1
|
Wu X, Lu Q, Zhu S, Tang S, Li Y, Ma L, Ming X, Jiang W, Wu Z, Hu J, Huang X, Huang J, Hu J, Zhang Y, Zang G. An innovative electrophoresis-coupled electrochemiluminescence immunosensor for rapid and sensitive detection of carcinoembryonic antigen. Biosens Bioelectron 2025; 286:117595. [PMID: 40418863 DOI: 10.1016/j.bios.2025.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/27/2025] [Accepted: 05/16/2025] [Indexed: 05/28/2025]
Abstract
Electrochemiluminescence (ECL) immunosensor provides unique advantages for the sensitive biomarker detection. However, the lengthy detection duration and plentiful system interferences have hindered their development. Here, we present an innovative approach in which electrophoresis coupled with ECL immunoassay was implemented to construct an electric field-enhanced ECL immunosensor for efficient detection of carcinoembryonic antigen (CEA). The electrophoresis device can be regarded as an electric field-driven incubation system, with a working electrode as the anode and a platinum disk as the cathode. Upon applying direct voltage, CEA was swiftly transported to the electrode surface via an upward electric field force, drastically cutting the CEA incubation time from 60 min to just 5 min-a 12-fold reduction compared to traditional methods. Our method also achieved a broad linear detection range from 10-2 to 104 pg/mL, with a lower detection limit of 2.33 fg/mL. Additionally, we utilized the COMSOL Multiphysics-based numerical model and substantial experiment results, demonstrating that the incorporation of an electrophoresis system has allowed for rapid detection with high sensitivity, thereby boosting the overall efficiency of the ECL immunosensor. This study underscores the potential of the electric field-enhanced ECL immunosensor for broad application in the biodetection field.
Collapse
Affiliation(s)
- Xiaoting Wu
- Western Institute of Digital-Intelligent Medicine, Chongqing Medical University, Chongqing, 400016, China; Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Qing Lu
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shu Zhu
- Western Institute of Digital-Intelligent Medicine, Chongqing Medical University, Chongqing, 400016, China; Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Shengnan Tang
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yusha Li
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Lei Ma
- The ChenJiaqiao Hospital of ShaPingba District of Chongqing City, Chongqing, 400030, China
| | - Xiaoqing Ming
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Jiang
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Zhanghong Wu
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Jinying Hu
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaorui Huang
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Huang
- Nanjing HengQiao Instruments Co.,Ltd, Nanjing, 210000, China
| | - Jianjun Hu
- Department of Pathology, Guizhou Provincical People's Hospital, Guizhou, 550002, China.
| | - Yuchan Zhang
- Western Institute of Digital-Intelligent Medicine, Chongqing Medical University, Chongqing, 400016, China; Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Guangchao Zang
- Western Institute of Digital-Intelligent Medicine, Chongqing Medical University, Chongqing, 400016, China; Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China; Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
2
|
Obijiofor OC, Novikov AS. Exploring the role of density functional theory in the design of gold nanoparticles for targeted drug delivery: a systematic review. J Mol Model 2025; 31:186. [PMID: 40493107 DOI: 10.1007/s00894-025-06405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2025] [Accepted: 05/20/2025] [Indexed: 06/12/2025]
Abstract
CONTEXT Targeted drug delivery systems leveraging gold nanoparticles (AuNPs) demand precise atomic-level design to overcome current limitations in drug-loading efficiency and controlled release. Unlike previous focused reviews, this systematic analysis compares density functional theory's (DFT) performance across multiple AuNP design challenges, including drug interactions, surface functionalization, and stimuli-responsive behaviors. DFT predicts binding energies with ~ 0.1 eV accuracy and elucidates electronic properties of AuNP-drug complexes, critical for optimizing drug delivery. For example, B3LYP-D3/LANL2DZ calculations predict a - 0.58 eV binding energy for thioabiraterone, ensuring stable chemisorption via sulfur-Au bonds, as validated by experimental binding assays. However, high computational costs restrict its application to large biomolecular systems. Emerging hybrid machine learning (ML)/DFT approaches address scalability while preserving quantum-mechanical accuracy, reducing computational costs from ~ 106 to ~ 103 CPU h for a 50 nm AuNP, positioning hybrid ML/DFT as a transformative approach for next-generation nanomedicine. METHODS This systematic evaluation covers DFT approaches including gradient-corrected (PBE), hybrid (B3LYP), and meta-GGA (M06-L) functionals, using relativistic basis sets (e.g., LANL2DZ) for Au atoms and polarized sets (e.g., 6-31G(d)) for organic ligands. Solvent effects are modeled via implicit (SMD) or explicit approaches. Time-dependent DFT (TD-DFT) analyzes localized surface plasmon resonance and frontier molecular orbitals. Multiscale approaches integrate DFT with molecular dynamics (MD) and machine learning interatomic potentials (MLIPs) to model extended systems, enabling simulations of AuNP-protein interactions for systems up to 105 atoms with ~ 0.2 eV accuracy.
Collapse
Affiliation(s)
| | - Alexander S Novikov
- Infochemistry Scientific Center, ITMO University, St. Petersburg, 191002, Russia.
- Institute of Chemistry, Saint Petersburg State University, St. Petersburg, 199034, Russia.
- Research Institute of Chemistry, Peoples' Friendship University of Russia, 117198, Moscow, Russia.
| |
Collapse
|
3
|
Tabassum N, Khan F, Jeong GJ, Oh DK, Kim YM. Enhanced bioavailability and improved antimicrobial, antibiofilm, and antivirulence activities of fish gelatin-based nanoformulations prepared by coating of maltol-gold nanoparticles. CHEMOSPHERE 2025; 379:144439. [PMID: 40288216 DOI: 10.1016/j.chemosphere.2025.144439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Biofilm formation by a single and multiple microbial species poses a significant challenge to healthcare due to biofilm-related antibiotic resistance. This study aimed to develop a nanoformulation (Mal-AuNP-Gel) by synthesizing gold nanoparticles (AuNPs) with maltol (Mal), and coating them with fish gelatin (Gel) to reduce biofilm formation and virulence characteristics of microbial pathogens. Mal-AuNP-Gel showed increased antibacterial activity against all pathogens studied, including bacterial (Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, Listeria monocytogenes, Escherichia coli, and methicillin-resistant S. aureus) and fungal pathogens (e.g., Candida albicans), with MICs up to 2-fold lower than those of Mal-AuNPs. At the sub-MIC level, Mal-AuNPs-Gel, compared to Mal-AuNPs, improved the inhibition of initial-stage biofilm development by a single species of P. aeruginosa, S. aureus, and C. albicans as well as the mixed-species biofilm of S. aureus and C. albicans. Additionally, these nanoparticles significantly inhibited several virulence characteristics such as hemolysis, pyoverdine and pyocyanin production, protease activity, and motility of P. aeruginosa. Furthermore, the expression of genes associated with biofilm formation, quorum sensing, motility, and virulence factors in P. aeruginosa was found to be suppressed by Mal-AuNPs-Gel at a higher level than that of Mal-AuNPs, corroborating the phenotypic effects. The non-cytotoxic effects of Mal-AuNPs and Mal-AuNPs-Gel at sub-MIC levels, as evidenced by results of in vitro cell cytotoxicity and in vivo phytotoxicity tests, further indicated biocompatibility of the synthesized nanoparticles.
Collapse
Affiliation(s)
- Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan, 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea; Interdisciplinary Program of Marine and Fisheries Sciences and Convergent Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Geum-Jae Jeong
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Do Kyung Oh
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
4
|
Dong J, Zhang J, Yao K, Xu X, Zhou Y, Zhang L, Qin C. Exploring necroptosis: mechanistic analysis and antitumor potential of nanomaterials. Cell Death Discov 2025; 11:211. [PMID: 40301325 PMCID: PMC12041361 DOI: 10.1038/s41420-025-02423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 05/01/2025] Open
Abstract
Necroptosis, a non-apoptotic mode of programmed cell death, is characterized by the disintegration of the plasma membrane, ultimately leading to cell perforation and rupture. Recent studies have disclosed the mechanism of necroptosis and its intimate link with nanomaterials. Nanomedicine represents a novel approach in the development of therapeutic agents utilizing nanomaterials to treat a range of cancers with high efficacy. This article provides an overview of the primary mechanism behind necroptosis, the current research progress in nanomaterials, their potential use in various diseases-notably cancer, safety precautions, and prospects. The goal is to aid in the development of nanomaterials for cancer treatment.
Collapse
Affiliation(s)
- Jiaheng Dong
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Jiale Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Kunhou Yao
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475004, China
| | - Xiao Xu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Yaqi Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Lei Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475004, China.
| | - Changjiang Qin
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475004, China.
| |
Collapse
|
5
|
Wang L, Kulthinee S, Yano N, Wen H, Zhang LX, Saleeba ZSSL, Jin N, Chen O, Zhao TC. Gold nanoparticles-conjugation of irisin enhances therapeutic effect by improving cardiac function and attenuating inflammation in sepsis. Mol Divers 2025; 29:1557-1568. [PMID: 39026117 PMCID: PMC11924206 DOI: 10.1007/s11030-024-10933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Irisin is considered to be a promising therapeutic approach for cardiac depression and inflammatory disorders. The short half-life of irisin impeded its use and drug efficacy in the treatment. This study aimed to examine if pegylated gold nanoparticles-conjugated to irisin would improve therapeutic effects in cecal ligation and puncture (CLP)-induced sepsis in mice. Recombinant irisin were conjugated to a pegylated gold nanoparticle, which was given to mice exposed to CLP. The cecal ligation procedure and sham on mice were operated and assigned to one of following five groups: (I) CLP group: The mouse models underwent the CLP surgical procedure and received only vehicle saline treatment (n = 5); (II) CLP + soluble Irisin: The mouse underwent the CLP and received an intramuscular injection (i.m) (TA) injection of 1 ug of soluble irisin into each tibialis anterior (TA) leg (n = 5); (III) CLP + Gold nanoparticle-conjugated to Irisin: The mouse models underwent the CLP and received an i.m (TA) injection of 1 µg of Gold nanoparticle-irisin via intramuscular injection (TA) into each leg (n = 5); (IV) CLP + Gold nanoparticles- conjugated to IgG: The mouse underwent the CLP and received an i.m (TA) injection of gold nanoparticles conjugated to IgG (n = 5). (V) Sham: The mouse underwent the surgical operation without conducting the CLP (n = 10). The post-operated animals were observed for one week, and survival rates were estimated. Echocardiography was performed to measure cardiac function at 12 h following CLP. TUNEL was employed to detect apoptosis in both cardiac and skeletal muscles; histology was conducted to assess tissue injury in muscles. Enzyme linked immunosorbent assay (ELISA) was conducted to examine release of interleukin 6 (IL6) and the tumor necrosis factor (TNF) alpha. Compared to the CLP control, soluble irisin treatment improved cardiac function recovery, as indicated by the fractional shortening (FS) and ejection fraction (EF). Irisin treatment exhibited reduced IL6 and TNF-alpha release in association with less apoptosis, lower muscle injury index and improved survival post-CLP. However, compared to soluble irisin treatment, gold nanoparticles-conjugated to irisin showed a significant improvement in cardiac function, suppression of apoptosis, reduced IL6 and TNF-alpha releases, decreased muscle injury and an improved survival rate of post-CLP. This study reveals that gold nanoparticles-conjugated irisin can serve to improve irisin's therapeutic effects over a longer course of treatment.
