1
|
Vinh DC. Human immunity to fungal infections. J Exp Med 2025; 222:e20241215. [PMID: 40232283 PMCID: PMC11998751 DOI: 10.1084/jem.20241215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/07/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
Fungi increasingly threaten health globally. Mycoses range from life-threatening, often iatrogenic conditions, to enigmatic syndromes occurring without apparent immunosuppression. Despite some recent advances in antifungal drug development, complementary therapeutic strategies are essential for addressing these opportunistic pathogens. One promising avenue is leveraging host immunity to combat fungal infections; this necessitates deeper understanding of the molecular immunology of human fungal susceptibility to differentiate beneficial versus harmful immunopathological responses. Investigating human models of fungal diseases in natural settings, particularly through genetic immunodeficiencies and ethnographic-specific genetic vulnerabilities, reveals crucial immune pathways essential for fighting various yeasts and molds. This review highlights the diversity in intrinsic fungal susceptibility across individuals and populations, through genetic- and autoantibody-mediated processes, complementing previous principles learned from animal studies and iatrogenic contexts. Improved understanding of human immunity to fungal diseases will facilitate the development of host-directed immunotherapies and targeted public health interventions, paving the way for precision medicine in fungal disease management.
Collapse
Affiliation(s)
- Donald C. Vinh
- Department of Medicine (Division of Infectious Diseases), McGill University Health Center, Montreal, Canada
- Department of OptiLab (Division of Medical Microbiology, Division of Molecular Genetics-Immunology), McGill University Health Center, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
- Center of Reference for Genetic Research in Infection and Immunity, McGill University Health Center Research Institute, Montreal, Canada
| |
Collapse
|
2
|
Giancotta C, Colantoni N, Pacillo L, Santilli V, Amodio D, Manno EC, Cotugno N, Rotulo GA, Rivalta B, Finocchi A, Cancrini C, Diociaiuti A, El Hachem M, Zangari P. Tailored treatments in inborn errors of immunity associated with atopy (IEIs-A) with skin involvement. Front Pediatr 2023; 11:1129249. [PMID: 37033173 PMCID: PMC10073443 DOI: 10.3389/fped.2023.1129249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Inborn errors of immunity associated with atopy (IEIs-A) are a group of inherited monogenic disorders that occur with immune dysregulation and frequent skin involvement. Several pathways are involved in the pathogenesis of these conditions, including immune system defects, alterations of skin barrier and metabolism perturbations. Current technological improvements and the higher accessibility to genetic testing, recently allowed the identification of novel molecular pathways involved in IEIs-A, also informing on potential tailored therapeutic strategies. Compared to other systemic therapy for skin diseases, biologics have the less toxic and the best tolerated profile in the setting of immune dysregulation. Here, we review IEIs-A with skin involvement focusing on the tailored therapeutic approach according to their pathogenetic mechanism.
Collapse
Affiliation(s)
- Carmela Giancotta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicole Colantoni
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lucia Pacillo
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Veronica Santilli
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Donato Amodio
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Emma Concetta Manno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicola Cotugno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Gioacchino Andrea Rotulo
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Beatrice Rivalta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Andrea Finocchi
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Caterina Cancrini
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Andrea Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Paola Zangari
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Correspondence: Paola Zangari
| |
Collapse
|
3
|
DeVore SB, Khurana Hershey GK. The role of the CBM complex in allergic inflammation and disease. J Allergy Clin Immunol 2022; 150:1011-1030. [PMID: 35981904 PMCID: PMC9643607 DOI: 10.1016/j.jaci.2022.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 10/15/2022]
Abstract
The caspase activation and recruitment domain-coiled-coil (CARD-CC) family of proteins-CARD9, CARD10, CARD11, and CARD14-is collectively expressed across nearly all tissues of the body and is a crucial mediator of immunologic signaling as part of the CARD-B-cell lymphoma/leukemia 10-mucosa-associated lymphoid tissue lymphoma translocation protein 1 (CBM) complex. Dysfunction or dysregulation of CBM proteins has been linked to numerous clinical manifestations known as "CBM-opathies." The CBM-opathy spectrum encompasses diseases ranging from mucocutaneous fungal infections and psoriasis to combined immunodeficiency and lymphoproliferative diseases; however, there is accumulating evidence that the CARD-CC family members also contribute to the pathogenesis and progression of allergic inflammation and allergic diseases. Here, we review the 4 CARD-CC paralogs, as well as B-cell lymphoma/leukemia 10 and mucosa-associated lymphoid tissue lymphoma translocation protein 1, and their individual and collective roles in the pathogenesis and progression of allergic inflammation and 4 major allergic diseases (allergic asthma, atopic dermatitis, food allergy, and allergic rhinitis).
