1
|
Abrams ED, Basu A, Zavorka Thomas ME, Henrickson SE, Abraham RS. Expanding the diagnostic toolbox for complex genetic immune disorders. J Allergy Clin Immunol 2025; 155:255-274. [PMID: 39581295 DOI: 10.1016/j.jaci.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Laboratory-based immunology evaluation is essential to the diagnostic workup of patients with complex immune disorders, and is as essential, if not more so, depending on the context, as genetic testing, because it enables identification of aberrant pathways amenable to therapeutic intervention and clarifies variants of uncertain significance. There have been considerable advances in techniques and instrumentation in the clinical laboratory in the past 2 decades, although there are still "miles to go." One of the goals of the clinical laboratory is to ensure advanced diagnostic testing is widely accessible to physicians and thus patients, through reference laboratories, particularly in the context of academic medical centers. This ensures a greater likelihood of translating research discoveries into the diagnostic laboratory, on the basis of patient care needs rather than a sole emphasis on commercial utility. However, these advances are under threat from burdensome regulatory oversight that can compromise, at best, and curtail, at worst, the ability to rapidly diagnose rare immune disorders and ensure delivery of precision medicine. This review discusses the clinical utility of diagnostic immunology tools, beyond cellular immunophenotyping of lymphocyte subsets, which can be used in conjunction with clinical and other laboratory data for diagnosis as well as monitoring of therapeutic response in patients with genetic immunologic diseases.
Collapse
Affiliation(s)
- Eric D Abrams
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Amrita Basu
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Megan E Zavorka Thomas
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Sarah E Henrickson
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa; Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Pa; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Roshini S Abraham
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio.
| |
Collapse
|
2
|
Shadur B, NasserEddin A, Zaidman I, Schejter YD, Even-Or E, Berkun Y, Meyts I, Hmedat H, Sulaiman A, Tangye SG, Stepensky P. Successful Haematopoietic Stem Cell Transplantation for LRBA Deficiency with Fludarabine, Treosulfan, and Thiotepa-Based Conditioning. J Clin Immunol 2024; 45:3. [PMID: 39264459 PMCID: PMC11393013 DOI: 10.1007/s10875-024-01770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/19/2024] [Indexed: 09/13/2024]
Abstract
LRBA deficiency is an inborn error of immunity defined by autoimmunity, lymphoproliferation, recurrent infections, cytopenia, and inflammatory bowel disease. Despite recent advances in managing this disease with targeted biologic therapy, haematopoietic stem cell transplant (HSCT) remains the only cure. However, great variability exists between protocols used to transplant patients with LRBA deficiency. We describe a cohort of seven patients with LRBA deficiency who underwent HSCT using a myeloablative, reduced toxicity regime of fludarabine, treosulfan, and thiotepa at two transplantation centres from 2016 to 2019. Data were collected both retrospectively and prospectively, measuring time to engraftment, infectious complications, incidence of graft versus host disease, and post-transplantation chimerism. Six of seven patients survived transplantation, and four of six surviving patients achieving treatment-free survival. We thus recommend that HSCT with fludarabine, treosulfan, and thiotepa-based conditioning be considered in patients with LRBA deficiency.
Collapse
Affiliation(s)
- Bella Shadur
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Medical Centre, Jerusalem, Israel.
- Garvan Institute of Medical Research, Sydney, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia.
| | - Adeeb NasserEddin
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Medical Centre, Jerusalem, Israel
| | - Irina Zaidman
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Medical Centre, Jerusalem, Israel
| | - Yael Dinur Schejter
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Medical Centre, Jerusalem, Israel
| | - Ehud Even-Or
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Medical Centre, Jerusalem, Israel
| | - Yackov Berkun
- Department of General Paediatrics, Hadassah University Medical Centre, Jerusalem, Israel
| | - Isabelle Meyts
- Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Pediatric Immunodeficiency, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Hatem Hmedat
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Medical Centre, Jerusalem, Israel
| | - Ashraf Sulaiman
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Medical Centre, Jerusalem, Israel
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Sydney, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Medical Centre, Jerusalem, Israel
| |
Collapse
|
3
|
Dua J, Jadhav R, Pande V, Bahal M, Mane SV. Novel Lipopolysaccharide-Responsive Vesicle Trafficking, Beach- and Anchor-Containing (LRBA) Gene Mutation Identified in a Pediatric Patient: A Case Report. Cureus 2024; 16:e65434. [PMID: 39184709 PMCID: PMC11344606 DOI: 10.7759/cureus.65434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Homozygous mutations in the lipopolysaccharide-responsive vesicle trafficking, beach- and anchor-containing (LRBA) gene lead to a syndrome characterized by early-onset hypogammaglobulinemia, autoimmunity, lymphoproliferation, and inflammatory bowel disease. This report describes a 10-year-old female who experienced three seizure episodes, including two generalized tonic-clonic seizures (GTCS) and one focal seizure, alongside septic shock. The patient had a history of recurrent respiratory tract infections, inflammatory bowel disease, multiple blood transfusions, lymphadenopathy, significant organomegaly, and hematological abnormalities, all consistent with an LRBA deficiency. This case highlights the critical need for prompt recognition and identification of LRBA gene mutations to enable timely management and improve patient outcomes.
Collapse
Affiliation(s)
- Jasleen Dua
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| | - Renuka Jadhav
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| | - Vineeta Pande
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| | - Mridu Bahal
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| | - Shailaja V Mane
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| |
Collapse
|
4
|
Perez-Perez D, Santos-Argumedo L, Rodriguez-Alba JC, Lopez-Herrera G. Analysis of LRBA pathogenic variants and the association with functional protein domains and clinical presentation. Pediatr Allergy Immunol 2024; 35:e14179. [PMID: 38923448 DOI: 10.1111/pai.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
LRBA is a cytoplasmic protein that is ubiquitously distributed. Almost all LRBA domains have a scaffolding function. In 2012, it was reported that homozygous variants in LRBA are associated with early-onset hypogammaglobulinemia. Since its discovery, more than 100 pathogenic variants have been reported. This review focuses on the variants reported in LRBA and their possible associations with clinical phenotypes. In this work LRBA deficiency cases reported more than 11 years ago have been revised. A database was constructed to analyze the type of variants, age at onset, clinical diagnosis, infections, autoimmune diseases, and cellular and immunoglobulin levels. The review of cases from 2012 to 2023 showed that LRBA deficiency was commonly diagnosed in patients with a clinical diagnosis of Common Variable Immunodeficiency, followed by enteropathy, neonatal diabetes mellitus, ALPS, and X-linked-like syndrome. Most cases show early onset of presentation at <6 years of age. Most cases lack protein expression, whereas hypogammaglobulinemia is observed in half of the cases, and IgG and IgA levels are isotypes reported at low levels. Patients with elevated IgG levels exhibited more than one autoimmune manifestation. Patients carrying pathogenic variants leading to a premature stop codon show a severe phenotype as they have an earlier onset of disease presentation, severe autoimmune manifestations, premature death, and low B cells and regulatory T cell levels. Missense variants were more common in patients with low IgG levels and cytopenia. This work lead to the conclusion that the type of variant in LRBA has association with disease severity, which leads to a premature stop codon being the ones that correlates with severe disease.
Collapse
Affiliation(s)
- D Perez-Perez
- Doctorate Program in Biological Sciences, Autonomous National University of Mexico, Mexico City, Mexico
- Immunodeficiencies Laboratory, National Institute of Pediatrics (INP), Mexico City, Mexico
| | - L Santos-Argumedo
- Biomedicine Department, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - J C Rodriguez-Alba
- Neuroimmunology and Neurooncology Unit, The National Institute of Neurology and Neurosurgery (NINN), Mexico City, Mexico
- Medicine and Surgery Faculty, Autonomous University Benito Juarez from Oaxaca, Oaxaca, Mexico
| | - G Lopez-Herrera
- Immunodeficiencies Laboratory, National Institute of Pediatrics (INP), Mexico City, Mexico
| |
Collapse
|
5
|
Hardtke-Wolenski M, Landwehr-Kenzel S. Tipping the balance in autoimmunity: are regulatory t cells the cause, the cure, or both? Mol Cell Pediatr 2024; 11:3. [PMID: 38507159 PMCID: PMC10954601 DOI: 10.1186/s40348-024-00176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Regulatory T cells (Tregs) are a specialized subgroup of T-cell lymphocytes that is crucial for maintaining immune homeostasis and preventing excessive immune responses. Depending on their differentiation route, Tregs can be subdivided into thymically derived Tregs (tTregs) and peripherally induced Tregs (pTregs), which originate from conventional T cells after extrathymic differentiation at peripheral sites. Although the regulatory attributes of tTregs and pTregs partially overlap, their modes of action, protein expression profiles, and functional stability exhibit specific characteristics unique to each subset. Over the last few years, our knowledge of Treg differentiation, maturation, plasticity, and correlations between their phenotypes and functions has increased. Genetic and functional studies in patients with numeric and functional Treg deficiencies have contributed to our mechanistic understanding of immune dysregulation and autoimmune pathologies. This review provides an overview of our current knowledge of Treg biology, discusses monogenetic Treg pathologies and explores the role of Tregs in various other autoimmune disorders. Additionally, we discuss novel approaches that explore Tregs as targets or agents of innovative treatment options.
Collapse
Affiliation(s)
- Matthias Hardtke-Wolenski
- Hannover Medical School, Department of Gastroenterology Hepatology, Infectious Diseases and Endocrinology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
- University Hospital Essen, Institute of Medical Microbiology, University Duisburg-Essen, Hufelandstraße 55, Essen, 45122, Germany
| | - Sybille Landwehr-Kenzel
- Hannover Medical School, Department of Pediatric Pneumology, Allergology and Neonatology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
| |
Collapse
|
6
|
Jiang L, Chen S. Case report: A case of novel homozygous LRBA variant induced by chromosomal segmental uniparental disomy - genetic and clinical insights. Front Immunol 2024; 15:1351076. [PMID: 38504982 PMCID: PMC10948553 DOI: 10.3389/fimmu.2024.1351076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Objective The study aims to report a rare case of a novel homozygous variant in the LRBA gene, originating from uniparental disomy of paternal origin. This case contributes new clinical data to the LRBA gene variant database. Methods The study details the case of a 2-year-old child diagnosed in May 2023 at our center with a homozygous LRBA gene variant. Detailed clinical data of the patient were collected, including whole-exome sequencing of peripheral blood mononuclear cells, with parental genetic verification. Results The child presented with recurrent respiratory infections and chronic neutropenia, progressing to pancytopenia. Imaging showed splenomegaly and enlarged lymph nodes in the axillary and abdominal regions. Peripheral blood lymphocyte count revealed reduced B cells and NK cells. Elevated cytokine levels of IFN-α and IFN-r were observed. Whole-exome sequencing revealed a nonsense homozygous variant in the LRBA gene, specifically c.2584C>T (p.Gln862Ter). The father exhibited a heterozygous variant at this locus, while no variant was found in the mother. Sample analysis indicated characteristics of uniparental disomy. According to the guidelines of the American College of Medical Genetics and Genomics (ACMG), this variant is preliminarily classified as "Likely pathogenic". Currently, there are no reports in academic literature regarding this specific variant site. Conclusion LRBA gene variants can lead to a rare inborn error of immunity disease. The c.2584C>T (p.Gln862Ter) variant in exon 22 of the LRBA gene is a newly identified pathogenic variant, and the homozygous variant caused by uniparental disomy is exceedingly rare. This case represents the second global report of an LRBA gene function loss due to uniparental disomy abnormalities.
Collapse
Affiliation(s)
| | - Sen Chen
- Hematology Department, Tianjin Children’s Hospital (Children’s Hospital, Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| |
Collapse
|
7
|
Failing C, Blase JR, Walkovich K. Understanding the Spectrum of Immune Dysregulation Manifestations in Autoimmune Lymphoproliferative Syndrome and Autoimmune Lymphoproliferative Syndrome-like Disorders. Rheum Dis Clin North Am 2023; 49:841-860. [PMID: 37821199 DOI: 10.1016/j.rdc.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
As a disorder of immune dysregulation, autoimmune lymphoproliferative syndrome (ALPS) stems from pathogenic variants in the first apoptosis signal-mediated apoptosis (Fas) and Fas-ligand pathway that result in elevations of CD3+ TCRαβ+ CD4- CD8- T cells along with chronic lymphoproliferation, a heightened risk for malignancy, and importantly for the rheumatologist, increased risk of autoimmunity. While immune cytopenias are the most encountered autoimmune phenomena, there is increasing appreciation for ocular, musculoskeletal, pulmonary and renal inflammatory manifestations similar to more common rheumatology diseases. Additionally, ALPS-like conditions that share similar clinical features and opportunities for targeted therapy are increasingly recognized via genetic testing, highlighting the need for rheumatologists to be facile in the recognition and diagnosis of this spectrum of disorders. This review will focus on clinical and laboratory features of both ALPS and ALPS-like disorders with the intent to provide a framework for rheumatologists to understand the pathophysiologic drivers and discriminate between diagnoses.
Collapse
Affiliation(s)
- Christopher Failing
- Sanford Health, Fargo, ND, USA; University of North Dakota School of Medicine and Health Sciences, Grand Folks, ND, USA.
| | - Jennifer R Blase
- University of Michigan, 1500 East Medical Center Drive, D4202 Medical Professional Building, Ann Arbor, MI 48109, USA
| | - Kelly Walkovich
- University of Michigan, 1500 East Medical Center Drive, D4202 Medical Professional Building, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Gray PE, David C. Inborn Errors of Immunity and Autoimmune Disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1602-1622. [PMID: 37119983 DOI: 10.1016/j.jaip.2023.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/01/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
Autoimmunity may be a manifestation of inborn errors of immunity, specifically as part of the subgroup of primary immunodeficiency known as primary immune regulatory disorders. However, although making a single gene diagnosis can have important implications for prognosis and management, picking patients to screen can be difficult, against a background of a high prevalence of autoimmune disease in the population. This review compares the genetics of common polygenic and rare monogenic autoimmunity, and explores the molecular mechanisms, phenotypes, and inheritance of autoimmunity associated with primary immune regulatory disorders, highlighting the emerging importance of gain-of-function and non-germline somatic mutations. A novel framework for identifying rare monogenic cases of common diseases in children is presented, highlighting important clinical and immunologic features that favor single gene disease and guides clinicians in selecting appropriate patients for genomic screening. In addition, there will be a review of autoimmunity in non-genetically defined primary immunodeficiency such as common variable immunodeficiency, and of instances where primary autoimmunity can result in clinical phenocopies of inborn errors of immunity.
