1
|
de Lima JD, de Paula AGP, Yuasa BS, de Souza Smanioto CC, da Cruz Silva MC, Dos Santos PI, Prado KB, Winter Boldt AB, Braga TT. Genetic and Epigenetic Regulation of the Innate Immune Response to Gout. Immunol Invest 2023; 52:364-397. [PMID: 36745138 DOI: 10.1080/08820139.2023.2168554] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gout is a disease caused by uric acid (UA) accumulation in the joints, causing inflammation. Two UA forms - monosodium urate (MSU) and soluble uric acid (sUA) have been shown to interact physically with inflammasomes, especially with the nod-like receptor (NLR) family pyrin domain containing 3 (NLRP3), albeit the role of the immune response to UA is poorly understood, given that asymptomatic hyperuricemia does also exist. Macrophage phagocytosis of UA activate NLRP3, lead to cytokines release, and ultimately, lead to chemoattract neutrophils and lymphocytes to the gout flare joint spot. Genetic variants of inflammasome genes and of genes encoding their molecular partners may influence hyperuricemia and gout susceptibility, while also influencing other comorbidities such as metabolic syndrome and cardiovascular diseases. In this review, we summarize the inflammatory responses in acute and chronic gout, specifically focusing on innate immune cell mechanisms and genetic and epigenetic characteristics of participating molecules. Unprecedently, a novel UA binding protein - the neuronal apoptosis inhibitor protein (NAIP) - is suggested as responsible for the asymptomatic hyperuricemia paradox.Abbreviation: β2-integrins: leukocyte-specific adhesion molecules; ABCG2: ATP-binding cassete family/breast cancer-resistant protein; ACR: American college of rheumatology; AIM2: absent in melanoma 2, type of pattern recognition receptor; ALPK1: alpha-protein kinase 1; ANGPTL2: angiopoietin-like protein 2; ASC: apoptosis-associated speck-like protein; BIR: baculovirus inhibitor of apoptosis protein repeat; BIRC1: baculovirus IAP repeat-containing protein 1; BIRC2: baculoviral IAP repeat-containing protein 2; C5a: complement anaphylatoxin; cAMP: cyclic adenosine monophosphate; CARD: caspase activation and recruitment domains; CARD8: caspase recruitment domain-containing protein 8; CASP1: caspase 1; CCL3: chemokine (C-C motif) ligand 3; CD14: cluster of differentiation 14; CD44: cluster of differentiation 44; Cg05102552: DNA-methylation site, usually cytosine followed by guanine nucleotides; contains arbitrary identification code; CIDEC: cell death-inducing DNA fragmentation factor-like effector family; CKD: chronic kidney disease; CNV: copy number variation; CPT1A: carnitine palmitoyl transferase - type 1a; CXCL1: chemokine (CXC motif) ligand 1; DAMPs: damage associated molecular patterns; DC: dendritic cells; DNMT(1): maintenance DNA methyltransferase; eQTL: expression quantitative trait loci; ERK1: extracellular signal-regulated kinase 1; ERK2: extracellular signal-regulated kinase 2; EULAR: European league against rheumatism; GMCSF: granulocyte-macrophage colony-stimulating factor; GWAS: global wide association studies; H3K27me3: tri-methylation at the 27th lysine residue of the histone h3 protein; H3K4me1: mono-methylation at the 4th lysine residue of the histone h3 protein; H3K4me3: tri-methylation at the 4th lysine residue of the histone h3 protein; HOTAIR: human gene located between hoxc11 and hoxc12 on chromosome 12; IκBα: cytoplasmatic protein/Nf-κb transcription inhibitor; IAP: inhibitory apoptosis protein; IFNγ: interferon gamma; IL-1β: interleukin 1 beta; IL-12: interleukin 12; IL-17: interleukin 17; IL18: interleukin 18; IL1R1: interleukin-1 receptor; IL-1Ra: interleukin-1 receptor antagonist; IL-22: interleukin 22; IL-23: interleukin 23; IL23R: interleukin 23 receptor; IL-33: interleukin 33; IL-6: interleukin 6; IMP: inosine monophosphate; INSIG1: insulin-induced gene 1; JNK1: c-jun n-terminal kinase 1; lncRNA: long non-coding ribonucleic acid; LRR: leucine-rich repeats; miR: mature non-coding microRNAs measuring from 20 to 24 nucleotides, animal origin; miR-1: miR followed by arbitrary identification code; miR-145: miR followed by arbitrary identification code; miR-146a: miR followed by arbitrary identification code, "a" stands for mir family; "a" family presents similar mir sequence to "b" family, but different precursors; miR-20b: miR followed by arbitrary identification code; "b" stands for mir family; "b" family presents similar mir sequence to "a" family, but different precursors; miR-221: miR - followed by arbitrary identification code; miR-221-5p: miR followed by arbitrary identification code; "5p" indicates different mature miRNAs generated from the 5' arm of the pre-miRNA hairpin; miR-223: miR followed by arbitrary identification code; miR-223-3p: mir followed by arbitrary identification code; "3p" indicates different mature miRNAs generated from the 3' arm of the pre-miRNA hairpin; miR-22-3p: miR followed by arbitrary identification code, "3p" indicates different mature miRNAs generated from the 3' arm of the pre-miRNA hairpin; MLKL: mixed lineage kinase domain-like pseudo kinase; MM2P: inductor of m2-macrophage polarization; MSU: monosodium urate; mTOR: mammalian target of rapamycin; MyD88: myeloid differentiation primary response 88; n-3-PUFAs: n-3-polyunsaturated fatty-acids; NACHT: acronym for NAIP (neuronal apoptosis inhibitor protein), C2TA (MHC class 2 transcription activator), HET-E (incompatibility locus protein from podospora anserina) and TP1 (telomerase-associated protein); NAIP: neuronal apoptosis inhibitory protein (human); Naip1: neuronal apoptosis inhibitory protein type 1 (murine); Naip5: neuronal apoptosis inhibitory protein type 5 (murine); Naip6: neuronal apoptosis inhibitory protein type 6 (murine); NBD: nucleotide-binding domain; Nek7: smallest NIMA-related kinase; NET: neutrophil extracellular traps; Nf-κB: nuclear factor kappa-light-chain-enhancer of activated b cells; NFIL3: nuclear-factor, interleukin 3 regulated protein; NIIMA: network of immunity in infection, malignancy, and autoimmunity; NLR: nod-like receptor; NLRA: nod-like receptor NLRA containing acidic domain; NLRB: nod-like receptor NLRA containing BIR domain; NLRC: nod-like receptor NLRA containing CARD domain; NLRC4: nod-like receptor family CARD domain containing 4; NLRP: nod-like receptor NLRA containing PYD domain; NLRP1: nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 1; NLRP12: nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 12; NLRP3: nod-like receptor family pyrin domain containing 3; NOD2: nucleotide-binding oligomerization domain; NRBP1: nuclear receptor-binding protein; Nrf2: nuclear factor erythroid 2-related factor 2; OR: odds ratio; P2X: group of membrane ion channels activated by the binding of extracellular; P2X7: p2x purinoceptor 7 gene; p38: member of the mitogen-activated protein kinase family; PAMPs: pathogen associated molecular patters; PBMC: peripheral blood mononuclear cells; PGGT1B: geranylgeranyl transferase type-1 subunit beta; PHGDH: phosphoglycerate dehydrogenase; PI3-K: phospho-inositol; PPARγ: peroxisome proliferator-activated receptor gamma; PPARGC1B: peroxisome proliferative activated receptor, gamma, coactivator 1 beta; PR3: proteinase 3 antigen; Pro-CASP1: inactive precursor of caspase 1; Pro-IL1β: inactive precursor of interleukin 1 beta; PRR: pattern recognition receptors; PYD: pyrin domain; RAPTOR: regulatory associated protein of mTOR complex 1; RAS: renin-angiotensin system; REDD1: regulated in DNA damage and development 1; ROS: reactive oxygen species; rs000*G: single nuclear polymorphism, "*G" is related to snp where replaced nucleotide is guanine, usually preceded by an id number; SLC2A9: solute carrier family 2, member 9; SLC7A11: solute carrier family 7, member 11; SMA: smooth muscular atrophy; Smac: second mitochondrial-derived activator of caspases; SNP: single nuclear polymorphism; Sp3: specificity protein 3; ST2: serum stimulation-2; STK11: serine/threonine kinase 11; sUA: soluble uric acid; Syk: spleen tyrosine kinase; TAK1: transforming growth factor beta activated kinase; Th1: type 1 helper T cells; Th17: type 17 helper T cells; Th2: type 2 helper T cells; Th22: type 22 helper T cells; TLR: tool-like receptor; TLR2: toll-like receptor 2; TLR4: toll-like receptor 4; TNFα: tumor necrosis factor alpha; TNFR1: tumor necrosis factor receptor 1; TNFR2: tumor necrosis factor receptor 2; UA: uric acid; UBAP1: ubiquitin associated protein; ULT: urate-lowering therapy; URAT1: urate transporter 1; VDAC1: voltage-dependent anion-selective channel 1.
