostics, and new functionalization chemistry is continuously being developed in the discipline of bottom-up systems chemistry. The association of polar functional molecules, e.g., molecular recognition agents, with soft-matter structures can be achieved by derivatization with alkyl chains, allowing noncovalent anchoring into amphiphilic membranes. We report the synthesis of five new guanine-N9 derivatives bearing alkyl chains with different attachment chemistries, exploiting a synthesis pathway that allows a flexible choice of hydrophobic anchor moiety. In this study, these guanine derivatives were functionalized with C10 chains for insertion into decanoic acid bilayer structures, in which both alkyl chain length and attachment chemistry determined their interaction with the membrane. Incubation of these guanine conjugates, as solids, with a decanoic acid vesicle suspension, showed that ether- and triazole-linked C10 anchors yielded an increased partitioning of the guanine derivative into the membranous phase compared to directly N-9-linked saturated alkyl anchors. Decanoic acid vesicle membranes could be loaded with up to 5.5 mol % guanine derivative, a 6-fold increase over previous limits. Thus, anchor chemistries exhibiting favorable interactions with a bilayer's hydrophilic surface can significantly increase the degree of structure functionalization.
Collapse
Affiliation(s)
- Michael C Wamberg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Pernille L Pedersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Philipp M G Löffler
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Anders N Albertsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Sarah E Maurer
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Kent A Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Pierre-Alain Monnard
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
15
|
Oligonucleotide-based recognition in colloidal systems - opportunities and challenges. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Vyborna Y, Vybornyi M, Häner R. Pathway Diversity in the Self-Assembly of DNA-Derived Bioconjugates. Bioconjug Chem 2016; 27:2755-2761. [DOI: 10.1021/acs.bioconjchem.6b00517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yuliia Vyborna
- Department
of Chemistry and Biochemistry, University of Bern, Freiestrasse
3, CH-3012 Bern, Switzerland
| | | | - Robert Häner
- Department
of Chemistry and Biochemistry, University of Bern, Freiestrasse
3, CH-3012 Bern, Switzerland
| |
Collapse
|
17
|
Slavíčková M, Pohl R, Hocek M. Additions of Thiols to 7-Vinyl-7-deazaadenine Nucleosides and Nucleotides. Synthesis of Hydrophobic Derivatives of 2'-Deoxyadenosine, dATP and DNA. J Org Chem 2016; 81:11115-11125. [PMID: 27709938 DOI: 10.1021/acs.joc.6b02098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Additions of alkyl- or arylthiols to 7-vinyl-7-deaza-2'-deoxyadenosine gave a series of 7-[2-(alkyl- or arylsulfanyl)ethyl]-7-deaza-2'-deoxyadenosines in 45-85% yields. The nucleosides were converted to 5'-O-mono-(dASRMP) or triphosphates (dASRTP) by phosphorylation. The modified triphosphates were also prepared by thiol addition to 7-vinyl-7-deaza-dATP. The triphosphates dASRTP were good substrates for DNA polymerases useful in the enzymatic synthesis of base-modified oligonucleotides (ONs) or DNA containing flexibly linked hydrophobic substituents in the major groove. Primer extension was used for the synthesis of ONs with one or several modifications, PCR was used for the synthesis of heavily modified DNA, whereas terminal deoxynucleotidyl transferase was used for a single-nucleotide labeling of the 3'-end.