Collapse
Affiliation(s)
- Lijiang Wang
- Department of Surgery and Department of Plastic Surgery, Rhode Island Hospital, Brown University, Providence, RI, 02903, USA
| | - Supaporn Kulthinee
- Department of Surgery and Department of Plastic Surgery, Rhode Island Hospital, Brown University, Providence, RI, 02903, USA
| | - Nahiro Yano
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Huai Wen
- Department of Surgery and Department of Plastic Surgery, Rhode Island Hospital, Brown University, Providence, RI, 02903, USA
| | - Ling X Zhang
- Department of Biomedical Engineering, Department of Plastic Surgery, Rhode Island Hospital, Brown University, Providence, RI, USA
| | | | - Na Jin
- Department of Chemistry, Brown University, Providence, Rhode Island, 02912, USA
| | - Ou Chen
- Department of Chemistry, Brown University, Providence, Rhode Island, 02912, USA
| | - Ting C Zhao
- Department of Surgery and Department of Plastic Surgery, Rhode Island Hospital, Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
6
|
Xie H, Zhu X, Chen K, Zhang Z, Liu J, Wang W, Wan C, Wang J, Peng D, Li Y, Chen P, Liu BF. Freeze-Thaw Imaging for Microorganism Classification Assisted with Artificial Intelligence. ACS NANO 2025; 19:8162-8175. [PMID: 39972564 DOI: 10.1021/acsnano.4c16949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Fast and cost-effective microbial classification is crucial for clinical diagnosis, environmental monitoring, and food safety. However, traditional methods encounter challenges including intricate procedures, skilled personnel needs, and sophisticated instrumentations. Here, we propose a cost-effective microbe classification system, also termed freeze-thaw-induced floating pattern of AuNPs (FTFPA), coupled with artificial intelligence, which is capable of identifying microbes at a cost of $0.0023 per sample. Specifically, FTFPA utilizes AuNPs for coincubation with microbes, resulting in distinct patterns upon freeze-thawing due to their weak interaction. These patterns are digitized to train models that distinguish nine microbes in various tasks. The positive sample detection model achieved an F1 score of 0.976 (n = 194), while the multispecies classification task reached a macro F1 score of 0.859 (n = 1728). To address scalability and lightweight requirements across diverse classification scenarios, we categorized microbes based on species classification levels. The macro F1 score of the hierarchical model (n = 5184), order level model (n = 5184), Enterobacteriales level model (n = 2550), and Bacillales level model (n = 1974) was 0.854, 0.907, 0.958, and 0.843. In summary, our method is user-friendly, requiring only simple equipment, is easy to operate, and convenient, providing a platform for microbial identification.
Collapse
Affiliation(s)
- Han Xie
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xubin Zhu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kaiyu Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhilin Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinzhi Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - WenHui Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jieqing Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Di Peng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
7
|
Chen A, Gong Y, Wu S, Du Y, Liu Z, Jiang Y, Li J, Miao YB. Navigating a challenging path: precision disease treatment with tailored oral nano-armor-probiotics. J Nanobiotechnology 2025; 23:72. [PMID: 39893419 PMCID: PMC11786591 DOI: 10.1186/s12951-025-03141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/19/2025] [Indexed: 02/04/2025] Open
Abstract
Oral probiotics have significant potential for preventing and treating many diseases. Yet, their efficacy is often hindered by challenges related to survival and colonization within the gastrointestinal tract. Nanoparticles emerge as a transformative solution, offering robust protection and enhancing the stability and bioavailability of these probiotics. This review explores the innovative application of nanoparticle-armored engineered probiotics for precise disease treatment, specifically addressing the physiological barriers associated with oral administration. A comprehensive evaluation of various nano-armor probiotics and encapsulation methods is provided, carefully analyzing their respective merits and limitations, alongside strategies to enhance probiotic survival and achieve targeted delivery and colonization within the gastrointestinal tract. Furthermore, the review explores the potential clinical applications of nano-armored probiotics in precision therapeutics, critically addressing safety and regulatory considerations, and proposing the innovative concept of 'probiotic intestinal colonization with nano armor' for brain-targeted therapies. Ultimately, this review aspires to guide the advancement of nano-armored probiotic therapies, driving progress in precision medicine and paving the way for groundbreaking treatment modalities.
Collapse
Affiliation(s)
- Anmei Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Ying Gong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Shaoquan Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Ye Du
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Zhijun Liu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China.
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China.
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China.
| |
Collapse
|
8
|
Botteon CA, Pereira ADES, de Castro LP, Justino IA, Fraceto LF, Bastos JK, Marcato PD. Toxicity Assessment of Biogenic Gold Nanoparticles on Crop Seeds and Zebrafish Embryos: Implications for Agricultural and Aquatic Ecosystems. ACS OMEGA 2025; 10:1032-1046. [PMID: 39829554 PMCID: PMC11740149 DOI: 10.1021/acsomega.4c08287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
The demand for food production has been growing exponentially due to the increase in the global population. Innovative approaches to enhance agricultural productivity have been explored, including the new applications of nanoparticles in agriculture. The nanoparticle application in agriculture can generate environmental and human health risks since nanoparticles can contaminate the soil and inevitably reach groundwater, potentially causing toxicity in aquatic organisms. In this study, we evaluated the benefits and toxicity of gold nanoparticles (GNPs), synthesized via green chemistry, on the growth of cultivated plants and in the zebrafish embryo model. GNPs were synthesized through an economical and environmentally friendly method using Brazilian red propolis (BRP) extract (BRP-GNPs). BRP-GNPs exhibited negative and positive effects on plant germination, depending on the concentration tested and the plant species involved. Moreover, BRP-GNPs induced developmental toxicity in fish embryos in a dose-dependent manner. Our results provide valuable insights for assessing the environmental risks of biogenic GNPs.
Collapse
Affiliation(s)
- Caroline
E. A. Botteon
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14440-903, Brazil
| | | | - Larissa P. de Castro
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14440-903, Brazil
| | - Isabela A. Justino
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14440-903, Brazil
| | - Leonardo F. Fraceto
- Institute
of Science and Technology, São Paulo
State University, Sorocaba 18087-180, Brazil
| | - Jairo K. Bastos
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14440-903, Brazil
| | - Priscyla D. Marcato
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14440-903, Brazil
| |
Collapse
|
9
|
Hladun C, Beyer M, Paliakkara J, Othman A, Bou-Abdallah F. A simple and highly sensitive colorimetric assay for the visual detection of lead and chromium using ascorbic acid capped gold nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 17:15-25. [PMID: 39564666 DOI: 10.1039/d4ay01924e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Lead (Pb2+) and hexavalent chromium (Cr6+) are highly toxic pollutants with no safe exposure levels, posing significant health risks globally, especially in developing countries. Current detection methods for these metals are often complex and inaccessible, highlighting the urgent need for innovative approaches. In this study, we present a rapid, cost-effective colorimetric assay utilizing ascorbic acid-capped gold nanoparticles (AuNPs) for the selective detection of Pb2+ and Cr3+/6+ ions at levels recommended by regulatory bodies such as the WHO and EPA. The synthesis of our AuNPs was achieved by reducing gold(III) chloride with ascorbic acid, resulting in stable, negatively charged nanoparticles, as characterized by dynamic light scattering, UV-vis spectroscopy and high-resolution transmission electron microscopy. Our method demonstrated high sensitivity, with limits of detection (LOD) of 5.4 ± 0.25 ppb for Pb2+, and 6.3 ± 0.23 ppb for Cr6+, confirming specificity towards these ions in various water samples. The assay's efficacy was validated in real-world applications, including testing drinking water from multiple sources and assessing the performance of filtration systems. This straightforward assay offers a promising tool for monitoring water quality, enhancing public health initiatives and accessibility to critical environmental testing.
Collapse
Affiliation(s)
- Colby Hladun
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| | - Maximilian Beyer
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| | - John Paliakkara
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| | - Ali Othman
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| |
Collapse
|
10
|
Sayed ZS, Hieba EM, Batakoushy HA, Rashdan HRM, Ismail E, Elkatlawy SM, Elzwawy A. Cancer treatment approaches within the frame of hyperthermia, drug delivery systems, and biosensors: concepts and future potentials. RSC Adv 2024; 14:39297-39324. [PMID: 39670162 PMCID: PMC11635600 DOI: 10.1039/d4ra06992g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
This work presents a review of the therapeutic modalities and approaches for cancer treatment. A brief overview of the traditional treatment routes is presented in the introduction together with their reported side effects. A combination of the traditional approaches was reported to demonstrate an effective therapy until a few decades ago. With the improvement in the fabrication of nanomaterials, targeted therapy represents a novel therapeutic approach. This improvement established on nanoparticles is categorized into hyperthermia, drug delivery systems, and biosensors. Hyperthermia presents a personalized medicine-based approach in which targeted zones are heated up until the diseased tissue is destroyed by the thermal effect. The use of magnetic nanoparticles further improved the effectiveness of hyperthermia owing to the enhanced heating action, further increasing the accuracy of the targeting process. Nanoparticle-based biosensors present a smart nanodevice that can detect, monitor, and target tumor tissues by following the biomarkers in the body fluids. Magnetic nanoparticles offer a controlled thermo-responsive device that can be manipulated by changing the magnetic field, offering a more personalized and controlled hyperthermia therapeutic modality. Similarly, gold nanoparticles offer an effective aid in the hyperthermia treatment approach. Furthermore, carbon nanotubes and metal-organic frameworks present a cutting-edge approach to cancer treatment. A combination of functionalized nanoparticles offers a unique route for drug delivery systems, in which therapeutic agents carried by nanoparticles are guided into the human body and then released in the target spot.
Collapse
Affiliation(s)
- Zeinab S Sayed
- Faculty of Applied Medical Science, Misr University for Science and Technology (MUST) Giza Egypt
| | - Eman M Hieba
- Chemistry and Entomology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Hany A Batakoushy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University Shebin Elkom 32511 Egypt
| | - Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El Buhouth St., Dokki Giza 12622 Egypt
| | - Enas Ismail
- Department of Prosthodontics, Faculty of Dentistry, University of the Western Cape Cape Town 7505 South Africa
- Physics Department, Faculty of Science (Girl's Branch), Al Azhar University Nasr City 11884 Cairo Egypt
| | - Saeid M Elkatlawy
- Department of Physics, Faculty of Science, University of Sadat City Fifth Zone Sadat Egypt
| | - Amir Elzwawy
- Ceramics Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre (NRC) 33 El Bohouth St., Dokki Giza 12622 Egypt
| |
Collapse
|
11
|
Verma J, Kumar C, Sharma M, Saxena S. Biotechnological advances in microbial synthesis of gold nanoparticles: Optimizations and applications. 3 Biotech 2024; 14:263. [PMID: 39387004 PMCID: PMC11458872 DOI: 10.1007/s13205-024-04110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
This review discusses the eco-friendly and cost-effective biosynthesis of gold nanoparticles (AuNPs) in viable microorganisms, focusing on microbes-mediated AuNP biosynthesis. This process suits agricultural, environmental, and biomedical applications, offering renewable, eco-friendly, non-toxic, sustainable, and time-efficient methods. Microorganisms are increasingly used in green technology, nanotechnology, and RNAi technology, but several microorganisms have not been fully identified and characterized. Bio-nanotechnology offers eco-friendly and sustainable solutions for nanomedicine, with microbe-mediated nanoparticle biosynthesis producing AuNPs with anti-oxidation activity, stability, and biocompatibility. Ultrasmall AuNPs offer rapid distribution, renal clearance, and enhanced permeability in biomedical applications. The review explores nano-size dependent biosynthesis of AuNPs by bacteria, fungi, and viruses revealing their non-toxic, non-genotoxic, and non-oxidative properties on human cells. AuNPs with varying sizes and shapes, from nitrate reductase enzymes, have shown potential as a promising nano-catalyst. The synthesized AuNPs, with negative charge capping molecules, have demonstrated antibacterial activity against drug-resistant Pseudomonas aeruginosa, and Acinetobacter baumannii strains, and were non-toxic to Vero cell lines, indicating potential antibiotic resistance treatments. A green chemical method for the biosynthesis of AuNPs using reducing chloroauric acid and Rhizopus oryzae protein extract has been described, demonstrating excellent stability and strong catalytic activity. AuNPs are eco-friendly, non-toxic, and time-efficient, making them ideal for biomedical applications due to their antioxidant, antidiabetic, and antibacterial properties. In addition to the biomedical application, the review also highlights the role of microbially synthesized AuNPs in sustainable management of plant diseases, and environmental bioremediation.