Collapse
Affiliation(s)
- Jordana Dinorá de Lima
- Microbiology, Parasitology and Pathology Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | | | - Bruna Sadae Yuasa
- Microbiology, Parasitology and Pathology Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | | | - Maria Clara da Cruz Silva
- Microbiology, Parasitology and Pathology Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | | | - Karin Braun Prado
- Genetics Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | - Angelica Beate Winter Boldt
- Program of Internal Medicine, Universidade Federal do Parana (UFPR), Curitiba, Brazil
- Genetics Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | - Tárcio Teodoro Braga
- Microbiology, Parasitology and Pathology Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
- Biosciences and Biotechnology Program, Instituto Carlos Chagas (ICC), Fiocruz-Parana, Brazil
| |
Collapse
|
2
|
Wang X, Wu Q, Zhang R, Fan Z, Li W, Mao R, Du Z, Yao X, Ma Y, Yan Y, Sun W, Wu H, Wei W, Hu Y, Hong Y, Hu H, Koh YW, Duan W, Chen X, Ouyang H. Stage-specific and location-specific cartilage calcification in osteoarthritis development. Ann Rheum Dis 2023; 82:393-402. [PMID: 36261249 DOI: 10.1136/ard-2022-222944] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/30/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES This study investigated the stage-specific and location-specific deposition and characteristics of minerals in human osteoarthritis (OA) cartilages via multiple nano-analytical technologies. METHODS Normal and OA cartilages were serially sectioned for micro-CT, scanning electron microscopy with energy dispersive X-ray spectroscopy, micro-Raman spectroscopy, focused ion beam scanning electron microscopy, high-resolution electron energy loss spectrometry with transmission electron microscopy, nanoindentation and atomic force microscopy to analyse the structural, compositional and mechanical properties of cartilage in OA progression. RESULTS We found that OA progressed by both top-down calcification at the joint surface and bottom-up calcification at the osteochondral interface. The top-down calcification process started with spherical mineral particle formation in the joint surface during early-stage OA (OA-E), followed by fibre formation and densely packed material transformation deep into the cartilage during advanced-stage OA (OA-A). The bottom-up calcification in OA-E started when an excessive layer of calcified tissue formed above the original calcified cartilage, exhibiting a calcified sandwich structure. Over time, the original and upper layers of calcified cartilage fused, which thickened the calcified cartilage region and disrupted the cartilage structure. During OA-E, the calcified cartilage was hypermineralised, containing stiffer carbonated hydroxyapatite (HAp). During OA-A, it was hypomineralised and contained softer HAp. This discrepancy may be attributed to matrix vesicle nucleation during OA-E and carbonate cores during OA-A. CONCLUSIONS This work refines our current understanding of the mechanism underlying OA progression and provides the foothold for potential therapeutic targeting strategies once the location-specific cartilage calcification features in OA are established.
Collapse
Affiliation(s)
- Xiaozhao Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,China Orthopedic Regenerative Medicine Group, CORMed, Hangzhou, Zhejiang, China
| | - Qin Wu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ru Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,China Orthopedic Regenerative Medicine Group, CORMed, Hangzhou, Zhejiang, China
| | - Zhang Fan
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenyue Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,China Orthopedic Regenerative Medicine Group, CORMed, Hangzhou, Zhejiang, China
| | - Renwei Mao
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Zihao Du
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Xudong Yao
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yuanzhu Ma
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,China Orthopedic Regenerative Medicine Group, CORMed, Hangzhou, Zhejiang, China
| | - Yiyang Yan
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,China Orthopedic Regenerative Medicine Group, CORMed, Hangzhou, Zhejiang, China
| | - Wei Sun
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,China Orthopedic Regenerative Medicine Group, CORMed, Hangzhou, Zhejiang, China
| | - Hongwei Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,China Orthopedic Regenerative Medicine Group, CORMed, Hangzhou, Zhejiang, China
| | - Wei Wei
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yejun Hu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,China Orthopedic Regenerative Medicine Group, CORMed, Hangzhou, Zhejiang, China
| | - Yi Hong
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,China Orthopedic Regenerative Medicine Group, CORMed, Hangzhou, Zhejiang, China
| | - Huan Hu
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Yi Wen Koh
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wangping Duan
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,China Orthopedic Regenerative Medicine Group, CORMed, Hangzhou, Zhejiang, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China .,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,China Orthopedic Regenerative Medicine Group, CORMed, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Bernabei I, So A, Busso N, Nasi S. Cartilage calcification in osteoarthritis: mechanisms and clinical relevance. Nat Rev Rheumatol 2023; 19:10-27. [PMID: 36509917 DOI: 10.1038/s41584-022-00875-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Pathological calcification of cartilage is a hallmark of osteoarthritis (OA). Calcification can be observed both at the cartilage surface and in its deeper layers. The formation of calcium-containing crystals, typically basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP) crystals, is an active, highly regulated and complex biological process that is initiated by chondrocytes and modified by genetic factors, dysregulated mitophagy or apoptosis, inflammation and the activation of specific cellular-signalling pathways. The links between OA and BCP deposition are stronger than those observed between OA and CPP deposition. Here, we review the molecular processes involved in cartilage calcification in OA and summarize the effects of calcium crystals on chondrocytes, synovial fibroblasts, macrophages and bone cells. Finally, we highlight therapeutic pathways leading to decreased joint calcification and potential new drugs that could treat not only OA but also other diseases associated with pathological calcification.
Collapse
Affiliation(s)
- Ilaria Bernabei
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Cholesterol crystals drive metabolic reprogramming and M1 macrophage polarisation in primary human macrophages. Atherosclerosis 2022; 352:35-45. [DOI: 10.1016/j.atherosclerosis.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022]
|
5
|
Ding DF, Xue Y, Zhang JP, Zhang ZQ, Li WY, Cao YL, Xu JG. Similarities and differences between rat and mouse chondrocyte gene expression induced by IL-1β. J Orthop Surg Res 2022; 17:70. [PMID: 35120538 PMCID: PMC8815127 DOI: 10.1186/s13018-021-02889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022] Open
Abstract
Background Osteoarthritis (OA) is the most prevalent degenerative joint disease. In vitro experiments are an intuitive method used to investigate its early pathogenesis. Chondrocyte inflammation models in rats and mice are often used as in vitro models of OA. However, similarities and differences between them in the early stages of inflammation have not been reported. Objective This paper seeks to compare the chondrocyte phenotype of rats and mice in the early inflammatory state and identify chondrocytes suitable for the study of early OA. Methods Under similar conditions, chondrocytes from rats and mice were stimulated using the same IL-1β concentration for a short period of time. The phenotypic changes of chondrocytes were observed under a microscope. The treated chondrocytes were subjected to RNA-seq to identify similarities and differences in gene expression. Chondrocytes were labelled with EdU for proliferation analysis. Cell proliferation-associated proteins, including minichromosome maintenance 2 (MCM2), minichromosome maintenance 5 (MCM5), Lamin B1, proliferating cell nuclear antigen (PCNA), and Cyclin D1, were analysed by immunocytochemical staining, cell immunofluorescence, and Western blots to verify the RNA-seq results. Results RNA-seq revealed that the expression patterns of cytokines, chemokines, matrix metalloproteinases, and collagen were similar between the rat and mouse chondrocyte inflammation models. Nonetheless, the expression of proliferation-related genes showed the opposite pattern. The RNA-seq results were further verified by subsequent experiments. The expression levels of MCM2, MCM5, Lamin B1, PCNA, and Cyclin D1 were significantly upregulated in rat chondrocytes (P < 0.05) and mouse chondrocytes (P < 0.05). Conclusions Based on the findings, the rat chondrocyte inflammation model may help in the study of the early pathological mechanism of OA. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02889-2.
