1
|
Kamoun EA, Elsabahy M, Mohamed Elbadry AM, Abdelazim EB, Mohsen AA, A. Aleem M, Gao H, Eissa NG, Elghamry I, Salim SA. Recent Progress of Polymer-Based Biosensors for Cancer Diagnostic Applications: Natural versus Synthetic Polymers. ACS OMEGA 2025; 10:8816-8831. [PMID: 40092775 PMCID: PMC11904699 DOI: 10.1021/acsomega.4c10652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Early diagnosis of cancer can significantly contribute to improving therapeutic outcomes and enhancing survival rates for cancer patients. Polymer-based biosensors have emerged as a promising tool for cancer detection due to their high sensitivity, selectivity, and low cost. These biosensors utilize functionalized polymers in different parts of the body to detect cancer biomarkers in biological samples. This approach offers several advantages over traditional detection methods, including real-time monitoring and noninvasive detection while maintaining high sensitivity and accuracy. This review discusses recent advances in the development of polymer-based biosensors for cancer detection including their design, fabrication, and performance. The essential characteristics of biosensing devices are presented, along with examples for natural and synthetic polymers commonly utilized in biosensors. Furthermore, strategies employed to tailor polymers to improve biosensing applications and future perspectives for the application of polymer-based biosensors in cancer diagnosis are also highlighted. Integrating these advancements will illuminate the potential of polymer-based biosensors as transformative tools in the early detection and management of cancer.
Collapse
Affiliation(s)
- Elbadawy A. Kamoun
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Mahmoud Elsabahy
- Badr
University in Cairo Research Center, Badr
University in Cairo, Badr City, Cairo 11829, Egypt
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | | | - Esraa B. Abdelazim
- Badr
University in Cairo Research Center, Badr
University in Cairo, Badr City, Cairo 11829, Egypt
| | - Abdelrahman A. Mohsen
- Department
of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Cairo 11456, Egypt
| | - Marwa A. Aleem
- Analytical
Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Hui Gao
- State
Key
Laboratory of Separation Membranes and Membrane Processes, School
of Materials Science and Engineering, Tiangong
University, Tianjin 300387, P. R. China
| | - Noura G. Eissa
- Badr
University in Cairo Research Center, Badr
University in Cairo, Badr City, Cairo 11829, Egypt
- Department
of Pharmaceutics, Faculty of Pharmacy, Zagazig
University, Zagazig 44519, Egypt
| | - Ibrahim Elghamry
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Samar A. Salim
- Biomaterials
for Medical and Pharmaceutical Applications Research Group, Nanotechnology
Research Centre (NTRC), The British University
in Egypt (BUE), El Sherouk
City, Suez Desert Road, Cairo 11837, Egypt
| |
Collapse
|
2
|
Gupta S, Mishra V, Aljabali AAA, Albutti A, Kanday R, El-Tanani M, Mishra Y. Breaking barriers in cancer diagnosis: unveiling the 4Ms of biosensors. RSC Adv 2025; 15:8019-8052. [PMID: 40098694 PMCID: PMC11912004 DOI: 10.1039/d4ra08212e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Cancer, an insidious affliction, continues to exact a heavy toll on humanity, necessitating early detection and nuanced comprehension of its intricacies for effective treatment. Recent strides in micro and nanoscale electronic chip fabrication have revolutionized biosensor technology, offering promising avenues for biomedical and telemedicine applications. Micro Electromechanical System (MEMS)-based integrated circuits (ICs) represent a paradigm shift in detecting chemical and biomolecular interactions pertinent to cancer diagnosis, supplanting conventional methodologies. Despite the wealth of research on biosensors, a cohesive framework integrating Material, Mechanism, Modeling, and Measurement (4M) dimensions is often lacking. This review aims to synthesize these dimensions, exploring recent breakthroughs in biosensor design and development. Categorized based on electromechanical integration, material selection, and fabrication processes, these biosensors bridge crucial knowledge gaps within the research community. A comparative analysis of sensing methods in point-of-care (PoC) technology provides insights into their practicality and efficacy. Moreover, we critically evaluate biosensor limitations, pivotal in addressing challenges hindering their global commercialization.
Collapse
Affiliation(s)
- Sachin Gupta
- Department of Robotics and Control Engineering, School of Electronics and Electrical Engineering, Lovely Professional University Phagwara Punjab-144411 India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara Punjab-144411 India
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University Irbid Jordan
| | - Aqel Albutti
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University Buraydah 51452 Saudi Arabia
| | - Rajeev Kanday
- School of Computer Science and Engineering, Lovely Professional University Phagwara Punjab-144411 India
| | - Mohamed El-Tanani
- Ras Al Khaimah Medical and Health Sciences University Ras Al Khaimah United Arab Emirates
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University Phagwara Punjab-144411 India
| |
Collapse
|
3
|
Huo M, Li Y, Wu Y, Xie S, Chen D. Enzyme-free biosensor for ultrasensitive detection of mecA gene utilizing electrochemically controlled atom transfer radical polymerization triggered by copper nanoflowers enriched on DNA polymers. Talanta 2025; 284:127231. [PMID: 39577384 DOI: 10.1016/j.talanta.2024.127231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/01/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Herein, an ultrasensitive electrochemical biosensor is constructed to detect mecA gene by utilizing electrochemically controlled atom transfer radical polymerization (eATRP) triggered by copper nanoflowers enriched on DNA polymers. Firstly, specific capture and enrichment of mecA gene is achieved by using magnetic separation system, effectively weakening the interference of the complex matrix. Next, enzyme-free hybridization chain reaction is triggered in the presence of mecA gene to form long DNA polymers containing numerous active sites for subsequent binding to streptavidin-copper hybrid nanoflowers (SA@Cu HNFs). Then, numerous Cu(I) afforded by the reduction and dissolution of collected SA@Cu HNFs, as catalysts and signal transduction modulators, are applied to promote the click reaction between azide-modified DNA probes on the electrode surfaces and propargyl 2-bromoisobutyrate. Finally, plentiful electroactive polymers are continually grown in situ via eATRP, significantly boosting the signal output. Under optimal conditions, the biosensor can detect mecA gene as low as 0.06 fM, with a linear range from 0.1 fM to 10 pM. Moreover, the biosensor is high selective, and suitable for mecA gene detection in actual environment and food samples. Due to its ultra-sensitivity and cost-effectiveness, the developed strategy can achieve other genes detection by simply substituting the recognition element of target.