Collapse
Affiliation(s)
- Michaela Slavíčková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Gilead & IOCB Research Center, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Gilead & IOCB Research Center, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Gilead & IOCB Research Center, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, Prague-2 12843, Czech Republic
| |
Collapse
|
18
|
Strenkowska M, Grzela R, Majewski M, Wnek K, Kowalska J, Lukaszewicz M, Zuberek J, Darzynkiewicz E, Kuhn AN, Sahin U, Jemielity J. Cap analogs modified with 1,2-dithiodiphosphate moiety protect mRNA from decapping and enhance its translational potential. Nucleic Acids Res 2016; 44:9578-9590. [PMID: 27903882 PMCID: PMC5175369 DOI: 10.1093/nar/gkw896] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/24/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022] Open
Abstract
Along with a growing interest in mRNA-based gene therapies, efforts are increasingly focused on reaching the full translational potential of mRNA, as a major obstacle for in vivo applications is sufficient expression of exogenously delivered mRNA. One method to overcome this limitation is chemically modifying the 7-methylguanosine cap at the 5′ end of mRNA (m7Gppp-RNA). We report a novel class of cap analogs designed as reagents for mRNA modification. The analogs carry a 1,2-dithiodiphosphate moiety at various positions along a tri- or tetraphosphate bridge, and thus are termed 2S analogs. These 2S analogs have high affinities for translation initiation factor 4E, and some exhibit remarkable resistance against the SpDcp1/2 decapping complex when introduced into RNA. mRNAs capped with 2S analogs combining these two features exhibit high translation efficiency in cultured human immature dendritic cells. These properties demonstrate that 2S analogs are potentially beneficial for mRNA-based therapies such as anti-cancer immunization.
Collapse
Affiliation(s)
- Malwina Strenkowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93 Warsaw 02-089, Poland
| | - Renata Grzela
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Maciej Majewski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93 Warsaw 02-089, Poland
| | - Katarzyna Wnek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93 Warsaw 02-089, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93 Warsaw 02-089, Poland
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93 Warsaw 02-089, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93 Warsaw 02-089, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93 Warsaw 02-089, Poland.,Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Andreas N Kuhn
- BioNTech RNA Pharmaceuticals GmbH, An der Goldgrube 12, 55131 Mainz, Germany.,Translational Oncology (TRON), Freiligrathstraße 12, 55131 Mainz, Germany
| | - Ugur Sahin
- BioNTech RNA Pharmaceuticals GmbH, An der Goldgrube 12, 55131 Mainz, Germany.,Translational Oncology (TRON), Freiligrathstraße 12, 55131 Mainz, Germany
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
19
|
Ries O, Löffler PMG, Vogel S. Convenient synthesis and application of versatile nucleic acid lipid membrane anchors in the assembly and fusion of liposomes. Org Biomol Chem 2016; 13:9673-80. [PMID: 26264076 DOI: 10.1039/c5ob01207d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hydrophobic moieties like lipid membrane anchors are highly demanded modifications for nucleic acid oligomers. Membrane-anchor modified oligonucleotides are applicable in biomedicine leading to new delivery strategies as well as in biophysical investigations towards the assembly and fusion of liposomes or the construction of DNA origami structures. We present herein the synthesis and applications of versatile lipid membrane anchor building blocks suitable for solid-supported oligonucleotide synthesis. These are readily synthesized in bulk in five to seven steps from commercially available precursors and can be incorporated at any position within an oligonucleotide without significantly altering the duplex stability and structure as was proven by thermal denaturation experiments and circular dichroism. Furthermore, their applicability could be demonstrated by the assembly and fusion of liposomes mediated by lipid-modified oligonucleotides.
Collapse
Affiliation(s)
- Oliver Ries
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy, Campusvej 55, 5230 Odense M, Denmark.
