1
|
Fang F, Wang H, Luo J, Hong F. Exploring the causal association between circulating leukocyte count and IgA nephropathy based on two-sample Mendelian randomization: possible role of transitional B cells. Clin Exp Nephrol 2025:10.1007/s10157-025-02646-3. [PMID: 40011364 DOI: 10.1007/s10157-025-02646-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND To examine the causal association between genetically predicted circulating leukocyte counts and IgA nephropathy. METHODS A two-sample Mendelian randomization (MR) design was used. The exposures were the neutrophil, lymphocyte (with subsequent analyses for memory B-cell %lymphocyte, IgD- CD38br %lymphocyte, IgD+ CD38br %lymphocyte, CD24+ CD27+ %lymphocyte, Sw mem %lymphocyte, transitional %lymphocyte, and naïve-mature B-cell %lymphocyte), monocyte, basophil, and eosinophil counts. The outcome was IgA nephropathy. Analysis was conducted using the inverse variance weighted (IVW), MR-Egger, weighted median, and weighted mode. The Cochran's Q-test and MR-Egger regression were used to assess heterogeneity and horizontal pleiotropy, respectively. The robustness of the results was tested using MR-PRESSO and leave-one-out analyses. RESULTS The genetic prediction results showed causal associations between the neutrophil counts and IgA nephropathy (OR = 2.62, 95%CI 2.47-2.77, P < 0.001) and between the lymphocyte counts and IgA nephropathy (OR = 0.76, 95%CI 0.58-0.99, P = 0.04). Monocyte, basophil, and eosinophil counts showed no causal associations with IgA nephropathy. The supplementary genetic prediction analyses showed a causal association between transitional %lymphocytes and IgA nephropathy (OR = 0.58, 95%CI 0.39-0.87, P = 0.008). Cochran's Q test revealed heterogeneity for the neutrophil, lymphocyte, monocyte, eosinophil, transitional %lymphocytes, and count analyses (all P < 0.05), but the MR-Egger test revealed no pleiotropy. After removing the outliers, the associations remained the same. CONCLUSION Causal associations were observed between neutrophil and lymphocyte counts as exposures and IgA nephropathy as outcome. Among lymphocytes, transitional B cells could be involved in the pathogenesis of IgA nephropathy. Attention should be paid to neutrophil and lymphocyte counts in future studies on IgA nephropathy.
Collapse
Affiliation(s)
- Fang Fang
- Department of Nephrology, HuangShan People's Hospital, Huangshan, 245000, Anhui, China.
| | - Hong Wang
- Department of Nephrology, HuangShan People's Hospital, Huangshan, 245000, Anhui, China
| | - Jun Luo
- Department of Nephrology, HuangShan People's Hospital, Huangshan, 245000, Anhui, China
| | - Fatong Hong
- Department of Nephrology, HuangShan People's Hospital, Huangshan, 245000, Anhui, China
| |
Collapse
|
2
|
Varghese JF, Kaskow BJ, von Glehn F, Case J, Li Z, Julé AM, Berdan E, Ho Sui SJ, Hu Y, Krishnan R, Chitnis T, Kuchroo VK, Weiner HL, Baecher-Allan CM. Human regulatory memory B cells defined by expression of TIM-1 and TIGIT are dysfunctional in multiple sclerosis. Front Immunol 2024; 15:1360219. [PMID: 38745667 PMCID: PMC11091236 DOI: 10.3389/fimmu.2024.1360219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/13/2024] [Indexed: 05/16/2024] Open
Abstract
Background Regulatory B cells (Bregs) play a pivotal role in suppressing immune responses, yet there is still a lack of cell surface markers that can rigorously identify them. In mouse models for multiple sclerosis (MS), TIM-1 or TIGIT expression on B cells is required for maintaining self-tolerance and regulating autoimmunity to the central nervous system. Here we investigated the activities of human memory B cells that differentially express TIM-1 and TIGIT to determine their potential regulatory function in healthy donors and patients with relapsing-remitting (RR) MS. Methods FACS-sorted TIM-1+/-TIGIT+/- memory B (memB) cells co-cultured with allogenic CD4+ T cells were analyzed for proliferation and induction of inflammatory markers using flow cytometry and cytokine quantification, to determine Th1/Th17 cell differentiation. Transcriptional differences were assessed by SMARTSeq2 RNA sequencing analysis. Results TIM-1-TIGIT- double negative (DN) memB cells strongly induce T cell proliferation and pro-inflammatory cytokine expression. The TIM-1+ memB cells enabled low levels of CD4+ T cell activation and gave rise to T cells that co-express IL-10 with IFNγ and IL-17A or FoxP3. T cells cultured with the TIM-1+TIGIT+ double positive (DP) memB cells exhibited reduced proliferation and IFNγ, IL-17A, TNFα, and GM-CSF expression, and exhibited strong regulation in Breg suppression assays. The functional activity suggests the DP memB cells are a bonafide Breg population. However, MS DP memB cells were less inhibitory than HC DP memB cells. A retrospective longitudinal study of anti-CD20 treated patients found that post-treatment DP memB cell frequency and absolute number were associated with response to therapy. Transcriptomic analyses indicated that the dysfunctional MS-derived DP memB/Breg population exhibited increased expression of genes associated with T cell activation and survival (CD80, ZNF10, PIK3CA), and had distinct gene expression compared to the TIGIT+ or TIM-1+ memB cells. Conclusion These findings demonstrate that TIM-1/TIGIT expressing memory B cell subsets have distinct functionalities. Co-expression of TIM-1 and TIGIT defines a regulatory memory B cell subset that is functionally impaired in MS.