Collapse
Affiliation(s)
- Mengyue Huo
- State Key Laboratory of Agricultural Microbiology Core Facility, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, 430070, China
| | - Yi Li
- State Key Laboratory of Agricultural Microbiology Core Facility, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, 430070, China
| | - Yongshan Wu
- State Key Laboratory of Agricultural Microbiology Core Facility, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shuyu Xie
- State Key Laboratory of Agricultural Microbiology Core Facility, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, 430070, China.
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, 430070, China.
| |
Collapse
|
4
|
Meng X, Wang X, Zhang Z, Song L, Chen J. Recent Advancements of Nanomedicine in Breast Cancer Surgery. Int J Nanomedicine 2024; 19:14143-14169. [PMID: 39759962 PMCID: PMC11699852 DOI: 10.2147/ijn.s494364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
Breast cancer surgery plays a pivotal role in the multidisciplinary approaches. Surgical techniques and objectives are gradually shifting from tumor complete resection towards prolonging survival, improving cosmetic outcomes, and restoring the social and psychological well-being of patients. However, surgical treatment still faces challenges such as inadequate sensitivity in sentinel lymph node localization, the need to improve intraoperative tumor boundary localization imaging, postoperative scar healing, and the risk of recurrence, necessitating other adjunct measures for improvement. To address these challenges, specificity-optimized nanomedicines have been introduced into the surgical therapeutic landscape of breast cancer. In particular, this review involves starting with an overview of breast structure and the composition of the tumor microenvironment and then introducing the guiding principle and foundation for the design of nanomedicine. Moreover, we will take the order process of breast cancer surgery diagnosis and treatment as the starting point, and adaptively propose the roles and advantages of nanomedicine in addressing the corresponding issues. Furthermore, we also involved the prospects of utilizing advanced technological approaches. Overall, this review seeks to uncover the sophisticated design and strategies of nanomedicine from a clinical standpoint, address the challenges faced in surgical treatment, and provide insights into this subject matter.
Collapse
Affiliation(s)
- Xiangyue Meng
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xin Wang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Zhihao Zhang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Linlin Song
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, People’s Republic of China
- Department of Ultrasound, Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Jie Chen
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
5
|
Dezhakam E, Vayghan RF, Dehghani S, Kafili-Hajlari T, Naseri A, Dadashpour M, Khalilzadeh B, Kanberoglu GS. Highly efficient electrochemical biosensing platform in breast cancer detection based on MOF-COF@Au core-shell like nanostructure. Sci Rep 2024; 14:29850. [PMID: 39617770 PMCID: PMC11609286 DOI: 10.1038/s41598-024-78836-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Nowadays, rapid and facile diagnosis of cancer using user friendly processes has attracted much attention. In this regard, an electrochemical (EC) biosensor with high sensitivity was fabricated by merging MIL156 MOF@COF nanocomposite with Au nanoparticles for the detection of CA15-3. Herein, metal clusters of MIL-156 as a Metal organic frameworks (MOF) were coated by a crystalline covalent organic frameworks (COF) through covalent bonding and created core-shell-like structures. The active part of the working electrode was modified in two consecutive steps. First, MIL-156 MOF@COF and then Au nanoparticles were electrodeposited on the glassy carbon electrode (GCE). The porosity of nanocomposite has significantly increased the surface area and improved the conductivity. Au nanoparticles also form an acceptable substrate for bonding antibodies due to their high affinity with amino groups. In addition, Au nanoparticles amplify the EC signal of the biosensor with their undeniable conductivity. Nanocomposite was characterized with XRD, SEM, and EDAX techniques. To investigate the proposed biosensor, differential pulse voltammetry (DPV) was used as an analytical technique. The CA15-3 calibration provided a linear range between concentrations of 30 and 100 nU/mL, thus expressing the powerful diagnostic potential of the designed biosensor. Furthermore, the suggested biosensor has been used in serum samples and discriminate breast cancer sufferers from healthy individuals with high confidence levels.
Collapse
Affiliation(s)
- Ehsan Dezhakam
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Roya Faraghi Vayghan
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Sarina Dehghani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Taha Kafili-Hajlari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
- Chemistry and Chemical Engineering departmen, Khazar University, 41 Mehseti Street, Baku, AZ1096, Azerbaijan.
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran.
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
6
|
Sharifi J, Rizvi G, Fayazfar HR. Toward Sustainable 3D-Printed Sensor: Green Fabrication of CNT-Enhanced PLA Nanocomposite via Solution Casting. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5782. [PMID: 39685218 DOI: 10.3390/ma17235782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 12/18/2024]
Abstract
The current study explores, for the first time, an eco-friendly solution casting method using a green solvent, ethyl acetate, to prepare feedstock/filaments from polylactic acid (PLA) biopolymer reinforced with carbon nanotubes (CNTs), followed by 3D printing and surface activation for biosensing applications. Comprehensive measurements of thermal, electrical, rheological, microstructural, and mechanical properties of developed feedstock and 3D-printed parts were performed and analyzed. Herein, adding 2 wt.% CNTs to the PLA matrix marked the electrical percolation, achieving conductivity of 8.3 × 10-3 S.m-1, thanks to the uniform distribution of CNTs within the PLA matrix facilitated by the solution casting method. Rheological assessments paralleled these findings; the addition of 2 wt.% CNTs transitioned the nanocomposite from liquid-like to a solid-like behavior with a percolated network structure, significantly elevating rheological properties compared to the composite with 1 wt.% CNTs. Mechanical evaluations of the printed samples revealed improvement in tensile strength and modulus compared to virgin PLA by a uniform distribution of 2 wt.% CNTs into PLA, with an increase of 14.5% and 10.3%, respectively. To further enhance the electrical conductivity and sensing capabilities of the developed samples, an electrochemical surface activation treatment was applied to as-printed nanocomposite samples. The field-emission scanning electron microscopy (FE-SEM) analysis confirmed that this surface activation effectively exposed the CNTs to the surface of 3D-printed parts by removing a thin layer of polymer from the surface, thereby optimizing the composite's electroconductivity performance. The findings of this study underscore the potential of the proposed eco-friendly method in developing advanced 3D-printed bio-nanocomposites based on carbon nanotubes and biopolymers, using a green solution casting and cost-effective material extrusion 3D-printing method, for electrochemical-sensing applications.