| | | | | |
Collapse
|
20
|
Losensky L, Goldenbogen B, Holland G, Laue M, Petran A, Liebscher J, Scheidt HA, Vogel A, Huster D, Klipp E, Arbuzova A. Micro- and nano-tubules built from loosely and tightly rolled up thin sheets. Phys Chem Chem Phys 2016; 18:1292-301. [PMID: 26659839 DOI: 10.1039/c5cp06084b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tubular structures built from amphiphilic molecules are of interest for nano-sensing, drug delivery, and structuring of oils. In this study, we characterized the tubules built in aqueous suspensions of a cholesteryl nucleoside conjugate, cholesterylaminouridine (CholAU) and phosphatidylcholines (PCs). In mixtures with unsaturated PCs having chain lengths comparable to the length of CholAU, two different types of tubular structures were observed; nano- and micro-tubules had average diameters in the ranges 50-300 nm and 2-3 μm, respectively. Using cryo scanning electron microscopy (cryo-SEM) we found that nano- and micro-tubules differed in their morphology: the nano-tubules were densely packed, whereas micro-tubules consisted of loosely rolled undulated lamellas. Atomic force microscopy (AFM) revealed that the nano-tubules were built from 4 to 5 nm thick CholAU-rich bilayers, which were in the crystalline state. Solid-state (2)H NMR spectroscopy also confirmed that about 25% of the total CholAU, being about the fraction of CholAU composing the tubules, formed the rigid crystalline phase. We found that CholAU/PC tubules can be functionalized by molecules inserted into lipid bilayers and fluorescently labeled PCs and lipophilic nucleic acids inserted spontaneously into the outer layer of the tubules. The tubular structures could be loaded and cross-linked, e.g. by DNA hybrids, and, therefore, are of interest for further development, e.g. as a depot scaffold for tissue regeneration.
Collapse
Affiliation(s)
- Luisa Losensky
- Molecular Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany.
| | - Björn Goldenbogen
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Gudrun Holland
- Robert Koch Institute, ZBS 4, Seestr. 10, 13353 Berlin, Germany
| | - Michael Laue
- Robert Koch Institute, ZBS 4, Seestr. 10, 13353 Berlin, Germany
| | - Anca Petran
- National Institute of Research and Development for Isotopic and Molecular Technologies, Donat 67-103, RO-400293 Cluj-Napoca, Romania
| | - Jürgen Liebscher
- National Institute of Research and Development for Isotopic and Molecular Technologies, Donat 67-103, RO-400293 Cluj-Napoca, Romania
| | - Holger A Scheidt
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Alexander Vogel
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Edda Klipp
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Anna Arbuzova
- Molecular Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany.
| |
Collapse
|
21
|
Polyamine-oligonucleotide conjugates: a promising direction for nucleic acid tools and therapeutics. Future Med Chem 2015; 7:1733-49. [PMID: 26424049 DOI: 10.4155/fmc.15.90] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chemical modification and/or the conjugation of small functional molecules to oligonucleotides have significantly improved their biological and biophysical properties, addressing issues such as poor cell penetration, stability to nucleases and low affinity for their targets. Here, the authors review the literature reporting on the biophysical, biochemical and biological properties of one particular class of modification - polyamine-oligonucleotide conjugates. Naturally derived and synthetic polyamines have been grafted onto a variety of oligonucleotide formats, including antisense oligonucleotides and siRNAs. In many cases this has had beneficial effects on their properties such as target hybridization, nuclease resistance, cellular uptake and activity. Polyamine-oligonucleotide conjugation, therefore, represents a promising direction for the further development of oligonucleotide-based therapeutics and tools.
Collapse
|
22
|
Sarett SM, Kilchrist KV, Miteva M, Duvall CL. Conjugation of palmitic acid improves potency and longevity of siRNA delivered via endosomolytic polymer nanoparticles. J Biomed Mater Res A 2015; 103:3107-16. [PMID: 25641816 PMCID: PMC4520743 DOI: 10.1002/jbm.a.35413] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 02/06/2023]
Abstract
Clinical translation of siRNA therapeutics has been limited by the inability to effectively overcome the rigorous delivery barriers associated with intracellular-acting biologics. Here, to address both potency and longevity of siRNA gene silencing, pH-responsive micellar nanoparticle (NP) carriers loaded with siRNA conjugated to palmitic acid (siRNA-PA) were investigated as a combined approach to improve siRNA endosomal escape and stability. Conjugation to hydrophobic PA improved NP loading efficiency relative to unmodified siRNA, enabling complete packaging of siRNA-PA at a lower polymer:siRNA ratio. PA conjugation also increased intracellular uptake of the nucleic acid cargo by 35-fold and produced a 3.1-fold increase in intracellular half-life. The higher uptake and improved retention of siRNA-PA NPs correlated to a 2- and 11-fold decrease in gene silencing IC50 in comparison to siRNA NPs in fibroblasts and mesenchymal stem cells, respectively, for both the model gene luciferase and the therapeutically relevant gene prolyl hydroxylase domain protein 2 (PHD2) . PA conjugation also significantly increased longevity of silencing activity following a single treatment in fibroblasts. Thus, conjugation of PA to siRNA paired with endosomolytic NPs is a promising approach to enhance the functional efficacy of siRNA in tissue regenerative and other applications.