Collapse
Affiliation(s)
- Paul Edgar Gray
- Sydney Children's Hospital, Randwick, NSW, Australia; Western Sydney University, Penrith, NSW, Australia.
| | - Clementine David
- Sydney Children's Hospital, Randwick, NSW, Australia; The School of Women's & Children's Health, University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
9
|
Bay V, Gillespie A, Ganda E, Evans NJ, Carter SD, Lenzi L, Lucaci A, Haldenby S, Barden M, Griffiths BE, Sánchez-Molano E, Bicalho R, Banos G, Darby A, Oikonomou G. The bovine foot skin microbiota is associated with host genotype and the development of infectious digital dermatitis lesions. MICROBIOME 2023; 11:4. [PMID: 36624507 PMCID: PMC9830885 DOI: 10.1186/s40168-022-01440-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Bovine Digital Dermatitis (BDD) is a prevalent infectious disease, causing painful foot skin lesions and lameness in cattle. We describe herein the bovine foot skin microbiota and its associations with BDD using 16S rRNA gene amplicon and shotgun metagenomic sequencing on samples from 259 dairy cows from three UK dairy farms. RESULTS We show evidence of dysbiosis, and differences in taxonomy and functional profiles in the bovine foot skin microbiome of clinically healthy animals that subsequently develop BDD lesions, compared to those that do not. Our results suggest that taxonomical and functional differences together with alterations in ecological interactions between bacteria in the normal foot skin microbiome may predispose an animal to develop BDD lesions. Using genome-wide association and regional heritability mapping approaches, we provide first evidence for interactions between host genotype and certain members of the foot skin microbiota. We show the existence of significant genetic variation in the relative abundance of Treponema spp. and Peptoclostridium spp. and identify regions in the bovine genome that explain a significant proportion of this variation. CONCLUSIONS Collectively this work shows early changes in taxonomic and functional profiles of the bovine foot-skin microbiota in clinically healthy animals which are associated with subsequent development of BDD and could be relevant to prevention of disease. The description of host genetic control of members of the foot skin microbiota, combined with the association of the latter with BDD development offer new insights into a complex relationship that can be exploited in selective breeding programmes. Video Abstract.
Collapse
Affiliation(s)
- V Bay
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Faculty of Agriculture, Ege University, İzmir, Turkey
| | - A Gillespie
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - E Ganda
- Department of Animal Science, Penn State University, State College, PA, USA
| | - N J Evans
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - S D Carter
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - L Lenzi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - A Lucaci
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - S Haldenby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - M Barden
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - B E Griffiths
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | - R Bicalho
- FERA Diagnostics and Biologicals, College Station, TX, USA
| | - G Banos
- Scotland's Rural College (SRUC), Easter Bush, Midlothian, UK
| | - A Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - G Oikonomou
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
10
|
Freund T, Baxter SK, Walsh T, Golan H, Kapelushnik J, Abramsohn-Goldenberg M, Benor S, Sarid N, Ram R, Alcalay Y, Segel R, Renbaum P, Stepensky P, King MC, Torgerson TR, Hagin D. Clinically Complex LRBA Deficiency Due to a Founder Allele in the Georgian Jewish Population. J Clin Immunol 2023; 43:151-164. [PMID: 36063261 DOI: 10.1007/s10875-022-01358-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/15/2022] [Indexed: 01/18/2023]
Abstract
Pathogenic variants in LRBA, encoding the LPS Responsive Beige-Like Anchor (LRBA) protein, are responsible for recessive, early-onset hypogammaglobulinemia, severe multi-organ autoimmunity, and lymphoproliferation, with increased risk for malignancy. LRBA deficiency has a wide clinical spectrum with variable age of onset and disease severity. Three apparently unrelated patients with LRBA deficiency, of Georgian Jewish descent, were homozygous for LRBA c.6640C > T, p.R2214*, leading to a stop upstream of the LRBA BEACH domain. Despite carrying the same LRBA genotype, the three patients differed in clinical course: the first patient was asymptomatic until age 25 years; the second presented with failure to thrive at age 3 months; and the third presented at age 7 years with immune cytopenias and severe infections. Two of the patients developed malignancies: the first patient was diagnosed with recurrent Hodgkin's disease at age 36 years, and the second patient developed aggressive gastric cancer at age 15 years. Among Georgian Jews, the carrier frequency of the LRBA p.R2214* allele was 1.6% (4 of 236 Georgian Jewish controls). The allele was absent from other populations. Haplotype analysis showed a shared origin of the mutation. These three patients revealed a pathogenic LRBA founder allele in the Georgian Jewish population, support the diverse and complex clinical spectrum of LRBA deficiency, and support the possibility that LRBA deficiency predisposes to malignancy.
Collapse
Affiliation(s)
- Tal Freund
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sarah K Baxter
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA.,Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tom Walsh
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Hana Golan
- Pediatric Hematology Oncology Department, Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joseph Kapelushnik
- Department of Pediatric Oncology and Department of Hematology, Faculty of Health Sciences, Soroka Medical Center and The Center of Advanced Research and Education in Reproduction (CARER), Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | - Shira Benor
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nadav Sarid
- Department of Hematology and Stem Cell Transplantation Service, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ron Ram
- Department of Hematology and Stem Cell Transplantation Service, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yifat Alcalay
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Reeval Segel
- Shaare Zedek Medical Center and Faculty of Medicine, Medical Genetics Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul Renbaum
- Shaare Zedek Medical Center and Faculty of Medicine, Medical Genetics Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mary-Claire King
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA.,Allen Institute for Immunology, Seattle, WA, USA
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Catak MC, Akcam B, Bilgic Eltan S, Babayeva R, Karakus IS, Akgun G, Baser D, Bulutoglu A, Bayram F, Kasap N, Kiykim A, Hancioglu G, Kokcu Karadag SI, Kendir Demirkol Y, Ozen S, Cekic S, Ozcan D, Edeer Karaca N, Sasihuseyinoglu AS, Cansever M, Ozek Yucel E, Tamay Z, Altintas DU, Aydogmus C, Celmeli F, Cokugras H, Gulez N, Genel F, Metin A, Guner SN, Kutukculer N, Keles S, Reisli I, Kilic SS, Yildiran A, Karakoc-Aydiner E, Lo B, Ozen A, Baris S. Comparing the levels of CTLA-4-dependent biological defects in patients with LRBA deficiency and CTLA-4 insufficiency. Allergy 2022; 77:3108-3123. [PMID: 35491430 DOI: 10.1111/all.15331] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Lipopolysaccharide-responsive beige-like anchor protein (LRBA) deficiency and cytotoxic T-lymphocyte protein-4 (CTLA-4) insufficiency are recently described disorders that present with susceptibility to infections, autoimmunity, and lymphoproliferation. Clinical and immunological comparisons of the diseases with long-term follow-up have not been previously reported. We sought to compare the clinical and laboratory manifestations of both diseases and investigate the role of flow cytometry in predicting the genetic defect in patients with LRBA deficiency and CTLA-4 insufficiency. METHODS Patients were evaluated clinically with laboratory assessments for lymphocyte subsets, T follicular helper cells (TFH ), LRBA expression, and expression of CD25, FOXP3, and CTLA4 in regulatory T cells (Tregs) at baseline and 16 h post-stimulation. RESULTS LRBA-deficient patients (n = 29) showed significantly early age of symptom onset, higher rates of pneumonia, autoimmunity, chronic diarrhea, and failure to thrive compared to CTLA-4 insufficiency (n = 12). In total, 29 patients received abatacept with favorable responses and the overall survival probability was not different between transplanted versus non-transplanted patients in LRBA deficiency. Meanwhile, higher probability of survival was observed in CTLA-4-insufficient patients (p = 0.04). The T-cell subsets showed more deviation to memory cells in CTLA-4-insufficiency, accompanied by low percentages of Treg and dysregulated cTFH cells response in both diseases. Cumulative numbers of autoimmunities positively correlated with cTFH frequencies. Baseline CTLA-4 expression was significantly diminished in LRBA deficiency and CTLA-4 insufficiency, but significant induction in CTLA-4 was observed after short-term T-cell stimulation in LRBA deficiency and controls, while this elevation was less in CTLA-4 insufficiency, allowing to differentiate this disease from LRBA deficiency with high sensitivity (87.5%) and specificity (90%). CONCLUSION This cohort provided detailed clinical and laboratory comparisons for LRBA deficiency and CTLA-4 insufficiency. The flow cytometric approach is useful in predicting the defective gene; thus, targeted sequencing can be conducted to provide rapid diagnosis and treatment for these diseases impacting the CTLA-4 pathway.
Collapse
Affiliation(s)
- Mehmet C Catak
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Bengu Akcam
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Sevgi Bilgic Eltan
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Royala Babayeva
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | | | - Gamze Akgun
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Dilek Baser
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Alper Bulutoglu
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Feyza Bayram
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Nurhan Kasap
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayca Kiykim
- Cerrahpasa Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gonca Hancioglu
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Sefika I Kokcu Karadag
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Yasemin Kendir Demirkol
- Division of Pediatric Genetics, University of Health Sciences, Umraniye Education and Research Hospital, Istanbul, Turkey
| | - Selime Ozen
- Division of Pediatric Allergy and Immunology, University of Health Sciences, Dr. Behcet Uz Children's Education and Research Hospital, Izmir, Turkey
| | - Sukru Cekic
- Faculty of Medicine, Pediatric Allergy and Immunology, Uludag University, Bursa, Turkey
| | - Dilek Ozcan
- Division of Pediatric Allergy-Immunology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Neslihan Edeer Karaca
- Faculty of Medicine, Pediatric Allergy and Immunology, Ege University, Izmir, Turkey
| | | | - Murat Cansever
- Faculty of Medicine, Pediatric Immunology, Erciyes University, Kayseri, Turkey
| | - Esra Ozek Yucel
- Istanbul Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | - Zeynep Tamay
- Istanbul Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | - Derya U Altintas
- Division of Pediatric Allergy-Immunology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Cigdem Aydogmus
- Pediatric Allergy and Immunology, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Fatih Celmeli
- Ministry of Health, Antalya Training and Research Hospital, Antalya, Turkey
| | - Haluk Cokugras
- Cerrahpasa Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nesrin Gulez
- Division of Pediatric Allergy and Immunology, University of Health Sciences, Dr. Behcet Uz Children's Education and Research Hospital, Izmir, Turkey
| | - Ferah Genel
- Division of Pediatric Allergy and Immunology, University of Health Sciences, Dr. Behcet Uz Children's Education and Research Hospital, Izmir, Turkey
| | - Ayse Metin
- Pediatric Immunology and Allergy, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Sukru N Guner
- Faculty of Medicine, Pediatric Allergy and Immunology, Necmettin Erbakan University, Konya, Turkey
| | - Necil Kutukculer
- Faculty of Medicine, Pediatric Allergy and Immunology, Ege University, Izmir, Turkey
| | - Sevgi Keles
- Faculty of Medicine, Pediatric Allergy and Immunology, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Faculty of Medicine, Pediatric Allergy and Immunology, Necmettin Erbakan University, Konya, Turkey
| | - Sara S Kilic
- Faculty of Medicine, Pediatric Allergy and Immunology, Uludag University, Bursa, Turkey
| | - Alisan Yildiran
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Bernice Lo
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| |
Collapse
|
12
|
Kedar P, Dongerdiye R, Chandrakala S, Bargir UA, Madkaikar M. Targeted next-generation sequencing revealed a novel homozygous mutation in the LRBA gene causes severe haemolysis associated with Inborn Errors of Immunity in an Indian family. Hematology 2022; 27:441-448. [PMID: 35413226 DOI: 10.1080/16078454.2022.2058736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES LPS-responsive beige-like anchor protein (LRBA) deficiency abolishes LRBA protein expression due to biallelic mutations in the LRBA gene that lead to autoimmune manifestations, inflammatory bowel disease, hypogammaglobulinemia in early stages, and variable clinical manifestations. MATERIALS AND METHODS Mutational analysis of the LRBA gene was performed in Indian patients using targeted Next Generation Sequencing (t-NGS) and confirmed by Sanger sequencing using specific primers of exons 53. Then, bioinformatics analysis and protein modeling for the novel founded mutations were also performed. The genotype, phenotype correlation was done according to the molecular findings and clinical features. RESULTS We report an unusual case of a female patient born of a consanguineous marriage, presented with severe anaemia and jaundice with a history of multiple blood transfusions of unknown cause up to the age of 5 yrs. She had hepatosplenomegaly with recurrent viral and bacterial infections. Tests for hemoglobinopathies, enzymopathies, and hereditary spherocytosis were within the normal limits. The t-NGS revealed a novel homozygous missense variation in exon 53 of the LRBA gene (chr4:151231464C > T; c.7799G > A) (p.C2600Y), and the parents were heterozygous. The further immunological analysis is suggestive of hypogammaglobulinaemia and autoimmune haemolytic anaemia. The bioinformatics tools are suggestive of deleterious and disease-causing variants. CONCLUSION This study concludes the importance of a timely decision of targeted exome sequencing for the molecular diagnostic tool of unexplained haemolytic anaemia with heterogeneous clinical phenotypes.