Collapse
Affiliation(s)
- Dao-Fang Ding
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yan Xue
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, 201613, China
| | - Jun-Peng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Zeng-Qiao Zhang
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Wen-Yao Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yue-Long Cao
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
6
|
Døssing A, Müller FC, Becce F, Stamp L, Bliddal H, Boesen M. Dual-Energy Computed Tomography for Detection and Characterization of Monosodium Urate, Calcium Pyrophosphate, and Hydroxyapatite: A Phantom Study on Diagnostic Performance. Invest Radiol 2021; 56:417-424. [PMID: 33559986 DOI: 10.1097/rli.0000000000000756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study was to determine the diagnostic performance of dual-energy computed tomography (DECT) to detect and distinguish crystal deposits in a phantom. The primary objective was to determine the cutoff DECT ratio and the cross-sectional area (CSA) of a crystal deposit necessary to differentiate monosodium urate (MSU), calcium pyrophosphate (CPP), and calcium hydroxyapatite (HA) using DECT. Our secondary objective was to determine the concentration for limit of detection for MSU, CPP, and HA crystal deposits. Exploratory objectives included the comparison between 2 generations of DECT scanners from the same manufacturer as well as different scanner settings. MATERIALS AND METHODS We used a cylindrical soft tissue phantom with synthetic MSU, CPP, and HA crystals suspended in resin. Crystal suspension concentration increased with similar attenuation between MSU, CPP, and HA in conventional CT. The phantom was scanned on 2 dual-source DECT scanners, at 2 dose levels and all available tube voltage combinations. Both scanners had a tin (Sn) filter at the high-energy spectra. Dual-energy CT ratios were calculated for a given tube voltage combination by dividing linear regression lines of CT numbers against concentration. Dual-energy CT ratios were compared using an analysis of covariance. Receiver operating characteristic curves and corresponding areas under the curve (AUCs) were calculated for individual crystal suspension comparisons (HA vs CPP, MSU vs CPP, and MSU vs HA). RESULTS At standard clinical scan settings with 8 mGy and 80/Sn150 kV, the DECT ratios were as follows: CPP, 2.02 (95% confidence interval [CI], 1.98-2.07); HA, 2.00 (95% CI, 1.96-2.05); and MSU, 1.09 (95% CI, 1.06-1.11). Ratios varied numerically depending on the scanner and tube voltage combination. Monosodium urate crystal DECT ratios were significantly different from HA and CPP (P < 0.001), whereas DECT ratios for HA and CPP crystals did not differ significantly (P = 0.99). The differentiation of MSU crystals from both calcium crystals (HA and CPP) was excellent with an AUC of 1.00 (95% CI, 1.00-1.00) and an optimal cutoff DECT ratio of 1.43:1.40 depending on the scanner. In addition, differentiation of MSU and calcium-containing crystals (HA and CPP) required a CSA of minimum 4 pixels of crystal at standard clinical scan conditions. In contrast, differentiation between CPP and HA crystals was moderate with AUCs ranging from 0.66 (95% CI, 0.52-0.80) to 0.80 (95% CI, 0.69-0.91) and an optimal cutoff DECT ratio of 2.02:2.06 depending on the scanner. Furthermore, differentiation between CPP and HA crystals required a CSA of minimum 87 pixels of crystal at standard clinical scan conditions, corresponding to a region of interest of 3.7 mm diameter. When scanning at highest possible spectral separation and maximum dose of 50 mGy, the limit of detection for crystals within a region of interest of 50 pixels was 14 mg/cm3 for MSU and 2 mg/cm3 for both CPP and HA. CONCLUSIONS This phantom study shows that DECT can be used to detect MSU, CPP, and HA crystal deposits. Differentiation of CPP and HA was not possible in crystals deposits less than 3.7 mm in diameter, but MSU could accurately be differentiated from CPP and HA crystal deposits at standard clinical scan conditions.
Collapse
Affiliation(s)
- Anna Døssing
- From the The Parker Institute, Bispebjerg and Frederiksberg Hospital
| | - Felix Christoph Müller
- Department of Radiology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Fabio Becce
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lisa Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Henning Bliddal
- From the The Parker Institute, Bispebjerg and Frederiksberg Hospital
| | - Mikael Boesen
- Department of Radiology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Dixit M, Poudel SB, Yakar S. Effects of GH/IGF axis on bone and cartilage. Mol Cell Endocrinol 2021; 519:111052. [PMID: 33068640 PMCID: PMC7736189 DOI: 10.1016/j.mce.2020.111052] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Growth hormone (GH) and its mediator, the insulin-like growth factor-1 (IGF-1) regulate somatic growth, metabolism and many aspects of aging. As such, actions of GH/IGF have been studied in many tissues and organs over decades. GH and IGF-1 are part of the hypothalamic/pituitary somatotrophic axis that consists of many other regulatory hormones, receptors, binding proteins, and proteases. In humans, GH/IGF actions peak during pubertal growth and regulate skeletal acquisition through stimulation of extracellular matrix production and increases in bone mineral density. During aging the activity of these hormones declines, a state called somatopaguss, which associates with deleterious effects on the musculoskeletal system. In this review, we will focus on GH/IGF-1 action in bone and cartilage. We will cover many studies that have utilized congenital ablation or overexpression of members of this axis, as well as cell-specific gene-targeting approaches used to unravel the nature of the GH/IGF-1 actions in the skeleton in vivo.
Collapse
Affiliation(s)
- Manisha Dixit
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, NY, 10010, USA
| | - Sher Bahadur Poudel
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, NY, 10010, USA
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, NY, 10010, USA.
| |
Collapse
|
8
|
Activation of the NLRP3 Inflammasome by Particles from the Echinococcus granulosus Laminated Layer. Infect Immun 2020; 88:IAI.00190-20. [PMID: 32571988 PMCID: PMC7440765 DOI: 10.1128/iai.00190-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/14/2020] [Indexed: 12/14/2022] Open
Abstract
The interaction of dendritic cells and macrophages with a variety of rigid noncellular particles triggers activation of the NLRP3 inflammasome and consequent secretion of interleukin 1β (IL-1β). Noncellular particles can also be generated in the context of helminth infection, since these large pathogens often shed their outermost structures during growth and/or molting. One such structure is the massive, mucin-based, soft, flexible laminated layer (LL), which protects the larval stages of cestodes of the genus Echinococcus. The interaction of dendritic cells and macrophages with a variety of rigid noncellular particles triggers activation of the NLRP3 inflammasome and consequent secretion of interleukin 1β (IL-1β). Noncellular particles can also be generated in the context of helminth infection, since these large pathogens often shed their outermost structures during growth and/or molting. One such structure is the massive, mucin-based, soft, flexible laminated layer (LL), which protects the larval stages of cestodes of the genus Echinococcus. We show that particles from the Echinococcus granulosus LL (pLL) trigger NLRP3- and caspase-1-dependent IL-1β in lipopolysaccharide (LPS)-primed mouse bone marrow-derived dendritic cells (BMDC). This response can be elicited by pLL too large for phagocytosis and nonetheless requires actin dynamics, Syk, and phosphatidylinositol 3-kinase (PI3K). These three requirements had already been observed in our previous study on the alteration by pLL of CD86, CD40, IL-10, and IL-12 responses to LPS in BMDC; however, we now show that these alterations are independent of NLRP3 and caspase-1. In other words, an initial interaction with particles requiring actin dynamics, Syk, and PI3K, but not phagocytosis, elicits both NLRP3-dependent and NLRP3-independent responses. Intraperitoneal injection of pLL induced IL-1β, suggesting that contact with LL materials induces IL-1β in the E. granulosus infection setting. Our results extend our understanding of NLRP3 inflammasome activation by noncellular particulate materials both to helminth-derived materials and to flexible/soft materials.
Collapse
|
9
|
Osteoarthritis-associated basic calcium phosphate crystals alter immune cell metabolism and promote M1 macrophage polarization. Osteoarthritis Cartilage 2020; 28:603-612. [PMID: 31730805 DOI: 10.1016/j.joca.2019.10.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE A number of studies have demonstrated that molecules called 'alarmins' or danger-associated molecular patterns (DAMPs), contribute to inflammatory processes in the OA joint. Metabolic reprogramming of immune cells, including macrophages, is emerging as a prominent player in determining immune cell phenotype and function. The aim of this study was to investigate if basic calcium phosphate (BCP) crystals which are OA-associated DAMPs, impact on macrophage phenotype and metabolism. METHODS Human monocyte derived macrophages were treated with BCP crystals and expression of M1 (CXCL9, CXCL10) and M2 (MRC1, CCL13)-associated markers was assessed by real-time PCR while surface maturation marker (CD40, CD80 & CD86) expression was assessed by flow cytometry. BCP induced metabolic changes were assessed by Seahorse analysis and glycolytic marker expression (hexokinase 2(HK2), Glut1 and HIF1α) was examined using real-time PCR and immunoblotting. RESULTS Treatment with BCP crystals upregulated mRNA levels of CXCL9 and CXCL10 while concomitantly downregulating expression of CCL13 and MRC1. Furthermore, BCP-treated macrophages enhanced surface expression of the maturation makers, CD40, CD80 and CD86. BCP-treated cells also exhibited a shift towards glycolysis as evidenced by an increased ECAR/OCR ratio and enhanced expression of the glycolytic markers, HK2, Glut1 and HIF1α. Finally, BCP-induced macrophage activation and alarmin expression was reduced in the presence of the glycolytic inhibitor, 2-DG. CONCLUSIONS This study not only provides further insight into how OA-associated DAMPs impact on immune cell function, but also highlights metabolic reprogramming as a potential therapeutic target for calcium crystal-related arthropathies.
Collapse
|
10
|
McCarthy GM, Dunne A. Calcium crystals and auto-inflammation. Rheumatology (Oxford) 2020; 59:247-248. [PMID: 31325307 DOI: 10.1093/rheumatology/kez296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2019] [Indexed: 01/06/2023] Open
Affiliation(s)
- Geraldine M McCarthy
- School of Medicine and Medical Science, University College Dublin, Mater Misericordiae University Hospital, The University of Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology and School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Abstract
The most common types of calcium-containing crystals that are associated with joint and periarticular disorders are calcium pyrophosphate dihydrate (CPP) and basic calcium phosphate (BCP) crystals. Several diverse but difficult-to-treat acute and chronic arthropathies and other clinical syndromes are associated with the deposition of these crystals. Although the pathogenic mechanism of calcium crystal deposition is partially understood, much remains to be investigated, as no drug is available to prevent crystal deposition, permit crystal dissolution or specifically target the pathogenic effects that result in the clinical manifestations. In this Review, the main clinical manifestations of CPP and BCP crystal deposition are discussed, along with the biological effects of these crystals, current therapeutic approaches and future directions in therapy.