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
4
|
Zhang H, Qin S, Zhang X, Du P, Zhu Y, Huang Y, Michiels J, Zeng Q, Chen W. Dietary resistant starch alleviates Escherichia coli-induced bone loss in meat ducks by promoting short-chain fatty acid production and inhibiting Malt1/NF-κB inflammasome activation. J Anim Sci Biotechnol 2022; 13:92. [PMID: 35927754 PMCID: PMC9354418 DOI: 10.1186/s40104-022-00739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background Escherichia coli (E. coli) infection in humans and animals usually comes with gut dysbiosis, which is potential culprit to skeletal health, it is still unclear to whether diet interfered gut microbiome changes can be a protective strategy to bone loss development. Here, the effects of resistant starch from raw potato starch (RPS), a type of prebiotic, on E. coli-induced bone loss and gut microbial composition in meat ducks were evaluated. Results The results showed that dietary 12% RPS treatment improved bone quality, depressed bone resorption, and attenuated the pro-inflammatory reaction in both ileum and bone marrow. Meanwhile, the 12% RPS diet also increased the abundance of Firmicutes in E. coli-treated birds, along with higher production of short-chain fatty acids (SCFAs) especially propionate and butyrate. Whereas addition of β-acid, an inhibitor of bacterial SCFAs production, to the drinking water of ducks fed 12% RPS diet significantly decreased SCFAs level in cecum content and eliminated RPS-induced tibial mass improvement. Further, treatment with MI-2 to abrogate mucosa-associated lymphoid tissue lymphoma translocation protein 1 (Malt1) activity replicated the protective role of dietary 12% RPS in E. coli-induced bone loss including reduced the inhibition on nuclear factor κB (NF-κB) inflammasome activation, decreased bone resorption, and improved bone quality, which were correlated with comparable and higher regulatory T cells (Treg) frequency in MI-2 and 12% RPS group, respectively. Conclusions These findings suggested that the diet with 12% RPS could alleviate E. coli-induced bone loss in meat ducks by changing the gut microbial composition and promoting concomitant SCFAs production, and consequently inhibiting Malt1/NF-κB inflammasome activation and Treg cells expansion. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00739-7.
Collapse
Affiliation(s)
- Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China.,Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium
| | - Simeng Qin
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangli Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Pengfei Du
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yao Zhu
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium
| | - Quifeng Zeng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Vaseghi-Shanjani M, Snow AL, Margolis DJ, Latrous M, Milner JD, Turvey SE, Biggs CM. Atopy as Immune Dysregulation: Offender Genes and Targets. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1737-1756. [PMID: 35680527 DOI: 10.1016/j.jaip.2022.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Allergic diseases are a heterogeneous group of disorders resulting from exaggerated type 2 inflammation. Although typically viewed as polygenic multifactorial disorders caused by the interaction of several genes with the environment, we have come to appreciate that allergic diseases can also be caused by monogenic variants affecting the immune system and the skin epithelial barrier. Through a myriad of genetic association studies and high-throughput sequencing tools, many monogenic and polygenic culprits of allergic diseases have been described. Identifying the genetic causes of atopy has shaped our understanding of how these conditions occur and how they may be treated and even prevented. Precision diagnostic tools and therapies that address the specific molecular pathways implicated in allergic inflammation provide exciting opportunities to improve our care for patients across the field of allergy and immunology. Here, we highlight offender genes implicated in polygenic and monogenic allergic diseases and list targeted therapeutic approaches that address these disrupted pathways.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - David J Margolis
- Department of Dermatology and Dermatologic Surgery, University of Pennsylvania Medical Center, Philadelphia, Pa; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Medical Center, Philadelphia, Pa
| | - Meriem Latrous
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; St Paul's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
6
|