Collapse
Affiliation(s)
- Jyoti Verma
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025 India
| | - Chitranjan Kumar
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, Uttar Pradesh 201313 India
| | - Monica Sharma
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025 India
| | - Sangeeta Saxena
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025 India
| |
Collapse
|
12
|
Puzari U, Khan MR, Mukherjee AK. Development of a gold nanoparticle-based novel diagnostic prototype for in vivo detection of Indian red scorpion ( Mesobuthus tamulus) venom. Toxicon X 2024; 23:100203. [PMID: 39263685 PMCID: PMC11387954 DOI: 10.1016/j.toxcx.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Indian red scorpion Mesobuthus tamulus is responsible for substantial mortality in India and Sri Lanka; however, no specific diagnostic method is available to detect the venom of this scorpion in envenomed plasma or body fluid. Therefore, we have proposed a novel, simple, and rapid method for detecting M. tamulus venom (MTV) in the plasma of envenomed animals using polyclonal antibodies (PAb) raised against three modified custom peptides representing the antigenic epitopes of K+ (Tamapin) and Na+ (α-neurotoxin) channel toxins, the two major MTV toxins identified by proteomic analysis. The optimum PAb formulation containing PAb 1, 2, and 3 in proportion (1:1:1, w/w/w) acted synergistically, demonstrating significantly higher immunological recognition of MTV than anti-scorpion antivenom (developed against native toxins) and individual antibodies against peptide immunogens. The PAb formulation could detect MTV optimally in envenomed rat plasma (intravenous and subcutaneous routes) at 30-60 min post-injection. The acetonitrile precipitation method developed in this study to augment the MTV detection sensitivity enriched the low molecular mass peptide toxins in envenomed rat plasma, which was ascertained by mass spectrometry analysis. The gold nanoparticles conjugated PAb formulation, characterised by biophysical techniques such as Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM), demonstrated their interaction with low molecular mass MTV peptide toxins in envenomed rat plasma. This interaction results in the accumulation of the gold nanoparticles, thus leading to signal change in absorbance spectra that can be discerned within 10 min. From a standard curve of MTV spiked plasma, the quantity of MTV in envenomed rat plasma could be determined by gold nanoparticle-PAb formulation conjugate.
Collapse
Affiliation(s)
- Upasana Puzari
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
| | - Mojibur R Khan
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| |
Collapse
|
13
|
Yang L, Zhang L, Zhang Q, Wei J, Zhao X, Zheng Z, Chen B, Xu Z. Nanopriming boost seed vigor: Deeper insights into the effect mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108895. [PMID: 38976940 DOI: 10.1016/j.plaphy.2024.108895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Nanopriming, an advanced seed priming technology, is highly praised for its environmental friendliness, safety, and effectiveness in promoting sustainable agriculture. Studies have shown that nanopriming can enhance seed germination by stimulating the expression of aquaporins and increasing amylase production. By applying an appropriate concentration of nanoparticles, seeds can generate reactive oxygen species (ROS), enhance their antioxidant capacity, improve their response to oxidative stress, and enhance their tolerance to both biotic and abiotic stresses. This positive impact extends beyond the seed germination and seedling growth stages, persisting throughout the entire life cycle. This review offers a comprehensive overview of recent research progress in seed priming using various nanoparticles, while also addressing current challenges and future opportunities for sustainable agriculture.
Collapse
Affiliation(s)
- Le Yang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Laitong Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jinpeng Wei
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xueming Zhao
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zian Zheng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Bingxian Chen
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Zhenjiang Xu
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
14
|
Liu Y, Chen B, He M, Hu B. Detection of terminal deoxynucleotidyl transferase activity based on self-mediated nucleic acid elongation and elemental labeling inductively coupled plasma-mass spectrometry. Talanta 2024; 274:125979. [PMID: 38537358 DOI: 10.1016/j.talanta.2024.125979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 05/04/2024]
Abstract
Terminal deoxynucleotidyl transferase (TdT), a specialized DNA polymerase, is recognized as a promising biomarker for acute leukemia. Herein, taking the advantage of the self-mediated strand elongation property of TdT, a simple and sensitive method for TdT activity assay was developed based on gold nanoparticles (AuNPs) labeling inductively coupled plasma mass spectrometry (ICP-MS). In the presence of TdT, the primer DNA on magnetic beads is elongated with an adenine-rich single stranded long chain that can label poly-thymine modified AuNPs. After acid elution, the labeled AuNPs were detected by ICP-MS, and the signal intensity of 197Au reflected the TdT activity. Under the optimal conditions, the limit of detection for TdT activity is down to 0.054 U mL-1, along with good selectivity and strong tolerance to other interfering proteins. Furthermore, it achieves a straightforward and accurate detection of TdT activity in acute lymphoblastic leukemia cells without sample pre-processing and tool enzyme addition. Therefore, the proposed method shows great promise as a valuable tool for TdT-related biological research and leukemia therapeutics.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
15
|
Zhang YB, Wang JF, Wang MX, Peng J, Kong XD, Tian J. Nano-based drug delivery systems for active ingredients from traditional Chinese medicine: Harnessing the power of nanotechnology. Front Pharmacol 2024; 15:1405252. [PMID: 38910887 PMCID: PMC11190311 DOI: 10.3389/fphar.2024.1405252] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction: Traditional Chinese medicine (TCM) is gaining worldwide popularity as a complementary and alternative medicine. The isolation and characterization of active ingredients from TCM has become optional strategies for drug development. In order to overcome the inherent limitations of these natural products such as poor water solubility and low bioavailability, the combination of nanotechnology with TCM has been explored. Taking advantage of the benefits offered by the nanoscale, various drug delivery systems have been designed to enhance the efficacy of TCM in the treatment and prevention of diseases. Methods: The manuscript aims to present years of research dedicated to the application of nanotechnology in the field of TCM. Results: The manuscript discusses the formulation, characteristics and therapeutic effects of nano-TCM. Additionally, the formation of carrier-free nanomedicines through self-assembly between active ingredients of TCM is summarized. Finally, the paper discusses the safety behind the application of nano-TCM and proposes potential research directions. Discussion: Despite some achievements, the safety of nano-TCM still need special attention. Furthermore, exploring the substance basis of TCM formulas from the perspective of nanotechnology may provide direction for elucidating the scientific intension of TCM formulas.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Tian
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
16
|
Mal S, Chakraborty S, Mahapatra M, Pakeeraiah K, Das S, Paidesetty SK, Roy P. Tackling breast cancer with gold nanoparticles: twinning synthesis and particle engineering with efficacy. NANOSCALE ADVANCES 2024; 6:2766-2812. [PMID: 38817429 PMCID: PMC11134266 DOI: 10.1039/d3na00988b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/10/2024] [Indexed: 06/01/2024]
Abstract
The World Health Organization identifies breast cancer as the most prevalent cancer despite predominantly affecting women. Surgery, hormonal therapy, chemotherapy, and radiation therapy are the current treatment modalities. Site-directed nanotherapeutics, engineered with multidimensional functionality are now the frontrunners in breast cancer diagnosis and treatment. Gold nanoparticles with their unique colloidal, optical, quantum, magnetic, mechanical, and electrical properties have become the most valuable weapon in this arsenal. Their advantages include facile modulation of shape and size, a high degree of reproducibility and stability, biocompatibility, and ease of particle engineering to induce multifunctionality. Additionally, the surface plasmon oscillation and high atomic number of gold provide distinct advantages for tailor-made diagnosis, therapy or theranostic applications in breast cancer such as photothermal therapy, radiotherapy, molecular labeling, imaging, and sensing. Although pre-clinical and clinical data are promising for nano-dimensional gold, their clinical translation is hampered by toxicity signs in major organs like the liver, kidneys and spleen. This has instigated global scientific brainstorming to explore feasible particle synthesis and engineering techniques to simultaneously improve the efficacy and versatility and widen the safety window of gold nanoparticles. The present work marks the first study on gold nanoparticle design and maneuvering techniques, elucidating their impact on the pharmacodynamics character and providing a clear-cut scientific roadmap for their fast-track entry into clinical practice.
Collapse
Affiliation(s)
- Suvadeep Mal
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | | | - Monalisa Mahapatra
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Suvadra Das
- Basic Science and Humanities Department, University of Engineering and Management Action Area III, B/5, Newtown Kolkata West Bengal 700160 India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Partha Roy
- GITAM School of Pharmacy, GITAM (Deemed to be University) Vishakhapatnam 530045 India
| |
Collapse
|
17
|
Nguyenova HY, Hubalek Kalbacova M, Dendisova M, Sikorova M, Jarolimkova J, Kolska Z, Ulrychova L, Weber J, Reznickova A. Stability and biological response of PEGylated gold nanoparticles. Heliyon 2024; 10:e30601. [PMID: 38742054 PMCID: PMC11089375 DOI: 10.1016/j.heliyon.2024.e30601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Stability and cytotoxicity of PEGylated Au NPs is crucial for biomedical application. In this study, we have focused on thermal stability of PEGylated Au NPs at 4 and 37 °C and after sterilization in autoclave. Gold nanoparticles were prepared by direct sputtering of gold into PEG and PEG-NH2. Transmission electron microscopy revealed that NPs exhibit a spherical shape with average dimensions 3.8 nm for both AuNP_PEG and AuNP_PEG-NH2. The single LSPR band at wavelength of 509 nm also confirmed presence of spherical Au NPs in both cases. Moreover, according to UV-Vis spectra, the Au NPs were overall stable during aging or thermal stressing and even after sterilization in autoclave. Based on gel electrophoresis results, the higher density of functionalizing ligands and the higher stability is assumed on AuNP_PEG-NH2. Changes in concentration of gold did not occur after thermal stress or with aging. pH values have to be adjusted to be suitable for bioapplications - original pH values are either too alkaline (AuNP_PEG-NH2, pH 10) or too acidic (AuNP_PEG, pH 5). Cytotoxicity was tested on human osteoblasts and fibroblasts. Overall, both Au NPs have shown good cytocompatibility either freshly prepared or even after Au NPs' sterilization in the autoclave. Prepared Au NP dispersions were also examined for their antiviral activity, however no significant effect was observed. We have synthesized highly stable, non-cytotoxic PEGylated Au NPs, which are ready for preclinical testing.