Collapse
Affiliation(s)
- Geraldine M McCarthy
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland. .,Mater Misericordiae University Hospital, Dublin, Ireland.
| | - Aisling Dunne
- School of Biochemistry and Immunology and School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Lee SH, Suk K. Kinase-Based Taming of Brain Microglia Toward Disease-Modifying Therapy. Front Cell Neurosci 2018; 12:474. [PMID: 30568577 PMCID: PMC6289980 DOI: 10.3389/fncel.2018.00474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022] Open
Abstract
Microglia are the primary immune cells residing in the central nervous system (CNS), where they play essential roles in the health and disease. Depending on the CNS inflammatory milieu, they exist in either resting or activated states. Chronic neuroinflammation mediated by activated microglia is now considered to be a common characteristic shared by many neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis, which currently pose a significant socioeconomic burden to the global healthcare system. Accumulating evidence has indicated protein kinases (PKs) as important drug targets for therapeutic interventions of these detrimental diseases. Here, we review recent findings suggesting that selected PKs potentially participate in microglia-mediated neuroinflammation. Taming microglial phenotypes by modulating the activity of these PKs holds great promise for the development of disease-modifying therapies for many neurodegenerative diseases.
Collapse
Affiliation(s)
- Sun-Hwa Lee
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
13
|
Mahon OR, Dunne A. Disease-Associated Particulates and Joint Inflammation; Mechanistic Insights and Potential Therapeutic Targets. Front Immunol 2018; 9:1145. [PMID: 29892292 PMCID: PMC5985611 DOI: 10.3389/fimmu.2018.01145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/07/2018] [Indexed: 12/27/2022] Open
Abstract
It is now well established that intra-articular deposition of endogenous particulates, such as osteoarthritis-associated basic calcium phosphate crystals, gout-associated monosodium urate crystals, and calcium deposition disease-associated calcium pyrophosphate crystals, contributes to joint destruction through the production of cartilage-degrading enzymes and pro-inflammatory cytokines. Furthermore, exogenous wear-debris particles, generated from prosthetic implants, drive periprosthetic osteolysis which impacts on the longevity of total joint replacements. Over the last few years, significant insight has been gained into the mechanisms through which these particulates exert their effects. Not only has this increased our understanding of the pathological processes associated with crystal deposition but it has also led to the identification of a number of therapeutic targets to treat particulate-associated disease. In this review, we discuss recent developments regarding the cellular events triggered by joint-associated particulates, as well as future directions in therapy for particulate-related arthropathies.
Collapse
Affiliation(s)
- Olwyn R Mahon
- School of Biochemistry and Immunology, School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, The University of Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, The University of Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Osteoarthritis (OA) is the most common form of joint disease globally and is associated with significant morbidity and disability. Increasing evidence points to an important inflammatory component in the development and progression of OA. The precise pathways involved in OA inflammatory processes remain to be clarified. Basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP) crystals can induce inflammation and arthritis and recent studies point to a potential pathogenic role in OA. In the light of this evidence, we explore the relationship and potential mechanistic pathways linking calcium-containing crystals and OA. RECENT FINDINGS CPP crystals induce inflammation through the NLRP3 inflammasome while BCP crystals mediate both NLRP3 dependent and independent effects. BCP crystals have been demonstrated to induce key mitogenic and inflammatory pathways and contribute to cartilage degradation. Calcium-containing crystals induce key inflammatory pathways and may represent an attractive novel target in OA, a condition devoid of effective treatments.
Collapse
Affiliation(s)
- Richard Conway
- Department of Rheumatology, St. James's Hospital, James Street, Dublin 8, Ireland.
| | - Geraldine M McCarthy
- Department of Rheumatology, Mater Misericordiae University Hospital, Dublin Academic Medical Centre, Eccles St., Dublin 7, Ireland
| |
Collapse
|
15
|
Dautova Y, Kapustin AN, Pappert K, Epple M, Okkenhaug H, Cook SJ, Shanahan CM, Bootman MD, Proudfoot D. Calcium phosphate particles stimulate interleukin-1β release from human vascular smooth muscle cells: A role for spleen tyrosine kinase and exosome release. J Mol Cell Cardiol 2018; 115:82-93. [PMID: 29274344 PMCID: PMC5823844 DOI: 10.1016/j.yjmcc.2017.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022]
Abstract
AIMS Calcium phosphate (CaP) particle deposits are found in several inflammatory diseases including atherosclerosis and osteoarthritis. CaP, and other forms of crystals and particles, can promote inflammasome formation in macrophages leading to caspase-1 activation and secretion of mature interleukin-1β (IL-1β). Given the close association of small CaP particles with vascular smooth muscle cells (VSMCs) in atherosclerotic fibrous caps, we aimed to determine if CaP particles affected pro-inflammatory signalling in human VSMCs. METHODS AND RESULTS Using ELISA to measure IL-1β release from VSMCs, we demonstrated that CaP particles stimulated IL-1β release from proliferating and senescent human VSMCs, but with substantially greater IL-1β release from senescent cells; this required caspase-1 activity but not LPS-priming of cells. Potential inflammasome agonists including ATP, nigericin and monosodium urate crystals did not stimulate IL-1β release from VSMCs. Western blot analysis demonstrated that CaP particles induced rapid activation of spleen tyrosine kinase (SYK) (increased phospho-Y525/526). The SYK inhibitor R406 reduced IL-1β release and caspase-1 activation in CaP particle-treated VSMCs, indicating that SYK activation occurs upstream of and is required for caspase-1 activation. In addition, IL-1β and caspase-1 colocalised in intracellular endosome-like vesicles and we detected IL-1β in exosomes isolated from VSMC media. Furthermore, CaP particle treatment stimulated exosome secretion by VSMCs in a SYK-dependent manner, while the exosome-release inhibitor spiroepoxide reduced IL-1β release. CONCLUSIONS CaP particles stimulate SYK and caspase-1 activation in VSMCs, leading to the release of IL-1β, at least in part via exosomes. These novel findings in human VSMCs highlight the pro-inflammatory and pro-calcific potential of microcalcification.
Collapse
Affiliation(s)
- Yana Dautova
- Signalling Programme, Babraham Institute, Babraham, Cambridge CB22 3AT, UK
| | - Alexander N Kapustin
- Cardiovascular Division, James Black Centre, King's College London,125 Coldharbour Lane, London SE5 9NU, UK
| | - Kevin Pappert
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Essen-Duisburg, Essen 45117, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Essen-Duisburg, Essen 45117, Germany
| | - Hanneke Okkenhaug
- Signalling Programme, Babraham Institute, Babraham, Cambridge CB22 3AT, UK
| | - Simon J Cook
- Signalling Programme, Babraham Institute, Babraham, Cambridge CB22 3AT, UK
| | - Catherine M Shanahan
- Cardiovascular Division, James Black Centre, King's College London,125 Coldharbour Lane, London SE5 9NU, UK
| | - Martin D Bootman
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Diane Proudfoot
- Signalling Programme, Babraham Institute, Babraham, Cambridge CB22 3AT, UK.
| |
Collapse
|
16
|
BAY 11-7085 induces glucocorticoid receptor activation and autophagy that collaborate with apoptosis to induce human synovial fibroblast cell death. Oncotarget 2018; 7:23370-82. [PMID: 26993765 PMCID: PMC5029633 DOI: 10.18632/oncotarget.8042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 02/28/2016] [Indexed: 11/29/2022] Open
Abstract
Inhibition of proapoptotic pathways in synovial fibroblasts is one of the major causes of synovial proliferation and hyperplasia in rheumatic diseases. We have shown previously that NF-κB inhibitor BAY 11-7085, through inactivation of PPAR-γ, induces apoptosis in human synovial fibroblasts. In this work we showed that BAY 11-7085 induced autophagy that preceded BAY 11-7085-induced apoptosis. Of interest, BAY 11-7085 induced Serine 211 phosphorylation and degradation of glucocorticoid receptor (GR). Glucocorticoid prednisolone induced both activation and degradation of GR, as well as autophagy in synovial fibroblasts. BAY 11-7085-induced cell death was significantly decreased with glucocorticoid inhibitor mifepristone and with inhibitors of autophagy. Both BAY 11-7085-induced autophagy and GR activation were down regulated with PPAR-γ agonist, 15d-PGJ2 and MEK/ERK inhibitor UO126. Inhibition of autophagy markedly decreased endogenous and BAY 11-7085-induced ERK phosphorylation, suggesting a positive feed back loop between ERK activation and autophagy in synovial fibroblasts. Co-transfection of MEK1 with PPAR-γ1 in HEK293 cells caused known inhibitory phosphorylation of PPAR-γ1 (Serine 112) and enhanced GR degradation, in the absence or presence of prednisolone. Furthermore, GR was both phosphorylated on Serine 211 and down regulated in synovial fibroblasts during serum starvation induced autophagy. These results showed that GR activation and PPAR-γ inactivation mediated BAY 11-7085-induced autophagy.