Collapse
Affiliation(s)
- Johnna F. Varghese
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Belinda J. Kaskow
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Felipe von Glehn
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Junning Case
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Zhenhua Li
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Amélie M. Julé
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Emma Berdan
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Shannan Janelle Ho Sui
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Yong Hu
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Rajesh Krishnan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
- The Gene Lay Institute of Immunology and Inflammation, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - Tanuja Chitnis
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Vijay K. Kuchroo
- Harvard Medical School, Boston, MA, United States
- The Gene Lay Institute of Immunology and Inflammation, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - Howard L. Weiner
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Clare Mary Baecher-Allan
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
3
|
O'Connell P, Blake MK, Godbehere S, Amalfitano A, Aldhamen YA. SLAMF7 modulates B cells and adaptive immunity to regulate susceptibility to CNS autoimmunity. J Neuroinflammation 2022; 19:241. [PMID: 36199066 PMCID: PMC9533612 DOI: 10.1186/s12974-022-02594-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background Multiple sclerosis (MS) is a chronic, debilitating condition characterized by CNS autoimmunity stemming from a complex etiology involving both environmental and genetic factors. Our current understanding of MS points to dysregulation of the immune system as the pathogenic culprit, however, it remains unknown as to how the many genes associated with increased susceptibility to MS are involved. One such gene linked to MS susceptibility and known to regulate immune function is the self-ligand immune cell receptor SLAMF7. Methods We subjected WT and SLAMF7−/− mice to multiple EAE models, compared disease severity, and comprehensively profiled the CNS immune landscape of these mice. We identified all SLAMF7-expressing CNS immune cells and compared the entire CNS immune niche between genotypes. We performed deep phenotyping and in vitro functional studies of B and T cells via spectral cytometry and BioPlex assays. Adoptive transfer studies involving the transfer of WT and SLAMF7−/− B cells into B cell-deficient mice (μMT) were also performed. Finally, B–T cell co-culture studies were performed, and a comparative cell–cell interaction network derived from scRNA-seq data of SLAMF7+ vs. SLAMF7− human CSF immune cells was constructed. Results We found SLAMF7−/− mice to be more susceptible to EAE compared to WT mice and found SLAMF7 to be expressed on numerous CNS immune cell subsets. Absence of SLAMF7 did not grossly alter the CNS immune landscape, but allowed for altered immune cell subset infiltration during EAE in a model-dependent manner. Global lack of SLAMF7 expression increased myeloid cell activation states along with augmented T cell anti-MOG immunity. B cell profiling studies revealed increased activation states of specific plasma and B cell subsets in SLAMF7−/− mice during EAE, and functional co-culture studies determined that SLAMF7−/− B cells induce exaggerated T cell activation. Adoptive transfer studies revealed that the increased susceptibility of SLAMF7−/− mice to EAE is partly B cell dependent and reconstruction of the human CSF SLAMF7-interactome found B cells to be critical to cell–cell communication between SLAMF7-expressing cells. Conclusions Our studies have identified novel roles for SLAMF7 in CNS immune regulation and B cell function, and illuminate underpinnings of the genetic association between SLAMF7 and MS. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02594-9.
Collapse
Affiliation(s)
- Patrick O'Connell
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4108 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA
| | - Maja K Blake
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4108 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA
| | - Sarah Godbehere
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4108 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4108 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA.,Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Yasser A Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4108 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA.
| |
Collapse
|
4
|
Perdaens O, van Pesch V. Molecular Mechanisms of Immunosenescene and Inflammaging: Relevance to the Immunopathogenesis and Treatment of Multiple Sclerosis. Front Neurol 2022; 12:811518. [PMID: 35281989 PMCID: PMC8913495 DOI: 10.3389/fneur.2021.811518] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
Aging is characterized, amongst other features, by a complex process of cellular senescence involving both innate and adaptive immunity, called immunosenescence and associated to inflammaging, a low-grade chronic inflammation. Both processes fuel each other and partially explain increasing incidence of cancers, infections, age-related autoimmunity, and vascular disease as well as a reduced response to vaccination. Multiple sclerosis (MS) is a lifelong disease, for which considerable progress in disease-modifying therapies (DMTs) and management has improved long-term survival. However, disability progression, increasing with age and disease duration, remains. Neurologists are now involved in caring for elderly MS patients, with increasing comorbidities. Aging of the immune system therefore has relevant implications for MS pathogenesis, response to DMTs and the risks mediated by these treatments. We propose to review current evidence regarding markers and molecular mechanisms of immunosenescence and their relevance to understanding MS pathogenesis. We will focus on age-related changes in the innate and adaptive immune system in MS and other auto-immune diseases, such as systemic lupus erythematosus and rheumatoid arthritis. The consequences of these immune changes on MS pathology, in interaction with the intrinsic aging process of central nervous system resident cells will be discussed. Finally, the impact of immunosenescence on disease evolution and on the safety and efficacy of current DMTs will be presented.