Collapse
Affiliation(s)
- Hoang Yen Nguyenova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| | - Marie Hubalek Kalbacova
- Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, 128 53, Prague, Czech Republic
- Faculty of Health Studies, Technical University of Liberec, Liberec, Czech Republic
| | - Marcela Dendisova
- Department of Physical Chemistry, University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| | - Miriama Sikorova
- Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, 128 53, Prague, Czech Republic
| | - Jaroslava Jarolimkova
- CENAB, Faculty of Science, J. E. Purkyne University, 400 96, Usti nad Labem, Czech Republic
| | - Zdenka Kolska
- CENAB, Faculty of Science, J. E. Purkyne University, 400 96, Usti nad Labem, Czech Republic
| | - Lucie Ulrychova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 166 10, Prague, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 166 10, Prague, Czech Republic
| | - Alena Reznickova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
- CENAB, Faculty of Science, J. E. Purkyne University, 400 96, Usti nad Labem, Czech Republic
| |
Collapse
|
18
|
Zeng Y, Molnárová M, Motola M. Metallic nanoparticles and photosynthesis organisms: Comprehensive review from the ecological perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120858. [PMID: 38614005 DOI: 10.1016/j.jenvman.2024.120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
This review presents a comprehensive analysis of the ecological implications of metallic nanoparticles (MNPs) on photosynthetic organisms, particularly plants and algae. We delve into the toxicological impacts of various MNPs, including gold, silver, copper-based, zinc oxide, and titanium dioxide nanoparticles, elucidating their effects on the growth and health of these organisms. The article also summarizes the toxicity mechanisms of these nanoparticles in plants and algae from previous research, providing insight into the cellular and molecular interactions that underpin these effects. Furthermore, it discusses the reciprocal interactions between different types of MNPs, their combined effects with other metal contaminants, and compares the toxicity between MNPs with their counterpart. This review highlights the urgent need for a deeper understanding of the environmental impact, considering their escalating use and the potential risks they pose to ecological systems, especially in the context of photosynthetic organisms that are vital to ecosystem health and stability.
Collapse
Affiliation(s)
- Yilan Zeng
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic; Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic.
| | - Marianna Molnárová
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic
| | - Martin Motola
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic.
| |
Collapse
|
19
|
Venzhik Y, Deryabin A, Zhukova K. Au-Based Nanoparticles Enhance Low Temperature Tolerance in Wheat by Regulating Some Physiological Parameters and Gene Expression. PLANTS (BASEL, SWITZERLAND) 2024; 13:1261. [PMID: 38732476 PMCID: PMC11085431 DOI: 10.3390/plants13091261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
One of the key problems of biology is how plants adapt to unfavorable conditions, such as low temperatures. A special focus is placed on finding ways to increase tolerance in important agricultural crops like wheat. Au-based nanoparticles (Au-NPs) have been employed extensively in this area in recent years. Au-NPs can be produced fast and easily using low-cost chemical reagents. When employed in microdoses, Au-NPs are often non-toxic to plants, animals, and people. In addition, Au-NPs mainly have favorable impacts on plants. In this study, we investigated the effect of Au-NP seed nanopriming (diameter 15.3 nm, Au concentration 5-50 µg mL-1) on cold tolerance, as well as some physiological, biochemical and molecular parameters, of cold-sustainable wheat (Triticum aestivum L.) genotype Zlata. The treatment with Au-NPs improved tolerance to low temperatures in control conditions and after cold hardening. Au-NPs treatment boosted the intensity of growth processes, the quantity of photosynthetic pigments, sucrose in leaves, and the expressions of encoded RuBisCo and Wcor15 genes. The potential mechanisms of Au-NPs' influence on the cold tolerance of wheat varieties were considered.
Collapse
Affiliation(s)
- Yuliya Venzhik
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (A.D.); (K.Z.)
| | | | | |
Collapse
|
20
|
Darvish S, Budala DG, Goriuc A. Antibacterial Properties of an Experimental Dental Resin Loaded with Gold Nanoshells for Photothermal Therapy Applications. J Funct Biomater 2024; 15:100. [PMID: 38667557 PMCID: PMC11051398 DOI: 10.3390/jfb15040100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
This study explored the chemical and antibacterial properties of a dental resin loaded with gold nanoshells (AuNPs) in conjunction with photothermal therapy (PTT) as a novel method against Streptococcus mutans (S. mutans) to prevent secondary caries. First, a 20-h minimum inhibitory concentration (MIC) assay was performed on solutions of AuNPs with planktonic S. mutans under an LED device and laser at 660 nm. Next, resin blends containing 0, 1 × 1010, or 2 × 1010 AuNPs/mL were fabricated, and the degree of conversion (DC) was measured using an FTIR spectroscopy. Lastly, a colony forming unit (CFU) count was performed following 24 h growth of S. mutans on 6 mm diameter resin disks with different light treatments of an LED device and a laser at 660 nm. The MIC results only showed a reduction in S. mutans at AuNP concentrations less than 3.12 µg/mL under a laser illumination level of 95.5 J/cm2 compared to the dark treatment (p < 0.010 for each). CFU and DC results showed no significant dependence on any light treatment studied. The AuNPs expressed antibacterial effects following PPT against planktonic S. mutans but not in a polymerized dental adhesive resin. Future studies should focus on different shapes, structure, and concentrations of AuNPs loaded in a resin blend.
Collapse
Affiliation(s)
- Shayan Darvish
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Dana-Gabriela Budala
- Department of Prosthodontics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Ancuta Goriuc
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania;
| |
Collapse
|
21
|
Nivetha S, Srivalli T, Sathya PM, Mohan H, Karthi N, Muralidharan K, Ramalingam V. Nickel-doped vanadium pentoxide (Ni@V 2O 5) nanocomposite induces apoptosis targeting PI3K/AKT/mTOR signaling pathway in skin cancer: An in vitro and in vivo study. Colloids Surf B Biointerfaces 2024; 234:113763. [PMID: 38262106 DOI: 10.1016/j.colsurfb.2024.113763] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
In the present study, the vanadium pentoxide (V2O5) nickel-doped vanadium pentoxide (Ni@V2O5) was prepared and determined for in vitro anticancer activity. The structural characterization of the prepared V2O5 and Ni@V2O5 was determined using diverse morphological and spectroscopic analyses. The DRS-UV analysis displayed the absorbance at 215 nm for V2O5 and 331 nm for Ni@V2O5 as the primary validation of the synthesis of V2O5 and Ni@V2O5. The EDS spectra exhibited the presence of 30% of O, 69% of V, and 1% of Ni and the EDS mapping showed the constant dispersion. The FE-SEM and FE-TEM analysis showed the V2O5 nanoparticles are rectangle-shaped and nanocomposites have excellent interfaces between nickel and V2O5. The X-ray photoelectron spectroscopy (XPS) investigation of Ni@V2O5 nanocomposite endorses the occurrence of elements V, O, and Ni. The in vitro MTT assay clearly showed that the V2O5 and Ni@V2O5 have significantly inhibited the proliferation of B16F10 skin cancer cells. In addition, the nanocomposite produces the endogenous reactive oxygen species in the mitochondria, causes the mitochondrial membrane and nuclear damage, and consequently induces apoptosis by caspase 9/3 enzymatic activity in skin cancer cells. Also, the western blot analysis showed that the nanocomposite suppresses the oncogenic marker proteins such as PI3K, Akt, and mTOR in the skin cancer cells. Together, the results showed that Ni@V2O5 can be used as an auspicious anticancer agent against skin cancer.
Collapse
Affiliation(s)
- Selvaraju Nivetha
- Department of Biotechnology, Dhanalakshmi Srinivasan College of Arts and Science for Women, Perambalur 621212, Tamil Nadu, India
| | - Thimmarayan Srivalli
- PG and Research Department of Biochemistry, Sacred Heart College (Autonomous), Tirupattur-635601, Affiliated to Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| | - Pavithra Muthukumar Sathya
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Jeonbuk, South Korea
| | - Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Jeonbuk, South Korea
| | - Natesan Karthi
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55365, Republic of Korea; School of Allied Health Sciences, REVA University, Kattigenahalli, Bengaluru - 560064, Karnataka, India
| | - Kathirvel Muralidharan
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vaikundamoorthy Ramalingam
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
22
|
Ahmadpour MR, Yousefi M, Rakhshandeh H, Darroudi M, Mousavi SH, Soukhtanloo M, Sabouri Z, Askari VR, Hashemzadeh A, Manjiri MA, Motavasselian M. Biosynthesis of Gold Nanoparticles Using Quince Seed Water Extract and Investigation of Their Anticancer Effect Against Cancer Cell Lines. IEEE Trans Nanobioscience 2024; 23:118-126. [PMID: 37379200 DOI: 10.1109/tnb.2023.3287805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
In this study, gold nanoparticles (Au-NPs) were synthesized using HAuCl4 and quince seed mucilage (QSM) extract, which was characterized by conventional methods including Fourier transforms electron microscopy (FTIR), UV-Visible spectroscopy (UV-Vis), Field emission electron microscopy (FESEM), Transmission electron microscopy (TEM), Dynamic light spectroscopy (DLS), and Zeta-potential. The QSM acted as reductant and stabilizing agents simultaneously. The NP's anticancer activity was also investigated against osteosarcoma cell lines (MG-63), which showed an IC50 of [Formula: see text]/mL.
Collapse
|
23
|
Wang P, Ding L, Zhang Y, Jiang X. A Novel Aptamer Biosensor Based on a Localized Surface Plasmon Resonance Sensing Chip for High-Sensitivity and Rapid Enrofloxacin Detection. BIOSENSORS 2023; 13:1027. [PMID: 38131787 PMCID: PMC10741520 DOI: 10.3390/bios13121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Enrofloxacin, a fluoroquinolone widely used in animal husbandry, presents environmental and human health hazards due to its stability and incomplete hydrolysis leading to residue accumulation. To address this concern, a highly sensitive aptamer biosensor utilizing a localized surface plasmon resonance (LSPR) sensing chip and microfluidic technology was developed for rapid enrofloxacin residue detection. AuNPs were prepared by the seed method and the AuNPs-Apt complexes were immobilized on the chip by the sulfhydryl groups modified on the end of the aptamer. The properties and morphologies of the sensing chip and AuNPs-Apt complexes were characterized by Fourier transform infrared spectroscopy (FTIR), UV-Vis spectrophotometer, and scanning electron microscope (SEM), respectively. The sensing chip was able to detect enrofloxacin in the range of 0.01-100 ng/mL with good linearity, and the relationship between the response of the sensing chip and the concentration was Δλ (nm) = 1.288log ConENR (ng/mL) + 5.245 (R2 = 0.99), with the limit of detection being 0.001 ng/mL. The anti-interference, repeatability, and selectivity of this sensing chip were studied in detail. Compared with other sensors, this novel aptamer biosensor based on AuNPs-Apt complexes is expected to achieve simple, stable, and economical application in the field of enrofloxacin detection.
Collapse
Affiliation(s)
- Pan Wang
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China; (P.W.); (Y.Z.)
| | - Liyun Ding
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China; (P.W.); (Y.Z.)