Collapse
|
17
|
Mahon OR, O'Hanlon S, Cunningham CC, McCarthy GM, Hobbs C, Nicolosi V, Kelly DJ, Dunne A. Orthopaedic implant materials drive M1 macrophage polarization in a spleen tyrosine kinase- and mitogen-activated protein kinase-dependent manner. Acta Biomater 2018; 65:426-435. [PMID: 29104084 DOI: 10.1016/j.actbio.2017.10.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/17/2022]
Abstract
Total joint replacements (TJR) are costly procedures required to relieve pain and restore function in patients suffering from end-stage arthritis. Despite great progress in the development and durability of TJRs, the generation of prosthesis-associated wear particles over time leads to an inflammatory cascade which culminates in periprosthetic osteolysis. Studies suggest that wear particles drive the polarization/differentiation of immature macrophages towards a pro-inflammatory M1 phenotype rather than an anti-inflammatory M2 phenotype associated with normal bone and wound healing. This, in turn, contributes to the initiation of peri-implant inflammation. As a result, modulating M1 macrophage cytokine production has been recognised as a viable therapeutic option. The aim of this study was to examine the impact of hydroxyapatite (HA) and poly(methyl methacrylate) (PMMA) particles on human macrophage polarization by comparing their effect on M1/M2-associated gene expression using real-time PCR. Furthermore, using immunoblotting to assess kinase activation, we sought to identify the intracellular signalling molecules activated by PMMA/HA particles and to determine whether pharmacological blockade of these molecules impacts on macrophage phenotype and cytokine production as measured by ELISA. We report that wear particles preferentially polarize macrophages towards an M1 phenotype, an effect that is dependent on activation of the membrane proximal kinase, Syk and members of the mitogen-activated protein kinase (MAPK) family of signalling molecules. Pre-treatment of macrophages with Syk inhibitors (R788/piceatannol) or MAPK inhibitors (SB203580 and PD98059), not only prevents M1 polarization, but also attenuates production of key pro-inflammatory mediators that have been specifically implicated in periprosthetic osteolysis and osteoclast differentiation. STATEMENT OF SIGNIFICANCE It is now well established that wear-debris particles from implanted materials drive deleterious inflammatory responses which can eventually lead to implant loosening. In this study, we provide further insight into the specific cellular pathways activated by wear particles in primary human immune cells. We demonstrate that PMMA bone cement and hydroxyapatite, a commonly used biomaterial, drive the polarization of macrophages towards an inflammatory phenotype and identify the specific signalling molecules that are activated in this process. Pre-treatment of macrophages with pharmacological inhibitors of these molecules in turn prevents macrophage polarization and dampens inflammatory cytokine production. Hence these signalling molecules represent potential therapeutic targets to treat or possibly prevent particulate induced osteolysis.
Collapse
|
18
|
Calcific tendonitis of the rotator cuff: From formation to resorption. Joint Bone Spine 2017; 85:687-692. [PMID: 29195923 DOI: 10.1016/j.jbspin.2017.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/19/2017] [Indexed: 01/15/2023]
Abstract
Calcific tendonitis of the rotator cuff is due to apatite deposits in the shoulder tendons. Patients affected by calcific tendonitis have chronic shoulder pain and disability. Although the disease is frequent, about 10 to 42% of painful shoulders, mechanisms leading to this pathological mineralization are still largely unknown. Research reported in the 1990s suggested that the formation of calcific deposits is linked to cells looking like chondrocytes identified around calcium deposits within a fibrocartilage area. They were considered to be derived from tenocytes but more recently, tendon stem cells, able to differentiate into chondrocytes, were isolated. The pro-mineralizing properties of these chondrocytes-like cells, especially the role of alkaline phosphatase, are not currently clarified. The calcium deposits contain poorly crystalline carbonated apatite associated with protein. Among these proteins, only osteopontin has been consistently identified as a potential regulating factor. During the disease, spontaneous resorption can occur with migration of apatite crystals into the subacromial bursa causing severe pain and restriction of movement. In in vivo and in vitro experiments, apatite crystals were able to induce an influx of leucocytes and a release of IL-1β and IL-18 through the activation of the NLRP3 inflammasome. However, mechanisms leading to spontaneous resolution of this inflammation and disappearance of the calcification still need to be elucidated.
Collapse
|
19
|
Corr EM, Cunningham CC, Helbert L, McCarthy GM, Dunne A. Osteoarthritis-associated basic calcium phosphate crystals activate membrane proximal kinases in human innate immune cells. Arthritis Res Ther 2017; 19:23. [PMID: 28173838 PMCID: PMC5296949 DOI: 10.1186/s13075-017-1225-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/06/2017] [Indexed: 12/14/2022] Open
Abstract
Background Osteoarthritis (OA) is a chronic debilitating joint disorder of particularly high prevalence in the elderly population. Intra-articular basic calcium phosphate (BCP) crystals are present in the majority of OA joints and are associated with severe degeneration. They are known to activate macrophages, synovial fibroblasts, and articular chondrocytes, resulting in increased cell proliferation and the production of pro-inflammatory cytokines and matrix metalloproteases (MMPs). This suggests a pathogenic role in OA by causing extracellular matrix degradation and subchondral bone remodelling. There are currently no disease-modifying drugs available for crystal-associated OA; hence, the aim of this study was to explore the inflammatory pathways activated by BCP crystals in order to identify potential therapeutic targets to limit crystal-induced inflammation. Methods Primary human macrophages and dendritic cells were stimulated with BCP crystals, and activation of spleen tyrosine kinase (Syk), phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinases (MAPKs) was detected by immunoblotting. Lipopolysaccharide (LPS)-primed macrophages were pre-treated with inhibitors of Syk, PI3K, and MAPKs prior to BCP stimulation, and cytokine production was quantified by enzyme-linked immunosorbent assay (ELISA). Aa an alternative, cells were treated with synovial fluid derived from osteoarthritic knees in the presence or absence of BCP crystals, and gene induction was assessed by real-time polymerase chain reaction (PCR). Results We demonstrate that exposure of primary human macrophages and dendritic cells to BCP crystals leads to activation of the membrane-proximal tyrosine kinases Syk and PI3K. Furthermore, we show that production of the pro-inflammatory cytokines interleukin (IL)-1α and IL-1β and phosphorylation of downstream MEK and ERK MAPKs is suppressed following treatment with inhibitors of Syk or PI3K. Finally, we demonstrate that treatment of macrophages with BCP crystals induces the production of the damage-associated molecule S100A8 and MMP1 in a Syk-dependent manner and that synovial fluid from OA patients together with BCP crystals exacerbates these effects. Conclusions We identify Syk and PI3K as key signalling molecules activated by BCP crystals prior to inflammatory cytokine and DAMP expression and therefore propose that Syk and PI3K represent potential targets for the treatment of BCP-related pathologies.
Collapse
Affiliation(s)
- Emma M Corr
- School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Clare C Cunningham
- School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Laura Helbert
- Mater Misericordiae University Hospital, Dublin, Ireland
| | | | - Aisling Dunne
- School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
20
|
Cunningham CC, Corr EM, McCarthy GM, Dunne A. Intra-articular basic calcium phosphate and monosodium urate crystals inhibit anti-osteoclastogenic cytokine signalling. Osteoarthritis Cartilage 2016; 24:2141-2152. [PMID: 27426968 DOI: 10.1016/j.joca.2016.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/23/2016] [Accepted: 07/01/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Basic calcium phosphate (BCP) and monosodium urate (MSU) crystals are particulates with potent pro-inflammatory effects, associated with osteoarthritis (OA) and gout, respectively. Bone erosion, due to increased osteoclastogenesis, is a hallmark of both arthropathies and results in severe joint destruction. The aim of this study was to investigate the effect of these endogenous particulates on anti-osteoclastogenic cytokine signalling. METHODS Human osteoclast precursors (OcP) were treated with BCP and MSU crystals prior to stimulation with Interleukin (IL-6) or Interferon (IFN-γ) and the effect on Signal Transducer and Activator of Transcription (STAT)-3 and STAT-1 activation in addition to Mitogen Activated Protein Kinase (MAPK) activation was examined by immunoblotting. Crystal-induced suppressor of cytokine signalling (SOCS) protein and SH-2 containing tyrosine phosphatase (SHP) expression was assessed by real-time polymerase chain reaction (PCR) in the presence and absence of MAPK inhibitors. RESULTS Pre-treatment with BCP or MSU crystals for 1 h inhibited IL-6-induced STAT-3 activation in human OcP, while pre-treatment for 3 h inhibited IFN-γ-induced STAT-1 activation. Both crystals activated p38 and extracellular signal-regulated (ERK) MAPKs with BCP crystals also activating c-Jun N-terminal kinase (JNK). Inhibition of p38 counteracted the inhibitory effect of BCP and MSU crystals and restored STAT-3 phosphorylation. In contrast, STAT-1 phosphorylation was not restored by MAPK inhibition. Finally, both crystals potently induced the expression of SOCS-3 in a MAPK dependent manner, while BCP crystals also induced expression of SHP-1 and SHP-2. CONCLUSION This study provides further insight into the pathogenic effects of endogenous particulates in joint arthropathies and demonstrates how they may contribute to bone erosion via the inhibition of anti-osteoclastogenic cytokine signalling. Potential targets to overcome these effects include p38 MAPK, SOCS-3 and SHP phosphatases.