Collapse
Affiliation(s)
- Océane Perdaens
- Laboratory of Neurochemistry, Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent van Pesch
- Laboratory of Neurochemistry, Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- *Correspondence: Vincent van Pesch
| |
Collapse
|
5
|
Mimpen M, Damoiseaux J, van Doorn W, Rolf L, Muris AH, Hupperts R, van Luijn MM, Gerlach O, Smolders J. Proportions of circulating transitional B cells associate with MRI activity in interferon beta-treated multiple sclerosis patients. J Neuroimmunol 2021; 358:577664. [PMID: 34280843 DOI: 10.1016/j.jneuroim.2021.577664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022]
Abstract
B-cells contribute to MS pathogenesis. The association of circulating B-cell phenotypes with combined unique active lesions (CUA) on MRI at 48 weeks follow-up was investigated in 50 interferon beta-treated MS patients. Transitional B-cell proportions were lower in participants with CUA at week 0 and 48 [p = 0.004, p = 0.002]. A decrease in circulating anti-EBNA-1 IgG levels between week 0 and 48 associated with absence of CUA [p = 0.047], but not with B-cell profiles. In a multi-factor model for CUA-risk, transitional B-cell proportions contributed independent from NK/T-cell ratio, change in anti-EBNA-1 IgG, and vitamin D supplementation. Transitional B-cells may predict treatment response in MS.
Collapse
Affiliation(s)
- Max Mimpen
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - William van Doorn
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands; CARIM School for vascular diseases, Maastricht, the Netherlands
| | - Linda Rolf
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Anne-Hilde Muris
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Raymond Hupperts
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurology, Zuyderland Medical Center, Sittard-Geleen, the Netherlands
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Oliver Gerlach
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurology, Zuyderland Medical Center, Sittard-Geleen, the Netherlands
| | - Joost Smolders
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Ding T, Su R, Wu R, Xue H, Wang Y, Su R, Gao C, Li X, Wang C. Frontiers of Autoantibodies in Autoimmune Disorders: Crosstalk Between Tfh/Tfr and Regulatory B Cells. Front Immunol 2021; 12:641013. [PMID: 33841422 PMCID: PMC8033031 DOI: 10.3389/fimmu.2021.641013] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Balance of Tfh/Tfr cell is critically important for the maintenance of immune tolerance, as evidenced by the fact that T follicular helper (Tfh) cells are central to the autoantibodies generation through providing necessary help for germinal center (GC) B cells, whereas T follicular regulatory (Tfr) cells significantly inhibit autoimmune inflammation process through restraining Tfh cell responses. However, signals underlying the regulation of Tfh and Tfr cells are largely undefined. Regulatory B cells (Bregs) is a heterogeneous subpopulation of B cells with immunosuppressive function. Considerable advances have been made in their functions to produce anti‐inflammatory cytokines and to regulate Th17, Th1, and Treg cells in autoimmune diseases. The recent identification of their correlations with dysregulated Tfr/Tfh cells and autoantibody production makes Bregs an important checkpoint in GC response. Bregs exert profound impacts on the differentiation, function, and distribution of Tfh and Tfr cells in the immune microenvironment. Thus, unraveling mechanistic information on Tfh-Breg and Tfr-Breg interactions will inspire novel implications for the establishment of homeostasis and prevention of autoantibodies in diverse diseases. This review summarizes the dysregulation of Tfh/Tfr cells in autoimmune diseases with a focus on the emerging role of Bregs in regulating the balance between Tfh and Tfr cells. The previously unsuspected crosstalk between Bregs and Tfh/Tfr cells will be beneficial to understand the cellular mechanisms of autoantibody production and evoke a revolution in immunotherapy for autoimmune diseases.
Collapse
Affiliation(s)
- Tingting Ding
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Xue
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanyan Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ronghui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Increased Frequencies of Switched Memory B Cells and Plasmablasts in Peripheral Blood from Patients with ANCA-Associated Vasculitis. J Immunol Res 2020; 2020:8209737. [PMID: 33313327 PMCID: PMC7719539 DOI: 10.1155/2020/8209737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 11/17/2022] Open
Abstract
B cells are thought to play a central role in the pathogenesis of antineutrophil cytoplasmic antibody- (ANCA-) associated vasculitis (AAV). ANCAs have been proposed to cause vasculitis by activating primed neutrophils to damage small blood vessels. We studied a cohort of AAV patients of which a majority were in remission and diagnosed with granulomatosis with polyangiitis (GPA). Using flow cytometry, the frequencies of CD19+ B cells and subsets in peripheral blood from 106 patients with AAV and 134 healthy controls were assessed. B cells were divided into naive, preswitch memory, switched memory, and exhausted memory cells. Naive and switched memory cells were further subdivided into transitional cells and plasmablasts, respectively. In addition, serum concentrations of immunoglobulin A, G, and M were measured and clinical data were retrieved. AAV patients displayed, in relation to healthy controls, a decreased frequency of B cells of lymphocytes (5.1% vs. 8.3%) and total B cell number. For the subsets, a decrease in percentage of transitional B cells (0.7% vs. 4.4%) and expansions of switched memory B cells (22.3% vs. 16.5%) and plasmablasts (0.9% vs. 0.3%) were seen. A higher proportion of B cells was activated (CD95+) in patients (20.6% vs. 10.3%), and immunoglobulin levels were largely unaltered. No differences in B cell frequencies between patients in active disease and remission were observed. Patients in remission with a tendency to relapse had, compared to nonrelapsing patients, decreased frequencies of B cells (3.5% vs. 6.5%) and transitional B cells (0.1% vs. 1.1%) and an increased frequency of activated exhausted memory B cells (30.8% vs. 22.3%). AAV patients exhibit specific changes in frequencies of CD19+ B cells and their subsets in peripheral blood. These alterations could contribute to the autoantibody-driven inflammatory process in AAV.