Collapse
Affiliation(s)
- Prabhakar Kedar
- Department of Haematogenetics, ICMR- National Institute of Immunohaematology, Parel, Mumbai, India
| | - Rashmi Dongerdiye
- Department of Haematogenetics, ICMR- National Institute of Immunohaematology, Parel, Mumbai, India
| | | | - Umair Ahmed Bargir
- Department of Pediatric Immunology and Leukocyte Biology, ICMR- National Institute of Immunohaematology, Parel, Mumbai, India
| | - Manisha Madkaikar
- Department of Pediatric Immunology and Leukocyte Biology, ICMR- National Institute of Immunohaematology, Parel, Mumbai, India
| |
Collapse
|
13
|
Keller B, Strohmeier V, Harder I, Unger S, Payne KJ, Andrieux G, Boerries M, Felixberger PT, Landry JJM, Nieters A, Rensing-Ehl A, Salzer U, Frede N, Usadel S, Elling R, Speckmann C, Hainmann I, Ralph E, Gilmour K, Wentink MWJ, van der Burg M, Kuehn HS, Rosenzweig SD, Kölsch U, von Bernuth H, Kaiser-Labusch P, Gothe F, Hambleton S, Vlagea AD, Garcia Garcia A, Alsina L, Markelj G, Avcin T, Vasconcelos J, Guedes M, Ding JY, Ku CL, Shadur B, Avery DT, Venhoff N, Thiel J, Becker H, Erazo-Borrás L, Trujillo-Vargas CM, Franco JL, Fieschi C, Okada S, Gray PE, Uzel G, Casanova JL, Fliegauf M, Grimbacher B, Eibel H, Ehl S, Voll RE, Rizzi M, Stepensky P, Benes V, Ma CS, Bossen C, Tangye SG, Warnatz K. The expansion of human T-bet highCD21 low B cells is T cell dependent. Sci Immunol 2021; 6:eabh0891. [PMID: 34623902 DOI: 10.1126/sciimmunol.abh0891] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accumulation of human CD21low B cells in peripheral blood is a hallmark of chronic activation of the adaptive immune system in certain infections and autoimmune disorders. The molecular pathways underpinning the development, function, and fate of these CD21low B cells remain incompletely characterized. Here, combined transcriptomic and chromatin accessibility analyses supported a prominent role for the transcription factor T-bet in the transcriptional regulation of these T-bethighCD21low B cells. Investigating essential signals for generating these cells in vitro established that B cell receptor (BCR)/interferon-γ receptor (IFNγR) costimulation induced the highest levels of T-bet expression and enabled their differentiation during cell cultures with Toll-like receptor (TLR) ligand or CD40L/interleukin-21 (IL-21) stimulation. Low proportions of CD21low B cells in peripheral blood from patients with defined inborn errors of immunity (IEI), because of mutations affecting canonical NF-κB, CD40, and IL-21 receptor or IL-12/IFNγ/IFNγ receptor/signal transducer and activator of transcription 1 (STAT1) signaling, substantiated the essential roles of BCR- and certain T cell–derived signals in the in vivo expansion of T-bethighCD21low B cells. Disturbed TLR signaling due to MyD88 or IRAK4 deficiency was not associated with reduced CD21low B cell proportions. The expansion of human T-bethighCD21low B cells correlated with an expansion of circulating T follicular helper 1 (cTfh1) and T peripheral helper (Tph) cells, identifying potential sources of CD40L, IL-21, and IFNγ signals. Thus, we identified important pathways to target autoreactive T-bethighCD21low B cells in human autoimmune conditions, where these cells are linked to pathogenesis and disease progression.
Collapse
Affiliation(s)
- Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Valentina Strohmeier
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Ina Harder
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Unger
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathryn J Payne
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) partner site, Freiburg, Germany
- German Cancer Research Center (DKFZ), partner site Freiburg, 79106 Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) partner site, Freiburg, Germany
- German Cancer Research Center (DKFZ), partner site Freiburg, 79106 Freiburg, Germany
| | - Peter Tobias Felixberger
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonathan J M Landry
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alexandra Nieters
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- FREEZE-Biobank-Zentrum für Biobanking, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrich Salzer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Natalie Frede
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Usadel
- Department of Infection Medicine, Medical Service Centre Clotten, Freiburg, Germany
| | - Roland Elling
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics, Department of Pediatric Hematology and Oncology, University Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ina Hainmann
- Department of Pediatric Hematology and Oncology, University Hospital Bonn, Bonn, Germany
| | | | | | | | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine (DLM), National Institutes of Health (NIH) Clinical Center (CC), Bethesda, MD, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine (DLM), National Institutes of Health (NIH) Clinical Center (CC), Bethesda, MD, USA
| | - Uwe Kölsch
- Department of Immunology, Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
| | - Horst von Bernuth
- Department of Immunology, Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Kaiser-Labusch
- Prof. Hess Children's Hospital, Klinikum Bremen-Mitte, Gesundheit Nord gGmbH, Bremen, Germany
| | - Florian Gothe
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Dr. von Hauner Children's Hospital, Department of Paediatrics, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sophie Hambleton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Alexandru Daniel Vlagea
- Immunology Department, Biomedic Diagnostic Center (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
- Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Ana Garcia Garcia
- Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Laia Alsina
- Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Gašper Markelj
- Department of Allergology, Rheumatology and Clinical Immunology, Children's Hospital, University Medical Center Ljubljana, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Avcin
- Department of Allergology, Rheumatology and Clinical Immunology, Children's Hospital, University Medical Center Ljubljana, University of Ljubljana, Ljubljana, Slovenia
| | - Julia Vasconcelos
- Serviço de Imunologia, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Margarida Guedes
- Pediatric Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Jing-Ya Ding
- Laboratory of Human Immunology and Infectious Disease, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Lung Ku
- Laboratory of Human Immunology and Infectious Disease, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Bella Shadur
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
- St. Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Danielle T Avery
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Thiel
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiko Becker
- German Cancer Consortium (DKTK) partner site, Freiburg, Germany
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucía Erazo-Borrás
- Group of Primary Immunodeficiencies and CCBB, University of Antioquia UDEA, Medellin, Colombia
| | - Claudia Milena Trujillo-Vargas
- Group of Primary Immunodeficiencies, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UDEA, Medellin, Colombia
| | - José Luis Franco
- Group of Primary Immunodeficiencies, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UDEA, Medellin, Colombia
| | - Claire Fieschi
- Clinical Immunology Department, Saint Louis Hospital, AP-HP Université de Paris, Paris, France
- INSERM UMR1126, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Paul E Gray
- University of New South Wales School of Women's and Children's Health, Sydney, New South Wales, Australia
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Medical School, Paris Descartes University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Manfred Fliegauf
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
- DZIF-German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- RESIST-Cluster of Excellence 2155 to Hannover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Hermann Eibel
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| | - Vladimir Benes
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Claudia Bossen
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Rais A, Mekki N, Fedhila F, Alosaimi MF, Ben Khaled M, Zameli A, Agrebi N, Sellami MK, Geha R, Ben-Mustapha I, Barbouche MR. Case Report: FOXP3 Mutation in a Patient Presenting With ALPS. Front Immunol 2021; 12:692107. [PMID: 34531853 PMCID: PMC8438314 DOI: 10.3389/fimmu.2021.692107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/19/2021] [Indexed: 01/21/2023] Open
Abstract
ALPS and IPEX are two well-characterized inborn errors of immunity with immune dysregulation, considered as two master models of monogenic auto-immune diseases. Thus, with autoimmunity as their primary clinical manifestation, these two entities may show clinical overlap. Traditionally, immunological biomarkers are used to establish an accurate differential diagnosis. Herein, we describe a patient who presented with clinical features and biomarkers fulfilling the diagnostic criteria of ALPS. Severe apoptotic defect was also shown in the patient's cell lines and PHA-activated peripheral blood lymphocytes. Sanger sequencing of the FAS gene did not reveal any causal mutation. NGS screening revealed a novel deleterious variant located in the N terminal repressor domain of FOXP3 but no mutations in the FAS pathway-related genes. TEMRA cells (terminally differentiated effector memory cells re-expressing CD45RA) and PD1 expression were increased arguing in favor of T-cell exhaustion, which could be induced by unrestrained activation of T effector cells because of Treg deficiency. Moreover, defective FOXP3 observed in the patient could intrinsically induce increased proliferation and resistance to apoptosis in T effector cells. This observation expands the spectrum of FOXP3 deficiency and underscores the role of NGS in detecting mutations that induce overlapping phenotypes among inborn errors of immunity with immune dysregulation. In addition, these findings suggest a potential link between FOXP3 and FAS pathways.
Collapse
Affiliation(s)
- Afef Rais
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Najla Mekki
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Faten Fedhila
- Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia.,Department of Pediatrics A, Children's Hospital, Tunis, Tunisia
| | | | - Monia Ben Khaled
- Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia.,Pediatric Immuno-Hematology unit, Bone Marrow Transplantation Center Tunis, Tunis, Tunisia
| | - Amal Zameli
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Nourhen Agrebi
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Maryam Kallel Sellami
- Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia.,Department of Immunology, La Rabta University Hospital, Tunis, Tunisia
| | - Raif Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Imen Ben-Mustapha
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Mohamed-Ridha Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
15
|
López-Nevado M, González-Granado LI, Ruiz-García R, Pleguezuelo D, Cabrera-Marante O, Salmón N, Blanco-Lobo P, Domínguez-Pinilla N, Rodríguez-Pena R, Sebastián E, Cruz-Rojo J, Olbrich P, Ruiz-Contreras J, Paz-Artal E, Neth O, Allende LM. Primary Immune Regulatory Disorders With an Autoimmune Lymphoproliferative Syndrome-Like Phenotype: Immunologic Evaluation, Early Diagnosis and Management. Front Immunol 2021; 12:671755. [PMID: 34447369 PMCID: PMC8382720 DOI: 10.3389/fimmu.2021.671755] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/16/2021] [Indexed: 12/26/2022] Open
Abstract
Primary immune regulatory disorders (PIRD) are associated with autoimmunity, autoinflammation and/or dysregulation of lymphocyte homeostasis. Autoimmune lymphoproliferative syndrome (ALPS) is a PIRD due to an apoptotic defect in Fas-FasL pathway and characterized by benign and chronic lymphoproliferation, autoimmunity and increased risk of lymphoma. Clinical manifestations and typical laboratory biomarkers of ALPS have also been found in patients with a gene defect out of the Fas-FasL pathway (ALPS-like disorders). Following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA), we identified more than 600 patients suffering from 24 distinct genetic defects described in the literature with an autoimmune lymphoproliferative phenotype (ALPS-like syndromes) corresponding to phenocopies of primary immunodeficiency (PID) (NRAS, KRAS), susceptibility to EBV (MAGT1, PRKCD, XIAP, SH2D1A, RASGRP1, TNFRSF9), antibody deficiency (PIK3CD gain of function (GOF), PIK3R1 loss of function (LOF), CARD11 GOF), regulatory T-cells defects (CTLA4, LRBA, STAT3 GOF, IL2RA, IL2RB, DEF6), combined immunodeficiencies (ITK, STK4), defects in intrinsic and innate immunity and predisposition to infection (STAT1 GOF, IL12RB1) and autoimmunity/autoinflammation (ADA2, TNFAIP3,TPP2, TET2). CTLA4 and LRBA patients correspond around to 50% of total ALPS-like cases. However, only 100% of CTLA4, PRKCD, TET2 and NRAS/KRAS reported patients had an ALPS-like presentation, while the autoimmunity and lymphoproliferation combination resulted rare in other genetic defects. Recurrent infections, skin lesions, enteropathy and malignancy are the most common clinical manifestations. Some approaches available for the immunological study and identification of ALPS-like patients through flow cytometry and ALPS biomarkers are provided in this work. Protein expression assays for NKG2D, XIAP, SAP, CTLA4 and LRBA deficiencies and functional studies of AKT, STAT1 and STAT3 phosphorylation, are showed as useful tests. Patients suspected to suffer from one of these disorders require rapid and correct diagnosis allowing initiation of tailored specific therapeutic strategies and monitoring thereby improving the prognosis and their quality of life.
Collapse
Affiliation(s)
- Marta López-Nevado
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Luis I. González-Granado
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Raquel Ruiz-García
- Immunology Department, Centre Diagnòstic Biomèdic, Hospital Clínic, Barcelona, Spain
| | - Daniel Pleguezuelo
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Oscar Cabrera-Marante
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Nerea Salmón
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Pilar Blanco-Lobo
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Nerea Domínguez-Pinilla
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Pediatric Hematology and Oncology Unit, Toledo Hospital Complex, Toledo, Spain and University Hospital 12 de Octubre, Madrid, Spain
| | | | - Elena Sebastián
- Hematology and Hemotherapy Unit, University Children’s Hospital Niño Jesús, Madrid, Spain
| | - Jaime Cruz-Rojo
- Endocrine Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Peter Olbrich
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Jesús Ruiz-Contreras
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Estela Paz-Artal
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Olaf Neth
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Luis M. Allende
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
16
|
Tang WJ, Hu WH, Huang Y, Wu BB, Peng XM, Zhai XW, Qian XW, Ye ZQ, Xia HJ, Wu J, Shi JR. Potential protein–phenotype correlation in three lipopolysaccharide-responsive beige-like anchor protein-deficient patients. World J Clin Cases 2021; 9:5873-5888. [PMID: 34368306 PMCID: PMC8316938 DOI: 10.12998/wjcc.v9.i21.5873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/22/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Patients with lipopolysaccharide (LPS)-responsive beige-like anchor protein (LRBA) deficiency have a variety of clinical symptoms, but there is no apparent genotype–phenotype correlation, and patients carrying the same mutations may have different phenotypes. Therefore, it is not easy for doctors to make a decision regarding hematopoietic stem cell transplantation (HSCT) for LRBA-deficient patients. We hypothesized that there may be a protein–phenotype correlation to indicate HSCT for LRBA-deficient patients.
AIM To report on three Chinese LRBA-deficient patients and determine the correlation between residual protein expression and disease phenotypes.
METHODS Clinical data of three Chinese LRBA-deficient patients were collected, and protein levels were detected by Western blot analysis. In addition, LRBA mutation information of another 83 previously reported patients was summarized.
RESULTS All the major clinical findings indicated enteropathy, but patients 1 and 3 presented with more severe symptoms than patient 2. Endoscopy and histology indicated nonspecific colitis for patients 1 and 3 but Crohn's disease-like colitis for patient 2. Compound heterozygous mutations in LRBA were found in patient 1, and homozygous mutations in LRBA were found in patient 2 and patient 3. Only patient 2 responded well to traditional immunosuppressive treatment. Residual expression of the LRBA protein in patients 1 and 3 was very low, but in patient 2, a more than 0.5-fold in expression of the LRBA protein was found compared to that in the control. After HSCT, patient 1 had increased LRBA protein expression. We summarized the genetic information of 86 patients, and the mutations in patients 1 and 3 were novel mutations.
CONCLUSION We described three Chinese LRBA-deficient patients, two of whom carried novel mutations. These patients had no genotype-phenotype correlations, but their residual LRBA protein expression might be associated with disease outcome and could be an indicator for HSCT.