Collapse
Affiliation(s)
- C C Cunningham
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| | - E M Corr
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| | - G M McCarthy
- Mater Misericordiae University Hospital, Dublin 7, Ireland.
| | - A Dunne
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
21
|
|
22
|
Corr EM, Cunningham CC, Dunne A. Cholesterol crystals activate Syk and PI3 kinase in human macrophages and dendritic cells. Atherosclerosis 2016; 251:197-205. [DOI: 10.1016/j.atherosclerosis.2016.06.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
|
23
|
Nasi S, Ea HK, Lioté F, So A, Busso N. Sodium Thiosulfate Prevents Chondrocyte Mineralization and Reduces the Severity of Murine Osteoarthritis. PLoS One 2016; 11:e0158196. [PMID: 27391970 PMCID: PMC4938519 DOI: 10.1371/journal.pone.0158196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/13/2016] [Indexed: 12/02/2022] Open
Abstract
Objectives Calcium-containing crystals participate in the pathogenesis of OA. Sodium thiosulfate (STS) has been shown to be an effective treatment in calcification disorders such as calciphylaxis and vascular calcification. This study investigated the effects and mechanisms of action of STS in a murine model of OA and in chondrocyte calcification. Methods Hydroxyapatite (HA) crystals-stimulated murine chondrocytes and macrophages were treated with STS. Mineralization and cellular production of IL-6, MCP-1 and reactive oxygen species (ROS) were assayed. STS's effects on genes involved in calcification, inflammation and cartilage matrix degradation were studied by RT-PCR. STS was administered in the menisectomy model of murine OA, and the effect on periarticular calcific deposits and cartilage degeneration was investigated by micro-CT-scan and histology. Results In vitro, STS prevented in a dose-dependent manner calcium crystal deposition in chondrocytes and inhibited Annexin V gene expression. In addition, there was a reduction in crystal-induced IL-6 and MCP-1 production. STS also had an antioxidant effect, diminished HA-induced ROS generation and abrogated HA-induced catabolic responses in chondrocytes. In vivo, administration of STS reduced the histological severity of OA, by limiting the size of new periarticular calcific deposits and reducing the severity of cartilage damage. Conclusions STS reduces the severity of periarticular calcification and cartilage damage in an animal model of OA via its effects on chondrocyte mineralization and its attenuation of crystal-induced inflammation as well as catabolic enzymes and ROS generation. Our study suggests that STS may be a disease-modifying drug in crystal-associated OA.
Collapse
Affiliation(s)
- Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- * E-mail:
| | - Hang-Korng Ea
- Hospital Lariboisière, Service of Rheumatology, University School of Medicine, Paris VII, Paris, France
| | - Frédéric Lioté
- Hospital Lariboisière, Service of Rheumatology, University School of Medicine, Paris VII, Paris, France
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
24
|
Nasi S, So A, Combes C, Daudon M, Busso N. Interleukin-6 and chondrocyte mineralisation act in tandem to promote experimental osteoarthritis. Ann Rheum Dis 2016; 75:1372-9. [PMID: 26253096 DOI: 10.1136/annrheumdis-2015-207487] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/14/2015] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Basic calcium phosphate (BCP) crystal and interleukin 6 (IL-6) have been implicated in osteoarthritis (OA). We hypothesise that these two factors may be linked in a reciprocal amplification loop which leads to OA. METHODS Primary murine chondrocytes and human cartilage explants were incubated with hydroxyapatite (HA) crystals, a form of BCP, and the modulation of cytokines and matrix-degrading enzymes assayed. The ability of IL-6 to stimulate chondrocyte calcification was assessed in vitro. The mechanisms underlying the effects of HA on chondrocytes were investigated using chemical inhibitors, and the pathways mediating IL-6-induced calcification characterised by quantifying the expression of genes involved in chondrocyte mineralisation. The role of calcification in vivo was studied in the meniscectomy model of murine OA (MNX), and the link between IL-6 and cartilage degradation investigated by histology. RESULTS In chondrocytes, BCP crystals stimulated IL-6 secretion, further amplified in an autocrine loop, through signalling pathways involving Syk and PI3 kinases, Jak2 and Stat3 molecules. Exogenous IL-6 promoted calcium-containing crystal formation and upregulation of genes involved in calcification: the pyrophosphate channel Ank, the calcium channel Annexin5 and the sodium/phosphate cotransporter Pit-1. Treatment of chondrocytes with IL-6 inhibitors significantly inhibited IL-6-induced crystal formation. In meniscectomised mice, increasing deposits of BCP crystals were observed around the joint and correlated with cartilage degradation and IL-6 expression. Finally, BCP crystals induced proteoglycan loss and IL-6 expression in human cartilage explants, which were reduced by an IL-6 inhibitor. CONCLUSIONS BCP crystals and IL-6 form a positive feedback loop leading to OA. Targeting calcium-containing crystal formation and/or IL-6 are promising therapeutic strategies in OA.
Collapse
Affiliation(s)
- Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Christèle Combes
- CIRIMAT, UMR 5085 INPT-UPS-CNRS, Université de Toulouse, ENSIACET, Toulouse, France
| | - Michel Daudon
- AP-HP, service d'Explorations Fonctionnelles, hôpital Tenon, Paris, France
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, CHUV and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Horecka A, Hordyjewska A, Blicharski T, Kocot J, Żelazowska R, Lewandowska A, Kurzepa J. Simvastatin Effect on Calcium and Silicon Plasma Levels in Postmenopausal Women with Osteoarthritis. Biol Trace Elem Res 2016; 171:1-5. [PMID: 26858096 PMCID: PMC4831989 DOI: 10.1007/s12011-016-0635-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/27/2016] [Indexed: 11/29/2022]
Abstract
Postmenopausal women more often suffered from knee osteoarthritis and its pathogenesis still remains unclear. Calcium and silicon are significant elements involved in bone and joint metabolism, especially in older people. Cardiovascular diseases are common worldwide and simvastatin is the most prescribed drug in such population of patients. The purpose of this study was to evaluate the effect of simvastatin administration on calcium and silicon concentration in the plasma of postmenopausal women with osteoarthritis. Sixty postmenopausal mild hypercholesterolemic women (mean age 61.4 years, range 54-68) were enrolled. Thirty patients received simvastatin (20 or 40 mg/day) for at least 1 year before being enrolled (simvastatin "+" group). Control group consists of remaining 30 women (simvastatin "-"group). Silicon and calcium concentrations were measured spectrophotometrically. Plasma simvastatin level was determined 3 h after the drug administration using HPLC-UV-Vis. Calcium but not silicon level was significantly lower in patients receiving simvastatin in comparison with non-statin group (1.91 ± 0.32 vs. 2.33 ± 0.19 mmol/l, p < 0.05). A weak but significant positive correlation between plasma silicon and simvastatin levels (r = 0.3, p < 0.05) was observed; this may be due to the fact that simvastatin contains silicon dioxide as an inactive ingredient. The mean simvastatin concentration was 9.02 ng/ml. All hypotheses were verified at the significance level of p < 0.05. A statistically significant decrease in the plasma calcium concentration of postmenopausal women, treated with simvastatin suggests that simvastatin may play a role in calcium metabolism in postmenopausal women with osteoarthritis. Positive correlation of simvastatin concentration with silicon level in the plasma suggests that both might prompt the positive effect of osteoarthritis treatment.