Collapse
|
8
|
Zhou Y, Zhang Y, Han J, Yang M, Zhu J, Jin T. Transitional B cells involved in autoimmunity and their impact on neuroimmunological diseases. J Transl Med 2020; 18:131. [PMID: 32183811 PMCID: PMC7079408 DOI: 10.1186/s12967-020-02289-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/28/2020] [Indexed: 02/08/2023] Open
Abstract
Transitional B cells (TrB cells) represent a crucial link between immature B cells in the bone marrow and mature peripheral B cells. Although TrB cells represent one of the regulatory B cell subpopulations in healthy individuals, the frequency of CD24hiCD38hi TrB cells in circulation may be altered in individuals with autoimmune diseases, such as multiple sclerosis, neuromyelitisoptica spectrum disorders, systemic lupus erythematosus, Sjögren's syndrome, rheumatoid arthritis, systemic sclerosis, and juvenile dermatomyositis. Although TrB cells play regulatory roles under inflammatory conditions, consequences of their functional impairment vary across autoimmune diseases. Since the origin, development, and function of TrB cells, especially in humans, remain unclear and controversial, this review aimed to discuss the characteristics of TrB cells at steady state and explore their role in various immune diseases, including autoimmune rheumatic diseases and neuroimmunological diseases.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| | - Ying Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| | - Jinming Han
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| | - Mengge Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| |
Collapse
|
9
|
Restoration of regulatory B cell deficiency following alemtuzumab therapy in patients with relapsing multiple sclerosis. J Neuroinflammation 2018; 15:300. [PMID: 30373595 PMCID: PMC6206644 DOI: 10.1186/s12974-018-1334-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 10/15/2018] [Indexed: 01/04/2023] Open
Abstract
Background Regulatory B cells (Bregs), which protect from autoimmunity, are deficient in multiple sclerosis (MS). Novel regulatory B cell subsets CD19+CD24hiCD38hi cells and CD19+PD-L1hi cells, with disparate regulatory mechanisms have been defined. Alemtuzumab provides a long-lasting suppression of disease activity in MS. In contrast to its documented efficacy, alemtuzumab’s mechanism of action is not fully understood and information about the composition of repopulating B cell pool is scarce. Aim To characterize repopulated B cell subsets and elucidate alemtuzumab’s mechanism of action in B cell perspective. Methods The frequency and the absolute number of Bregs were studied in peripheral blood mononuclear cells (PBMC) of 37 MS patients and 11 healthy controls (HC). Longitudinal analysis of the frequency and the absolute number of Bregs in PBMC of 11 MS patients was evaluated, before and at 6, 9, and 12 months post alemtuzumab. Results We found deficiency of CD19+CD24hiCD38hi cells during relapse compared to remission and HC (relapse vs remission: p = 0.0006, relapse vs HC: p = 0.0004). CD19+PD-L1hi cells were deficient during relapse than remission and HC (relapse vs remission: p = 0.0113, relapse vs HC: p = 0.0007). Following alemtuzumab, the distribution of B cells shifts towards naïve phenotype and Breg deficiency is restored. The frequency of CD19+CD24hiCD38hi cells was significantly increased at 6 M and 9 M compared to 0 M (6 M vs 0 M: p = 0.0004, 9 M vs 0 M: p = 0.0079). At 9 M, the frequency of CD19+CD24hiCD38hi cells started to decrease and by 12 M the frequency was reduced compared to 6 M, although it was significantly higher than baseline level (12 M vs 0 M: p = 0.0257). The absolute number was significantly increased at 6 M and 9 M post-alemtuzumab (6 M vs 0 M: p = 0.0063, 9 M vs 0 M: p = 0.02). The frequency of CD19+PD-L1hi cells significantly increased until 12 M (6 M vs 0 M: p = 0.0004, 12 M vs 0 M: p = 0.0036). The frequency of CD19+PD-L1hi cells at 12 M was significantly higher than 9 M (p = 0.0311). We further pinpoint that CD19+CD24hiCD38hi cells were deficient at severe relapses following alemtuzumab infusion and restored during recovery. Conclusions Our results highlight the preferential reconstitution of Bregs as a possible mechanism of action of alemtuzumab and CD19+CD24hiCD38hi cells as a potential biomarker for disease activity.
Collapse
|
10
|
Guerrier T, Labalette M, Launay D, Lee-Chang C, Outteryck O, Lefèvre G, Vermersch P, Dubucquoi S, Zéphir H. Proinflammatory B-cell profile in the early phases of MS predicts an active disease. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 5:e431. [PMID: 29296635 PMCID: PMC5745361 DOI: 10.1212/nxi.0000000000000431] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/30/2017] [Indexed: 11/15/2022]
Abstract
Objective: To assess whether any alteration of B-cell subset distribution and/or the cytokine production capacities of B cells could be associated with any stage of MS and could be predictive of MS evolution. Methods: We prospectively enrolled radiologically isolated syndrome (RIS), clinically isolated syndrome (CIS), naive patients with relapsing remitting MS (RRMS) of any disease modifying drug, and healthy controls (HCs). Peripheral blood B-cell subset distributions and the interleukin (IL)-6/IL-10–producing B-cell ratio were assessed by flow cytometry to evaluate their proinflammatory and anti-inflammatory functional properties. Results: Twelve RIS, 46 CIS, 31 RRMS patients, and 36 HCs were enrolled. We observed that a high IL-6/IL-10–producing B-cell ratio in patients with RIS/CIS was associated with the evolution of the disease in the short term (6 months). This imbalance in cytokine production was mainly explained by an alteration of the production of IL-10 by B cells, especially for the transitional B-cell subset. In addition, a significant increase in IgD−/CD27− B cells was detected in patients with CIS and RRMS compared with HCs (p = 0.01). Apart from this increase in exhausted B cells, no other variation in B-cell subsets was observed. Conclusions: The association between a high IL-6/IL-10–producing B-cell ratio and the evolution of patients with RIS/CIS suggest a skew of B cells toward proinflammatory properties that might be implicated in the early phases of MS disease.