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Yumei Zhang
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China; (P.W.); (Y.Z.)
| | - Xingdong Jiang
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China;
| |
Collapse
|
24
|
Adamczyk Z, Sadowska M, Nattich-Rak M. Quantifying Nanoparticle Layer Topography: Theoretical Modeling and Atomic Force Microscopy Investigations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15067-15077. [PMID: 37824293 PMCID: PMC10601541 DOI: 10.1021/acs.langmuir.3c02024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Indexed: 10/14/2023]
Abstract
A comprehensive method consisting of theoretical modeling and experimental atomic force microscopy (AFM) measurements was developed for the quantitative analysis of nanoparticle layer topography. Analytical results were derived for particles of various shapes such as cylinders (rods), disks, ellipsoids, hemispheres (caps), etc. It was shown that for all particles, their root-mean-square (rms) parameter exhibited a maximum at the coverage about 0.5, whereas the skewness was a monotonically decreasing function of the coverage. This enabled a facile determination of the particle coverage in the layer, even if the shape and size were not known. The validity of the analytical results was confirmed by computer modeling and experimental data acquired by AFM measurements for polymer nanoparticle deposition on mica and silica. The topographical analysis developed in this work can be exploited for a quantitative characterization of self-assembled layers of nano- and bioparticles, e.g., carbon nanotubes, silica and noble metal particles, DNA fragments, proteins, vesicles, viruses, and bacteria at solid surfaces. The acquired results also enabled a proper calibration, in particular the determination of the measurement precision, of various electron and scanning probe microscopies, such as AFM.
Collapse
Affiliation(s)
- Zbigniew Adamczyk
- Jerzy Haber Institute of
Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Marta Sadowska
- Jerzy Haber Institute of
Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Małgorzata Nattich-Rak
- Jerzy Haber Institute of
Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| |
Collapse
|
25
|
Zhao H, Li Y, Zhao B, Zheng C, Niu M, Song Q, Liu X, Feng Q, Zhang Z, Wang L. Orchestrating antigen delivery and presentation efficiency in lymph node by nanoparticle shape for immune response. Acta Pharm Sin B 2023; 13:3892-3905. [PMID: 37719383 PMCID: PMC10501864 DOI: 10.1016/j.apsb.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/28/2022] [Accepted: 01/15/2023] [Indexed: 02/11/2023] Open
Abstract
Activating humoral and cellular immunity in lymph nodes (LNs) of nanoparticle-based vaccines is critical to controlling tumors. However, how the physical properties of nanovaccine carriers orchestrate antigen capture, lymphatic delivery, antigen presentation and immune response in LNs is largely unclear. Here, we manufactured gold nanoparticles (AuNPs) with the same size but different shapes (cages, rods, and stars), and loaded tumor antigen as nanovaccines to explore their disparate characters on above four areas. Results revealed that star-shaped AuNPs captured and retained more repetitive antigen epitopes. On lymphatic delivery, both rods and star-shaped nanovaccines mainly drain into the LN follicles region while cage-shaped showed stronger paracortex retention. A surprising finding is that the star-shaped nanovaccines elicited potent humoral immunity, which is mediated by CD4+ T helper cell and follicle B cell cooperation significantly preventing tumor growth in the prophylactic study. Interestingly, cage-shaped nanovaccines preferentially presented peptide-MHC I complexes to evoke robust CD8+ T cell immunity and showed the strongest therapeutic efficacy when combined with the PD-1 checkpoint inhibitor in established tumor study. These results highlight the importance of nanoparticle shape on antigen delivery and presentation for immune response in LNs, and our findings support the notion that different design strategies are required for prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Hongjuan Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Yatong Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Beibei Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Cuixia Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Mengya Niu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qingling Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinxin Liu
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471009, China
- Tumor Immunity and Biomaterials Advanced Medical Center, Zhengzhou University, Luoyang 471009, China
| | - Qianhua Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
- Tumor Immunity and Biomaterials Advanced Medical Center, Zhengzhou University, Luoyang 471009, China
| |
Collapse
|
26
|
Xiong Y, Rao Y, Hu J, Luo Z, Chen C. Nanoparticle-Based Photothermal Therapy for Breast Cancer Noninvasive Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305140. [PMID: 37561994 DOI: 10.1002/adma.202305140] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Rapid advancements in materials science and nanotechnology, intertwined with oncology, have positioned photothermal therapy (PTT) as a promising noninvasive treatment strategy for cancer. The breast's superficial anatomical location and aesthetic significance render breast cancer a particularly pertinent candidate for the clinical application of PTT following melanoma. This review comprehensively explores the research conducted on the various types of nanoparticles employed in PTT for breast cancer and elaborates on their specific roles and mechanisms of action. The integration of PTT with existing clinical therapies for breast cancer is scrutinized, underscoring its potential for synergistic outcomes. Additionally, the mechanisms underlying PTT and consequential modifications to the tumor microenvironment after treatment are elaborated from a medical perspective. Future research directions are suggested, with an emphasis on the development of integrative platforms that combine multiple therapeutic approaches and the optimization of nanoparticle synthesis for enhanced treatment efficacy. The goal is to push the boundaries of PTT toward a comprehensive, clinically applicable treatment for breast cancer.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Yan Rao
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, Hubei, 430000, P. R. China
| | - Jiawei Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Zixuan Luo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| |
Collapse
|
27
|
Baesso AS, da Silva DJ, Soares AK, Silva Paula MMD, de Cademartori PHG. Biosynthesis of gold nanoparticles using papaya seed extract for the functionalization of nanocellulose membranes. INDUSTRIAL CROPS AND PRODUCTS 2023; 197:116601. [DOI: 10.1016/j.indcrop.2023.116601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
Patel KN, Trivedi PG, Thakar MS, Prajapati KV, Prajapati DK, Sindhav GM. Gold nanoparticles synthesis using Gymnosporia montana L. and its biological profile: a pioneer report. J Genet Eng Biotechnol 2023; 21:71. [PMID: 37358697 PMCID: PMC10293534 DOI: 10.1186/s43141-023-00525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND The forming, blending, and characterization of materials at a size of one billionth of a meter or less is referred to as nanotechnology. The objective of the current study was to synthesize ecologically friendly gold nanoparticles (AuNPs) from Gymnosporia montana L. (G. montana) leaf extract, characterize them, assess their interaction with different types of deoxyribonucleic acid (DNA), and investigate their antioxidant and toxic capabilities. RESULTS The biosynthesized AuNPs presence was validated by a color change from yellow to reddish pink as well as using UV-visible spectrophotometer. Fourier transform infrared (FTIR) spectroscopy analysis showed the presence of phytoconstituents like, alcohols, phenols, and nitro compounds responsible for the reduction of AuNPs. Zeta sizer and zeta potential of 559.6 d. nm and - 4.5 mV, respectively, demonstrated potential stability. With an average size between 10 and 50 nm, X-ray diffraction (XRD), and high-resolution transmission electron microscope (HR-TEM), revealed the crystalline formation of AuNPs. Surface topology with 3D characterization, irregular spherical shape, and size with 6.48 nm of AuNPs was determined with the help of an atomic force microscope (AFM). AuNPs with some irregular and spherical shapes, and sizes between 2 and 20 nm, were revealed by field emission scanning electron microscope (FESEM) investigation. Shifts in the spectrum were visible when the bioavailability of AuNPs with calf-thymus DNA (CT-DNA) and Herring sperm DNA (HS-DNA) was tested. Additionally, the DNA nicking assay's interaction with pBR322 DNA confirmed its physiochemical and antioxidant properties. The same was also found by using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, which showed a 70-80% inhibition rate. Finally, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay revealed that viability decreased with increasing dosage, going from 77.74 to 46.99% on MCF-7 cell line. CONCLUSION Synthesizing AuNPs through biogenic processes and adopting G. montana for the first time revealed potential DNA interaction, antioxidant, and cytotoxicity capabilities. Thus, opening new possibilities in the turf of therapeutics as well as in other areas.
Collapse
Affiliation(s)
- Krishnakumari N. Patel
- Department of Zoology, BMT, HGC & WBC, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Pooja G. Trivedi
- Department of Zoology, BMT, HGC & WBC, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Milan S. Thakar
- Department of Zoology, BMT, HGC & WBC, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Kush V. Prajapati
- Department of Zoology, BMT, HGC & WBC, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Dhruv K. Prajapati
- Department of Zoology, BMT, HGC & WBC, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Gaurang M. Sindhav
- Department of Zoology, BMT, HGC & WBC, University School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
29
|
Todaro B, Ottalagana E, Luin S, Santi M. Targeting Peptides: The New Generation of Targeted Drug Delivery Systems. Pharmaceutics 2023; 15:1648. [PMID: 37376097 DOI: 10.3390/pharmaceutics15061648] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Peptides can act as targeting molecules, analogously to oligonucleotide aptamers and antibodies. They are particularly efficient in terms of production and stability in physiological environments; in recent years, they have been increasingly studied as targeting agents for several diseases, from tumors to central nervous system disorders, also thanks to the ability of some of them to cross the blood-brain barrier. In this review, we will describe the techniques employed for their experimental and in silico design, as well as their possible applications. We will also discuss advancements in their formulation and chemical modifications that make them even more stable and effective. Finally, we will discuss how their use could effectively help to overcome various physiological problems and improve existing treatments.
Collapse
Affiliation(s)
- Biagio Todaro
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Elisa Ottalagana
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, 56017 Pisa, Italy
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Melissa Santi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
30
|
Nadeem M, Pervez L, Khan AM, Burton RA, Ullah S, Nadhman A, Celli J. Microbial-mediated synthesis of gold nanoparticles—current insights and future vistas. GOLD BULLETIN 2023; 56:69-81. [DOI: 10.1007/s13404-023-00335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/05/2023] [Indexed: 10/10/2024]
|
31
|
Das G, Patra JK. Evaluation of Antibacterial Mechanism of Action, Tyrosinase Inhibition, and Photocatalytic Degradation Potential of Sericin-Based Gold Nanoparticles. Int J Mol Sci 2023; 24:ijms24119477. [PMID: 37298428 DOI: 10.3390/ijms24119477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
In recent times, numerous natural materials have been used for the fabrication of gold nanoparticles (AuNPs). Natural resources used for the synthesis of AuNPs are more environment friendly than chemical resources. Sericin is a silk protein that is discarded during the degumming process for obtaining silk. The current research used sericin silk protein waste materials as the reducing agent for the manufacture of gold nanoparticles (SGNPs) by a one-pot green synthesis method. Further, the antibacterial effect and antibacterial mechanism of action, tyrosinase inhibition, and photocatalytic degradation potential of these SGNPs were evaluated. The SGNPs displayed positive antibacterial activity (8.45-9.58 mm zone of inhibition at 50 μg/disc) against all six tested foodborne pathogenic bacteria, namely, Enterococcus feacium DB01, Staphylococcus aureus ATCC 13565, Listeria monocytogenes ATCC 33090, Escherichia coli O157:H7 ATCC 23514, Aeromonas hydrophila ATCC 7966, and Pseudomonas aeruginosa ATCC 27583. The SGNPs also exhibited promising tyrosinase inhibition potential, with 32.83% inhibition at 100 μg/mL concentration as compared to 52.4% by Kojic acid, taken as a reference standard compound. The SGNPs also displayed significant photocatalytic degradation effects, with 44.87% methylene blue dye degradation after 5 h of incubation. Moreover, the antibacterial mode of action of the SGNPs was also investigated against E. coli and E. feacium, and the results show that due to the small size of the nanomaterials, they could have adhered to the surface of the bacterial pathogens, and could have released more ions and dispersed in the bacterial cell wall surrounding environment, thereby disrupting the cell membrane and ROS production, and subsequently penetrating the bacterial cells, resulting in lysis or damage to the cell by the process of structural damage to the membrane, oxidative stress, and damage to the DNA and bacterial proteins. The overall outcome of the current investigation concludes the positive effects of the obtained SGNPs and their prospective applications as a natural antibacterial agent in cosmetics, environmental, and foodstuff industries, and for the management of environmental contagion.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea
| |
Collapse
|
32
|
Zhivkov AM, Popov TT, Hristova SH. Composite Hydrogels with Included Solid-State Nanoparticles Bearing Anticancer Chemotherapeutics. Gels 2023; 9:gels9050421. [PMID: 37233012 DOI: 10.3390/gels9050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels have many useful physicochemical properties which, in combination with their biocompatibility, suggest their application as a drug delivery system for the local and prorogated release of drugs. However, their drug-absorption capacity is limited because of the gel net's poor adsorption of hydrophilic molecules and in particular, hydrophobic molecules. The absorption capacity of hydrogels can be increased with the incorporation of nanoparticles due to their huge surface area. In this review, composite hydrogels (physical, covalent and injectable) with included hydrophobic and hydrophilic nanoparticles are considered as suitable for use as carriers of anticancer chemotherapeutics. The main focus is given to the surface properties of the nanoparticles (hydrophilicity/hydrophobicity and surface electric charge) formed from metal and dielectric substances: metals (gold, silver), metal-oxides (iron, aluminum, titanium, zirconium), silicates (quartz) and carbon (graphene). The physicochemical properties of the nanoparticles are emphasized in order to assist researchers in choosing appropriate nanoparticles for the adsorption of drugs with hydrophilic and hydrophobic organic molecules.