Collapse
Affiliation(s)
- Javid Sharifi
- Eco-Friendly Circular Advanced Materials and Additive Manufacturing (ECAM) Lab, Department of Mechanical and Manufacturing Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| | - Ghaus Rizvi
- Department of Mechanical and Manufacturing Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| | - Haniyeh Ramona Fayazfar
- Eco-Friendly Circular Advanced Materials and Additive Manufacturing (ECAM) Lab, Department of Mechanical and Manufacturing Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| |
Collapse
|
7
|
Nanda BP, Rani P, Paul P, Aman, Ganti SS, Bhatia R. Recent trends and impact of localized surface plasmon resonance (LSPR) and surface-enhanced Raman spectroscopy (SERS) in modern analysis. J Pharm Anal 2024; 14:100959. [PMID: 39759973 PMCID: PMC11696664 DOI: 10.1016/j.jpha.2024.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 01/07/2025] Open
Abstract
An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes. Localized surface plasmon resonance (LSPR) is a phenomenon in the realm of nanophotonics that occurs when metallic nanoparticles (NPs) or nanostructures interact with incident light. Conversely, surface-enhanced Raman spectroscopy (SERS) is an influential analytical technique based on Raman scattering, wherein it amplifies the Raman signals of molecules when they are situated near specific and specially designed nanostructures. A detailed exploration of the recent ground-breaking developments in optical biosensors employing LSPR and SERS technologies has been thoroughly discussed along with their underlying principles and the working mechanisms. A biosensor chip has been created, featuring a high-density deposition of gold nanoparticles (AuNPs) under varying ligand concentration and reaction duration on the substrate. An ordinary description, along with a visual illustration, has been thoroughly provided for concepts such as a sensogram, refractive index shift, surface plasmon resonance (SPR), and the evanescent field, Rayleigh scattering, Raman scattering, as well as the electromagnetic enhancement and chemical enhancement. LSPR and SERS both have advantages and disadvantages, but widely used SERS has some advantages over LSPR, like chemical specificity, high sensitivity, multiplexing, and versatility in different fields. This review confirms and elucidates the significance of different disease biomarker identification. LSPR and SERS both play a vital role in the detection of various types of cancer, such as cervical cancer, ovarian cancer, endometrial cancer, prostate cancer, colorectal cancer, and brain tumors. This proposed optical biosensor offers potential applications for early diagnosis and monitoring of viral disease, bacterial infectious diseases, fungal diseases, diabetes, and cardiac disease biosensing. LSPR and SERS provide a new direction for environmental monitoring, food safety, refining impurities from water samples, and lead detection. The understanding of these biosensors is still limited and challenging.
Collapse
Affiliation(s)
- Bibhu Prasad Nanda
- Department of Pharmaceutical Analysis, ISF College of Pharmacy Moga, 142001, Punjab, India
| | - Priyanka Rani
- Department of Pharmaceutical Analysis, ISF College of Pharmacy Moga, 142001, Punjab, India
| | - Priyanka Paul
- Department of Pharmaceutical Analysis, ISF College of Pharmacy Moga, 142001, Punjab, India
| | - Aman
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy Moga, 142001, Punjab, India
| | - Subrahmanya S. Ganti
- Department of Pharmaceutical Analysis, ISF College of Pharmacy Moga, 142001, Punjab, India
| | - Rohit Bhatia
- Department of Pharmaceutical Analysis, ISF College of Pharmacy Moga, 142001, Punjab, India
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy Moga, 142001, Punjab, India
| |
Collapse
|
8
|
Jiao J, Zeng D, Wu Y, Li C, Mo T. Programmable and ultra-efficient Argonaute protein-mediated nucleic acid tests: A review. Int J Biol Macromol 2024; 278:134755. [PMID: 39147338 DOI: 10.1016/j.ijbiomac.2024.134755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
With the attributes of high sensitivity, single-base resolution, multiplex detection capability, and programmability upon nucleic acid recognition, Argonaute (Ago)-based biosensing assays are increasingly recognized as one of the most promising tools for precise identification and quantification of target analytes. Employed as highly specific sequence recognition elements of these robust diagnostic methods, Agos are revolutionizing how nucleic acid targets are detected. A systematic and comprehensive summary of this emerging and rapid-advancing technology is necessary to give play to the potential of Ago-based biosensing assays. The structure and function of Agos were briefly overviewed at the beginning of the work, followed by a review of the recent advancements in employing Agos sensing for detecting various targets with a comprehensive analysis such as viruses, tumor biomarkers, pathogens, mycoplasma, and parasite. The significance and benefits of these platforms were then deliberated. In addition, the authors shared subjective viewpoints on the existing challenges and offered relevant guidance for the future progress of Agos assays. Finally, the future research outlook regarding Ago-based sensing in this field was also outlined. As such, this review is expected to offer valuable information and fresh perspectives for a broader group of researchers.
Collapse
Affiliation(s)
- Jinlong Jiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dandan Zeng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yafang Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chentao Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
9
|
Ahmad R, Bhat KS, Nagal V, Nakate UT, Ahmad A, Alshammari MB, Alam S, Lee BI. Surface-engineered vertically-aligned ZnO nanorod for sensitive non-enzymatic electrochemical monitoring of cholesterol. Heliyon 2024; 10:e37847. [PMID: 39315144 PMCID: PMC11417317 DOI: 10.1016/j.heliyon.2024.e37847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Developing highly sensitive and selective non-enzymatic electrochemical biosensors for disease biomarker detection has become challenging in healthcare applications. However, advances in material science are opening new avenues for creating more dependable biosensing technologies. In this context, the present work introduces a novel approach by engineering a hybrid structure of zinc oxide nanorod (ZnO NR) modified with iron oxide nanoparticle (Fe2O3 NP) on an FTO electrode. This Fe2O3 NP-ZnO NR hybrid material functions as a nanozyme, facilitating the catalysis of cholesterol and enabling the direct transfer of electrons to the fluorine-doped tin oxide (FTO) electrode, limiting the need for costly and traditional enzymes in the detection process. This innovative non-enzymatic cholesterol biosensor showcases remarkable sensitivity, registering at 642.8 μA/mMcm2 within a linear response range of up to 9.0 mM. It also exhibits a low detection limit (LOD) of ∼12.4 μM, ensuring its capability to detect minimal concentrations of cholesterol accurately. Moreover, the developed biosensor displays exceptional selectivity by effectively distinguishing cholesterol molecules from other interfering biological species, while exhibiting outstanding stability and reproducibility. Our findings indicate that the Fe2O3 NP-ZnO NR hybrid nanostructure on the FTO electrode holds promise for enhancing biosensor stability. Furthermore, the present device fabrication platform offers versatility, as it can be adapted with various enzymes or modified with different metal oxides, potentially broadening its applicability in a wide range of biomarkers detection.