Collapse
Affiliation(s)
- Thomas Guerrier
- Université de Lille, CHU Lille, LIRIC-INSERM U 995, FHU Imminent, France
| | - Myriam Labalette
- Université de Lille, CHU Lille, LIRIC-INSERM U 995, FHU Imminent, France
| | - David Launay
- Université de Lille, CHU Lille, LIRIC-INSERM U 995, FHU Imminent, France
| | - Catalina Lee-Chang
- Université de Lille, CHU Lille, LIRIC-INSERM U 995, FHU Imminent, France
| | - Olivier Outteryck
- Université de Lille, CHU Lille, LIRIC-INSERM U 995, FHU Imminent, France
| | - Guillaume Lefèvre
- Université de Lille, CHU Lille, LIRIC-INSERM U 995, FHU Imminent, France
| | - Patrick Vermersch
- Université de Lille, CHU Lille, LIRIC-INSERM U 995, FHU Imminent, France
| | - Sylvain Dubucquoi
- Université de Lille, CHU Lille, LIRIC-INSERM U 995, FHU Imminent, France
| | - Hélène Zéphir
- Université de Lille, CHU Lille, LIRIC-INSERM U 995, FHU Imminent, France
| |
Collapse
|
11
|
Jones AP, Trend S, Byrne SN, Fabis-Pedrini MJ, Geldenhuys S, Nolan D, Booth DR, Carroll WM, Lucas RM, Kermode AG, Hart PH. Altered regulatory T-cell fractions and Helios expression in clinically isolated syndrome: clues to the development of multiple sclerosis. Clin Transl Immunology 2017; 6:e143. [PMID: 28690849 PMCID: PMC5493587 DOI: 10.1038/cti.2017.18] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023] Open
Abstract
Development of multiple sclerosis (MS) is frequently preceded by an acute or subacute neurological disturbance referred to as clinically isolated syndrome (CIS). The specific immunological disturbances present in CIS remain underexamined. This study analysed peripheral blood mononuclear cells from n=18 treatment-naive individuals with recently diagnosed CIS (<120 days) for disturbances in the phenotype of T regulatory (Treg), follicular T regulatory (Tfr), T helper (Th), follicular T helper (Tfh) and B cells. Relative to healthy controls (n=19), CIS was associated with lower proportions of suppressive CD45RA+FoxP3lo Treg and Tfr cells and greater proportions of non-suppressive CD45RA−FoxP3lo and Th17-like Treg and Tfr. Lower Helios expression (maen fluorescent intensity) was measured across all Treg and Tfr fractions in the CIS group, suggesting less potent regulatory function. Greater frequencies of activated, efficient B-cell helper Tfh subsets and a trend for a higher proportion of IgD−CD27− B cells was also detected in the CIS group, characteristics that were positively correlated with Treg and Tfr Helios expression. These results indicate that Treg and Tfr impairment is an early feature in MS.
Collapse
Affiliation(s)
- Anderson P Jones
- Telethon Kids Institute, University of Western Australia, West Perth, Western Australia, Australia
| | - Stephanie Trend
- Telethon Kids Institute, University of Western Australia, West Perth, Western Australia, Australia
| | - Scott N Byrne
- Cellular Photoimmunology Group, Infectious Diseases & Immunology, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia.,Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Marzena J Fabis-Pedrini
- Centre for Neuromuscular and Neurological Disorders, Western Australian Neuroscience Research Institute, University of Western Australia, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Sian Geldenhuys
- Telethon Kids Institute, University of Western Australia, West Perth, Western Australia, Australia
| | - David Nolan
- Institute for Immunology and Infectious Disease, Murdoch University, Perth, Western Australia, Australia.,Immunology Department, Royal Perth Hospital, Perth, Western Australia, Australia
| | - David R Booth
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - William M Carroll
- Centre for Neuromuscular and Neurological Disorders, Western Australian Neuroscience Research Institute, University of Western Australia, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Allan G Kermode
- Centre for Neuromuscular and Neurological Disorders, Western Australian Neuroscience Research Institute, University of Western Australia, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.,Institute for Immunology and Infectious Disease, Murdoch University, Perth, Western Australia, Australia
| | - Prue H Hart
- Telethon Kids Institute, University of Western Australia, West Perth, Western Australia, Australia
| |
Collapse
|
12
|
Jones AP, Kermode AG, Lucas RM, Carroll WM, Nolan D, Hart PH. Circulating immune cells in multiple sclerosis. Clin Exp Immunol 2016; 187:193-203. [PMID: 27689339 DOI: 10.1111/cei.12878] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 12/17/2022] Open
Abstract
Circulating T and B lymphocytes contribute to the pathogenesis of the neuroinflammatory autoimmune disease, multiple sclerosis (MS). Further progress in the development of MS treatments is dependent upon a greater understanding of the immunological disturbances that underlie the disease. Analyses of circulating immune cells by flow cytometry have revealed MS-associated alterations in the composition and function of T and B cell subsets, including temporal changes associated with disease activity. Disturbances in circulating immune populations reflect those observed in the central nervous system and include skewing towards proinflammatory CD4+ and CD8+ T cells and B cells, greater proportions of follicular T helper cells and functional defects in the corresponding T and B regulatory subsets. Utilizing the analytical power of modern flow cytometers, researchers are now well positioned to monitor immunological changes associated with disease activity or intervention, describe immunological signatures with predictive value and identify targets for therapeutic drug development. This review discusses the contribution of various T and B lymphocyte subsets to MS pathogenesis, provides current and relevant phenotypical descriptions to assist in experimental design and highlights areas of future research.