Collapse
Affiliation(s)
- Wen-Juan Tang
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Wen-Hui Hu
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Ying Huang
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Bing-Bing Wu
- The Molecular Genetic Diagnosis Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiao-Min Peng
- The Molecular Genetic Diagnosis Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiao-Wen Zhai
- Department of Hematology Oncology, Children's Hospital of Fudan university, National Children's Medical Center, Shanghai 201102, China
| | - Xiao-Wen Qian
- Department of Hematology Oncology, Children's Hospital of Fudan university, National Children's Medical Center, Shanghai 201102, China
| | - Zi-Qing Ye
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Hai-Jiao Xia
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Jie Wu
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Jie-Ru Shi
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| |
Collapse
|
17
|
Gaine S, Bongiorno DM, Baig S, Fava A, Stojan G. Clinicopathologic Conference: Straight From the Cradle: A Patient With Early-Onset Polyautoimmunity and Recurrent Infections. Arthritis Care Res (Hoboken) 2021; 73:1708-1713. [PMID: 33973388 DOI: 10.1002/acr.24624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Samuel Gaine
- University Hospital Waterford, Waterford, Ireland
| | | | - Sara Baig
- Arthritis and Rheumatology Consultants, Edina, Minnesota
| | - Andrea Fava
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - George Stojan
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Jamee M, Hosseinzadeh S, Sharifinejad N, Zaki-Dizaji M, Matloubi M, Hasani M, Baris S, Alsabbagh M, Lo B, Azizi G. Comprehensive comparison between 222 CTLA-4 haploinsufficiency and 212 LRBA deficiency patients: a systematic review. Clin Exp Immunol 2021; 205:28-43. [PMID: 33788257 DOI: 10.1111/cei.13600] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Cytotoxic T lymphocyte antigen 4 (CTLA-4) haploinsufficiency (CHAI) and lipopolysaccharide-responsive beige-like anchor (LRBA) deficiency (LATAIE) are newly identified inborn errors of immunity with shared molecular pathomechanisms and clinical manifestations. In this review, we aimed to provide differential comparisons regarding demographic, clinical, immunological and molecular characteristics between these two similar conditions. A literature search was conducted in PubMed, Web of Science and Scopus databases and included studies were systematically evaluated. Overall, 434 (222 CHAI and 212 LATAIE) patients were found in 101 eligible studies. The CHAI patients were mainly reported from North America and western Europe, while LATAIE patients were predominantly from Asian countries. In CHAI, positive familial history (P < 0·001) and in LATAIE, consanguineous parents (P < 0·001) were more common. In CHAI patients the rates of granulomas (P < 0·001), malignancies (P = 0·001), atopy (P = 0·001), cutaneous disorders (P < 0·001) and neurological (P = 0·002) disorders were higher, while LATAIE patients were more commonly complicated with life-threatening infections (P = 0·002), pneumonia (P = 0·006), ear, nose and throat disorders (P < 0·001), organomegaly (P = 0·023), autoimmune enteropathy (P = 0·038) and growth failure (P < 0·001). Normal lymphocyte subsets and immunoglobulins except low serum levels of CD9+ B cells (14·0 versus 38·4%, P < 0·001), natural killer (NK) cells (21 versus 41·1%, P < 0·001), immunoglobulin (Ig)G (46·9 versus 41·1%, P = 0·291) and IgA (54·5 versus 44·7%, P = 0·076) were found in the majority of CHAI and LATAIE patients, respectively. The most frequent biological immunosuppressive agents prescribed for CHAI and LATAIE patients were rituximab and abatacept, respectively. Further investigations into the best conditioning and treatment regimens pre- and post-transplantation are required to improve the survival rate of transplanted CHAI and LATAIE patients.
Collapse
Affiliation(s)
- M Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Hosseinzadeh
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - N Sharifinejad
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - M Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - M Matloubi
- Medical Immunology Department, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - M Hasani
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - S Baris
- Pediatric Allergy and Immunology, Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Marmara University Hospital, Istanbul, Turkey
| | - M Alsabbagh
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - B Lo
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - G Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
19
|
|
20
|
Non Malignant Lymphoproliferative Disorders in Children: A Case Series. Indian J Hematol Blood Transfus 2021; 37:152-156. [PMID: 33707849 DOI: 10.1007/s12288-020-01323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/18/2020] [Indexed: 10/23/2022] Open
Abstract
Lymphoproliferative disorders occurs due to uncontrolled proliferation of lymphocytes that causes lymphocytosis, lymphadenopathy, and involvement of extra nodal sites (bone marrow, liver and spleen) and occur primarily due to immune dysfunction. We describe series of cases with non malignant LPD encountered in our practice and their varied clinical presentation, difficulties in diagnosis, underlying etiology, treatment and outcome. Many of these disorders are self limiting, however some are associated with significant morbidity, hence treatment must be tailored based on the underlying immune dysfunction and aggressiveness of the clone.
Collapse
|
21
|
Edwards ESJ, Bosco JJ, Ojaimi S, O'Hehir RE, van Zelm MC. Beyond monogenetic rare variants: tackling the low rate of genetic diagnoses in predominantly antibody deficiency. Cell Mol Immunol 2021; 18:588-603. [PMID: 32801365 PMCID: PMC8027216 DOI: 10.1038/s41423-020-00520-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Predominantly antibody deficiency (PAD) is the most prevalent form of primary immunodeficiency, and is characterized by broad clinical, immunological and genetic heterogeneity. Utilizing the current gold standard of whole exome sequencing for diagnosis, pathogenic gene variants are only identified in less than 20% of patients. While elucidation of the causal genes underlying PAD has provided many insights into the cellular and molecular mechanisms underpinning disease pathogenesis, many other genes may remain as yet undefined to enable definitive diagnosis, prognostic monitoring and targeted therapy of patients. Considering that many patients display a relatively late onset of disease presentation in their 2nd or 3rd decade of life, it is questionable whether a single genetic lesion underlies disease in all patients. Potentially, combined effects of other gene variants and/or non-genetic factors, including specific infections can drive disease presentation. In this review, we define (1) the clinical and immunological variability of PAD, (2) consider how genetic defects identified in PAD have given insight into B-cell immunobiology, (3) address recent technological advances in genomics and the challenges associated with identifying causal variants, and (4) discuss how functional validation of variants of unknown significance could potentially be translated into increased diagnostic rates, improved prognostic monitoring and personalized medicine for PAD patients. A multidisciplinary approach will be the key to curtailing the early mortality and high morbidity rates in this immune disorder.
Collapse
Affiliation(s)
- Emily S J Edwards
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Julian J Bosco
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Samar Ojaimi
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash Health, Clayton, VIC, Australia
- Centre for Inflammatory Diseases, Monash Health, Clayton, VIC, Australia
- Department of Allergy and Immunology, Monash Health, Clayton, VIC, Australia
| | - Robyn E O'Hehir
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
22
|
Boz V, Valencic E, Girardelli M, Pin A, Gàmez-Diaz L, Tommasini A, Lega S, Bramuzzo M. Case Report: Refractory Autoimmune Gastritis Responsive to Abatacept in LRBA Deficiency. Front Immunol 2021; 12:619246. [PMID: 33717114 PMCID: PMC7952427 DOI: 10.3389/fimmu.2021.619246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Primary immunodeficiency (PID) with immune dysregulation may present with early onset gastrointestinal autoimmune disorders. When gastrointestinal autoimmunity is associated with multiple extraintestinal immune system dysfunction the diagnosis of PID is straightforward. However, with the advent of next generation sequencing technologies, genetic defects in PID genes have been increasingly recognized even when a single or no extraintestinal signs of immune dysregulation are present. A genetic diagnosis is especially important considering the expanding armamentarium of therapies designed to inhibit specific molecular pathways. We describe a boy with early-onset severe, refractory autoimmune gastritis and biallelic mutations in the LRBA gene causing a premature STOP-codon who was successfully treated with CTLA4-Ig, abatacept, with long term clinical and endoscopic remission. The case underscores the importance to consider a monogenetic defect in early onset autoimmune disorders, since the availability of targeted treatments may significantly improve patient prognosis.
Collapse
Affiliation(s)
- Valentina Boz
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Erica Valencic
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Martina Girardelli
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Alessia Pin
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Laura Gàmez-Diaz
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| | - Alberto Tommasini
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Sara Lega
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Matteo Bramuzzo
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste, Italy
| |
Collapse
|
23
|
Salami F, Shirkani A, Shahrooei M, Azizi G, Yazdani R, Abolhassani H, Aghamohammadi A. Leishmaniasis and Autoimmunity in Patient with LPS-Responsive Beige-Like Anchor Protein (LRBA) Deficiency. Endocr Metab Immune Disord Drug Targets 2021; 20:479-484. [PMID: 31389321 DOI: 10.2174/1871530319666190807161546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/26/2019] [Accepted: 05/30/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND/OBJECTIVE LPS-responsive beige-like anchor protein (LRBA) deficiency is a combined immunodeficiency and immune dysregulation. The authors present a case report of LPSresponsive beige-like anchor protein (LRBA) deficiency with the history of autoimmunity, enteropathy and visceral leishmaniasis. Sirolimus therapy was started for autoimmunity and enteropathy but was discontinued due to recurrent leishmaniasis. Therefore, a common side-effect of many immunosuppressive drugs in patients with LRBA deficiency is increased susceptibility to infections. METHODS Whole exome sequencing was performed to detect the underlying genetic mutation and Leishmania DNA was detected by the PCR technique in this patient. RESULTS Whole exome sequencing of the patient reported a homozygous frameshift deletion mutation in the LRBA gene (NM_006726: exon29: c.4638delC, p. S1546fs). Leishmania DNA PCR was positive in this case. CONCLUSION Parasite infections manifestations report in LRBA deficiency. Leishmania infections in patients with chronic diarrhea and autoimmunity should be considered for immunodeficiency.
Collapse
Affiliation(s)
- Fereshte Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Shirkani
- Allergy and Clinical Immunology Department, School of Medicine, Bushehr University of Medical Science, Bushehr, Iran
| | - Mohammad Shahrooei
- Department of Immunology, Specialised Immunology Laboratory of Dr. Shahrooei, Ahvaz, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Maggiore R, Grossi A, Fioredda F, Palmisani E, Terranova P, Cappelli E, Lanza T, Pierri F, Guardo D, Calvillo M, Micalizzi C, Beccaria A, Coccia MC, Arrigo S, Dufour C, Ceccherini I, Miano M. Unusual Late-onset Enteropathy in a Patient With Lipopolysaccharide-responsive Beige-like Anchor Protein Deficiency. J Pediatr Hematol Oncol 2020; 42:e768-e771. [PMID: 31876783 DOI: 10.1097/mph.0000000000001708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In recent years, monogenic causes of immune dysregulation syndromes, with variable phenotypes, have been documented. Mutations in the lipopolysaccharide-responsive beige-like anchor (LRBA) protein are associated with common variable immunodeficiency, autoimmunity, chronic enteropathy, and immune dysregulation disorders. The LRBA protein prevents degradation of cytotoxic T-lymphocyte antigen 4 (CTLA4) protein, thus inhibiting immune responses. Both LRBA and CTLA4 deficiencies usually present with immune dysregulation, mostly characterized by autoimmunity and lymphoproliferation. In this report, we describe a patient with an atypical clinical onset of LRBA deficiency and the patient's response to abatacept, a fusion protein-drug that mimics the action of CTLA4.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Serena Arrigo
- Gastroenterology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | | | | |
Collapse
|
25
|
Sharifinejad N, Azizi G, Behniafard N, Zaki-Dizaji M, Jamee M, Yazdani R, Abolhassani H, Aghamohammadi A. Protein Kinase C-Delta Defect in Autoimmune Lymphoproliferative Syndrome-Like Disease: First Case from the National Iranian Registry and Review of the Literature. Immunol Invest 2020; 51:331-342. [PMID: 33047643 DOI: 10.1080/08820139.2020.1829638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Protein kinase C is a family of serine/threonine kinases that play a key role in the adaptive immune cell signaling, as well as regulation of growth, apoptosis, and differentiation of a variety of cell types. Patients homozygous for a null mutation of the Protein Kinase C Delta (PRKCD) gene, present clinical feature of immune dysregulation with susceptibility to Epstein-Barr virus infection. However, a minority of patients present the autoimmune lymphoproliferative syndrome (ALPS). METHODS The data were collected by direct interview and examining the patient's clinical record. Whole-exome sequencing was performed to detect the underlying genetic mutation in the patient. We also conducted electronic searches for ALPS-like reported patients in PubMed, Web of Science, and Scopus databases. RESULTS In this study, we reported a 13-year-old boy who presented with autoimmunity, lymphoproliferation, recurrent pneumonia, cardiomyopathy, and dermatological manifestations. An elevation of double-negative T cells, CD8+ T cells, serum IgG level, as well as a reduction in NK cells, was observed in the patient. A homozygous frameshift mutation (c.1293_1294insA) in exon 13 of the PRKCD gene was confirmed. The literature search showed 39 ALPS-like patients with monogenic defects which only six (15.3%) of them were due to PRKCD genes. CONCLUSION PRKCD should be considered in the context of ALPS clinical manifestations with prominent dermatological involvements.
Collapse
Affiliation(s)
- Niusha Sharifinejad
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Nasrin Behniafard
- Department of Allergy and Clinical Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Vardi I, Chermesh I, Werner L, Barel O, Freund T, McCourt C, Fisher Y, Pinsker M, Javasky E, Weiss B, Rechavi G, Hagin D, Snapper SB, Somech R, Konnikova L, Shouval DS. Monogenic Inflammatory Bowel Disease: It's Never Too Late to Make a Diagnosis. Front Immunol 2020; 11:1775. [PMID: 33013830 PMCID: PMC7509434 DOI: 10.3389/fimmu.2020.01775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
Abstract
Background: More than 50 different monogenic disorders have been identified as directly causing inflammatory bowel diseases, typically manifesting in the first years of life. We present the clinical course and immunological work-up of an adult patient who presented in adolescent years with an atypical gastrointestinal phenotype and was diagnosed more than two decades later with a monogenic disorder with important therapeutic implications. Methods: Whole exome sequencing was performed in a 37-years-old patient with a history of diarrhea since adolescence. Sanger sequencing was used to validate the suspected variant. Mass cytometry (CyTOF) and flow cytometry were conducted on peripheral blood mononuclear cells for deep immunophenotyping. Next-generation sequencing of the TCRB and IgH was performed for global immune repertoire analysis of circulating lymphocytes. Results: We identified a novel deleterious c.1455C>A (p.Y485X) mutation in LRBA. CyTOF studies demonstrated significant changes in immune landscape in the LRBA-deficient patient, including an increase in myeloid derived suppressor cells and double-negative T cells, decreased B cells, low ratio of naïve:memory T cells, and reduced capacity of T cells to secrete various cytokines following stimulation, including tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). In addition, this patient exhibited low frequency of regulatory T cells, with a reduction in their CTLA4 expression and interleukin (IL)-10 secretion. Finally, we show marked oligoclonal expansion of specific B- and T-cell clones in the peripheral blood of the LRBA-deficient patient. Conclusions: LRBA deficiency is characterized by marked immunological changes in innate and adaptive immune cells. This case highlights the importance of advanced genetic studies in patients with a unique phenotype, regardless of their age at presentation.