Collapse
Affiliation(s)
- Anna Horecka
- Chair and Department of Medical Chemistry, Medical University of Lublin, Chodźki 4A, PL 20-093, Lublin, Poland.
| | - Anna Hordyjewska
- Chair and Department of Medical Chemistry, Medical University of Lublin, Chodźki 4A, PL 20-093, Lublin, Poland
| | - Tomasz Blicharski
- Chair of Orthopedics and Rehabilitation, Medical University of Lublin, Jaczewskiego 8, PL 20-954, Lublin, Poland
| | - Joanna Kocot
- Chair and Department of Medical Chemistry, Medical University of Lublin, Chodźki 4A, PL 20-093, Lublin, Poland
| | - Renata Żelazowska
- Chair and Department of Medical Chemistry, Medical University of Lublin, Chodźki 4A, PL 20-093, Lublin, Poland
| | - Anna Lewandowska
- Chair and Department of Medical Chemistry, Medical University of Lublin, Chodźki 4A, PL 20-093, Lublin, Poland
| | - Jacek Kurzepa
- Chair and Department of Medical Chemistry, Medical University of Lublin, Chodźki 4A, PL 20-093, Lublin, Poland
| |
Collapse
|
26
|
Liao N, Huang Y, Ye J, Chen W, Li ZF, Lin R, Li X, Zheng L, Liu X. Protective effects of Tougu Xiaotong capsule on tumor necrosis factor-α-injured UMR-106 cells. Exp Ther Med 2015; 10:1908-1914. [PMID: 26640571 DOI: 10.3892/etm.2015.2739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 08/05/2015] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) plays an important role in the abnormal metabolism of osteoblasts (OBs), which leads to subchondral bone (SB) alterations in osteoarthritis. In the present study, Tougu Xiaotong capsule (TXC), a traditional Chinese medicine, was used to treat TNF-α-injured OB-like cells. The cellular viability, mortality and ultramicroscopic morphology were evaluated. Thereafter, the activity of alkaline phosphatase (ALP), secretion of osteocalcin (OCN) and mineralization of nodules were analyzed. The results showed that TXC treatment significantly promoted cell proliferation, reduced cellular mortality and improved cellular ultrastructure, particularly that of the endoplasmic reticulum and nucleus. These data indicate that TXC is able to promote cell growth, as well as prevent inflammation in OB-like cells. Furthermore, the activity of ALP, secretion of OCN and mineralization of nodules were accelerated, and the calcium content of the TNF-α-injured OB-like cells was promoted by TXC treatment. These results indicate that TXC protected the OB-like cells from TNF-α-induced injuries. This may be a potential mechanism through which TXC regulates SB remodeling in the clinical treatment of osteoarthritis.
Collapse
Affiliation(s)
- Naishun Liao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yunmei Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; National Laboratory of Traditional Chinese Medicine Pharmacology (Cell Structure and Function), Fujian Academy of Integrative Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jinxia Ye
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Wenlie Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; National Laboratory of Traditional Chinese Medicine Pharmacology (Cell Structure and Function), Fujian Academy of Integrative Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zuan Fang Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; National Laboratory of Traditional Chinese Medicine Pharmacology (Cell Structure and Function), Fujian Academy of Integrative Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Ruhui Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; National Laboratory of Traditional Chinese Medicine Pharmacology (Cell Structure and Function), Fujian Academy of Integrative Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Liangpu Zheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xianxiang Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
27
|
Haneklaus M, O'Neill LAJ. NLRP3 at the interface of metabolism and inflammation. Immunol Rev 2015; 265:53-62. [DOI: 10.1111/imr.12285] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Moritz Haneklaus
- School of Biochemistry & Immunology; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin 2 Ireland
| | - Luke A. J. O'Neill
- School of Biochemistry & Immunology; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin 2 Ireland
| |
Collapse
|
28
|
Xanthine oxidoreductase regulates macrophage IL1β secretion upon NLRP3 inflammasome activation. Nat Commun 2015; 6:6555. [PMID: 25800347 PMCID: PMC4382995 DOI: 10.1038/ncomms7555] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 02/02/2015] [Indexed: 02/07/2023] Open
Abstract
Activation of the NLRP3 inflammasome by microbial ligands or tissue damage requires intracellular generation of reactive oxygen species (ROS). We present evidence that macrophage secretion of IL1β upon stimulation with ATP, crystals or LPS is mediated by a rapid increase in the activity of xanthine oxidase (XO), the oxidized form of xanthine dehydrogenase, resulting in the formation of uric acid as well as ROS. We show that XO-derived ROS, but not uric acid, is the trigger for IL1β release and that XO blockade results in impaired IL1β and caspase1 secretion. XO is localized to both cytoplasmic and mitochondrial compartments and acts upstream to the PI3K-AKT signalling pathway that results in mitochondrial ROS generation. This pathway represents a mechanism for regulating NLRP3 inflammasome activation that may have therapeutic implications in inflammatory diseases.
Collapse
|
29
|
|
30
|
Zeng KW, Wang S, Dong X, Jiang Y, Jin HW, Tu PF. Sesquiterpene dimmer (DSF-27) inhibits the release of neuroinflammatory mediators from microglia by targeting spleen tyrosine kinase (Syk) and Janus kinase 2 (Jak2): Two major non-receptor tyrosine signaling proteins involved in inflammatory events. Toxicol Appl Pharmacol 2014; 275:244-56. [DOI: 10.1016/j.taap.2014.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 11/26/2022]
|
31
|
Durcan L, Bolster F, Kavanagh EC, McCarthy GM. The structural consequences of calcium crystal deposition. Rheum Dis Clin North Am 2014; 40:311-28. [PMID: 24703349 DOI: 10.1016/j.rdc.2014.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Calcium pyrophosphate dihydrate and basic calcium phosphate (BCP) crystals are the most common calcium-containing crystals associated with rheumatic disease. Clinical manifestations of calcium crystal deposition include acute or chronic inflammatory and degenerative arthritides and certain forms of periarthritis. The intra-articular presence of BCP crystals correlates with the degree of radiographic degeneration. Calcium crystal deposition contributes directly to joint degeneration. Vascular calcification is caused by the deposition of calcium hydroxyapatite crystals in the arterial intima. These deposits may contribute to local inflammation and promote further calcification, thus aggravating the atherosclerotic process. Calcium crystal deposition results in substantial structural consequence in humans.
Collapse
Affiliation(s)
- Laura Durcan
- Division of Rheumatology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Ferdia Bolster
- Department of Radiology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Eoin C Kavanagh
- Department of Radiology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Geraldine M McCarthy
- Division of Rheumatology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland.
| |
Collapse
|
32
|
Loeser RF. Osteoarthritis year in review 2013: biology. Osteoarthritis Cartilage 2013; 21:1436-42. [PMID: 23774472 PMCID: PMC3779513 DOI: 10.1016/j.joca.2013.05.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/20/2013] [Accepted: 05/27/2013] [Indexed: 02/02/2023]
Abstract
The purpose of this review was to present highlights from the published literature on the topic of the biology of osteoarthritis (OA). A PubMed search was conducted in order to locate original research manuscripts published since the last OARSI meeting in 2012. From review of the published literature, common themes emerged as active areas of research over the past year including studies in the areas of epigenetics, Wnt signaling, the role of inflammatory pathways in OA, lubricin, fibroblast growth factor signaling, and studies on OA biology in bone. Key findings in these areas were summarized and implications for future therapies were discussed.
Collapse
Affiliation(s)
- R F Loeser
- Department of Internal Medicine, Section of Molecular Medicine and The Wake Forest Arthritis and Musculoskeletal Diseases Research Center, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
33
|
Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis 2013; 5:77-94. [PMID: 23641259 DOI: 10.1177/1759720x12467868] [Citation(s) in RCA: 751] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) has traditionally been classified as a noninflammatory arthritis; however, the dichotomy between inflammatory and degenerative arthritis is becoming less clear with the recognition of a plethora of ongoing immune processes within the OA joint and synovium. Synovitis is defined as inflammation of the synovial membrane and is characteristic of classical inflammatory arthritidies. Increasingly recognized is the presence of synovitis in a significant proportion of patients with primary OA, and based on this observation, further studies have gone on to implicate joint inflammation and synovitis in the pathogenesis of OA. However, clinical OA is not one disease but a final common pathway secondary to many predisposing factors, most notably age, joint trauma, altered biomechanics, and obesity. How such biochemical and mechanical processes contribute to the progressive joint failure characteristic of OA is tightly linked to the interplay of joint damage, the immune response to perceived damage, and the subsequent state of chronic inflammation resulting in propagation and progression toward the phenotype recognized as clinical OA. This review will discuss a wide range of evolving data leading to our current hypotheses regarding the role of immune activation and inflammation in OA onset and progression. Although OA can affect any joint, most commonly the knee, hip, spine, and hands, this review will focus primarily on OA of the knee as this is the joint most well characterized by epidemiologic, imaging, and translational studies investigating the association of inflammation with OA.
Collapse
Affiliation(s)
- Jeremy Sokolove
- Department of Medicine/ Immunology, VA Palo Alto Health Care System, 3801 Miranda Ave, Mail Stop 154R, Palo Alto, CA 94034 Stanford University, Palo Alto, CA, USA
| | | |
Collapse
|
34
|
Fadda A, Oevermann A, Vandevelde M, Doherr MG, Forterre F, Henke D. Clinical and pathological analysis of epidural inflammation in intervertebral disk extrusion in dogs. J Vet Intern Med 2013; 27:924-34. [PMID: 23647367 DOI: 10.1111/jvim.12095] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/11/2013] [Accepted: 03/14/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Little is known about the pathologic changes in the epidural space after intervertebral disk (IVD) extrusion in the dog. OBJECTIVES To analyze the pathology of the epidural inflammatory response, and to search for correlations between this process and clinical findings. METHODS Clinical data from 105 chondrodystrophic (CD) and nonchondrodystrophic (NCD) dogs with IVD extrusion were recorded. Epidural material from these dogs was examined histopathologically and immunohistochemically. Using statistical analysis, we searched for correlations between severity of epidural inflammation and various clinical and pathologic variables. RESULTS Most dogs exhibited an epidural inflammatory response, ranging from acute invasion of neutrophils to formation of chronic granulation tissue. The mononuclear inflammatory infiltrates consisted mostly of monocytes and macrophages and only few T and B cells. Surprisingly, chronic inflammatory patterns also were found in animals with an acute clinical history. Severity of the epidural inflammation correlated with degree of the epidural hemorrhage and nucleus pulposus calcification (P = .003 and .040), but not with age, chondrodystrophic phenotype, neurologic grade, back pain, pretreatment, or duration. The degree of inflammation was statistically (P = .021) inversely correlated with the ability to regain ambulation. CONCLUSION AND CLINICAL IMPORTANCE Epidural inflammation occurs in the majority of dogs with IVD extrusion and may develop long before the onset of clinical signs. Presence of calcified IVD material and hemorrhage in the epidural space may be the triggers of this lesion rather than an adaptive immune response to the nucleus pulposus as suggested in previous studies. Because epidural inflammation may affect outcome, further research is warranted.