Collapse
Affiliation(s)
- A P Jones
- Telethon Kids Institute, The University of Western Australia, Perth, WA
| | - A G Kermode
- Centre for Neuromuscular and Neurological Disorders, Western Australian Neuroscience Research Institute, The University of Western Australia, Sir Charles Gairdner Hospital, Perth, WA.,Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA
| | - R M Lucas
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, ACT
| | - W M Carroll
- Centre for Neuromuscular and Neurological Disorders, Western Australian Neuroscience Research Institute, The University of Western Australia, Sir Charles Gairdner Hospital, Perth, WA.,Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA
| | - D Nolan
- Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA.,Immunology Department, Royal Perth Hospital, Perth, WA, Australia
| | - P H Hart
- Telethon Kids Institute, The University of Western Australia, Perth, WA
| |
Collapse
|
13
|
Oxombre B, Lee-Chang C, Duhamel A, Toussaint M, Giroux M, Donnier-Maréchal M, Carato P, Lefranc D, Zéphir H, Prin L, Melnyk P, Vermersch P. High-affinity σ1 protein agonist reduces clinical and pathological signs of experimental autoimmune encephalomyelitis. Br J Pharmacol 2015; 172:1769-82. [PMID: 25521311 PMCID: PMC4376455 DOI: 10.1111/bph.13037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 10/16/2014] [Accepted: 11/16/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Selective agonists of the sigma-1 receptor (σ1 protein) are generally reported to protect against neuronal damage and modulate oligodendrocyte differentiation. Human and rodent lymphocytes possess saturable, high-affinity binding sites for compounds binding to the σ1 protein and potential immunomodulatory properties have been described for σ1 protein ligands. Experimental autoimmune encephalomyelitis (EAE) is recognized as a valuable model of the inflammatory aspects of multiple sclerosis (MS). Here, we have assessed the role of a σ1 protein agonist, containing the tetrahydroisoquinoline-hydantoin structure, in EAE. EXPERIMENTAL APPROACH EAE was induced in SJL/J female mice by active immunization with myelin proteolipid protein (PLP)139-151 peptide. The σ1 protein agonist was injected i.p. at the time of immunization (day 0). Disease severity was assessed clinically and by histopathological evaluation of the CNS. Phenotyping of B-cell subsets and regulatory T-cells were performed by flow cytometry in spleen and cervical lymph nodes. KEY RESULTS Prophylactic treatment of EAE mice with the σ1 protein agonist prevented mononuclear cell accumulation and demyelination in brain and spinal cord and increased T2 B-cells and regulatory T-cells, resulting in an overall reduction in the clinical progression of EAE. CONCLUSIONS AND IMPLICATIONS This σ1 protein agonist, containing the tetrahydroisoquinoline-hydantoin structure, decreased the magnitude of inflammation in EAE. This effect was associated with increased proportions of B-cell subsets and regulatory T-cells with potential immunoregulatory functions. Targeting of the σ1 protein might thus provide new therapeutic opportunities in MS.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- Brain/drug effects
- Brain/pathology
- Cytokines/blood
- Encephalomyelitis, Autoimmune, Experimental/blood
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Immunoglobulin G/blood
- Lymph Nodes/drug effects
- Lymph Nodes/immunology
- Mice
- Multiple Sclerosis/blood
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Myelin Proteolipid Protein/immunology
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Peptide Fragments/immunology
- Receptors, sigma/agonists
- Spinal Cord/drug effects
- Spinal Cord/pathology
- Spleen/drug effects
- Spleen/immunology
- T-Lymphocytes, Regulatory/immunology
- Sigma-1 Receptor
Collapse
Affiliation(s)
- B Oxombre
- Université de LilleLille, France
- UDSL, EA2686-LIRIC, UFR MédecineLille, France
| | - C Lee-Chang
- Université de LilleLille, France
- UDSL, EA2686-LIRIC, UFR MédecineLille, France
| | - A Duhamel
- Université de LilleLille, France
- UDSL, EA 2694, UFR MédecineLille, France
| | - M Toussaint
- Université de LilleLille, France
- CNRS UMR8161Lille, France
| | - M Giroux
- Université de LilleLille, France
- UDSL, EA2686-LIRIC, UFR MédecineLille, France
- Centre Hospitalier Régional et Universitaire de Lille, Pôle de neurologie–Service de Neurologie DLille, France
| | - M Donnier-Maréchal
- Université de LilleLille, France
- UDSL, EA 4481, UFR PharmacieLille, France
| | - P Carato
- Université de LilleLille, France
- UDSL, EA 4481, UFR PharmacieLille, France
| | - D Lefranc
- Université de LilleLille, France
- UDSL, EA2686-LIRIC, UFR MédecineLille, France
| | - H Zéphir
- Université de LilleLille, France
- UDSL, EA2686-LIRIC, UFR MédecineLille, France
- Centre Hospitalier Régional et Universitaire de Lille, Pôle de neurologie–Service de Neurologie DLille, France
| | - L Prin
- Université de LilleLille, France
- UDSL, EA2686-LIRIC, UFR MédecineLille, France
- Centre Hospitalier Régional et Universitaire de Lille, Pôle d'immunologie–Centre de Biologie Pathologie et GénétiqueLille, France
| | - P Melnyk
- Université de LilleLille, France
- CNRS UMR8161Lille, France
- UDSL, EA 4481, UFR PharmacieLille, France