Collapse
Affiliation(s)
- Iddo Vardi
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel.,Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - Irit Chermesh
- Department of Gastroenterology, Rambam Health Care Campus, Affiliated With Technion-Israel Institute of Technology, Haifa, Israel
| | - Lael Werner
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ortal Barel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel.,Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - Tal Freund
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Collin McCourt
- Division of Newborn Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Yael Fisher
- Institute of Pathology, Rambam Health Care Campus, Affiliated With Technion-Israel Institute of Technology, Haifa, Israel
| | - Marina Pinsker
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Elisheva Javasky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel.,Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - Batia Weiss
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gideon Rechavi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel.,Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - David Hagin
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Pediatric Department Ward A, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Liza Konnikova
- Division of Newborn Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dror S Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Meshaal S, El Hawary R, Adel R, Abd Elaziz D, Erfan A, Lotfy S, Hafez M, Hassan M, Johnson M, Rojas-Restrepo J, Gamez-Diaz L, Grimbacher B, Shoman W, Abdelmeguid Y, Boutros J, Galal N, El-Guindy N, Elmarsafy A. Clinical Phenotypes and Immunological Characteristics of 18 Egyptian LRBA Deficiency Patients. J Clin Immunol 2020; 40:820-832. [PMID: 32506362 DOI: 10.1007/s10875-020-00799-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022]
Abstract
LPS-responsive beige-like anchor (LRBA) deficiency is an autosomal recessive primary immunodeficiency disorder, OMIM (#614700). LRBA deficiency patients suffer from variable manifestations including recurrent infections, immune dysregulation, autoimmunity, cytopenias, and enteropathy. This study describes different clinical phenotypes and immunological characteristics of 18 LRBA deficiency patients diagnosed from Egypt. T and B lymphocyte subpopulations, LRBA, and cytotoxic T lymphocyte-associated protein 4 (CTLA4) expression were evaluated in resting and stimulated T cells using flow cytometry. Next-generation sequencing was used to identify mutations in the LRBA gene. LRBA deficiency patients had significantly lower B cells and increased percentage of memory T cells. CTLA4 levels were lower in LRBA-deficient T regulatory cells in comparison to healthy donors at resting conditions and significantly increased upon stimulation of T cells. We identified 11 novel mutations in LRBA gene ranging from large deletions to point mutations. Finally, we were able to differentiate LRBA-deficient patients from healthy control and common variable immunodeficiency patients using a simple flow cytometry test performed on whole blood and without need to prior stimulation. LRBA deficiency has heterogeneous phenotypes with poor phenotype-genotype correlation since the same mutation may manifest differently even within the same family. Low LRBA expression, low numbers of B cells, increased numbers of memory T cells, and defective CTLA4 expression (which increase to normal level upon T cell stimulation) are useful laboratory tests to establish the diagnosis of LRBA deficiency. Screening of the siblings of affected patients is very important as patients may be asymptomatic at the beginning of the disease course.
Collapse
Affiliation(s)
- Safa Meshaal
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Giza, 11562, Egypt.
| | - Rabab El Hawary
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Giza, 11562, Egypt
| | - Rana Adel
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Giza, 11562, Egypt
| | - Dalia Abd Elaziz
- Pediatrics Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Aya Erfan
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Giza, 11562, Egypt
| | - Sohilla Lotfy
- Pediatrics Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mona Hafez
- Pediatrics Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mona Hassan
- Pediatrics Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Matthew Johnson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jessica Rojas-Restrepo
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CC), Medical Center, Faculty of Medicine, Albert-Ludwig-University of Freiburg, Freiburg, Germany
| | - Laura Gamez-Diaz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CC), Medical Center, Faculty of Medicine, Albert-Ludwig-University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CC), Medical Center, Faculty of Medicine, Albert-Ludwig-University of Freiburg, Freiburg, Germany.,DZIF - German Center for Infection Research, Satellite Center Freiburg, Germany, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany.,RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Walaa Shoman
- Pediatrics Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Yasmine Abdelmeguid
- Pediatrics Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Jeannette Boutros
- Pediatrics Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Nermeen Galal
- Pediatrics Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Nancy El-Guindy
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Giza, 11562, Egypt
| | - Aisha Elmarsafy
- Pediatrics Department, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
28
|
Gruber C, Bogunovic D. Incomplete penetrance in primary immunodeficiency: a skeleton in the closet. Hum Genet 2020; 139:745-757. [PMID: 32067110 PMCID: PMC7275875 DOI: 10.1007/s00439-020-02131-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/02/2020] [Indexed: 12/11/2022]
Abstract
Primary immunodeficiencies (PIDs) comprise a diverse group of over 400 genetic disorders that result in clinically apparent immune dysfunction. Although PIDs are classically considered as Mendelian disorders with complete penetrance, we now understand that absent or partial clinical disease is often noted in individuals harboring disease-causing genotypes. Despite the frequency of incomplete penetrance in PID, no conceptual framework exists to categorize and explain these occurrences. Here, by reviewing decades of reports on incomplete penetrance in PID we identify four recurrent themes of incomplete penetrance, namely genotype quality, (epi)genetic modification, environmental influence, and mosaicism. For each of these principles, we review what is known, underscore what remains unknown, and propose future experimental approaches to fill the gaps in our understanding. Although the content herein relates specifically to inborn errors of immunity, the concepts are generalizable across genetic diseases.
Collapse
Affiliation(s)
- Conor Gruber
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA.
- Department of Pediatrics, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA.
| |
Collapse
|
29
|
Ma J, Fu L, Gu H, Chen Z, Zhang J, Zhao S, Zhu X, Liu H, Wu R. Screening for Genetic Mutations for the Early Diagnosis of Common Variable Immunodeficiency in Children With Refractory Immune Thrombocytopenia: A Retrospective Data Analysis From a Tertiary Children's Center. Front Pediatr 2020; 8:595135. [PMID: 33425813 PMCID: PMC7793988 DOI: 10.3389/fped.2020.595135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022] Open
Abstract
Aim: This study aimed to identify common variable immunodeficiency (CVID) by high-throughput next-generation sequencing (NGS) in children with refractory immune thrombocytopenia (RITP) to facilitate early diagnosis. Methods: CVID-related genetic mutations were explored in patients with RITP during 2016-2019. They were tested consecutively through NGS by the ITP team of the tertiary children hospital in China. An evaluation system was devised based on the phenotype, genetic rule, and serum immunoglobulins (Igs) of all patients with RITP. The patients were divided into highly suspicious, suspicious, and negative groups using the evaluation system. Results: Among 176 patients with RITP, 16 (9.1%) harbored CVID-related genetic mutations: 8 (4.5%) were highly suspicious of CVIDs. Five had mutations in tumor necrosis factor receptor superfamily 13B (TNFRSF13B), one in lipopolysaccharide responsive beige-like anchor protein (LRBA), one in nuclear factor kappa-B2 (NF-κB2), and one in caspase recruitment domain11 (CARD11). Others were classified into the suspicious group because the clinical phenotype and pedigree were suggestive, yet insufficient, for diagnosis. Repeated infection existed in all patients. Two had an allergic disease. Positive autoimmune serologies were noted in 62.5%. Five had a definite positive family history. The median serum immunoglobulin (Ig)A, IgG, and IgM levels were 0.3875, 6.14, and 0.522 g/L, respectively. Nearly 85.7% of patients had insufficient serum IgA levels, while 37.5% had low IgG and IgM levels. Conclusions: High-throughput NGS and a thorough review of the medical history are beneficial for the early diagnosis of patients without any significant clinical characteristics, distinguishing them from those with primary pediatric ITP. The cases suspicious of CVID need further investigation and follow-up to avoid deterioration.
Collapse
Affiliation(s)
- Jingyao Ma
- Beijing Key Laboratory of Pediatric Hematology Oncology, Hematology Oncology Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Lingling Fu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Hematology Oncology Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Hao Gu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Hematology Oncology Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Zhenping Chen
- Beijing Key Laboratory of Pediatric Hematology Oncology, Hematology Oncology Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Jialu Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology, Hematology Oncology Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Shasha Zhao
- Beijing Key Laboratory of Pediatric Hematology Oncology, Hematology Oncology Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Xiaojing Zhu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Hematology Oncology Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Huiqing Liu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Hematology Oncology Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Runhui Wu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Hematology Oncology Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| |
Collapse
|
30
|
Chinello M, Mauro M, Cantalupo G, Talenti G, Mariotto S, Balter R, De Bortoli M, Vitale V, Zaccaron A, Bonetti E, Di Carlo D, Barzaghi F, Cesaro S. Acute Cervical Longitudinally Extensive Transverse Myelitis in a Child With Lipopolysaccharide-Responsive-Beige-Like-Anchor-Protein (LRBA) Deficiency: A New Complication of a Rare Disease. Front Pediatr 2020; 8:580963. [PMID: 33178652 PMCID: PMC7596261 DOI: 10.3389/fped.2020.580963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022] Open
Abstract
Lipopolysaccharide responsive beige-like anchor protein (LRBA) deficiency is a primary immunodeficiency disorder (PID) that can cause a common variable immunodeficiency (CVID)-like disease. The typical features of the disease are autoimmunity, chronic diarrhea, and hypogammaglobulinemia. Neurological complications are also reported in patients affected by LRBA deficiency. We describe a 7-year old female with an acute cervical longitudinally extensive transverse myelitis (LETM) as a feature of LRBA deficiency. This is the first case of LETM associated with LRBA deficiency described in literature.
Collapse
Affiliation(s)
- Matteo Chinello
- Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Margherita Mauro
- Pediatric Department, Santa Maria Degli Angeli Hospital, Pordenone, Italy
| | | | - Giacomo Talenti
- Department of Diagnostics and Pathology, Neuroradiology Unit, Verona University Hospital, Verona, Italy
| | - Sara Mariotto
- Neurology Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Rita Balter
- Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | | | - Virginia Vitale
- Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Ada Zaccaron
- Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Elisa Bonetti
- Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | | | - Federica Barzaghi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Telethon Institute for Gene Therapy, Milan, Italy
| | - Simone Cesaro
- Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
31
|
Development of multiple gallstones in a child with lipopolysaccharide-responsive beige-like anchor protein mutation. Cent Eur J Immunol 2019; 44:332-335. [PMID: 31871423 PMCID: PMC6925566 DOI: 10.5114/ceji.2019.89613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/29/2017] [Indexed: 12/21/2022] Open
Abstract
A defect in the lipopolysaccharide-responsive beige-like anchor protein (LRBA) gene is a newly defined rare cause of primary immunodeficiency diseases, which manifests as immune dysregulation and humoral immune deficiency. LRBA deficiency is a combined immunodeficiency. A boy with LRBA deficiency is described in this report. He had been diagnosed with Evans syndrome in a haematology clinic. He was referred to an immunology and allergy clinic for frequent respiratory tract infections. He also had hepatosplenomegaly but no lymphadenopathy. Immunological evaluation revealed hypogammaglobulinaemia, increased double-negative T cells, decreased memory B cells and switched B cells, and an inverted CD4/CD8 ratio. LRBA deficiency was considered due to common variable immunodeficiency-autoimmune lymphoproliferative overlap syndrome. A homozygote mutation (c.1964C>T) in LRBA was found through exome sequencing. Gastrointestinal investigation was performed due to unexplained abdominal pain. It revealed atrophic gastritis, partial villous atrophy, and multiple gallstones. There was no chronic diarrhoea or failure to thrive. The abdominal pain disappeared after a cholecystectomy. Multiple gallstones have not been reported in other LRBA-deficient patients who also had autoimmune haemolytic anaemia. Multiple gallstones that require cholecystectomy can develop in LRBA-deficient patients during adolescence.
Collapse
|
32
|
Cagdas D, Halaçlı SO, Tan Ç, Lo B, Çetinkaya PG, Esenboğa S, Karaatmaca B, Matthews H, Balcı-Hayta B, Arıkoğlu T, Ezgü F, Aladağ E, Saltık-Temizel İN, Demir H, Kuşkonmaz B, Okur V, Gümrük F, Göker H, Çetinkaya D, Boztuğ K, Lenardo M, Sanal Ö, Tezcan İ. A Spectrum of Clinical Findings from ALPS to CVID: Several Novel LRBA Defects. J Clin Immunol 2019; 39:726-738. [PMID: 31432443 PMCID: PMC11090043 DOI: 10.1007/s10875-019-00677-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/25/2019] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Autosomal recessively inherited lipopolysaccharide-responsive beige-like anchor (LRBA) protein deficiency was shown to be responsible for different types of inborn errors of immunity, such as common variable immunodeficiency (CVID) and autoimmune lymphoproliferative syndrome (ALPS). The aim of this study was to compare patients with LRBA-related ALPS and LRBA-related CVID, to describe their clinical and laboratory phenotypes, and to prepare an algorithm for their diagnosis and management. METHODS Fifteen LRBA-deficient patients were identified among 31 CVID and 14 possible ALPS patients with Western blotting (WB), primary immunodeficiency disease (PIDD) gene, next-generation panel screening (NGS), and whole exome sequencing (WES). RESULTS The median age on admission and age of diagnosis were 7 years (0.3-16.5) and 11 years (5-44), respectively. Splenomegaly was seen in 93.3% (14/15) of the patients on admission. Splenectomy was performed to 1/5. Recurrent upper respiratory tract infections (93.3% (14/15)), autoimmune cytopenia (80% (12/15)), chronic diarrhea (53.3% (8/15)), lower respiratory tract infections (53.3% (8/15)), lymphoma (26.6% (4/15)), Evans syndrome (26.6% (4/15)), and autoimmune thyroiditis (20% (3/15)) were common clinical findings and diseases. Lymphopenia (5/15), intermittant neutropenia (4/15), eosinophilia (4/15), and progressive hypogammaglobulinemia are recorded in given number of patients. Double negative T cells (TCRαβ+CD4-CD8-) were increased in 80% (8/10) of the patients. B cell percentage/numbers were low in 60% (9/15) of the patients on admission. Decreased switched memory B cells, decreased naive and recent thymic emigrant (RTE) Thelper (Th) cells, markedly increased effector memory/effector memory RA+ (TEMRA) Th were documented. Large PD1+ population, increased memory, and enlarged follicular helper T cell population in the CD4+ T cell compartment was seen in one of the patients. Most of the deleterious missense mutations were located in the DUF1088 and BEACH domains. Interestingly, one of the two siblings with the same homozygous LRBA defect did not have any clinical symptom. Hematopoietic stem cell transplantation (HSCT) was performed to 7/15 (46.6%) of the patients. Transplanted patients are alive and well after a median of 2 years (1-3). In total, one patient died from sepsis during adulthood before HSCT. CONCLUSION Patients with LRBA deficiency may initially be diagnosed as CVID or ALPS in the clinical practice. Progressive decrease in B cells as well as IgG in ALPS-like patients and addition of IBD symptoms in the follow-up should raise the suspicion for LRBA deficiency. Decreased switched memory B cells, decreased naive and recent thymic emigrant (RTE) Th cells, and markedly increased effector memory/effector memory RA+ Th cells (TEMRA Th) cells are important for the diagnosis of the patients in addition to clinical features. Analysis of protein by either WB or flow cytometry is required when the clinicians come across especially with missense LRBA variants of uncertain significance. High rate of malignancy shows the regulatory T cell's important role of immune surveillance. HSCT is curative and succesful in patients with HLA-matched family donor.