Collapse
Affiliation(s)
| | | | - Martina Miteva
- Vanderbilt University Department of Biomedical Engineering
| | | |
Collapse
|
23
|
Werz E, Rosemeyer H. Terminal lipophilization of a unique DNA dodecamer by various nucleolipid headgroups: Their incorporation into artificial lipid bilayers and hydrodynamic properties. Beilstein J Org Chem 2015; 11:913-29. [PMID: 26124894 PMCID: PMC4464448 DOI: 10.3762/bjoc.11.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/08/2015] [Indexed: 01/01/2023] Open
Abstract
A series of six cyanine-5-labeled oligonucleotides (LONs 10-15), each terminally lipophilized with different nucleolipid head groups, were synthesized using the recently prepared phosphoramidites 4b-9b. The insertion of the LONs within an artificial lipid bilayer, composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), was studied by single molecule fluorescence spectroscopy and microscopy with the help of an optically transparent microfluidic sample carrier with perfusion capabilities. The incorporation of the lipo-oligonucleotides into the bilayer was studied with respect to efficiency (maximal bilayer brightness) as well as stability against perfusion (final stable bilayer brightness). Attempts to correlate these parameters with the log P values of the corresponding nucleolipid head groups failed, a result which clearly demonstrates that not only the lipophilicity but mainly the chemical structure and topology of the head group is of decisive importance for the optimal interaction of a lipo-oligonucleotide with an artificial lipid bilayer. Moreover, fluorescence half-live and diffusion time values were measured to determine the diffusion coefficients of the lipo-oligonucleotides.
Collapse
Affiliation(s)
- Emma Werz
- Organic Chemistry I - Bioorganic Chemistry, Institute of Chemistry of New Materials, University of Osnabrück, Barbarastr. 7, 49069 Osnabrück, Germany ; Ionovation GmbH, Westerbreite 7, 49078 Osnabrück, Germany
| | - Helmut Rosemeyer
- Organic Chemistry I - Bioorganic Chemistry, Institute of Chemistry of New Materials, University of Osnabrück, Barbarastr. 7, 49069 Osnabrück, Germany
| |
Collapse
|
24
|
Vyborna Y, Vybornyi M, Rudnev AV, Häner R. DNA-Grafted Supramolecular Polymers: Helical Ribbon Structures Formed by Self-Assembly of Pyrene-DNA Chimeric Oligomers. Angew Chem Int Ed Engl 2015; 54:7934-8. [DOI: 10.1002/anie.201502066] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 03/31/2015] [Indexed: 12/31/2022]
|
25
|
Vyborna Y, Vybornyi M, Rudnev AV, Häner R. DNA-Grafted Supramolecular Polymers: Helical Ribbon Structures Formed by Self-Assembly of Pyrene-DNA Chimeric Oligomers. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Czogalla A, Kauert DJ, Franquelim HG, Uzunova V, Zhang Y, Seidel R, Schwille P. Amphipathic DNA Origami Nanoparticles to Scaffold and Deform Lipid Membrane Vesicles. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Czogalla A, Kauert DJ, Franquelim HG, Uzunova V, Zhang Y, Seidel R, Schwille P. Amphipathic DNA origami nanoparticles to scaffold and deform lipid membrane vesicles. Angew Chem Int Ed Engl 2015; 54:6501-5. [PMID: 25882792 DOI: 10.1002/anie.201501173] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/13/2015] [Indexed: 01/20/2023]
Abstract
We report a synthetic biology-inspired approach for the engineering of amphipathic DNA origami structures as membrane-scaffolding tools. The structures have a flat membrane-binding interface decorated with cholesterol-derived anchors. Sticky oligonucleotide overhangs on their side facets enable lateral interactions leading to the formation of ordered arrays on the membrane. Such a tight and regular arrangement makes our DNA origami capable of deforming free-standing lipid membranes, mimicking the biological activity of coat-forming proteins, for example, from the I-/F-BAR family.