Sefer AP, Abolhassani H, Ober F, Kayaoglu B, Bilgic Eltan S, Kara A, Erman B, Surucu Yilmaz N, Aydogmus C, Aydemir S, Charbonnier LM, Kolukisa B, Azizi G, Delavari S, Momen T, Aliyeva S, Kendir Demirkol Y, Tekin S, Kiykim A, Baser OF, Cokugras H, Gursel M, Karakoc-Aydiner E, Ozen A, Krappmann D, Chatila TA, Rezaei N, Baris S. Expanding the Clinical and Immunological Phenotypes and Natural History of MALT1 Deficiency. J Clin Immunol 2022; 42:634-652. [DOI: 10.1007/s10875-021-01191-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
|
7
|
Sonoda M, Ishimura M, Eguchi K, Yada Y, Lenhartová N, Shiraishi A, Tanaka T, Sakai Y, Ohga S. Progressive B cell depletion in human MALT1 deficiency. Clin Exp Immunol 2021; 206:237-247. [PMID: 34559885 DOI: 10.1111/cei.13662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
Mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (MALT1)-deficiency is a rare combined immunodeficiency characterized by recurrent infections, dermatitis and enteropathy. We herein investigate the immunological profiles of our patient and previously reported children with MALT1-deficiency. A mutation analysis was performed by targeted panel sequencing for primary immunodeficiency. Lymphocyte subset, activation and B cell differentiation were analyzed by flow cytometry and t-distributed stochastic neighbor embedding. Pneumocystis pneumonia developed in a 6-month-old Japanese infant with atopic dermatitis, enteritis and growth restriction. This infant showed agammaglobulinemia without lymphopenia. At 8 years of age, the genetic diagnosis of MALT1-deficiency was confirmed on a novel homozygous mutation of c.1102G>T, p.E368X. T cell stimulation tests showed impairments in the production of interleukin-2, phosphorylation of nuclear factor kappa B (NF-κB) p65 and differentiation of B cells. In combination with the literature data, we found that the number of circulatory B cells, but not T cells, were inversely correlated with the age of patients. The hematopoietic cell transplantation (HCT) successfully reconstituted the differentiation of mature B cells and T cells. These data conceptualize that patients with complete MALT1-deficiency show aberrant differentiation and depletion of B cells. The early diagnosis and HCT lead to a cure of the disease phenotype associated with the loss-of-function mutations in human CARD11.
Collapse
Affiliation(s)
- Motoshi Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuhide Eguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaro Yada
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nina Lenhartová
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Shiraishi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tamami Tanaka
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Schwab JD, Ikonomi N, Werle SD, Weidner FM, Geiger H, Kestler HA. Reconstructing Boolean network ensembles from single-cell data for unraveling dynamics in the aging of human hematopoietic stem cells. Comput Struct Biotechnol J 2021; 19:5321-5332. [PMID: 34630946 PMCID: PMC8487005 DOI: 10.1016/j.csbj.2021.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/20/2021] [Accepted: 09/12/2021] [Indexed: 01/08/2023] Open
Abstract
Regulatory dependencies in molecular networks are the basis of dynamic behaviors affecting the phenotypical landscape. With the advance of high throughput technologies, the detail of omics data has arrived at the single-cell level. Nevertheless, new strategies are required to reconstruct regulatory networks based on populations of single-cell data. Here, we present a new approach to generate populations of gene regulatory networks from single-cell RNA-sequencing (scRNA-seq) data. Our approach exploits the heterogeneity of single-cell populations to generate pseudo-timepoints. This allows for the first time to uncouple network reconstruction from a direct dependency on time series measurements. The generated time series are then fed to a combined reconstruction algorithm. The latter allows a fast and efficient reconstruction of ensembles of gene regulatory networks. Since this approach does not require knowledge on time-related trajectories, it allows us to model heterogeneous processes such as aging. Applying the approach to the aging-associated NF-κB signaling pathway-based scRNA-seq data of human hematopoietic stem cells (HSCs), we were able to reconstruct eight ensembles, and evaluate their dynamic behavior. Moreover, we propose a strategy to evaluate the resulting attractor patterns. Interaction graph-based features and dynamic investigations of our model ensembles provide a new perspective on the heterogeneity and mechanisms related to human HSCs aging.