Collapse
Affiliation(s)
- Deniz Cagdas
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University Medical School, Ankara, Turkey.
| | | | - Çağman Tan
- Institute of Child Health, Immunology, Hacettepe University, Ankara, Turkey
| | - Bernice Lo
- Sidra Medical and Research Center, Al Rayyan, Qatar
| | - Pınar Gür Çetinkaya
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University Medical School, Ankara, Turkey
| | - Saliha Esenboğa
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University Medical School, Ankara, Turkey
| | - Betül Karaatmaca
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University Medical School, Ankara, Turkey
| | - Helen Matthews
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Burcu Balcı-Hayta
- Department of Medical Biology, Hacettepe University Medical School, Ankara, Turkey
| | - Tuba Arıkoğlu
- Department of Pediatrics, Division of Allergy and Immunology, Mersin University Medical School, Mersin, Turkey
| | - Fatih Ezgü
- Department of Pediatrics, Division of Pediatric Inborn Metabolic Disorders, Metabolism and Genetics, Gazi University Medical School, Ankara, Turkey
| | - Elifcan Aladağ
- Department of Internal Medicine, Division of Hematology, Hacettepe University Medical School, Ankara, Turkey
| | - İnci N Saltık-Temizel
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hacettepe University Medical School, Ankara, Turkey
| | - Hülya Demir
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hacettepe University Medical School, Ankara, Turkey
| | - Barış Kuşkonmaz
- Department of Pediatrics, Division of Pediatric Hematology, Hacettepe University Medical School, Ankara, Turkey
| | - Visal Okur
- Department of Pediatrics, Division of Pediatric Hematology, Hacettepe University Medical School, Ankara, Turkey
| | - Fatma Gümrük
- Department of Pediatrics, Division of Pediatric Hematology, Hacettepe University Medical School, Ankara, Turkey
| | - Hakan Göker
- Department of Internal Medicine, Division of Hematology, Hacettepe University Medical School, Ankara, Turkey
| | - Duygu Çetinkaya
- Department of Pediatrics, Division of Pediatric Hematology, Hacettepe University Medical School, Ankara, Turkey
| | - Kaan Boztuğ
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Michael Lenardo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Özden Sanal
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University Medical School, Ankara, Turkey
| | - İlhan Tezcan
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University Medical School, Ankara, Turkey
| |
Collapse
|
33
|
Delmonte OM, Castagnoli R, Calzoni E, Notarangelo LD. Inborn Errors of Immunity With Immune Dysregulation: From Bench to Bedside. Front Pediatr 2019; 7:353. [PMID: 31508401 PMCID: PMC6718615 DOI: 10.3389/fped.2019.00353] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022] Open
Abstract
Inborn errors of immunity are genetic disorders with broad clinical manifestations, ranging from increased susceptibility to infections to significant immune dysregulation, often leading to multiple autoimmune phenomena, lymphoproliferation, and malignancy. The treatment is challenging as it requires careful balancing of immunosuppression in subjects at increased risk of infections. Recently, the improved ability to define inborn errors of immunity pathophysiology at the molecular level has set the basis for the development of targeted therapeutic interventions. Such a "precision medicine" approach is mainly bases on the use of available small molecules and biologics to target a specific cell function. In this article, we summarize the clinical and laboratory features of various recently described inborn errors of immunity associated with immune dysregulation and hyperinflammation in which mechanism-based therapeutic approaches have been implemented.
Collapse
Affiliation(s)
- Ottavia Maria Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Foundation IRCCS Policlinico San Matteo, Department of Pediatrics, University of Pavia, Pavia, Italy
| | - Enrica Calzoni
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Department of Molecular and Translational Medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| | - Luigi Daniele Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
34
|
Habibi S, Zaki-Dizaji M, Rafiemanesh H, Lo B, Jamee M, Gámez-Díaz L, Salami F, Kamali AN, Mohammadi H, Abolhassani H, Yazdani R, Aghamohammadi A, Anaya JM, Azizi G. Clinical, Immunologic, and Molecular Spectrum of Patients with LPS-Responsive Beige-Like Anchor Protein Deficiency: A Systematic Review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:2379-2386.e5. [PMID: 30995531 DOI: 10.1016/j.jaip.2019.04.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND LPS-responsive beige-like anchor protein (LRBA) deficiency is a primary immunodeficiency and immune dysregulation syndrome caused by biallelic mutations in the LRBA gene. These mutations usually abrogate the protein expression of LRBA, leading to a broad spectrum of clinical phenotypes including autoimmunity, chronic diarrhea, hypogammaglobulinemia, and recurrent infections. OBJECTIVE Our aim was to systematically collect all studies reporting on the clinical manifestations, molecular and laboratory findings, and management of patients with LRBA deficiency. METHODS We searched in PubMed, Web of Science, and Scopus without any restrictions on study design and publication time. A total of 109 LRBA-deficient cases were identified from 45 eligible articles. For all patients, demographic information, clinical records, and immunologic and molecular data were collected. RESULTS Of the patients with LRBA deficiency, 93 had homozygous and 16 had compound heterozygous mutations in LRBA. The most common clinical manifestations were autoimmunity (82%), enteropathy (63%), splenomegaly (57%), and pneumonia (49%). Reduction in numbers of CD4+ T cells and regulatory T cells as well as IgG levels was recorded for 21.6%, 65.6%, and 54.2% of evaluated patients, respectively. B-cell subpopulation analysis revealed low numbers of switched-memory and increased numbers of CD21low B cells in 73.5% and 77.8% of patients, respectively. Eighteen (16%) patients underwent hematopoietic stem cell transplantation due to the severity of complications and the outcomes improved in 13 of them. CONCLUSIONS Autoimmune disorders are the main clinical manifestations of LRBA deficiency. Therefore, LRBA deficiency should be included in the list of monogenic autoimmune diseases, and screening for LRBA mutations should be routinely performed for patients with these conditions.
Collapse
Affiliation(s)
- Sima Habibi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Hosein Rafiemanesh
- Student Research Committee, Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bernice Lo
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Laura Gámez-Díaz
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| | - Fereshte Salami
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali N Kamali
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hamed Mohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
35
|
Fernández KS, Antony R, Kumar A. Patients with "ALPS-like phenotype" diagnosed with immune dysregulation due to LRBA deficiency. Pediatr Blood Cancer 2019; 66:e27558. [PMID: 30479033 DOI: 10.1002/pbc.27558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Karen S Fernández
- Valley Children's Health Care, Cancer and Blood Disorders Center, University of California San Francisco-Fresno, Madera, California
| | - Reuben Antony
- Department of Pediatric Hematology and Oncology, UC Davis Comprehensive Cancer Center, UC Davis Children's Hospital, Sacramento, California
| | - Ashish Kumar
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
36
|
Yazdani R, Abolhassani H, Kiaee F, Habibi S, Azizi G, Tavakol M, Chavoshzadeh Z, Mahdaviani SA, Momen T, Gharagozlou M, Movahedi M, Hamidieh AA, Behniafard N, Nabavi M, Bemanian MH, Arshi S, Molatefi R, Sherkat R, Shirkani A, Amin R, Aleyasin S, Faridhosseini R, Jabbari-Azad F, Mohammadzadeh I, Ghaffari J, Shafiei A, Kalantari A, Mansouri M, Mesdaghi M, Babaie D, Ahanchian H, Khoshkhui M, Soheili H, Eslamian MH, Cheraghi T, Dabbaghzadeh A, Tavassoli M, Kalmarzi RN, Mortazavi SH, Kashef S, Esmaeilzadeh H, Tafaroji J, Khalili A, Zandieh F, Sadeghi-Shabestari M, Darougar S, Behmanesh F, Akbari H, Zandkarimi M, Abolnezhadian F, Fayezi A, Moghtaderi M, Ahmadiafshar A, Shakerian B, Sajedi V, Taghvaei B, Safari M, Heidarzadeh M, Ghalebaghi B, Fathi SM, Darabi B, Bazregari S, Bazargan N, Fallahpour M, Khayatzadeh A, Javahertrash N, Bashardoust B, Zamani M, Mohsenzadeh A, Ebrahimi S, Sharafian S, Vosughimotlagh A, Tafakoridelbari M, Rahim M, Ashournia P, Razaghian A, Rezaei A, Samavat A, Mamishi S, Khazaei HA, Mohammadi J, Negahdari B, Parvaneh N, Rezaei N, Lougaris V, Giliani S, Plebani A, Ochs HD, Hammarström L, Aghamohammadi A. Comparison of Common Monogenic Defects in a Large Predominantly Antibody Deficiency Cohort. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:864-878.e9. [DOI: 10.1016/j.jaip.2018.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
|
37
|
Mozdarani H, Kiaee F, Fekrvand S, Azizi G, Yazdani R, Zaki-Dizaji M, Mozdarani S, Mozdarani S, Nosrati H, Abolhassani H, Aghamohammadi A. G2-lymphocyte chromosomal radiosensitivity in patients with LPS responsive beige-like anchor protein (LRBA) deficiency. Int J Radiat Biol 2019; 95:680-690. [PMID: 30714845 DOI: 10.1080/09553002.2019.1577570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lipopolysaccharide-responsive, beige-like anchor protein (LRBA) deficiency is an autosomal recessive primary immunodeficiency disease characterized by a CVID-like phenotype, particularly severe autoimmunity and inflammatory bowel disease. This study was undertaken to evaluate radiation sensitivity in 11 LRBA-deficient patients. Therefore, stimulated lymphocytes of the studied subjects were exposed to a low dose γ-radiation (100 cGy) in the G2 phase of the cell cycle and chromosomal aberrations were scored. Lymphocytes of age-sex matched healthy individuals used in the same way as controls. Based on the G2-assay, six (54.5%) of the patients had higher radiosensitivity score comparing to the healthy control group, forming the radiosensitive LRBA-deficient patients. This chromosomal radiosensitivity showed that these patients are predisposed to autoimmunity and/or malignancy, and should be protected from unnecessary diagnostic and therapeutic procedures using ionizing radiation and exposure to other DNA damaging agents.
Collapse
Affiliation(s)
- Hossein Mozdarani
- a Faculty of Medical Sciences, Department of Medical Genetics , Tarbiat Modares University , Terhran , Iran
| | - Fatemeh Kiaee
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,c Department of Medical Immunology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Saba Fekrvand
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Gholamreza Azizi
- d Non-communicable Diseases Research Center , Alborz University of Medical Sciences , Karaj , Iran
| | - Reza Yazdani
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Majid Zaki-Dizaji
- a Faculty of Medical Sciences, Department of Medical Genetics , Tarbiat Modares University , Terhran , Iran
| | - Sahar Mozdarani
- e Cytogenome Medical Genetics laboratory , Chamran Medical Building , Tehran , Iran
| | - Sohail Mozdarani
- d Non-communicable Diseases Research Center , Alborz University of Medical Sciences , Karaj , Iran
| | - Hassan Nosrati
- f Radiotherapy Department , Cancer Institute, Imam Khomeini Hospital , Tehran , Iran
| | - Hassan Abolhassani
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,g Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institutet at the Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Asghar Aghamohammadi
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
38
|
Rivalta B, Zama D, Pancaldi G, Facchini E, Cantarini ME, Miniaci A, Prete A, Pession A. Evans Syndrome in Childhood: Long Term Follow-Up and the Evolution in Primary Immunodeficiency or Rheumatological Disease. Front Pediatr 2019; 7:304. [PMID: 31396497 PMCID: PMC6664023 DOI: 10.3389/fped.2019.00304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 07/08/2019] [Indexed: 12/23/2022] Open
Abstract
Evans syndrome (ES) is a rare but challenging condition, characterized by recurrent and refractory cytopenia episodes. Recent discoveries highlighted that an appropriate diagnostic workup is fundamental to identify an underlying immune dysregulation such as primary immunodeficiencies or a rheumatological disease. We hereby describe clinical features and laboratory results of 12 pediatric patients affected by ES referred to the Pediatric Onco-Hematology Unit of Bologna. Patients experienced a median of four acute episodes of cytopenia with 9 years as median age at the onset of symptoms. In 8/12 (67%) patients an underlying etiology, primary immunodeficiencies, or rheumatological disease was identified. In 4/12 children, other immune manifestations were associated (Thyroiditis, Celiac disease, Psoriasis, Vitiligo, Myositis, Membranoproliferative Glomerulonephritis). ES remained the primary diagnosis in four patients (33%). At a median follow-up time of 4 years, 5/12 (42%) patients revealed a chronic ITP, partially responsive to second line therapy. Immunoglobulin Replacement Therapy (IRT) was effective with a good hematological values control in three patients with a secondary ES (ALPS, CVID, and a patient with Rubinstein Taybi Syndrome and a progressive severe B cell deficiency with hypogammaglobulinemia). Our experience highlights that, in pediatric patients, ES is often only the first manifestation of an immunological or rheumatological disease, especially when cytopenias are persistent or resistant to therapy, with an early-onset or when are associated with lymphadenopathy.