Collapse
Affiliation(s)
- Alexandar M Zhivkov
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria
| | - Trifon T Popov
- Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Svetlana H Hristova
- Department of Medical Physics and Biophysics, Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| |
Collapse
|
33
|
Gomez-Villalba LS, Salcines C, Fort R. Application of Inorganic Nanomaterials in Cultural Heritage Conservation, Risk of Toxicity, and Preventive Measures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1454. [PMID: 37176999 PMCID: PMC10180185 DOI: 10.3390/nano13091454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
Nanotechnology has allowed for significant progress in architectural, artistic, archaeological, or museum heritage conservation for repairing and preventing damages produced by deterioration agents (weathering, contaminants, or biological actions). This review analyzes the current treatments using nanomaterials, including consolidants, biocides, hydrophobic protectives, mechanical resistance improvers, flame-retardants, and multifunctional nanocomposites. Unfortunately, nanomaterials can affect human and animal health, altering the environment. Right now, it is a priority to stop to analyze its advantages and disadvantages. Therefore, the aims are to raise awareness about the nanotoxicity risks during handling and the subsequent environmental exposure to all those directly or indirectly involved in conservation processes. It reports the human-body interaction mechanisms and provides guidelines for preventing or controlling its toxicity, mentioning the current toxicity research of main compounds and emphasizing the need to provide more information about morphological, structural, and specific features that ultimately contribute to understanding their toxicity. It provides information about the current documents of international organizations (European Commission, NIOSH, OECD, Countries Normative) about worker protection, isolation, laboratory ventilation control, and debris management. Furthermore, it reports the qualitative risk assessment methods, management strategies, dose control, and focus/receptor relationship, besides the latest trends of using nanomaterials in masks and gas emissions control devices, discussing their risk of toxicity.
Collapse
Affiliation(s)
- Luz Stella Gomez-Villalba
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| | - Ciro Salcines
- Infrastructures Service, Health and Safety Unit, University of Cantabria, Pabellón de Gobierno, Avenida de los Castros 54, 39005 Santander, Spain
| | - Rafael Fort
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| |
Collapse
|
34
|
Rahman MM, Ahmed L, Anika F, Riya AA, Kali SK, Rauf A, Sharma R. Bioinorganic Nanoparticles for the Remediation of Environmental Pollution: Critical Appraisal and Potential Avenues. Bioinorg Chem Appl 2023; 2023:2409642. [PMID: 37077203 PMCID: PMC10110382 DOI: 10.1155/2023/2409642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/21/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
Nowadays, environmental pollution has become a critical issue for both developed and developing countries. Because of excessive industrialization, burning of fossil fuels, mining and exploration, extensive agricultural activities, and plastics, the environment is being contaminated rapidly through soil, air, and water. There are a variety of approaches for treating environmental toxins, but each has its own set of restrictions. As a result, various therapies are accessible, and approaches that are effective, long-lasting, less harmful, and have a superior outcome are extensively demanded. Modern research advances focus more on polymer-based nanoparticles, which are frequently used in drug design, drug delivery systems, environmental remediation, power storage, transformations, and other fields. Bioinorganic nanomaterials could be a better candidate to control contaminants in the environment. In this article, we focused on their synthesis, characterization, photocatalytic process, and contributions to environmental remediation against numerous ecological hazards. In this review article, we also tried to explore their recent advancements and futuristic contributions to control and prevent various pollutants in the environment.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Limon Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fazilatunnesa Anika
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Anha Akter Riya
- Department of Pharmacy, East-West University, Aftabnagar, Dhaka 1212, Bangladesh
| | - Sumaiya Khatun Kali
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, KPK, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
35
|
Yadav R, Kumar K, Kumar S, Mor S, Venkatesu P. Smart Anisotropic Colloidal Composites: A Suitable Platform for Modifying the Phase Transition of Diblock Copolymers by Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4809-4818. [PMID: 36944025 DOI: 10.1021/acs.langmuir.3c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Surface modification of metallic nanoparticles (NPs) by stimuli-responsive polymers is a benign method to prepare smart colloidal composites which tune the characteristic properties of individual systems. The temperature-dependent transition of diblock copolymer poly(N-isopropylacrylamide)-block-poly(N-vinylcaprolactam) (PNIPMA-b-PVCL) synthesized using reversible addition-fragmentation chain transfer polymerization was studied by incorporating anisotropic gold NPs (AGPs) such as spheres (AuNSs), rods (AuNRs), cubes (AuNCs), and rhombic dodecahedrals (AuRDs). Shape-dependent physiochemical properties of nanostructures alter the lower critical solution temperature (LCST) of the chemical inhomogeneous diblock copolymer. Heterogeneous nucleation of AuNPs was facilitated by seed-mediated synthesis for incorporating uniformity. In the mixed system, the presence of PNIPAM-b-PVCL modifies the surface of AGPs through physisorption which is supported by transmission electron microscopy and field emission scanning electron microscopy showing the NPs embedding in the polymeric matrix. Furthermore, steady state fluorescence spectroscopy and Fourier transform infrared spectroscopy were performed to examine the phase transition behavior of PNIPAM-b-PVCL in AGPs. The formation of a smart polymer nanocomposite alters the physiochemical properties of the diblock copolymer as demonstrated from the variation of LCST in the dynamic light scattering measurement. Henceforth, functionalizing the surfaces of AGPs with a thermoresponsive diblock copolymer provides combinatorial benefits in the properties of smart polymeric colloidal systems with potential applications in bioimaging and drug delivery.
Collapse
Affiliation(s)
- Ritu Yadav
- Department of Chemistry, University of Delhi, Delhi-110 007, India
| | - Krishan Kumar
- Department of Chemistry, University of Delhi, Delhi-110 007, India
| | - Sumit Kumar
- Department of Chemistry, University of Delhi, Delhi-110 007, India
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Sanjay Mor
- Department of Chemistry, University of Delhi, Delhi-110 007, India
| | | |
Collapse
|
36
|
Anti-bacterial Effect and Characteristics of Gold Nanoparticles (AuNps) Formed with Vitex negundo Plant Extract. Appl Biochem Biotechnol 2023; 195:1630-1643. [PMID: 36355335 DOI: 10.1007/s12010-022-04217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Our current study reports the anti-bacterial activity of the gold nanoparticles (AuNps) synthesized by the green synthesis method using Vitex negundo plant leaves. The aqueous extract of Vitex negundo plant leaves are acting as the capping and stabilizing agent in the synthesis of AuNps. It is already evident from earlier studies that Vitex negundo is an abundant source of polyphenols, flavonoids, terpenoids, and many other biologically active compounds. The present study reveals the potential of biologically active compounds from the plant in the reduction reaction of chloroauric acid (HAuCl4) into gold nanoparticles. The green synthesis method is adapted instead of the chemical method, which is toxic and more expensive. The gold nanoparticles subjected to characterization with the help of UV-visible spectroscopy, FTIR to determine functional groups, light scattering to estimate size and uniformity, scanning emission microscopy with EDX for accurate size and shape of AuNps, and X-ray diffraction to reveal the crystalline structure. The characteristics of AuNps formed are UV reading at 520 nm, FTIR showing the presence of phenols and alkenes, DLS, SEM, and XRD confirming the spherical shape with the size around 70-90 nm. The anti-bacterial activity of the gold nanoparticles is evaluated against four different species of bacteria, each two gram-positive and gram-negative. The gold nanoparticles formed by Vitex negundo show good anti-bacterial activity against Salmonella typhi and M. luteus bacteria with a zone of inhibition of 6 mm and 2 mm respectively. Furthermore, the cytotoxic activities of the gold nanoparticles are yet to be known to their full extent.
Collapse
|
37
|
Layachi M, Treizebré A, Hay L, Gilbert D, Pesez J, D’Acremont Q, Braeckmans K, Thommen Q, Courtade E. Novel opto-fluidic drug delivery system for efficient cellular transfection. J Nanobiotechnology 2023; 21:43. [PMID: 36747263 PMCID: PMC9901003 DOI: 10.1186/s12951-023-01797-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Intracellular drug delivery is at the heart of many diagnosis procedures and a key step in gene therapy. Research has been conducted to bypass cell barriers for controlled intracellular drug release and made consistent progress. However, state-of-the-art techniques based on non-viral carriers or physical methods suffer several drawbacks, including limited delivery yield, low throughput or low viability, which are key parameters in therapeutics, diagnostics and drug delivery. Nevertheless, gold nanoparticle (AuNP) mediated photoporation has stood out as a promising approach to permeabilize cell membranes through laser induced Vapour NanoBubble (VNB) generation, allowing the influx of external cargo molecules into cells. However, its use as a transfection technology for the genetic manipulation of therapeutic cells is hindered by the presence of non-degradable gold nanoparticles. Here, we report a new optofluidic method bringing gold nanoparticles in close proximity to cells for photoporation, while avoiding direct contact with cells by taking advantage of hydrodynamic focusing in a multi-flow device. Cells were successfully photoporated with [Formula: see text] efficiency with no significant reduction in cell viability at a throughput ranging from [Formula: see text] to [Formula: see text]. This optofluidic approach provides prospects of translating photoporation from an R &D setting to clinical use for producing genetically engineered therapeutic cells.