Collapse
Affiliation(s)
- Rafiq Ahmad
- ‘New-Senior’ Oriented Smart Health Care Education Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Kiesar Sideeq Bhat
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar, 190006, India
- Singapore-MIT Alliance for Research and Technology (SMART), Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Create Way, 138602, Singapore
| | - Vandana Nagal
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Umesh T. Nakate
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mohammed B. Alshammari
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Shamshad Alam
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, 14263, United States
| | - Byeong-Il Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan, 48513, Republic of Korea
- Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
10
|
Zare Y, Munir MT, Rhee KY. A novel approach to predict the electrical conductivity of nanocomposites by a weak interphase around graphene network. Sci Rep 2024; 14:21514. [PMID: 39277704 PMCID: PMC11401846 DOI: 10.1038/s41598-024-72698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
Herein, we offer a model for estimating the tunneling conductivity of polymer-graphene nanocomposites based on interfacial properties, the proportion of networked graphene, and the wettability value between the polymer medium and the filler. The interfacial properties are influenced by the minimum diameter of the nanosheets (Dc), whose conductivity can be transferred to the medium via interfacial conduction (τ). These parameters impact the actual aspect ratio and the volume proportion of the filler, which, in turn, control the onset of percolation and the proportion of nanosheets in the network. We apply all these parameters to develop a novel model for estimating the conductivity of graphene systems. The predictions obtained from this model across different parameter ranges are discussed. Additionally, experimental measurements are employed to evaluate the proposed equations. High filler conductivity enhances the nanocomposite's conductivity by a strong interfacial conduction. However, the conductivity cannot be transferred to the polymer medium under condition of weak interfacial conduction. Furthermore, a robust interphase and a small Dc contribute to increased conductivity. Ultimately, the developed equations accurately predict the onset of percolation and conductivity, validated by real experimental data.
Collapse
Affiliation(s)
- Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Muhammad Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK21 four), College of Engineering, Kyung Hee University, Yongin, Republic of Korea.
| |
Collapse
|
11
|
Enayati M, Liu W, Madry H, Neisiany RE, Cucchiarini M. Functionalized hydrogels as smart gene delivery systems to treat musculoskeletal disorders. Adv Colloid Interface Sci 2024; 331:103232. [PMID: 38889626 DOI: 10.1016/j.cis.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Despite critical advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy based on the delivery of therapeutic genetic sequences has strong value to offer effective, durable options to decisively manage such disorders. Furthermore, scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy, allowing for the spatiotemporal delivery of candidate genes to sites of injury. Among the many scaffolds for musculoskeletal research, hydrogels raised increasing attention in addition to other potent systems (solid, hybrid scaffolds) due to their versatility and competence as drug and cell carriers in tissue engineering and wound dressing. Attractive functionalities of hydrogels for musculoskeletal therapy include their injectability, stimuli-responsiveness, self-healing, and nanocomposition that may further allow to upgrade of them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. Such functionalized hydrogels may also be tuned to successfully transfer therapeutic genes in a minimally invasive manner in order to protect their cargos and allow for their long-term effects. In light of such features, this review focuses on functionalized hydrogels and demonstrates their competence for the treatment of musculoskeletal disorders using gene therapy procedures, from gene therapy principles to hydrogel functionalization methods and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are being discussed in the perspective of translation in patients. STATEMENT OF SIGNIFICANCE: Despite advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy has strong value in offering effective, durable options to decisively manage such disorders. Scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy. Among many scaffolds for musculoskeletal research, hydrogels raised increasing attention. Functionalities including injectability, stimuli-responsiveness, and self-healing, tune them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. This review introduces functionalized hydrogels for musculoskeletal disorder treatment using gene therapy procedures, from gene therapy principles to functionalized hydrogels and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are discussed from the perspective of translation in patients.
Collapse
Affiliation(s)
- Mohammadsaeid Enayati
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany.
| |
Collapse
|
12
|
Paramasivam G, Palem VV, Meenakshy S, Suresh LK, Gangopadhyay M, Antherjanam S, Sundramoorthy AK. Advances on carbon nanomaterials and their applications in medical diagnosis and drug delivery. Colloids Surf B Biointerfaces 2024; 241:114032. [PMID: 38905812 DOI: 10.1016/j.colsurfb.2024.114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/23/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Carbon nanomaterials are indispensable due to their unique properties of high electrical conductivity, mechanical strength and thermal stability, which makes them important nanomaterials in biomedical applications and waste management. Limitations of conventional nanomaterials, such as limited surface area, difficulty in fine tuning electrical or thermal properties and poor dispersibility, calls for the development of advanced nanomaterials to overcome such limitations. Commonly, carbon nanomaterials were synthesized by chemical vapor deposition (CVD), laser ablation or arc discharge methods. The advancement in these techniques yielded monodispersed carbon nanotubes (CNTs) and allows p-type and n-type doping to enhance its electrical and catalytic activities. The functionalized CNTs showed exceptional mechanical, electrical and thermal conductivity (3500-5000 W/mK) properties. On the other hand, carbon quantum dots (CQDs) exhibit strong photoluminescence properties with high quantum yield. Carbon nanohorns are another fascinating type of nanomaterial that exhibit a unique structure with high surface area and excellent adsorption properties. These carbon nanomaterials could improve waste management by adsorbing pollutants from water and soil, enabling precise environmental monitoring, while enhancing wastewater treatment and drug delivery systems. Herein, we have discussed the potentials of all these carbon nanomaterials in the context of innovative waste management solutions, fostering cleaner environments and healthier ecosystems for diverse biomedical applications such as biosensing, drug delivery, and environmental monitoring.
Collapse
Affiliation(s)
- Gokul Paramasivam
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 602105, India.
| | - Vishnu Vardhan Palem
- Department of Biomedical Engineering, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, 641022 India
| | - Simi Meenakshy
- Department of Chemistry, Amrita Vishwa Vidhyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Lakshmi Krishnaa Suresh
- Department of Chemistry, Amrita Vishwa Vidhyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Moumita Gangopadhyay
- Department of Chemistry, Amrita Vishwa Vidhyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Santhy Antherjanam
- Department of Chemistry, Amrita Vishwa Vidhyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Ashok K Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, No.162, Poonamallee High Road, Velappanchavadi, Chennai, Tamil Nadu 600077, India.