Collapse
Affiliation(s)
- Julian D Schwab
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Nensi Ikonomi
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Silke D Werle
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Felix M Weidner
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
9
|
Inborn errors of immunity manifesting as atopic disorders. J Allergy Clin Immunol 2021; 148:1130-1139. [PMID: 34428518 DOI: 10.1016/j.jaci.2021.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 01/29/2023]
Abstract
Inborn errors of immunity are traditionally best known for enhancing susceptibility to infections. However, allergic inflammation, among other types of immune dysregulation, occurs frequently in patients with inborn errors of immunity. As such, the term primary atopic disorders (PADs) was recently coined to describe the group of heritable monogenic allergic disorders. It is becoming increasingly important for clinicians to recognize that allergic diseases such as food allergy, atopic dermatitis, and allergic asthma are expressions of misdirected immunity, and in patients who present with severe, early-onset, or coexisting allergic conditions, these can be indications of an underlying PAD. Identifying monogenic allergic disease through next-generation sequencing can dramatically improve outcomes by allowing the use of precision-based therapy targeting the patient's underlying molecular defect. It is therefore imperative that clinicians recognize PADs to be able to provide informed therapeutic options and improve patient outcomes. Here, we summarize the clinical features commonly seen with each of the currently known PADs, identify clinical warning signs that warrant assessment for PADs, and lastly, discuss the benefits of timely diagnosis and management of these conditions.
Collapse
|
10
|
Dumont C, Sivars U, Andreasson T, Odqvist L, Mattsson J, DeMicco A, Pardali K, Johansson G, Yrlid L, Cox RJ, Seeliger F, Larsson M, Gehrmann U, Davis AM, Vaarala O. A MALT1 inhibitor suppresses human myeloid DC, effector T-cell and B-cell responses and retains Th1/regulatory T-cell homeostasis. PLoS One 2020; 15:e0222548. [PMID: 32870913 PMCID: PMC7462277 DOI: 10.1371/journal.pone.0222548] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/22/2020] [Indexed: 01/11/2023] Open
Abstract
The paracaspase mucosa-associated lymphoid tissue lymphoma translocation protein-1 (MALT1) regulates nuclear-factor-kappa-B (NF-κB) activation downstream of surface receptors with immunoreceptor tyrosine-based activation motifs (ITAMs), such as the B-cell or T-cell receptor and has thus emerged as a therapeutic target for autoimmune diseases. However, recent reports demonstrate the development of lethal autoimmune inflammation due to the excessive production of interferon gamma (IFN-ɣ) and defective differentiation of regulatory T-cells in genetically modified mice deficient in MALT1 paracaspase activity. To address this issue, we explored the effects of pharmacological MALT1 inhibition on the balance between T-effector and regulatory T-cells. Here we demonstrate that allosteric inhibition of MALT1 suppressed Th1, Th17 and Th1/Th17 effector responses, and inhibited T-cell dependent B-cell proliferation and antibody production. Allosteric MALT1 inhibition did not interfere with the suppressive function of human T-regulatory cells, although it impaired de novo differentiation of regulatory T-cells from naïve T-cells. Treatment with an allosteric MALT1 inhibitor alleviated the cytokine storm, including IFN-ɣ, in a mouse model of acute T-cell activation, and long-term treatment did not lead to an increase in IFN-ɣ producing CD4 cells or tissue inflammation. Together, our data demonstrate that the effects of allosteric inhibition of MALT1 differ from those seen in mice with proteolytically inactive MALT1, and thus we believe that MALT1 is a viable target for B and T-cell driven autoimmune diseases.