- Inserm UMR-S1172, Jean-Pierre Aubert Research CenterLille, France
| | - P Vermersch
- Université de LilleLille, France
- UDSL, EA2686-LIRIC, UFR MédecineLille, France
- UDSL, EA 4481, UFR PharmacieLille, France
| |
Collapse
|
14
|
Brimnes MK, Hansen BE, Nielsen LK, Dziegiel MH, Nielsen CH. Uptake and presentation of myelin basic protein by normal human B cells. PLoS One 2014; 9:e113388. [PMID: 25401487 PMCID: PMC4234674 DOI: 10.1371/journal.pone.0113388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/24/2014] [Indexed: 01/12/2023] Open
Abstract
B cells may play both pathogenic and protective roles in T-cell mediated autoimmune diseases such as multiple sclerosis (MS). These functions relate to the ability of B cells to bind and present antigens. Under serum-free conditions we observed that 3–4% of circulating B cells from healthy donors were capable of binding the MS-associated self-antigen myelin basic protein (MBP) and of presenting the immunodominant peptide MBP85-99, as determined by staining with the mAb MK16 recognising the peptide presented by HLA-DR15-positive cells. In the presence of serum, however, the majority of B cells bound MBP in a complement-dependent manner, and almost half of the B cells became engaged in presentation of MBP85-99. Even though complement receptor 1 (CR1, CD35) and CR2 (CD21) both contributed to binding of MBP to B cells, only CR2 was important for the subsequent presentation of MBP85-99. A high proportion of MBP85-99 presenting B cells expressed CD27, and showed increased expression of CD86 compared to non-presenting B cells. MBP-pulsed B cells induced a low frequency of IL-10-producing CD4+ T cells in 3 out of 6 donors, indicating an immunoregulatory role of B cells presenting MBP-derived peptides. The mechanisms described here refute the general assumption that B-cell presentation of self-antigens requires uptake via specific B-cell receptors, and may be important for maintenance of tolerance as well as for driving T-cell responses in autoimmune diseases.
Collapse
Affiliation(s)
- Marie Klinge Brimnes
- Institute for Inflammation Research, Department of Infectious Diseases and Rheumatology, section 7521, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Bjarke Endel Hansen
- Institute for Inflammation Research, Department of Infectious Diseases and Rheumatology, section 7521, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Immudex, Copenhagen, Denmark
| | - Leif Kofoed Nielsen
- Department of Technology, Faculty of Health and Technology, Metropolitan University College, Copenhagen, Denmark
- Blood Bank, KI2034, Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Morten Hanefeld Dziegiel
- Blood Bank, KI2034, Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Claus Henrik Nielsen
- Institute for Inflammation Research, Department of Infectious Diseases and Rheumatology, section 7521, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
15
|
Sellner J, Koczi W, Harrer A, Oppermann K, Obregon-Castrillo E, Pilz G, Wipfler P, Afazel S, Haschke-Becher E, Trinka E, Kraus J. Glatiramer acetate attenuates the pro-migratory profile of adhesion molecules on various immune cell subsets in multiple sclerosis. Clin Exp Immunol 2013; 173:381-9. [PMID: 23611040 DOI: 10.1111/cei.12125] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2013] [Indexed: 01/01/2023] Open
Abstract
An altered expression pattern of adhesion molecules (AM) on the surface of immune cells is a premise for their extravasation into the central nervous system (CNS) and the formation of acute brain lesions in multiple sclerosis (MS). We evaluated the impact of glatiramer acetate (GA) on cell-bound and soluble AM in the peripheral blood of patients with relapsing-remitting MS (RRMS). Fifteen patients treated de novo with GA were studied on four occasions over a period of 12 months. Surface levels of intracellular cell adhesion molecule (ICAM)-1, ICAM-3, lymphocyte function-associated antigen (LFA)-1 and very late activation antigen (VLA)-4 were assessed in T cells (CD3(+) CD8(+) , CD3(+) CD4(+) ), B cells, natural killer (NK) cells, natural killer T cells (NK T) and monocytes by five-colour flow cytometry. Soluble E-selectin, ICAM-1, ICAM-3, platelet endothelial cell adhesion molecule (PECAM)-1, P-selectin and vascular cell adhesion molecule (VCAM)-1 were determined with a fluorescent bead-based immunoassay. The pro-migratory pattern in RRMS was verified by comparison with healthy controls and was characterized by up-regulation of LFA-1 (CD3(+) CD4(+) T cells, B cells), VLA-4 (CD3(+) CD8(+) T cells, NK cells), ICAM-1 (B cells) and ICAM-3 (NK cells). Effects of GA treatment were most pronounced after 6 months and included attenuated levels of LFA-1 (CD3(+) CD4(+) ) and VLA-4 (CD3(+) CD4(+) , CD3(+) CD8(+) , NK, NK T, monocytes). Further effects included lowering of ICAM-1 and ICAM-3 levels in almost all immune cell subsets. Soluble AM levels in RRMS did not differ from healthy controls and remained unaltered after GA treatment. The deregulated pro-migratory expression profile of cell-bound AM is altered by GA treatment. While this alteration may contribute to the beneficial action of the drug, the protracted development and unselective changes indicate more secondary immune regulatory phenomena related to these effects.