| |
Collapse
|
13
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
14
|
Andoh V, Ocansey DKW, Naveed H, Wang N, Chen L, Chen K, Mao F. The Advancing Role of Nanocomposites in Cancer Diagnosis and Treatment. Int J Nanomedicine 2024; 19:6099-6126. [PMID: 38911500 PMCID: PMC11194004 DOI: 10.2147/ijn.s471360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024] Open
Abstract
The relentless pursuit of effective cancer diagnosis and treatment strategies has led to the rapidly expanding field of nanotechnology, with a specific focus on nanocomposites. Nanocomposites, a combination of nanomaterials with diverse properties, have emerged as versatile tools in oncology, offering multifunctional platforms for targeted delivery, imaging, and therapeutic interventions. Nanocomposites exhibit great potential for early detection and accurate imaging in cancer diagnosis. Integrating various imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and fluorescence imaging, into nanocomposites enables the development of contrast agents with enhanced sensitivity and specificity. Moreover, functionalizing nanocomposites with targeting ligands ensures selective accumulation in tumor tissues, facilitating precise imaging and diagnostic accuracy. On the therapeutic front, nanocomposites have revolutionized cancer treatment by overcoming traditional challenges associated with drug delivery. The controlled release of therapeutic agents from nanocomposite carriers enhances drug bioavailability, reduces systemic toxicity, and improves overall treatment efficacy. Additionally, the integration of stimuli-responsive components within nanocomposites enables site-specific drug release triggered by the unique microenvironment of the tumor. Despite the remarkable progress in the field, challenges such as biocompatibility, scalability, and long-term safety profiles remain. This article provides a comprehensive overview of recent developments, challenges, and prospects, emphasizing the transformative potential of nanocomposites in revolutionizing the landscape of cancer diagnostics and therapeutics. In Conclusion, integrating nanocomposites in cancer diagnosis and treatment heralds a new era for precision medicine.
Collapse
Affiliation(s)
- Vivian Andoh
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Dickson Kofi Wiredu Ocansey
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, People’s Republic of China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Central Region, CC0959347, Ghana
| | - Hassan Naveed
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Naijian Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Fei Mao
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, People’s Republic of China
| |
Collapse
|
15
|
Fu L, Karimi-Maleh H. Leveraging electrochemical sensors to improve efficiency of cancer detection. World J Clin Oncol 2024; 15:360-366. [PMID: 38576591 PMCID: PMC10989266 DOI: 10.5306/wjco.v15.i3.360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/22/2024] Open
Abstract
Electrochemical biosensors have emerged as a promising technology for cancer detection due to their high sensitivity, rapid response, low cost, and capability for non-invasive detection. Recent advances in nanomaterials like nanoparticles, graphene, and nanowires have enhanced sensor performance to allow for cancer biomarker detection, like circulating tumor cells, nucleic acids, proteins and metabolites, at ultra-low concentrations. However, several challenges need to be addressed before electrochemical biosensors can be clinically implemented. These include improving sensor selectivity in complex biological media, device miniaturization for implantable applications, integration with data analytics, handling biomarker variability, and navigating regulatory approval. This editorial critically examines the prospects of electrochemical biosensors for efficient, low-cost and minimally invasive cancer screening. We discuss recent developments in nanotechnology, microfabrication, electronics integration, multiplexing, and machine learning that can help realize the potential of these sensors. However, significant interdisciplinary efforts among researchers, clinicians, regulators and the healthcare industry are still needed to tackle limitations in selectivity, size constraints, data interpretation, biomarker validation, toxicity and commercial translation. With committed resources and pragmatic strategies, electrochemical biosensors could enable routine early cancer detection and dramatically reduce the global cancer burden.
Collapse
Affiliation(s)
- Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang Province, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan Province, China
- School of Engineering, Lebanese American University, Byblos 1102 2801, Lebanon
| |
Collapse
|
16
|
Zeng W, Tang X, Wu T, Han B, Wu L. Development of a highly sensitive aptamer-based electrochemical sensor for detecting saxitoxin based on K 3Fe(CN) 6 regulated silver nanoparticles. Anal Chim Acta 2024; 1287:342134. [PMID: 38182355 DOI: 10.1016/j.aca.2023.342134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Saxitoxin (STX) is the most toxic marine toxin, which can pose several adverse effects on human health. High sensitivity, fast response, and low-cost detection of STX contamination are of significance to reducing the fishery and seafood industries' loss. Among the various types of biosensors, the electrochemical biosensors have been extensively studied in the detection of STX, but the electrode surface modification material is easy to fall off, resulting in unstable electrochemical signals and poor reproducibility. It is imperative to have a ratiometric electrochemical biosensor for STX. RESULTS In this study, we developed a novel aptamer-based electrochemical sensor (AECs) for the sensitive detection of STX based on a K3Fe(CN)6 regulated silver nanoparticles (Ag NPs) modified with aptamer. The AECs was constructed by immobilizing aptamer on Ag NPs surfaces. Under optimized conditions, the AECs showed a linear response towards STX in the range from 0.04 to 0.15 μM with the regression equation of Y = -8.0 + 233.7 X (R2 = 0.9956). The limit of detection (LOD) was calculated to be 1 nM (based on 3 N/S), which is significantly lower than the regulatory limits for STX in seafood. Moreover, the AECs showed excellent sensitivity, reproducibility and stability, as well as the detection in samples with acceptable recovery ranged from 71.2 % to 93.8 %, demonstrating its broad application prospects in detection of STX in seafood samples. SIGNIFICANCE This work proposed an AECs to achieve sensitive detection of STX. A reaction system of K3Fe(CN)6 etched Ag NPs was introduced and used as the signal source to avoid the instability of the electrochemical signal, which can produce a ratiometric electrochemical signal output mode, improving the stability and sensitivity of electrochemical detection of STX.
Collapse
Affiliation(s)
- Wei Zeng
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, 570228, China
| | - Xuemei Tang
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, 570228, China
| | - Ting Wu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, 570228, China
| | - Bingjun Han
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, 570228, China.
| |
Collapse
|
17
|
Kim Y, Jeon Y, Na M, Hwang SJ, Yoon Y. Recent Trends in Chemical Sensors for Detecting Toxic Materials. SENSORS (BASEL, SWITZERLAND) 2024; 24:431. [PMID: 38257524 PMCID: PMC10821350 DOI: 10.3390/s24020431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Industrial development has led to the widespread production of toxic materials, including carcinogenic, mutagenic, and toxic chemicals. Even with strict management and control measures, such materials still pose threats to human health. Therefore, convenient chemical sensors are required for toxic chemical monitoring, such as optical, electrochemical, nanomaterial-based, and biological-system-based sensors. Many existing and new chemical sensors have been developed, as well as new methods based on novel technologies for detecting toxic materials. The emergence of material sciences and advanced technologies for fabrication and signal-transducing processes has led to substantial improvements in the sensing elements for target recognition and signal-transducing elements for reporting interactions between targets and sensing elements. Many excellent reviews have effectively summarized the general principles and applications of different types of chemical sensors. Therefore, this review focuses on chemical sensor advancements in terms of the sensing and signal-transducing elements, as well as more recent achievements in chemical sensors for toxic material detection. We also discuss recent trends in biosensors for the detection of toxic materials.