Collapse
Affiliation(s)
- Aleksander Czogalla
- Biotechnology Center of the TU Dresden, Tatzberg 47/51, 01307 Dresden (Germany).,Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław ul. F. Joliot-Curie 14a, 50383 Wrocław (Poland)
| | - Dominik J Kauert
- Institute for Molecular Cell Biology, University of Münster, Schlossplatz 5, 48149 Münster (Germany)
| | - Henri G Franquelim
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried (Germany) http://www.biochem.mpg.de/en/rd/schwille/
| | - Veselina Uzunova
- B CUBE-Center for Molecular Bioengineering, Dresden, University of Technology, Arnoldstraße 18, 01307 Dresden (Germany)
| | - Yixin Zhang
- B CUBE-Center for Molecular Bioengineering, Dresden, University of Technology, Arnoldstraße 18, 01307 Dresden (Germany)
| | - Ralf Seidel
- Institute for Molecular Cell Biology, University of Münster, Schlossplatz 5, 48149 Münster (Germany)
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried (Germany) http://www.biochem.mpg.de/en/rd/schwille/.
| |
Collapse
|
28
|
Peterson AM, Heemstra JM. Controlling self‐assembly of
DNA
‐polymer conjugates for applications in imaging and drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:282-97. [DOI: 10.1002/wnan.1309] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/18/2014] [Accepted: 09/16/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Amberlyn M. Peterson
- Department of Chemistry and the Center for Cell and Genome ScienceUniversity of UtahSalt Lake CityUTUSA
| | - Jennifer M. Heemstra
- Department of Chemistry and the Center for Cell and Genome ScienceUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
29
|
van der Meulen SAJ, Dubacheva GV, Dogterom M, Richter RP, Leunissen ME. Quartz crystal microbalance with dissipation monitoring and spectroscopic ellipsometry measurements of the phospholipid bilayer anchoring stability and kinetics of hydrophobically modified DNA oligonucleotides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6525-33. [PMID: 24823835 DOI: 10.1021/la500940a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Decorating lipid bilayers with oligonucleotides has great potential for both fundamental studies and applications, taking advantage of the membrane properties and the specific Watson-Crick base pairing. Here, we systematically studied the binding of DNA oligonucleotides with the frequently used hydrophobic anchors cholesterol, stearyl, and distearyl to supported lipid bilayers made of dioleoylphosphatidylcholine (DOPC) by quartz crystal microbalance with dissipation monitoring and spectroscopic ellipsometry (SE). All three anchors were found to incorporate well into DOPC lipid membranes, yet only the distearyl-based anchor remained stable in the bilayer when it was rinsed. The unstable anchoring of the cholesterol- and stearyl-based oligonucleotides can, however, be stabilized by hybridization of the oligonucleotides to complementary DNA modified with a second hydrophobic anchor of the same type. In all cases, the incorporation into the lipid bilayer was found to be limited by mass transport, although micelle formation likely reduced the effective concentration of available oligonucleotides in some samples, leading to substantial differences in binding rates. Using a viscoelastic model to determine the thickness of the DNA layer and elucidating the surface coverage by SE, we found that at equal bulk concentrations double-stranded DNA constructs attached to the lipid bilayer establish a layer that is thicker than that of single-stranded oligonucleotides, whereas the DNA surface densities are similar. Shortening the length of the oligonucleotides, on the other hand, does alter both the thickness and surface density of the DNA layer. This indicates that at the bulk oligonucleotide concentrations employed in our experiments, the packing of the oligonucleotides is not affected by the anchor type, but rather by the length of the DNA. The results are useful for material and biomedical applications that require efficient linking of oligonucleotides to lipid membranes.