Collapse
Affiliation(s)
- Majid Layachi
- grid.464109.e0000 0004 0638 7509Laboratoire Physique des Lasers, Atomes et Molécules - UMR 8523, Université de Lille, 59655 Villeneuve d’Ascq, France ,grid.464109.e0000 0004 0638 7509Institut d’Électronique, de
Microélectronique et de Nanotechnologie - UMR CNRS 8520, Université de Lille, 59655 Villeneuve d’Ascq, France ,grid.121334.60000 0001 2097 0141Present Address: Laboratoire Charles Coulomb - UMR 5221, Université de Montpellier, Montpellier, France
| | - Anthony Treizebré
- grid.464109.e0000 0004 0638 7509Laboratoire Physique des Lasers, Atomes et Molécules - UMR 8523, Université de Lille, 59655 Villeneuve d’Ascq, France ,grid.464109.e0000 0004 0638 7509Institut d’Électronique, de
Microélectronique et de Nanotechnologie - UMR CNRS 8520, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Laurent Hay
- grid.464109.e0000 0004 0638 7509Laboratoire Physique des Lasers, Atomes et Molécules - UMR 8523, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - David Gilbert
- grid.464109.e0000 0004 0638 7509Laboratoire Physique des Lasers, Atomes et Molécules - UMR 8523, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Jean Pesez
- grid.464109.e0000 0004 0638 7509Laboratoire Physique des Lasers, Atomes et Molécules - UMR 8523, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Quentin D’Acremont
- grid.464109.e0000 0004 0638 7509Laboratoire Physique des Lasers, Atomes et Molécules - UMR 8523, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Kevin Braeckmans
- grid.5342.00000 0001 2069 7798Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium
| | - Quentin Thommen
- grid.503422.20000 0001 2242 6780CANTHER - Cancer
Heterogeneity Plasticity and Resistance to Therapies - UMR9020-UMR1277, Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, 59000 Lille, France
| | - Emmanuel Courtade
- Laboratoire Physique des Lasers, Atomes et Molécules - UMR 8523, Université de Lille, 59655, Villeneuve d'Ascq, France.
| |
Collapse
|
38
|
Antibiotic-Loaded Gold Nanoparticles: A Nano-Arsenal against ESBL Producer-Resistant Pathogens. Pharmaceutics 2023; 15:pharmaceutics15020430. [PMID: 36839753 PMCID: PMC9967522 DOI: 10.3390/pharmaceutics15020430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The advent of new antibiotics has helped clinicians to control severe bacterial infections. Despite this, inappropriate and redundant use of antibiotics, inadequate diagnosis, and smart resistant mechanisms developed by pathogens sometimes lead to the failure of treatment strategies. The genotypic analysis of clinical samples revealed that the rapid spread of extended-spectrum β-lactamases (ESBLs) genes is one of the most common approaches acquired by bacterial pathogens to become resistant. The scenario compelled the researchers to prioritize the design and development of novel and effective therapeutic options. Nanotechnology has emerged as a plausible groundbreaking tool against resistant infectious pathogens. Numerous reports suggested that inorganic nanomaterials, specifically gold nanoparticles (AuNPs), have converted unresponsive antibiotics into potent ones against multi-drug resistant pathogenic strains. Interestingly, after almost two decades of exhaustive preclinical evaluations, AuNPs are gradually progressively moving ahead toward clinical evaluations. However, the mechanistic aspects of the antibacterial action of AuNPs remain an unsolved puzzle for the scientific fraternity. Thus, the review covers state-of-the-art investigations pertaining to the efficacy of AuNPs as a tool to overcome ESBLs acquired resistance, their applicability and toxicity perspectives, and the revelation of the most appropriate proposed mechanism of action. Conclusively, the trend suggested that antibiotic-loaded AuNPs could be developed into a promising interventional strategy to limit and overcome the concerns of antibiotic-resistance.
Collapse
|
39
|
Ozsoy F, Ozay O. Phosphazene-based nanostructures modified with gold nanoparticles as drug and gene carrier materials with antibacterial and antifungal properties. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2022.2163642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Fatma Ozsoy
- Department of Bioengineering, School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Ozgur Ozay
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
40
|
Fotooh Abadi L, Kumar P, Paknikar K, Gajbhiye V, Kulkarni S. Tenofovir-tethered gold nanoparticles as a novel multifunctional long-acting anti-HIV therapy to overcome deficient drug delivery-: an in vivo proof of concept. J Nanobiotechnology 2023; 21:19. [PMID: 36658575 PMCID: PMC9850711 DOI: 10.1186/s12951-022-01750-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The adoption of Antiretroviral Therapy (ART) substantially extends the life expectancy and quality of HIV-infected patients. Yet, eliminating the latent reservoirs of HIV to achieve a cure remains an unmet need. The advent of nanomedicine has revolutionized the treatment of HIV/AIDS. The present study explores a unique combination of Tenofovir (TNF) with gold nanoparticles (AuNPs) as a potential therapeutic approach to overcome several limitations of the current ART. RESULTS TNF-tethered AuNPs were successfully synthesized. Cell viability, genotoxicity, haemolysis, and histopathological studies confirmed the complete safety of the preparation. Most importantly, its anti-HIV1 reverse transcriptase activity was ~ 15 folds higher than the native TNF. In addition, it exhibited potent anti-HIV1 protease activity, a much sought-after target in anti-HIV1 therapeutics. Finally, the in vivo biodistribution studies validated that the AuNPs could reach many tissues/organs, serving as a secure nest for HIV and overcoming the problem of deficient drug delivery to HIV reservoirs. CONCLUSIONS We show that the combination of TNF and AuNPs exhibits multifunctional activity, viz. anti-HIV1 and anti-HIV1 protease. These findings are being reported for the first time and highlight the prospects of developing AuNP-TNF as a novel next-generation platform to treat HIV/AIDS.
Collapse
Affiliation(s)
- Leila Fotooh Abadi
- grid.419119.50000 0004 1803 003XDivision of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, 411 026 India
| | - Pramod Kumar
- grid.417727.00000 0001 0730 5817Nanobioscience Group, Agharkar Research Institute, Pune, 411 004 India
| | - Kishore Paknikar
- grid.417727.00000 0001 0730 5817Nanobioscience Group, Agharkar Research Institute, Pune, 411 004 India ,grid.417971.d0000 0001 2198 7527Department of Chemistry, Indian Institute of Technology, Mumbai, 400 076 India
| | - Virendra Gajbhiye
- grid.417727.00000 0001 0730 5817Nanobioscience Group, Agharkar Research Institute, Pune, 411 004 India
| | - Smita Kulkarni
- grid.419119.50000 0004 1803 003XDivision of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, 411 026 India
| |
Collapse
|
41
|
Akter Z, Khan FZ, Khan MA. Gold Nanoparticles in Triple-Negative Breast Cancer Therapeutics. Curr Med Chem 2023; 30:316-334. [PMID: 34477507 DOI: 10.2174/0929867328666210902141257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer with enhanced metastasis and poor survival. Though chemotherapy, radiotherapy, photothermal therapy (PTT), photodynamic therapy (PDT), and gene delivery are used to treat TNBC, various side effects limit these therapeutics against TNBC. In this review article, we have focused on the mechanism of action of gold nanoparticles (AuNPs) to enhance the efficacy of therapeutics with targeted delivery on TNBC cells. METHODS Research data were accumulated from PubMed, Scopus, Web of Science, and Google Scholar using searching criteria "gold nanoparticles and triple-negative breast cancer" and "gold nanoparticles and cancer". Though we reviewed many old papers, the most cited papers were from the last ten years. RESULTS Various studies indicate that AuNPs can enhance bioavailability, site-specific drug delivery, and efficacy of chemotherapy, radiotherapy, PTT, and PDT as well as modulate gene expression. The role of AuNPs in the modulation of TNBC therapeutics through the inhibition of cell proliferation, progression, and metastasis has been proved in vitro and in vivo studies. As these mechanistic actions of AuNPs are most desirable to develop drugs with enhanced therapeutic efficacy against TNBC, it might be a promising approach to apply AuNPs for TNBC therapeutics. CONCLUSION This article reviewed the mechanism of action of AuNPs and their application in the enhancement of therapeutics against TNBC. Much more attention is required for studying the role of AuNPs in developing them either as a single or synergistic anticancer agent against TNBC.
Collapse
Affiliation(s)
- Zakia Akter
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas, USA
| | - Fabiha Zaheen Khan
- Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Md Asaduzzaman Khan
- Key laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
42
|
Sharma AR, Lee YH, Bat-Ulzii A, Bhattacharya M, Chakraborty C, Lee SS. Recent advances of metal-based nanoparticles in nucleic acid delivery for therapeutic applications. J Nanobiotechnology 2022; 20:501. [PMID: 36434667 PMCID: PMC9700905 DOI: 10.1186/s12951-022-01650-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022] Open
Abstract
Recent efforts in designing nanomaterials to deliver potential therapeutics to the targeted site are overwhelming and palpable. Engineering nanomaterials to deliver biological molecules to exert desirable physiological changes, with minimized side effects and optimal dose, has revolutionized the next-generation therapy for several diseases. The rapid progress of nucleic acids as biopharmaceutics is going to alter the traditional pharmaceutics practices in modern medicine. However, enzymatic instability, large size, dense negative charge (hydrophilic for cell uptake), and unintentional adverse biological responses-such as prolongation of the blood coagulation and immune system activation-hamper the potential use of nucleic acids for therapeutic purposes. Moreover, the safe delivery of nucleic acids into the clinical setting is an uphill task, and several efforts are being put forward to deliver them to targeted cells. Advances in Metal-based NanoParticles (MNPs) are drawing attention due to the unique properties offered by them for drug delivery, such as large surface-area-to-volume ratio for surface modification, increased therapeutic index of drugs through site-specific delivery, increased stability, enhanced half-life of the drug in circulation, and efficient biodistribution to the desired targeted site. Here, the potential of nanoparticles delivery systems for the delivery of nucleic acids, specially MNPs, and their ability and advantages over other nano delivery systems are reviewed.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Yeon-Hee Lee
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Altanzul Bat-Ulzii
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Manojit Bhattacharya
- grid.444315.30000 0000 9013 5080Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020 India
| | - Chiranjib Chakraborty
- grid.502979.00000 0004 6087 8632Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Ba-rasat-Barrackpore Rd, Kolkata, West Bengal 700126 India
| | - Sang-Soo Lee
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| |
Collapse
|
43
|
Venzhik Y, Deryabin A, Popov V, Dykman L, Moshkov I. Priming with gold nanoparticles leads to changes in the photosynthetic apparatus and improves the cold tolerance of wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:145-155. [PMID: 36115268 DOI: 10.1016/j.plaphy.2022.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/23/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Nanotechnologies provide a great platform for researching nanoparticles effects on living organisms including plants. This work shows the stimulating effect of seed priming with gold nanoparticles (AuNPs) on photosynthetic apparatus of Triticum aestivum seedlings. It was found using inductively coupled plasma-atomic emission and mass spectrometry that AuNPs (the average diameter of 15.3 nm, concentration of 20 μg ml-1) penetrated into the seeds, but were not found in seedling leaves. Ultrastructural changes in chloroplasts were found using transmission electron microscopy in plants grown from treated seeds: increases in the size of plastids, starch grains, grana in chloroplasts, and the number of thylakoids in grana. The intensity of photosynthesis, the content of chlorophylls, and the portion of unsaturated fatty acids in the composition of total leaf lipids were increased in treated AuNPs plants. This study demonstrates that revealed changes determined the increased tolerance of wheat to low temperature. The adaptive significance of these changes, possible mechanisms of the AuNPs effects on plants and future perspectives of study are discussed. This is the first report showing nanopriming with AuNPs as a new method to study the mechanisms of stress tolerance.