Collapse
Affiliation(s)
| | | | | | | | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.K.); (Y.J.); (M.N.); (S.-J.H.)
| |
Collapse
|
18
|
Wang M, Liu H, Fan K. Signal Amplification Strategy Design in Nanozyme-Based Biosensors for Highly Sensitive Detection of Trace Biomarkers. SMALL METHODS 2023; 7:e2301049. [PMID: 37817364 DOI: 10.1002/smtd.202301049] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Nanozymes show great promise in enhancing disease biomarker sensing by leveraging their physicochemical properties and enzymatic activities. These qualities facilitate signal amplification and matrix effects reduction, thus boosting biomarker sensing performance. In this review, recent studies from the last five years, concentrating on disease biomarker detection improvement through nanozyme-based biosensing are examined. This enhancement primarily involves the modulations of the size, morphology, doping, modification, electromagnetic mechanisms, electron conduction efficiency, and surface plasmon resonance effects of nanozymes for increased sensitivity. In addition, a comprehensive description of the synthesis and tuning strategies employed for nanozymes has been provided. This includes a detailed elucidation of their catalytic mechanisms in alignment with the fundamental principles of enhanced sensing technology, accompanied by the presentation of quantitatively analyzed results. Moreover, the diverse applications of nanozymes in strip sensing, colorimetric sensing, electrochemical sensing, and surface-enhanced Raman scattering have been outlined. Additionally, the limitations, challenges, and corresponding recommendations concerning the application of nanozymes in biosensing have been summarized. Furthermore, insights have been offered into the future development and outlook of nanozymes for biosensing. This review aims to serve not only as a reference for enhancing the sensitivity of nanozyme-based biosensors but also as a catalyst for exploring nanozyme properties and their broader applications in biosensing.
Collapse
Affiliation(s)
- Mengting Wang
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Hongxing Liu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
19
|
Deng Y, Zhang Y, Zhou M, Wu B, Zhou J. Application of Biosensors in Detecting Breast Cancer Metastasis. SENSORS (BASEL, SWITZERLAND) 2023; 23:8813. [PMID: 37960513 PMCID: PMC10649164 DOI: 10.3390/s23218813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Breast cancer has garnered global attention due to its high incidence worldwide, and even more noteworthy is that approximately 90% deaths due to breast cancer are attributed to cancer metastasis. Therefore, the early diagnosis of breast cancer metastasis holds significant importance for reducing mortality outcomes. Biosensors play a crucial role in the early detection of metastatic breast cancer due to their advantages, such as ease of use, portability, and real-time analysis capabilities. This review primarily described various types of sensors for detecting breast cancer metastasis based on biomarkers and cell characteristics, including electrochemical, optical, and microfluidic chips. We offered detailed descriptions of the performance of these various biosensors and made comparisons between them. Furthermore, we described the pathology of breast cancer and summarized commonly used biomarkers for metastatic breast cancer. Finally, we discussed the advantages of current-stage biosensors and the challenges that need to be addressed, as well as prospects for their future development.
Collapse
Affiliation(s)
- Yu Deng
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yubi Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Breast and Thyroid Surgery, People’s Hospital of Dongxihu District Wuhan City and Union Dongxihu Hospital, Huazhong University of Science and Technology, Wuhan 430040, China
| |
Collapse
|
20
|
Kuznetsova LS, Arlyapov VA, Plekhanova YV, Tarasov SE, Kharkova AS, Saverina EA, Reshetilov AN. Conductive Polymers and Their Nanocomposites: Application Features in Biosensors and Biofuel Cells. Polymers (Basel) 2023; 15:3783. [PMID: 37765637 PMCID: PMC10536614 DOI: 10.3390/polym15183783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Conductive polymers and their composites are excellent materials for coupling biological materials and electrodes in bioelectrochemical systems. It is assumed that their relevance and introduction to the field of bioelectrochemical devices will only grow due to their tunable conductivity, easy modification, and biocompatibility. This review analyzes the main trends and trends in the development of the methodology for the application of conductive polymers and their use in biosensors and biofuel elements, as well as describes their future prospects. Approaches to the synthesis of such materials and the peculiarities of obtaining their nanocomposites are presented. Special emphasis is placed on the features of the interfaces of such materials with biological objects.
Collapse
Affiliation(s)
- Lyubov S. Kuznetsova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Vyacheslav A. Arlyapov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Yulia V. Plekhanova
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei E. Tarasov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Anna S. Kharkova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Evgeniya A. Saverina
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
- Federal State Budgetary Institution of Science, N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia
| | - Anatoly N. Reshetilov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
21
|
Zare Y, Gharib N, Nam DH, Chang YW. Predicting of tunneling resistivity between adjacent nanosheets in graphene-polymer systems. Sci Rep 2023; 13:12455. [PMID: 37528228 PMCID: PMC10394054 DOI: 10.1038/s41598-023-39414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
In this work, the tunneling resistivity between neighboring nanosheets in grapheme-polymer nanocomposites is expressed by a simple equation as a function of the characteristics of graphene and tunnels. This expression is obtained by connecting two advanced models for the conductivity of graphene-filled materials reflecting tunneling role and interphase area. The predictions of the applied models are linked to the tested data of several samples. The impressions of all factors on the tunneling resistivity are evaluated and interpreted using the suggested equation. The calculations of tunneling resistivity for the studied examples by the model and suggested equation demonstrate the same levels, which confirm the presented methodology. The results indicate that the tunneling resistivity decreases by super-conductive graphene, small tunneling width, numerous contacts among nanosheets and short tunneling length.