Collapse
|
30
|
Gissot A, Oumzil K, Patwa A, Barthélémy P. A hybrid lipid oligonucleotide: a versatile tool for supramolecular chemistry. NEW J CHEM 2014. [DOI: 10.1039/c4nj00850b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipid oligonucleotides (LONs) self-assemble into supramolecular structures. This property has an impact on the biological effects of the oligonucleotide sequences.
Collapse
Affiliation(s)
- Arnaud Gissot
- INSERM U869
- Bordeaux, France
- Université de Bordeaux
- Bordeaux, France
| | - Khalid Oumzil
- INSERM U869
- Bordeaux, France
- Université de Bordeaux
- Bordeaux, France
| | - Amit Patwa
- INSERM U869
- Bordeaux, France
- Université de Bordeaux
- Bordeaux, France
| | | |
Collapse
|
31
|
Sandin P, Bombelli FB, Castroflorio B, Müller C, Obermeier J, Karlsson G, Edwards K, Baglioni P, Berti D. Diastereoselective self-assembly of clofarabine lipids. NEW J CHEM 2014. [DOI: 10.1039/c4nj00856a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clofarabine lipids form superstructures via diastereoselective self-assembly.
Collapse
Affiliation(s)
- Peter Sandin
- Department of Chemistry
- University of Florence and CSGI
- 50019 Florence, Italy
- Department of Chemistry - BMC
- Uppsala University
| | - Francesca Baldelli Bombelli
- Department of Chemistry
- University of Florence and CSGI
- 50019 Florence, Italy
- Centro Europeo di Nanomedicina c/o Dipartimento di Chimica
- Materiali e Ingegneria Chimica G. Natta
| | | | | | | | - Göran Karlsson
- Department of Physical and Analytical Chemistry
- Uppsala University
- S-75123 Uppsala, Sweden
| | - Katarina Edwards
- Department of Physical and Analytical Chemistry
- Uppsala University
- S-75123 Uppsala, Sweden
| | - Piero Baglioni
- Department of Chemistry
- University of Florence and CSGI
- 50019 Florence, Italy
| | - Debora Berti
- Department of Chemistry
- University of Florence and CSGI
- 50019 Florence, Italy
| |
Collapse
|
32
|
Serien D, Grimm C, Liebscher J, Herrmann A, Arbuzova A. DNA-controlled aggregation of virus like particles – mimicking a tetherin-like mechanism. NEW J CHEM 2014. [DOI: 10.1039/c4nj00724g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Lipophilic DNA with two α-tocopherol anchors, mimicking tetherin, a cell protein reducing spreading of viruses, induces aggregation of virus-like particles.
Collapse
Affiliation(s)
- Daniela Serien
- Humboldt-Universität zu Berlin
- Institut für Biologie
- 10115 Berlin, Germany
- The University of Tokyo
- Institute of Industrial Science
| | - Christiane Grimm
- Humboldt-Universität zu Berlin
- Institut für Biologie
- 10115 Berlin, Germany
| | - Jürgen Liebscher
- Humboldt-Universität zu Berlin
- Institut für Chemie
- 12489 Berlin, Germany
- National Institute of Research and Development for Isotopic and Molecular Technologies
- Cluj-Napoca, Romania
| | - Andreas Herrmann
- Humboldt-Universität zu Berlin
- Institut für Biologie
- 10115 Berlin, Germany
| | - Anna Arbuzova
- Humboldt-Universität zu Berlin
- Institut für Biologie
- 10115 Berlin, Germany
| |
Collapse
|