Collapse
Affiliation(s)
- J Sellner
- Department of Neurology, Paracelsus Medical University, Salzburg, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gasperini C, Haggiag S, Ruggieri S. Drugs in clinical development for multiple sclerosis: focusing on anti-CD20 antibodies. Expert Opin Investig Drugs 2013; 22:1243-53. [PMID: 23855792 DOI: 10.1517/13543784.2013.820275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), traditionally considered to be an autoimmune disease. Despite the standard of care for patients with MS is significantly improved in recent years, there is still room for improvement in terms of effectiveness and also compliance. AREAS COVERED The continuous improvements of our understanding of the pathophysiological changes that occur in MS have translated into many novel therapeutic agents at different stages of development. A number of therapies for MS are in advanced development and likely to be available soon. Along with these, we have also seen the appearance of a group of drugs considered together as a consequence of their similar design: the monoclonal antibodies (mAbs). Here, the focus will be on reviewing results that have emerged from a better clarification of MS pathogenesis to clinical trials of different anti-CD20 mAbs. EXPERT OPINION The decision to switch established patients from well-known drugs to either new formulations or new agents will be made on balancing efficacy and tolerability of the existing treatments. Safety seems increasingly likely to become a key factor.
Collapse
Affiliation(s)
- Claudio Gasperini
- Multiple Sclerosis Center, S Camillo-Forlanini, Neurosciences , Circonvallazione Gianicolense 87, Rome 00152 , Italy
| | | | | |
Collapse
|
17
|
Expansion of CD27high plasmablasts in transverse myelitis patients that utilize VH4 and JH6 genes and undergo extensive somatic hypermutation. Genes Immun 2013; 14:291-301. [PMID: 23594958 DOI: 10.1038/gene.2013.18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 12/18/2022]
Abstract
Patients with the autoimmune disease multiple sclerosis (MS) typically present with the clinically isolated syndromes (CIS) transverse myelitis (TM) or optic neuritis (ON). B-cell disturbances have been well documented in patients with MS and CIS patients with ON, but not in CIS patients with TM, despite the fact that these patients have the worst clinical outcome of all CIS types. The goal of this study was to characterize the B-cell populations and immunoglobulin genetics in TM patients. We found a unique expansion of CD27(high) plasmablasts in both the cerebrospinal fluid and periphery of TM patients that is not present in ON patients. Additionally, plasmablasts from TM patients show evidence for positive selection with increased somatic hypermutation accumulation in VH4(+) B cells and receptor editing that is not observed in ON patients. These characteristics unique to TM patients may impact disease severity and progression.
Collapse
|
18
|
Lossius A, Johansen JN, Torkildsen Ø, Vartdal F, Holmøy T. Epstein-Barr virus in systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis—association and causation. Viruses 2013; 4:3701-30. [PMID: 23342374 PMCID: PMC3528287 DOI: 10.3390/v4123701] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epidemiological data suggest that the Epstein-Barr virus (EBV) is associated with several autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis. However, it is not clear whether EBV plays a role in the pathogenesis of these diseases, and if so, by which mechanisms the virus may contribute. In this review, we discuss possible viral and immunological mechanisms that might explain associations between EBV and autoimmune diseases and whether these associations represent causes or effects of inflammation and autoimmunity.
Collapse
Affiliation(s)
- Andreas Lossius
- Institute of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| | | | | | | | | |
Collapse
|
19
|
Biomarkers in Multiple Sclerosis: An Up-to-Date Overview. Mult Scler Int 2013; 2013:340508. [PMID: 23401777 PMCID: PMC3564381 DOI: 10.1155/2013/340508] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/13/2012] [Accepted: 12/18/2012] [Indexed: 12/16/2022] Open
Abstract
During the last decades, the effort of establishing satisfactory biomarkers for multiple sclerosis has been proven to be very difficult, due to the clinical and pathophysiological complexities of the disease. Recent knowledge acquired in the domains of genomics-immunogenetics and neuroimmunology, as well as the evolution in neuroimaging, has provided a whole new list of biomarkers. This variety, though, leads inevitably to confusion in the effort of decision making concerning strategic and individualized therapeutics. In this paper, our primary goal is to provide the reader with a list of the most important characteristics that a biomarker must possess in order to be considered as reliable. Additionally, up-to-date biomarkers are further divided into three subgroups, genetic-immunogenetic, laboratorial, and imaging. The most important representatives of each category are presented in the text and for the first time in a summarizing workable table, in a critical way, estimating their diagnostic potential and their efficacy to correlate with phenotypical expression, neuroinflammation, neurodegeneration, disability, and therapeutical response. Special attention is given to the "gold standards" of each category, like HLA-DRB1∗ polymorphisms, oligoclonal bands, vitamin D, and conventional and nonconventional imaging techniques. Moreover, not adequately established but quite promising, recently characterized biomarkers, like TOB-1 polymorphisms, are further discussed.
Collapse
|
20
|
Wilson HL. B cells contribute to MS pathogenesis through antibody-dependent and antibody-independent mechanisms. Biologics 2012; 6:117-23. [PMID: 22690126 PMCID: PMC3363029 DOI: 10.2147/btt.s24734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For many years, central dogma defined multiple sclerosis (MS) as a T cell-driven autoimmune disorder; however, over the past decade there has been a burgeoning recognition that B cells contribute to the pathogenesis of certain MS disease subtypes. B cells may contribute to MS pathogenesis through production of autoantibodies (or antibodies directed at foreign bodies, which unfortunately cross-react with self-antigens), through promotion of T cell activation via antigen presentation, or through production of cytokines. This review highlights evidence for antibody-dependent and antibody-independent B cell involvement in MS pathogenesis.
Collapse
Affiliation(s)
- Heather L Wilson
- Vaccine and Infectious Disease Organization-International Vaccine Center, Saskatchewan, Canada
| |
Collapse
|