Collapse
Affiliation(s)
- Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Nima Gharib
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Dong-Hyun Nam
- Department of Materials Science and Chemical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University ERICA, Ansan, 15588, Korea
| | - Young-Wook Chang
- Department of Materials Science and Chemical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University ERICA, Ansan, 15588, Korea.
| |
Collapse
|
22
|
Zare Y, Kim TH, Gharib N, Chang YW. Effect of contact number among graphene nanosheets on the conductivities of tunnels and polymer composites. Sci Rep 2023; 13:9506. [PMID: 37308514 DOI: 10.1038/s41598-023-36669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023] Open
Abstract
Simple equations are expressed for tunnel conductivity, tunnel resistance and conductivity of a graphene-filled composite by the number of contacts and interphase part. More specially, the active filler amount is suggested by interphase depth, which changes the contact number. The conductivity of nanocomposite is presented by filler content, filler dimensions, tunneling length and interphase depth. The innovative model is surveyed by the experimented conductivity of real examples. Too, the impacts of numerous issues on the tunnel resistance, tunnel conductivity and conductivity of nanocomposite are discussed to validate the novel equations. The estimates agree with the experimented data and the impacts of several terms on the tunnel resistance, tunnel conductivity and conductivity of system are sensible. Thin and big nanosheets positively affect the nanocomposite's conductivity, but thick nanosheets improve the tunnel conductivity. High conductivity is found at short tunnels, while the nanocomposite's conductivity directly depends on the tunneling length. The dissimilar effects of these features on the tunneling properties and conductivity are described.
Collapse
Affiliation(s)
- Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Tae-Hoon Kim
- Department of Materials Science & Chemical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University ERICA, Ansan, 15588, Korea
| | - Nima Gharib
- College of Engineering and Technology, American University of the Middle East, 54200, Egaila, Kuwait
| | - Young-Wook Chang
- Department of Materials Science & Chemical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University ERICA, Ansan, 15588, Korea.
| |
Collapse
|
23
|
Mohammadpour Z, Askari E, Shokati F, Hoseini HS, Kamankesh M, Zare Y, Rhee KY. Synthesis of Fe-Doped Peroxidase Mimetic Nanozymes from Natural Hemoglobin for Colorimetric Biosensing and In Vitro Anticancer Effects. BIOSENSORS 2023; 13:583. [PMID: 37366948 DOI: 10.3390/bios13060583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Despite their efficiency and specificity, the instability of natural enzymes in harsh conditions has inspired researchers to replace them with nanomaterials. In the present study, extracted hemoglobin from blood biowastes was hydrothermally converted to catalytically active carbon nanoparticles (BDNPs). Their application as nanozymes for the colorimetric biosensing of H2O2 and glucose and selective cancer cell-killing ability was demonstrated. Particles that were prepared at 100 °C (BDNP-100) showed the highest peroxidase mimetic activity, with Michaelis-Menten constants (Km) of 11.8 mM and 0.121 mM and maximum reaction rates (Vmax) of 8.56 × 10-8 mol L-1 s-1 and 0.538 × 10-8 mol L-1 s-1, for H2O2 and TMB, respectively. The cascade catalytic reactions, catalyzed by glucose oxidase and BDNP-100, served as the basis for the sensitive and selective colorimetric glucose determination. A linear range of 50-700 µM, a response time of 4 min, a limit of detection (3σ/N) of 40 µM, and a limit of quantification (10σ/N) of 134 µM was achieved. In addition, the reactive oxygen species (ROS)-generating ability of BDNP-100 was employed for evaluating its potential in cancer therapy. Human breast cancer cells (MCF-7), in the forms of monolayer cell cultures and 3D spheroids, were studied by MTT, apoptosis, and ROS assays. The in vitro cellular experiments showed dose-dependent cytotoxicity of BDNP-100 toward MCF-7 cells in the presence of 50 µM of exogenous H2O2. However, no obvious damage was induced to normal cells in the same experimental conditions, verifying the selective cancer cell-killing ability of BDNP-100.
Collapse
Affiliation(s)
- Zahra Mohammadpour
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Esfandyar Askari
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Farhad Shokati
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Hosna Sadat Hoseini
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Mojtaba Kamankesh
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Yasser Zare
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
24
|
Vatani M, Zare Y, Gharib N, Rhee KY, Park SJ. Simulating of effective conductivity for grapheme-polymer nanocomposites. Sci Rep 2023; 13:5907. [PMID: 37041268 PMCID: PMC10090123 DOI: 10.1038/s41598-023-32991-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/05/2023] [Indexed: 04/13/2023] Open
Abstract
The efficient conductivity of graphene-polymer systems is expressed supposing graphene, tunneling and interphase components. The volume shares and inherent resistances of the mentioned components are used to define the efficient conductivity. Besides, the percolation start and the share of graphene and interphase pieces in the nets are formulated by simple equations. Also, the resistances of tunneling and interphase parts are correlated to graphene conductivity and their specifications. Suitable arrangements among experimented data and model's estimates as well as the proper trends between efficient conductivity and model's parameters validate the correctness of the novel model. The calculations disclose that the efficient conductivity improves by low percolation level, dense interphase, short tunnel, large tunneling pieces and poor polymer tunnel resistivity. Furthermore, only the tunneling resistance can govern the electron transportation between nanosheets and efficient conductivity, while the big amounts of graphene and interphase conductivity cannot play a role in the efficient conductivity.