Collapse
Affiliation(s)
- A Fadda
- Division of Neurological Sciences, University of Bern, Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
35
|
Ross PJ, Sutton CE, Higgins S, Allen AC, Walsh K, Misiak A, Lavelle EC, McLoughlin RM, Mills KHG. Relative contribution of Th1 and Th17 cells in adaptive immunity to Bordetella pertussis: towards the rational design of an improved acellular pertussis vaccine. PLoS Pathog 2013; 9:e1003264. [PMID: 23592988 PMCID: PMC3617212 DOI: 10.1371/journal.ppat.1003264] [Citation(s) in RCA: 254] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 02/06/2013] [Indexed: 12/14/2022] Open
Abstract
Whooping cough caused by Bordetella pertussis is a re-emerging infectious disease despite the introduction of safer acellular pertussis vaccines (Pa). One explanation for this is that Pa are less protective than the more reactogenic whole cell pertussis vaccines (Pw) that they replaced. Although Pa induce potent antibody responses, and protection has been found to be associated with high concentrations of circulating IgG against vaccine antigens, it has not been firmly established that host protection induced with this vaccine is mediated solely by humoral immunity. The aim of this study was to examine the relative contribution of Th1 and Th17 cells in host immunity to infection with B. pertussis and in immunity induced by immunization with Pw and Pa and to use this information to help rationally design a more effective Pa. Our findings demonstrate that Th1 and Th17 both function in protective immunity induced by infection with B. pertussis or immunization with Pw. In contrast, a current licensed Pa, administered with alum as the adjuvant, induced Th2 and Th17 cells, but weak Th1 responses. We found that IL-1 signalling played a central role in protective immunity induced with alum-adsorbed Pa and this was associated with the induction of Th17 cells. Pa generated strong antibody and Th2 responses, but was fully protective in IL-4-defective mice, suggesting that Th2 cells were dispensable. In contrast, Pa failed to confer protective immunity in IL-17A-defective mice. Bacterial clearance mediated by Pa-induced Th17 cells was associated with cell recruitment to the lungs after challenge. Finally, protective immunity induced by an experimental Pa could be enhanced by substituting alum with a TLR agonist that induces Th1 cells. Our findings demonstrate that alum promotes protective immunity through IL-1β-induced IL-17A production, but also reveal that optimum protection against B. pertussis requires induction of Th1, but not Th2 cells.
Collapse
Affiliation(s)
- Pádraig J. Ross
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Caroline E. Sutton
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Sarah Higgins
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aideen C. Allen
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kevin Walsh
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Alicja Misiak
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ed C. Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rachel M. McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kingston H. G. Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
36
|
Ea HK, Chobaz V, Nguyen C, Nasi S, van Lent P, Daudon M, Dessombz A, Bazin D, McCarthy G, Jolles-Haeberli B, Ives A, Van Linthoudt D, So A, Lioté F, Busso N. Pathogenic role of basic calcium phosphate crystals in destructive arthropathies. PLoS One 2013; 8:e57352. [PMID: 23468973 PMCID: PMC3585350 DOI: 10.1371/journal.pone.0057352] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/21/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND basic calcium phosphate (BCP) crystals are commonly found in osteoarthritis (OA) and are associated with cartilage destruction. BCP crystals induce in vitro catabolic responses with the production of metalloproteases and inflammatory cytokines such as interleukin-1 (IL-1). In vivo, IL-1 production induced by BCP crystals is both dependant and independent of NLRP3 inflammasome. We aimed to clarify 1/ the role of BCP crystals in cartilage destruction and 2/ the role of IL-1 and NLRP3 inflammasome in cartilage degradation related to BCP crystals. METHODOLOGY PRINCIPAL FINDINGS synovial membranes isolated from OA knees were analysed by alizarin Red and FTIR. Pyrogen free BCP crystals were injected into right knees of WT, NLRP3 -/-, ASC -/-, IL-1α -/- and IL-1β-/- mice and PBS was injected into left knees. To assess the role of IL-1, WT mice were treated by intra-peritoneal injections of anakinra, the IL-1Ra recombinant protein, or PBS. Articular destruction was studied at d4, d17 and d30 assessing synovial inflammation, proteoglycan loss and chondrocyte apoptosis. BCP crystals were frequently found in OA synovial membranes including low grade OA. BCP crystals injected into murine knee joints provoked synovial inflammation characterized by synovial macrophage infiltration that persisted at day 30, cartilage degradation as evidenced by loss of proteoglycan staining by Safranin-O and concomitant expression of VDIPEN epitopes, and increased chondrocyte apoptosis. BCP crystal-induced synovitis was totally independent of IL-1α and IL-1β signalling and no alterations of inflammation were observed in mice deficient for components of the NLRP3-inflammasome, IL-1α or IL-1β. Similarly, treatment with anakinra did not prevent BCP crystal effects. In vitro, BCP crystals elicited enhanced transcription of matrix degrading and pro-inflammatory genes in macrophages. CONCLUSIONS SIGNIFICANCE intra-articular BCP crystals can elicit synovial inflammation and cartilage degradation suggesting that BCP crystals have a direct pathogenic role in OA. The effects are independent of IL-1 and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hang-Korng Ea
- INSERM, UMR-S 606, Hospital Lariboisière,Paris, France
- University Paris Diderot (UFR de Médecine), Sorbonne Paris Cité, Paris, France
| | - Véronique Chobaz
- Department of Musculoskeletal Medicine, Service of Rheumatology, CHUV and University of Lausanne, Lausanne, Switzerland
| | | | - Sonia Nasi
- Department of Musculoskeletal Medicine, Service of Rheumatology, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Peter van Lent
- Department of Rheumatology, Rheumatology Research and Advanced Therapeutics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Michel Daudon
- Service des Explorations Fonctionnelles, Hôpital Tenon, AP-HP, Paris, France
| | - Arnaud Dessombz
- Laboratoire de Physique des Solides, Université Paris Sud, Orsay, France
| | - Dominique Bazin
- Laboratoire de Physique des Solides, Université Paris Sud, Orsay, France
| | | | - Brigitte Jolles-Haeberli
- Service de chirurgie orthopédique et traumatologique de l'appareil moteur, Department of Musculoskeletal Medicine, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Annette Ives
- Department of Musculoskeletal Medicine, Service of Rheumatology, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Daniel Van Linthoudt
- Department of Musculoskeletal Medicine, Service of Rheumatology, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Alexander So
- Department of Musculoskeletal Medicine, Service of Rheumatology, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Frédéric Lioté
- INSERM, UMR-S 606, Hospital Lariboisière,Paris, France
- University Paris Diderot (UFR de Médecine), Sorbonne Paris Cité, Paris, France
| | - Nathalie Busso
- Department of Musculoskeletal Medicine, Service of Rheumatology, CHUV and University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
37
|
Mills KHG, Dungan LS, Jones SA, Harris J. The role of inflammasome-derived IL-1 in driving IL-17 responses. J Leukoc Biol 2012; 93:489-97. [PMID: 23271701 DOI: 10.1189/jlb.1012543] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
NLRs are members of the PRR family that sense microbial pathogens and mediate host innate immune responses to infection. Certain NLRs can assemble into a multiprotein complex called the inflammasome, which activates casapse-1 required for the cleavage of immature forms of IL-1β and IL-18 into active, mature cytokines. The inflammasome is activated by conserved, exogenous molecules from microbes and nonmicrobial molecules, such as asbestos, alum, or silica, as well as by endogenous danger signals, such as ATP, amyloid-β, and sodium urate crystals. Activation of the inflammasome is a critical event triggering IL-1-driven inflammation and is central to the pathology of autoinflammatory diseases, such as gout and MWS. Recent studies have also shown IL-1 or IL-18, in synergy with IL-23, can promote IL-17-prduction from Th17 cells and γδ T cells, and this process can be regulated by autophagy. IL-1-driven IL-17 production plays a critical role in host protective immunity to infection with fungi, bacteria, and certain viruses. However, Th17 cells and IL-17-seceting γδ T cells, activated by inflammasome-derived IL-1 or IL-18, have major pathogenic roles in many autoimmune diseases. Consequently, inflammasomes are now major drug targets for many autoimmune and chronic inflammatory diseases, as well as autoinflammatory diseases.
Collapse
Affiliation(s)
- Kingston H G Mills
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | | | | | | |
Collapse
|
38
|
|