Collapse
Affiliation(s)
- Beatrice Rivalta
- Department of Pediatrics, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Daniele Zama
- Department of Pediatrics, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Giovanni Pancaldi
- Department of Pediatrics, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Elena Facchini
- Department of Pediatrics, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Maria Elena Cantarini
- Department of Pediatrics, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Angela Miniaci
- Department of Pediatrics, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Arcangelo Prete
- Department of Pediatrics, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Department of Pediatrics, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
39
|
Schwab C, Gabrysch A, Olbrich P, Patiño V, Warnatz K, Wolff D, Hoshino A, Kobayashi M, Imai K, Takagi M, Dybedal I, Haddock JA, Sansom DM, Lucena JM, Seidl M, Schmitt-Graeff A, Reiser V, Emmerich F, Frede N, Bulashevska A, Salzer U, Schubert D, Hayakawa S, Okada S, Kanariou M, Kucuk ZY, Chapdelaine H, Petruzelkova L, Sumnik Z, Sediva A, Slatter M, Arkwright PD, Cant A, Lorenz HM, Giese T, Lougaris V, Plebani A, Price C, Sullivan KE, Moutschen M, Litzman J, Freiberger T, van de Veerdonk FL, Recher M, Albert MH, Hauck F, Seneviratne S, Pachlopnik Schmid J, Kolios A, Unglik G, Klemann C, Speckmann C, Ehl S, Leichtner A, Blumberg R, Franke A, Snapper S, Zeissig S, Cunningham-Rundles C, Giulino-Roth L, Elemento O, Dückers G, Niehues T, Fronkova E, Kanderová V, Platt CD, Chou J, Chatila TA, Geha R, McDermott E, Bunn S, Kurzai M, Schulz A, Alsina L, Casals F, Deyà-Martinez A, Hambleton S, Kanegane H, Taskén K, Neth O, Grimbacher B. Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects. J Allergy Clin Immunol 2018; 142:1932-1946. [PMID: 29729943 PMCID: PMC6215742 DOI: 10.1016/j.jaci.2018.02.055] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/16/2018] [Accepted: 02/25/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is a negative immune regulator. Heterozygous CTLA4 germline mutations can cause a complex immune dysregulation syndrome in human subjects. OBJECTIVE We sought to characterize the penetrance, clinical features, and best treatment options in 133 CTLA4 mutation carriers. METHODS Genetics, clinical features, laboratory values, and outcomes of treatment options were assessed in a worldwide cohort of CTLA4 mutation carriers. RESULTS We identified 133 subjects from 54 unrelated families carrying 45 different heterozygous CTLA4 mutations, including 28 previously undescribed mutations. Ninety mutation carriers were considered affected, suggesting a clinical penetrance of at least 67%; median age of onset was 11 years, and the mortality rate within affected mutation carriers was 16% (n = 15). Main clinical manifestations included hypogammaglobulinemia (84%), lymphoproliferation (73%), autoimmune cytopenia (62%), and respiratory (68%), gastrointestinal (59%), or neurological features (29%). Eight affected mutation carriers had lymphoma, and 3 had gastric cancer. An EBV association was found in 6 patients with malignancies. CTLA4 mutations were associated with lymphopenia and decreased T-, B-, and natural killer (NK) cell counts. Successful targeted therapies included application of CTLA-4 fusion proteins, mechanistic target of rapamycin inhibitors, and hematopoietic stem cell transplantation. EBV reactivation occurred in 2 affected mutation carriers after immunosuppression. CONCLUSIONS Affected mutation carriers with CTLA-4 insufficiency can present in any medical specialty. Family members should be counseled because disease manifestation can occur as late as 50 years of age. EBV- and cytomegalovirus-associated complications must be closely monitored. Treatment interventions should be coordinated in clinical trials.
Collapse
Affiliation(s)
- Charlotte Schwab
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annemarie Gabrysch
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Olbrich
- Sección de Infectología e Inmunopatología, Unidad de Pediatría, Hospital Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | | | - Klaus Warnatz
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Akihiro Hoshino
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masatoshi Takagi
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ingunn Dybedal
- Department of Hematology, Oslo University Hospital, Oslo, Norway
| | - Jamanda A Haddock
- Department of Radiology, Royal Free Hospital, University College London, London, United Kingdom
| | - David M Sansom
- UCL Institute of Immunity and Transplantation, Royal Free Hospital, London, United Kingdom
| | - Jose M Lucena
- Unidad de Inmunología, Hospital Universitario Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - Maximilian Seidl
- Center for Chronic Immunodeficiency and Molecular Pathology, Department of Pathology, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Annette Schmitt-Graeff
- Department of Pathology, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Veronika Reiser
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Florian Emmerich
- Institute for Transfusion Medicine and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
| | - Natalie Frede
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alla Bulashevska
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrich Salzer
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Desirée Schubert
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Freiburg University, Freiburg, Germany
| | - Seiichi Hayakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Maria Kanariou
- Department of Immunology and Histocompatibility, Centre for Primary Immunodeficiencies, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Zeynep Yesim Kucuk
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati, Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hugo Chapdelaine
- Department of Medicine, Clinical Immunology and Allergy Division, Centre Hospitalier de l'Université de Montréal (CHUM), Université de Montréal, Montreal, Quebec, Canada
| | - Lenka Petruzelkova
- Department of Pediatrics, University Hospital Motol and 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Zdenek Sumnik
- Department of Pediatrics, University Hospital Motol and 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, University Hospital Motol and 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Mary Slatter
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, and Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Peter D Arkwright
- University of Manchester, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Andrew Cant
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, and Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Thomas Giese
- Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Vassilios Lougaris
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro Plebani
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Christina Price
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, Conn
| | - Kathleen E Sullivan
- Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Michel Moutschen
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, Liege, Belgium
| | - Jiri Litzman
- Department of Clinical Immunology and Allergology, Medical Faculty, Masaryk University, Brno, Czech Republic; Department of Clinical Immunology and Allergology, St Anne's University Hospital, Brno, Czech Republic
| | - Tomas Freiberger
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic; Medical Genomics RG, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Mike Recher
- Immunodeficiency Clinic, Medical Outpatient Unit and Immunodeficiency Lab, Department Biomedicine, University Hospital, Basel, Switzerland
| | - Michael H Albert
- Department of Pediatric Immunology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Fabian Hauck
- Department of Pediatric Immunology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Suranjith Seneviratne
- Institute of Immunology and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Antonios Kolios
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gary Unglik
- Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Melbourne, Australia
| | - Christian Klemann
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany; Center of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Carsten Speckmann
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Pediatrics, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alan Leichtner
- Division of Gastroenterology and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Richard Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Scott Snapper
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Children's Hospital Boston, Mass
| | - Sebastian Zeissig
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Department of Medicine I, University Medical Center Dresden, Technical University Dresden, Dresden, Germany; Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Charlotte Cunningham-Rundles
- Mount Sinai Hospital, Mount Sinai St Luke's and Mount Sinai West, Department of Medicine-Allergy & Immunology, New York, NY
| | - Lisa Giulino-Roth
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Weill Cornell Medicine, New York, NY
| | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY
| | | | - Tim Niehues
- HELIOS Children's Hospital, Krefeld, Germany
| | - Eva Fronkova
- CLIP, Department of Paediatric Haematology/Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Veronika Kanderová
- CLIP, Department of Paediatric Haematology/Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Raif Geha
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Elizabeth McDermott
- Clinical Immunology and Allergy Unit, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Su Bunn
- Department of Paediatric Gastroenterology, Great North Children's Hospital, Newcastle, United Kingdom
| | - Monika Kurzai
- Department of Pediatrics, University Hospital Jena, Jena, Germany
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Laia Alsina
- Allergy and Clinical Immunology Department, Functional Unit of Immunology SJD-Clinic, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Ferran Casals
- Servei de Genòmica, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Angela Deyà-Martinez
- Allergy and Clinical Immunology Department, Functional Unit of Immunology SJD-Clinic, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Sophie Hambleton
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, and Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kjetil Taskén
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Institute for Cancer Research, University Hospital Oslo, Oslo, Norway
| | - Olaf Neth
- Sección de Infectología e Inmunopatología, Unidad de Pediatría, Hospital Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute of Immunology and Transplantation, Royal Free Hospital, University College London, London, United Kingdom.
| |
Collapse
|
40
|
Martínez Jaramillo C, Trujillo-Vargas CM. LRBA in the endomembrane system. COLOMBIA MEDICA (CALI, COLOMBIA) 2018; 49:236-243. [PMID: 30410199 PMCID: PMC6220489 DOI: 10.25100/cm.v49i2.3802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Bi-allelic mutations in LRBA (from Lipopolysaccharide-responsive and beige-like anchor protein) result in a primary immunodeficiency with clinical features ranging from hypogammaglobulinemia and lymphoproliferative syndrome to inflammatory bowel disease and heterogeneous autoimmune manifestations. LRBA deficiency has been shown to affect vesicular trafficking, autophagy and apoptosis, which may lead to alterations of several molecules and processes that play key roles for immunity. In this review, we will discuss the relationship of LRBA with the endovesicular system in the context of receptor trafficking, autophagy and apoptosis. Since these mechanisms of homeostasis are inherent to all living cells and not only limited to the immune system and also, because they are involved in physiological as well as pathological processes such as embryogenesis or tumoral transformation, we envisage advancing in the identification of potential pharmacological agents to manipulate these processes.
Collapse
Affiliation(s)
- Catalina Martínez Jaramillo
- Grupo de Inmunodeficiencias primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Claudia M Trujillo-Vargas
- Grupo de Inmunodeficiencias primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
41
|
Hematological Malignancies Associated With Primary Immunodeficiency Disorders. Clin Immunol 2018; 194:46-59. [DOI: 10.1016/j.clim.2018.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
|
42
|
Shamriz O, Shadur B, NaserEddin A, Zaidman I, Simanovsky N, Elpeleg O, Kerem E, Reiter J, Stepensky P. Respiratory manifestations in LPS-responsive beige-like anchor (LRBA) protein-deficient patients. Eur J Pediatr 2018; 177:1163-1172. [PMID: 29777306 DOI: 10.1007/s00431-018-3171-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/28/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023]
Abstract
Lipopolysaccharide (LPS)-responsive beige-like anchor (LRBA) protein deficiency is a rare syndrome of primary immune deficiency and immune dysregulation. In this study, we sought to summarize our experience with respiratory manifestations in LRBA-deficient patients. We conducted a retrospective analysis of the medical records of LRBA-deficient patients treated at Hadassah-Hebrew University Medical Center, Jerusalem, Israel. Data retrieved included pulmonary workup, disease course, treatment, and outcome. Ten patients were included. Mean age at presentation of LRBA deficiency-related symptoms was 4.65 years (range 3 months-14 years). Respiratory symptoms were noted in six patients and consisted of chronic cough. Computed tomography revealed consolidation in five patients, atelectasis and bronchiectasis in two patients each, and diffuse interstitial lung disease in two additional patients. Respiratory tract cultures yielded a bacterial pathogen in five patients. Seven patients required active therapy: intravenous immunoglobulins (six patients), immunosuppressive drugs (five patients), and one was successfully treated with abatacept. Two patients underwent successful bone marrow transplantation. Mean follow-up period was 4.5 (range 0.4-14.4) years. On their latest examination, seven patients had no respiratory symptoms. CONCLUSION Pulmonary manifestations are common in LRBA deficiency. Respiratory characteristics in LRBA-deficient patients should be investigated, monitored, and treated from the time of diagnosis. What is Known: • Lipopolysaccharide-responsive beige-like anchor (LRBA) deficiency is a syndrome of primary immune deficiency and immune dysregulation. • Studies concerning the pulmonary characteristics of LRBA-deficient patients are lacking. What is New: • Respiratory manifestations include infections, bronchiectasis, interstitial lung disease, thoracic lymphadenopathy, and clubbing. • Awareness to pulmonary morbidity in LRBA-deficient patients and involvement of a pulmonologist in the workup and clinical decision-making is important. • Respiratory characteristics in LRBA-deficient patients should be investigated, monitored, and treated from a young age.
Collapse
Affiliation(s)
- Oded Shamriz
- Pediatric Division, Hadassah-Hebrew University Medical Center, POB 12000, Kiryat Hadassah, 91120, Jerusalem, Israel.
| | - Bella Shadur
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Garvan Institute of Medical Research, Sydney, Australia
- University of New South Wales, Sydney, Australia
| | - Adeeb NaserEddin
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Irina Zaidman
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Natalia Simanovsky
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eitan Kerem
- Department of Pediatrics and Pediatric Pulmonology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Joel Reiter
- Department of Pediatrics and Pediatric Pulmonology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Polina Stepensky
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
43
|
The Treatment of Inflammatory Bowel Disease in Patients with Selected Primary Immunodeficiencies. J Clin Immunol 2018; 38:579-588. [DOI: 10.1007/s10875-018-0524-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/06/2018] [Indexed: 12/25/2022]
|
44
|
Nunes-Santos CDJ, Rosenzweig SD. Bacille Calmette-Guerin Complications in Newly Described Primary Immunodeficiency Diseases: 2010-2017. Front Immunol 2018; 9:1423. [PMID: 29988375 PMCID: PMC6023996 DOI: 10.3389/fimmu.2018.01423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/07/2018] [Indexed: 12/25/2022] Open
Abstract
Bacille Calmette–Guerin (BCG) vaccine is widely used as a prevention strategy against tuberculosis. BCG is a live vaccine, usually given early in life in most countries. While safe to most recipients, it poses a risk to immunocompromised patients. Several primary immunodeficiency diseases (PIDD) have been classically associated with complications related to BCG vaccine. However, a number of new inborn errors of immunity have been described lately in which little is known about adverse reactions following BCG vaccination. The aim of this review is to summarize the existing data on BCG-related complications in patients diagnosed with PIDD described since 2010. When BCG vaccination status or complications were not specifically addressed in those manuscripts, we directly contacted the corresponding authors for further clarification. We also analyzed data on other mycobacterial infections in these patients. Based on our analysis, around 8% of patients with gain-of-function mutations in STAT1 had mycobacterial infections, including localized complications in 3 and disseminated disease in 4 out of 19 BCG-vaccinated patients. Localized BCG reactions were also frequent in activated PI3Kδ syndrome type 1 (3/10) and type 2 (2/18) vaccinated children. Also, of note, no BCG-related complications have been described in either CTLA4 or LRBA protein-deficient patients; and not enough information on BCG-vaccinated NFKB1 or NFKB2-deficient patients was available to drive any conclusions about these diseases. Despite the high prevalence of environmental mycobacterial infections in GATA2-deficient patients, only one case of BCG reaction has been reported in a patient who developed disseminated disease. In conclusion, BCG complications could be expected in some particular, recently described PIDD and it remains a preventable risk factor for pediatric PIDD patients.