Collapse
Affiliation(s)
- Mostafa Vatani
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, P.O. Box 87317-53153, Kashan, Iran
| | - Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Nima Gharib
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin, Republic of Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
25
|
Zhang J, Ding H, Zhang F, Xu Y, Liang W, Huang L. New trends in diagnosing and treating ovarian cancer using nanotechnology. Front Bioeng Biotechnol 2023; 11:1160985. [PMID: 37082219 PMCID: PMC10110946 DOI: 10.3389/fbioe.2023.1160985] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Ovarian cancer stands as the fifth most prevalent cancer among women, causing more mortalities than any other disease of the female reproductive system. There are numerous histological subtypes of ovarian cancer, each of which has distinct clinical characteristics, risk factors, cell origins, molecular compositions, and therapeutic options. Typically, it is identified at a late stage, and there is no efficient screening method. Standard therapies for newly diagnosed cancer are cytoreductive surgery and platinum-based chemotherapy. The difficulties of traditional therapeutic procedures encourage researchers to search for other approaches, such as nanotechnology. Due to the unique characteristics of matter at the nanoscale, nanomedicine has emerged as a potent tool for creating novel drug carriers that are more effective and have fewer adverse effects than traditional treatments. Nanocarriers including liposomes, dendrimers, polymer nanoparticles, and polymer micelles have unique properties in surface chemistry, morphology, and mechanism of action that can distinguish between malignant and normal cells, paving the way for targeted drug delivery. In contrast to their non-functionalized counterparts, the development of functionalized nano-formulations with specific ligands permits selective targeting of ovarian cancers and ultimately increases the therapeutic potential. This review focuses on the application of various nanomaterials to the treatment and diagnosis of ovarian cancer, their advantages over conventional treatment methods, and the effective role of controlled drug delivery systems in the therapy of ovarian cancer.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Gynecology, Shaoxing Maternity and Child Healthcare Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Haigang Ding
- Department of Gynecology, Shaoxing Maternity and Child Healthcare Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Feng Zhang
- Department of Gynecology, Shaoxing Maternity and Child Healthcare Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Yan Xu
- Intensive Care Unit, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Liping Huang, ; Wenqing Liang,
| | - Liping Huang
- Department of Medical Oncology, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Liping Huang, ; Wenqing Liang,
| |
Collapse
|
26
|
Jiang H, Xia C, Lin J, Garalleh HA, Alalawi A, Pugazhendhi A. Carbon nanomaterials: A growing tool for the diagnosis and treatment of diabetes mellitus. ENVIRONMENTAL RESEARCH 2023; 221:115250. [PMID: 36646201 DOI: 10.1016/j.envres.2023.115250] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/20/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Diabetes mellitus is a growing disease that affects people of different ages due to deficiencies in insulin action and secretion. Diabetes causing long-term hyperglycemia damages, destroys, and fails essential organs, including kidneys, eyes, hearts, nerves, and blood vessels. The involvement of pathogenic factors makes diabetes mellitus a severe disease. The autoimmune process results in insulin deficiency by destroying the beta-cells in the pancreas. This leads to insulin resistance. As a result of defects and abnormalities in fat, carbohydrate, and protein synthesis, insulin does not work as it should on the target tissues. As diabetes mellitus becomes, more severe, long-term and effective treatment becomes necessary. A wide range of nanomaterials can be used to treat diabetes mellitus in patients. In addition to being potential imaging, diagnostic, and treatment agents for diabetes mellitus, carbon nanomaterials (CNMs) are another group of nanoparticles that exhibit potential interest. The CNMs acts as implantable nanosensor to track and detect blood glucose level in patients with diabetes. CNMS are possible drug carriers that can treat diabetes mellitus selectively, precisely, and effectively. Diabetes mellitus can be diagnosed and treated with CNMs due to their structural specificity and high drug-loading efficiency. The present review explores CNMs for their types, synthesis, and anti-diabetic properties. This review aims to provide a detailed view of the new technology that can be used to decipher the mechanism of CNMs in diabetes mellitus.
Collapse
Affiliation(s)
- Han Jiang
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Junqing Lin
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Amr Alalawi
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| |
Collapse
|
27
|
Foroozandeh A, Abdouss M, SalarAmoli H, Pourmadadi M, Yazdian F. An electrochemical aptasensor based on g-C3N4/Fe3O4/PANI Nanocomposite applying cancer antigen_125 biomarkers detection. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
28
|
Mohammadpour-Haratbar A, Boraei SBA, Zare Y, Rhee KY, Park SJ. Graphene-Based Electrochemical Biosensors for Breast Cancer Detection. BIOSENSORS 2023; 13:bios13010080. [PMID: 36671915 PMCID: PMC9855997 DOI: 10.3390/bios13010080] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 06/04/2023]
Abstract
Breast cancer (BC) is the most common cancer in women, which is also the second most public cancer worldwide. When detected early, BC can be treated more easily and prevented from spreading beyond the breast. In recent years, various BC biosensor strategies have been studied, including optical, electrical, electrochemical, and mechanical biosensors. In particular, the high sensitivity and short detection time of electrochemical biosensors make them suitable for the recognition of BC biomarkers. Moreover, the sensitivity of the electrochemical biosensor can be increased by incorporating nanomaterials. In this respect, the outstanding mechanical and electrical performances of graphene have led to an increasingly intense study of graphene-based materials for BC electrochemical biosensors. Hence, the present review examines the latest advances in graphene-based electrochemical biosensors for BC biosensing. For each biosensor, the detection limit (LOD), linear range (LR), and diagnosis technique are analyzed. This is followed by a discussion of the prospects and current challenges, along with potential strategies for enhancing the performance of electrochemical biosensors.
Collapse
Affiliation(s)
- Ali Mohammadpour-Haratbar
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1715424313, Iran
| | - Seyyed Behnam Abdollahi Boraei
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1715424313, Iran
| | - Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1715424313, Iran
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
29
|
Simulation of electrical conductivity for polymer silver nanowires systems. Sci Rep 2023; 13:5. [PMID: 36593261 PMCID: PMC9807585 DOI: 10.1038/s41598-022-25548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/30/2022] [Indexed: 01/03/2023] Open
Abstract
A simple model is developed for the conductivity of polymeric systems including silver nanowires (AgNWs). This model reveals the effects of interphase thickness, tunneling distance, waviness and aspect ratio of nanowires, as well as effective filler volume fraction on the percolation and electrical conductivity of AgNW-reinforced samples. The validity of this model is tested by using the measured data from several samples. Based on this model, the conductivity calculations are in proper accordance with the measured values. A large network and a low percolation onset are produced by nanowires with a high aspect ratio developing the nanocomposite conductivity. The results also show that a thicker interphase expands the network, thereby increasing the electrical conductivity. Furthermore, non-waved AgNWs exhibit more conductivity compared to wavy nanowires. It is concluded that the surface energies of polymer medium and nanowires have no effect on the conductivity of samples. On the other hand, the volume fraction and aspect ratio of nanowires, in addition to the interphase thickness and tunneling distance have the greatest influences on the conductivity of nanocomposites.
Collapse
|
30
|
Mohammadpour-Haratbar A, Mohammadpour-Haratbar S, Zare Y, Rhee KY, Park SJ. A Review on Non-Enzymatic Electrochemical Biosensors of Glucose Using Carbon Nanofiber Nanocomposites. BIOSENSORS 2022; 12:bios12111004. [PMID: 36421123 PMCID: PMC9688744 DOI: 10.3390/bios12111004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 05/09/2023]
Abstract
Diabetes mellitus has become a worldwide epidemic, and it is expected to become the seventh leading cause of death by 2030. In response to the increasing number of diabetes patients worldwide, glucose biosensors with high sensitivity and selectivity have been developed for rapid detection. The selectivity, high sensitivity, simplicity, and quick response of electrochemical biosensors have made them a popular choice in recent years. This review summarizes the recent developments in electrodes for non-enzymatic glucose detection using carbon nanofiber (CNF)-based nanocomposites. The electrochemical performance and limitations of enzymatic and non-enzymatic glucose biosensors are reviewed. Then, the recent developments in non-enzymatic glucose biosensors using CNF composites are discussed. The final section of the review provides a summary of the challenges and perspectives, for progress in non-enzymatic glucose biosensors.
Collapse
Affiliation(s)
- Ali Mohammadpour-Haratbar
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1949635881, Iran
| | | | - Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1949635881, Iran
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin 17104, Korea
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Korea
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| |
Collapse
|