Collapse
Affiliation(s)
- Yuliya Venzhik
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander Deryabin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Valery Popov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Lev Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Saratov, Russia
| | - Igor Moshkov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
44
|
Dheyab MA, Aziz AA, Moradi Khaniabadi P, Jameel MS, Oladzadabbasabadi N, Mohammed SA, Abdullah RS, Mehrdel B. Monodisperse Gold Nanoparticles: A Review on Synthesis and Their Application in Modern Medicine. Int J Mol Sci 2022; 23:7400. [PMID: 35806405 PMCID: PMC9266776 DOI: 10.3390/ijms23137400] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/12/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Gold nanoparticles (AuNPs) are becoming increasingly popular as drug carriers due to their unique properties such as size tenability, multivalency, low toxicity and biocompatibility. AuNPs have physical features that distinguish them from bulk materials, small molecules and other nanoscale particles. Their unique combination of characteristics is just now being fully realized in various biomedical applications. In this review, we focus on the research accomplishments and new opportunities in this field, and we describe the rising developments in the use of monodisperse AuNPs for diagnostic and therapeutic applications. This study addresses the key principles and the most recent published data, focusing on monodisperse AuNP synthesis, surface modifications, and future theranostic applications. Moving forward, we also consider the possible development of functionalized monodisperse AuNPs for theranostic applications based on these efforts. We anticipate that as research advances, flexible AuNPs will become a crucial platform for medical applications.
Collapse
Affiliation(s)
- Mohammed Ali Dheyab
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Azlan Abdul Aziz
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Pegah Moradi Khaniabadi
- Department of Radiology and Molecular Imaging, College of Medicine and Health Science, Sultan Qaboos University, Muscat 112, Oman;
| | - Mahmood S. Jameel
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Nazila Oladzadabbasabadi
- Food Biopolymer Research Group, Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| | | | - Raja Saleh Abdullah
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
| | - Baharak Mehrdel
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy & Health Science, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|
45
|
Yang Y, Zheng X, Chen L, Gong X, Yang H, Duan X, Zhu Y. Multifunctional Gold Nanoparticles in Cancer Diagnosis and Treatment. Int J Nanomedicine 2022; 17:2041-2067. [PMID: 35571258 PMCID: PMC9094645 DOI: 10.2147/ijn.s355142] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/20/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer is the second leading cause of death in the world, behind only cardiovascular diseases, and is one of the most serious diseases threatening human health nowadays. Cancer patients’ lives are being extended by the use of contemporary medical technologies, such as surgery, radiotherapy, and chemotherapy. However, these treatments are not always effective in extending cancer patients’ lives. Simultaneously, these approaches are often accompanied with a series of negative consequences, such as the occurrence of adverse effects and an increased risk of relapse. As a result, the development of a novel cancer-eradication strategy is still required. The emergence of nanomedicine as a promising technology brings a new avenue for the circumvention of limitations of conventional cancer therapies. Gold nanoparticles (AuNPs), in particular, have garnered extensive attention due to their many specific advantages, including customizable size and shape, multiple and useful physicochemical properties, and ease of functionalization. Based on these characteristics, many therapeutic and diagnostic applications of AuNPs have been exploited, particularly for malignant tumors, such as drug and nucleic acid delivery, photodynamic therapy, photothermal therapy, and X-ray-based computed tomography imaging. To leverage the potential of AuNPs, these applications demand a comprehensive and in-depth overview. As a result, we discussed current achievements in AuNPs in anticancer applications in a more methodical manner in this review. Also addressed in depth are the present status of clinical trials, as well as the difficulties that may be encountered when translating some basic findings into the clinic, in order to serve as a reference for future studies.
Collapse
Affiliation(s)
- Yan Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Xi Zheng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Lu Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Xuefeng Gong
- POWERCHINA Chengdu Engineering Corporation Limited, Chengdu, 611130, People’s Republic of China
| | - Hao Yang
- POWERCHINA Chengdu Engineering Corporation Limited, Chengdu, 611130, People’s Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Yuxuan Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
- Correspondence: Yuxuan Zhu, Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China, Email
| |
Collapse
|
46
|
Anh NH, Doan MQ, Dinh NX, Huy TQ, Tri DQ, Ngoc Loan LT, Van Hao B, Le AT. Gold nanoparticle-based optical nanosensors for food and health safety monitoring: recent advances and future perspectives. RSC Adv 2022; 12:10950-10988. [PMID: 35425077 PMCID: PMC8988175 DOI: 10.1039/d1ra08311b] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Modern society has been facing serious health-related problems including food safety, diseases and illness. Hence, it is urgent to develop analysis methods for the detection and control of food contaminants, disease biomarkers and pathogens. As the traditional instrumental methods have several disadvantages, including being time consuming, and having high cost and laborious procedures, optical nanosensors have emerged as promising alternative or complementary approaches to those traditional ones. With the advantages of simple preparation, high surface-to-volume ratio, excellent biocompatibility, and especially, unique optical properties, gold nanoparticles (AuNPs) have been demonstrated as excellent transducers for optical sensing systems. Herein, we provide an overview of the synthesis of AuNPs and their excellent optical properties that are ideal for the development of optical nanosensors based on local surface plasmon resonance (LSPR), colorimetry, fluorescence resonance energy transfer (FRET), and surface-enhanced Raman scattering (SERS) phenomena. We also review the sensing strategies and their mechanisms, as well as summarizing the recent advances in the monitoring of food contaminants, disease biomarkers and pathogens using developed AuNP-based optical nanosensors in the past seven years (2015-now). Furthermore, trends and challenges in the application of these nanosensors in the determination of those analytes are discussed to suggest possible directions for future developments.
Collapse
Affiliation(s)
- Nguyen Ha Anh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Mai Quan Doan
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Ngo Xuan Dinh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Tran Quang Huy
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Electric and Electronics, Phenikaa University Hanoi 12116 Vietnam
| | - Doan Quang Tri
- Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST) 1st Dai Co Viet Road Hanoi Vietnam
| | - Le Thi Ngoc Loan
- Faculty of Natural Sciences, Quy Nhon University Quy Nhon 55113 Vietnam
| | - Bui Van Hao
- Faculty of Materials Science and Engineering, Phenikaa University Hanoi 12116
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Materials Science and Engineering, Phenikaa University Hanoi 12116
| |
Collapse
|
47
|
Adamczyk Z, Morga M, Nattich-Rak M, Sadowska M. Nanoparticle and bioparticle deposition kinetics. Adv Colloid Interface Sci 2022; 302:102630. [PMID: 35313169 DOI: 10.1016/j.cis.2022.102630] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022]
Abstract
Mechanisms and kinetic of particle deposition at solid surfaces leading to the formation of self-assembled layers of controlled structure and density were reviewed. In the first part theoretical aspects were briefly discussed, comprising limiting analytical solutions for the linear transport under flow and diffusion. Methods of the deposition kinetics analysis for non-linear regimes affected by surface blocking were also considered. Characteristic monolayer formation times under diffusion and flow for the nanoparticle size range were calculated. In the second part illustrative experimental results obtained for micro- and nanoparticles were discussed. Deposition at planar substrates was analyzed with emphasis focused on the stability of layers and the release kinetics of silver particles. Applicability of the quartz microbalance measurements (QCM) for quantitative studies of nanoparticle deposition kinetic was also discussed. Except for noble metal and polymer particles, representative results for virus deposition at abiotic surfaces were analyzed. Final part of the review was devoted to nanoparticle corona formation at polymer carrier particles investigated by combination of the concentration depletion, AFM, SEM and the in situ electrokinetic method. It is argued that the results obtained for colloid particles can be used as reliable reference systems for interpretation of protein and other bioparticle deposition, confirming the thesis that simple is universal.
Collapse
Affiliation(s)
- Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland.
| | - Maria Morga
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland.
| | - Małgorzata Nattich-Rak
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Marta Sadowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| |
Collapse
|
48
|
Liu L, Jiang J, Cui L, Zhao J, Cao X, Chen L. Double Trigonal Pyramidal {SeO 3} Groups Bridged 2-Picolinic Acid Modified Cerium-Inlaid Polyoxometalate Including Mixed Selenotungstate Subunits for Electrochemically Sensing Ochratoxin A. Inorg Chem 2022; 61:1949-1960. [PMID: 35049293 DOI: 10.1021/acs.inorgchem.1c03103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An organic-inorganic hybrid trigonal pyramidal {SeO3} group, bridged cerium-inlaid polyoxometalate (POM) Na16[Se2Ce4(H2O)8W4(HPIC)4O10][B-β-SeW8O30]2[Se2W12O46]2·60H2O (1) (HPIC = 2-picolinic acid), containing two disparate selenotungstate (ST) building blocks was synthesized by a one-step assembly strategy, which is established by two asymmetric sandwich-type {[Ce2(H2O)4W2(HPIC)2O4][B-β-SeW8O30][Se2W12O46]}10- moieties joined by double trigonal pyramidal {SeO3} groups. Its outstanding structural trait is that it contains two types of ST building blocks, Keggin-type [B-β-SeW8O30]8- and Dawson-like [Se2W12O46]12-, which are extremely rare in ST chemistry. Remarkably, [Se2W12O46]12- is first obtained in lanthanide-inlaid STs. Furthermore, 1@PPy conductive film (PPy = polypyrrole) was prepared by electrochemical polymerization and served as the electrode material, and then nano-gold particles (NGPs) were deposited on the surface of 1@PPy conductive film by an electrochemical deposition method in order to immobilize the aptamer of ochratoxin A. With the help of exonuclease I (EN I), the oxidation peak of the metalized Ag works as the detection signal to achieve the detection of ochratoxin A (OTXA). This study offers an available approach for creating organic-inorganic hybrid heteroatom-bridged lanthanide-inlaid POMs and reveals the likelihood of extending heteroatom-bridged lanthanide-inlaid POMs into electrochemical biosensing applications.
Collapse
Affiliation(s)
- Lulu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jun Jiang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Limin Cui
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Xinhua Cao
- Green Catalysis and Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
49
|
Mirac Dizman H, Kazancioglu EO, Shigemune T, Takahara S, Arsu N. High sensitivity colorimetric determination of L-cysteine using gold nanoparticles functionalized graphene oxide prepared by photochemical reduction method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120294. [PMID: 34455380 DOI: 10.1016/j.saa.2021.120294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/27/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
This study aimed for the development of a cost effective and efficient method for L-cysteine detection, without employing expensive instrumentation within a short analysis time. The proposed method has been involved in the photochemical preparation of gold nanoparticles and gold nanoparticles on graphene oxide nanostructures. The gold nanoparticles and gold nanoparticles on graphene oxide acted as simple and sensitive nano-sensors for L-cysteine, due to the molecular structure of the L-cysteine presented -NH2 and -SH, which is very attractive for coordination to gold nanoparticles and crosslink gold nanoparticles causing aggregation and color change. By using the gold nanoparticles on graphene oxide as a probe, the colorimetric detection of L-cysteine in a nanomolar order concentration was demonstrated.
Collapse
Affiliation(s)
- H Mirac Dizman
- Department of Chemistry, Yildiz Technical University, Davutpasa Campus, Istanbul 34220, Turkey
| | | | - Takuya Shigemune
- Department of Materials Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Shigeru Takahara
- Department of Materials Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Nergis Arsu
- Department of Chemistry, Yildiz Technical University, Davutpasa Campus, Istanbul 34220, Turkey.
| |
Collapse
|
50
|
Kaur G, Thimes RL, Camden JP, Jenkins DM. Fundamentals and applications of N-heterocyclic carbene functionalized gold surfaces and nanoparticles. Chem Commun (Camb) 2022; 58:13188-13197. [DOI: 10.1039/d2cc05183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Improved stability and higher degree of synthetic tunability has allowed N-heterocyclic carbenes to supplant thiols as ligands for gold surface functionalization. This review article summarizes the basic science and applications of NHCs on gold.
Collapse
Affiliation(s)
- Gurkiran Kaur
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Rebekah L. Thimes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Jon P. Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - David M. Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|