Collapse
Affiliation(s)
- Cristiane de Jesus Nunes-Santos
- Faculdade de Medicina, Instituto da Crianca, Universidade de São Paulo, São Paulo, Brazil.,Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
45
|
Azizi G, Mirshafiey A, Abolhassani H, Yazdani R, Ghanavatinejad A, Noorbakhsh F, Rezaei N, Aghamohammadi A. The imbalance of circulating T helper subsets and regulatory T cells in patients with LRBA deficiency: Correlation with disease severity. J Cell Physiol 2018; 233:8767-8777. [PMID: 29806698 DOI: 10.1002/jcp.26772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/27/2018] [Indexed: 01/24/2023]
Abstract
Patients with lipopolysaccharides responsive beige-like anchor protein (LRBA) deficiency suffer from a variety of immunological abnormalities. In the current study, we investigated the role of T helper (Th) cell subsets and regulatory T (Treg) cells and their related cytokines and transcription factors in the immune dysregulation of LRBA deficiency. The study population comprised of 13 LRBA-deficient patients and 13 age- and sex-matched healthy controls (HCs). Th subsets and Treg were examined by flow cytometry. The expression of determinant cytokines (interferon-γ [IFN-γ], interleukin [IL]-17, IL-22, and IL-10), and cell subset-specific transcription factors were evaluated before and after proliferation and activation stimuli. The frequencies of Th1, Th1-like Th17 and Th22 cells along with the expression of T-box transcription factor (TBET) and runt-related transcription factor 1 (RUNX1) were significantly increased in patients with LRBA. Moreover, IFN-γ and IL-22 production in LRBA-deficient CD4+ T cells were elevated after lymphocyte stimulation, particularly in patients with enteropathy. However, CD4+ CD25+ FoxP3+ CD127- cells were significantly decreased in LRBA-deficient patients compared with those of HCs, particularly in patients with autoimmunity. There was a negative correlation between the frequencies of CD4+ CD25+ FoxP3+ CD127- cells and Th1-like Th17 cells in LRBA-deficient patients, and an overlapping phenotype of autoimmunity and enteropathy were observed in ~70% of patients. The frequency of Th17 cells was lower in patients with enteropathy, while Th1-like Th17 cells were higher than in those without enteropathy. Our findings demonstrated an imbalance in Th subsets, mainly in Th1-like Th17 and Treg cells and their corresponding cytokines in LRBA deficiency, which might be important in the immunopathogenesis of autoimmunity and enteropathy.
Collapse
Affiliation(s)
- Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abbas Mirshafiey
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ghanavatinejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Sharapova SO, Haapaniemi E, Sakovich IS, Rojas J, Gámez-Díaz L, Mareika YE, Guryanova IE, Migas AA, Mikhaleuskaya TM, Grimbacher B, Aleinikova OV. Novel LRBA Mutation and Possible Germinal Mosaicism in a Slavic Family. J Clin Immunol 2018; 38:471-474. [PMID: 29804237 DOI: 10.1007/s10875-018-0515-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/17/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Svetlana O Sharapova
- Research Department, Immunology Laboratory, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, 223053, Borovliani, Minsk Region, Belarus.
| | - Emma Haapaniemi
- Department of Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
- Genome-Scale Biology Program, University of Helsinki, Helsinki, Finland
| | - Inga S Sakovich
- Research Department, Immunology Laboratory, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, 223053, Borovliani, Minsk Region, Belarus
| | - Jessica Rojas
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Laura Gámez-Díaz
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Yuliya E Mareika
- Research Department, Immunology Laboratory, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, 223053, Borovliani, Minsk Region, Belarus
| | - Irina E Guryanova
- Research Department, Immunology Laboratory, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, 223053, Borovliani, Minsk Region, Belarus
| | - Alexandr A Migas
- Research Department, Immunology Laboratory, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, 223053, Borovliani, Minsk Region, Belarus
| | - Taisiya M Mikhaleuskaya
- Research Department, Immunology Laboratory, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, 223053, Borovliani, Minsk Region, Belarus
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Olga V Aleinikova
- Research Department, Immunology Laboratory, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, 223053, Borovliani, Minsk Region, Belarus
| |
Collapse
|
47
|
de Valles-Ibáñez G, Esteve-Solé A, Piquer M, González-Navarro EA, Hernandez-Rodriguez J, Laayouni H, González-Roca E, Plaza-Martin AM, Deyà-Martínez Á, Martín-Nalda A, Martínez-Gallo M, García-Prat M, Del Pino-Molina L, Cuscó I, Codina-Solà M, Batlle-Masó L, Solís-Moruno M, Marquès-Bonet T, Bosch E, López-Granados E, Aróstegui JI, Soler-Palacín P, Colobran R, Yagüe J, Alsina L, Juan M, Casals F. Evaluating the Genetics of Common Variable Immunodeficiency: Monogenetic Model and Beyond. Front Immunol 2018; 9:636. [PMID: 29867916 PMCID: PMC5960686 DOI: 10.3389/fimmu.2018.00636] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/14/2018] [Indexed: 12/16/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immunodeficiency characterized by recurrent infections, hypogammaglobulinemia and poor response to vaccines. Its diagnosis is made based on clinical and immunological criteria, after exclusion of other diseases that can cause similar phenotypes. Currently, less than 20% of cases of CVID have a known underlying genetic cause. We have analyzed whole-exome sequencing and copy number variants data of 36 children and adolescents diagnosed with CVID and healthy relatives to estimate the proportion of monogenic cases. We have replicated an association of CVID to p.C104R in TNFRSF13B and reported the second case of homozygous patient to date. Our results also identify five causative genetic variants in LRBA, CTLA4, NFKB1, and PIK3R1, as well as other very likely causative variants in PRKCD, MAPK8, or DOCK8 among others. We experimentally validate the effect of the LRBA stop-gain mutation which abolishes protein production and downregulates the expression of CTLA4, and of the frameshift indel in CTLA4 producing expression downregulation of the protein. Our results indicate a monogenic origin of at least 15–24% of the CVID cases included in the study. The proportion of monogenic patients seems to be lower in CVID than in other PID that have also been analyzed by whole exome or targeted gene panels sequencing. Regardless of the exact proportion of CVID monogenic cases, other genetic models have to be considered for CVID. We propose that because of its prevalence and other features as intermediate penetrancies and phenotypic variation within families, CVID could fit with other more complex genetic scenarios. In particular, in this work, we explore the possibility of CVID being originated by an oligogenic model with the presence of heterozygous mutations in interacting proteins or by the accumulation of detrimental variants in particular immunological pathways, as well as perform association tests to detect association with rare genetic functional variation in the CVID cohort compared to healthy controls.
Collapse
Affiliation(s)
- Guillem de Valles-Ibáñez
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Ana Esteve-Solé
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain.,Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| | - Mònica Piquer
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain.,Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| | - E Azucena González-Navarro
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Jessica Hernandez-Rodriguez
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.,Bioinformatics Studies, ESCI-UPF, Barcelona, Spain
| | - Eva González-Roca
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Ana María Plaza-Martin
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain.,Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| | - Ángela Deyà-Martínez
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain.,Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| | - Andrea Martín-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Mónica Martínez-Gallo
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain.,Immunology Division, Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marina García-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Lucía Del Pino-Molina
- Clinical Immunology Department, University Hospital La Paz and Physiopathology of Lymphocytes in Immunodeficiencies Group, IdiPAZ Institute for Health Research, Madrid, Spain
| | - Ivón Cuscó
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain
| | - Marta Codina-Solà
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain
| | - Laura Batlle-Masó
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.,Servei de Genòmica, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Manuel Solís-Moruno
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.,Servei de Genòmica, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Tomàs Marquès-Bonet
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain.,CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Eduardo López-Granados
- Clinical Immunology Department, University Hospital La Paz and Physiopathology of Lymphocytes in Immunodeficiencies Group, IdiPAZ Institute for Health Research, Madrid, Spain
| | - Juan Ignacio Aróstegui
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain.,Immunology Division, Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Yagüe
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Laia Alsina
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain.,Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| | - Manel Juan
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Ferran Casals
- Servei de Genòmica, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| |
Collapse
|
48
|
Gámez-Díaz L, Sigmund EC, Reiser V, Vach W, Jung S, Grimbacher B. Rapid Flow Cytometry-Based Test for the Diagnosis of Lipopolysaccharide Responsive Beige-Like Anchor (LRBA) Deficiency. Front Immunol 2018; 9:720. [PMID: 29740429 PMCID: PMC5925005 DOI: 10.3389/fimmu.2018.00720] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
The diagnosis of lipopolysaccharide-responsive beige-like-anchor-protein (LRBA) deficiency currently relies on gene sequencing approaches that do not support a timely diagnosis and clinical management. We developed a rapid and sensitive test for clinical implementation based on the detection of LRBA protein by flow cytometry in peripheral blood cells after stimulation. LRBA protein was assessed in a prospective cohort of 54 healthy donors and 57 patients suspected of LRBA deficiency. Receiver operating characteristics analysis suggested an LRBA:MFI ratio cutoff point of 2.6 to identify LRBA-deficient patients by FACS with 94% sensitivity and 80% specificity and to discriminate them from patients with a similar clinical picture but other disease-causing mutations. This easy flow cytometry-based assay allows a fast screening of patients with suspicion of LRBA deficiency reducing therefore the number of patients requiring LRBA sequencing and accelerating the treatment implementation. Detection of biallelic mutations in LRBA is however required for a definitive diagnosis.
Collapse
Affiliation(s)
- Laura Gámez-Díaz
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Elena C Sigmund
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Veronika Reiser
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.,Institute of Medical Biometry and Statistics, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Werner Vach
- Institute of Medical Biometry and Statistics, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Sophie Jung
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.,Pôle de Médecine et de Chirurgie Bucco-Dentaires, University Hospital, Faculty of Dentistry, University of Strasbourg, Strasbourg, France
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.,Institute of Immunology and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| |
Collapse
|
49
|
Azizi G, Abolhassani H, Zaki-Dizaji M, Habibi S, Mohammadi H, Shaghaghi M, Yazdani R, Anaya JM, Rezaei N, Hammarström L, Aghamohammadi A. Polyautoimmunity in Patients with LPS-Responsive Beige-Like Anchor (LRBA) Deficiency. Immunol Invest 2018. [PMID: 29528757 DOI: 10.1080/08820139.2018.1446978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Polyautoimmunity is defined as the presence of more than one autoimmune disorder in a single patient. Lipopolysaccharide (LPS)-responsive beige-like anchor (LRBA) deficiency is one of the monogenic causes of polyautoimmunity. The aim of this study was to report the characteristics of polyautoimmunity in patients with LRBA deficiency. METHODS A total of 14 LRBA deficiency patients with confirmed autoimmunity were enrolled in this study. For those patients with polyautoimmunity, demographic information, clinical records, laboratory, and molecular data were collected. We also compared our results with the currently reported patients with LRBA deficiency associated with polyautoimmunity. RESULTS In 64.2% (9 out of 14) of patients, autoimmunity presented as polyautoimmunity. In these patients, autoimmune cytopenias were the most frequent complication, observed in seven patients. Three patients presented with four different types of autoimmune conditions. The review of the literature showed that 41 of 72 reported LRBA deficient patients (74.5%) had also polyautoimmunity, with a wide spectrum of autoimmune diseases described. Hematopoietic stem cell transplantation is increasingly used as the treatment for patients with severe polyautoimmunity associated to LRBA deficiency. CONCLUSIONS Mutation in LRBA gene is one of the causes of monogenic polyautoimmunity. Awareness of this association is important in order to make an early diagnosis and prompt treatment.
Collapse
Affiliation(s)
- Gholamreza Azizi
- a Non-Communicable Diseases Research Center , Alborz University of Medical Sciences , Karaj , Iran.,b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Hassan Abolhassani
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,c Primary Immunodeficiency Diseases Network (PIDNet) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran.,d Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Majid Zaki-Dizaji
- e Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Sima Habibi
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,c Primary Immunodeficiency Diseases Network (PIDNet) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Hamed Mohammadi
- f Department of Immunology, School of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammadreza Shaghaghi
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,g Network of Immunology in Infections, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Reza Yazdani
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Juan-Manuel Anaya
- h Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences , Universidad del Rosario , Bogotá , Colombia
| | - Nima Rezaei
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,g Network of Immunology in Infections, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Lennart Hammarström
- d Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Asghar Aghamohammadi
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,c Primary Immunodeficiency Diseases Network (PIDNet) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| |
Collapse
|
50
|
Stabilized β-Catenin Ameliorates ALPS-Like Symptoms of B6/ lpr Mice. J Immunol Res 2017; 2017:3469108. [PMID: 29250557 PMCID: PMC5700472 DOI: 10.1155/2017/3469108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/15/2017] [Indexed: 01/05/2023] Open
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is an incurable disease mainly caused by the defect of Fas-mediated apoptosis and characterized by nonmalignant autoimmune lymphoproliferation. Stabilized β-catenin could not only potentiate Fas-mediated T cell apoptosis via upregulating the expression of Fas on activated T cells, but also potentiate T cell apoptosis via intrinsic apoptotic pathway. In the present study, we introduced β-catTg into lpr/lpr mice and aimed to explore the potential role of stabilized β-catenin (β-catTg) in the development of ALPS-like phenotypes of lpr/lpr mice. We found that the total splenocyte cells and some compositions were slightly downregulated in β-catTglpr/lpr mice, especially the CD4 and CD8 TEM cells were significantly reduced. Meanwhile, stabilized β-catenin obviously decreased the numbers of spleen TCRβ+CD4−CD8− T (DNT) cells, and the levels of some serum proinflammatory factors also were lowered in β-catTglpr/lpr mice. Beyond that, stabilized β-catenin slightly lowered the levels of the serum autoantibodies and the scores of kidney histopathology of β-catTglpr/lpr mice compared with lpr/lpr mice. Our study suggested that stabilized β-catenin ameliorated some ALPS-like symptoms of lpr/lpr mice by potentiating Fas-independent signal-mediated T cell apoptosis, which might uncover a potential novel therapeutic direction for ALPS.
Collapse
|