Collapse
Affiliation(s)
- Celine Dumont
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Ulf Sivars
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Theresa Andreasson
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Lina Odqvist
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Johan Mattsson
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Amy DeMicco
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Katerina Pardali
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Gustav Johansson
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Linda Yrlid
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Rhona J. Cox
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Frank Seeliger
- Clinical Pharmacology & Safety Sciences, R&D BioPharmaceuticals Gothenburg, Sweden
| | - Marie Larsson
- Clinical Pharmacology & Safety Sciences, R&D BioPharmaceuticals Gothenburg, Sweden
| | - Ulf Gehrmann
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
- * E-mail: (AD); (UG)
| | - Andrew M. Davis
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
- * E-mail: (AD); (UG)
| | - Outi Vaarala
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
11
|
Lu HY, Biggs CM, Blanchard-Rohner G, Fung SY, Sharma M, Turvey SE. Germline CBM-opathies: From immunodeficiency to atopy. J Allergy Clin Immunol 2020; 143:1661-1673. [PMID: 31060714 DOI: 10.1016/j.jaci.2019.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/09/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022]
Abstract
Caspase recruitment domain (CARD) protein-B cell CLL/lymphoma 10 (BCL10)-MALT1 paracaspase (MALT1) [CBM] complexes are critical signaling adaptors that facilitate immune and inflammatory responses downstream of both cell surface and intracellular receptors. Germline mutations that alter the function of members of this complex (termed CBM-opathies) cause a broad array of clinical phenotypes, ranging from profound combined immunodeficiency to B-cell lymphocytosis. With an increasing number of patients being described in recent years, the clinical spectrum of diseases associated with CBM-opathies is rapidly expanding and becoming unexpectedly heterogeneous. Here we review major discoveries that have shaped our understanding of CBM complex biology, and we provide an overview of the clinical presentation, diagnostic approach, and treatment options for those carrying germline mutations affecting CARD9, CARD11, CARD14, BCL10, and MALT1.
Collapse
Affiliation(s)
- Henry Y Lu
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Geraldine Blanchard-Rohner
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shan-Yu Fung
- Department of Immunology, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Mehul Sharma
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
12
|
Martin K, Junker U, Tritto E, Sutter E, Rubic-Schneider T, Morgan H, Niwa S, Li J, Schlapbach A, Walker D, Bigaud M, Beerli C, Littlewood-Evans A, Rudolph B, Laisney M, Ledieu D, Beltz K, Quancard J, Bornancin F, Zamurovic Ribrioux N, Calzascia T. Pharmacological Inhibition of MALT1 Protease Leads to a Progressive IPEX-Like Pathology. Front Immunol 2020; 11:745. [PMID: 32425939 PMCID: PMC7203682 DOI: 10.3389/fimmu.2020.00745] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/01/2020] [Indexed: 01/14/2023] Open
Abstract
Genetic disruption or short-term pharmacological inhibition of MALT1 protease is effective in several preclinical models of autoimmunity and B cell malignancies. Despite these protective effects, the severe reduction in regulatory T cells (Tregs) and the associated IPEX-like pathology occurring upon congenital disruption of the MALT1 protease in mice has raised concerns about the long-term safety of MALT1 inhibition. Here we describe the results of a series of toxicology studies in rat and dog species using MLT-943, a novel potent and selective MALT1 protease inhibitor. While MLT-943 effectively prevented T cell-dependent B cell immune responses and reduced joint inflammation in the collagen-induced arthritis rat pharmacology model, in both preclinical species, pharmacological inhibition of MALT1 was associated with a rapid and dose-dependent reduction in Tregs and resulted in the progressive appearance of immune abnormalities and clinical signs of an IPEX-like pathology. At the 13-week time point, rats displayed severe intestinal inflammation associated with mast cell activation, high serum IgE levels, systemic T cell activation and mononuclear cell infiltration in multiple tissues. Importantly, using thymectomized rats we demonstrated that MALT1 protease inhibition affects peripheral Treg frequency independently of effects on thymic Treg output and development. Our data confirm the therapeutic potential of MALT1 protease inhibitors but highlight the safety risks and challenges to consider before potential application of such inhibitors into the clinic.
Collapse
Affiliation(s)
- Kea Martin
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Ursula Junker
- Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Elaine Tritto
- Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Esther Sutter
- Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Tina Rubic-Schneider
- Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Hannah Morgan
- Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Satoru Niwa
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Jianping Li
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Achim Schlapbach
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dana Walker
- Preclinical Safety, Novartis Institutes for Biomedical Research, Cambridge, MA, United States
| | - Marc Bigaud
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Christian Beerli
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Amanda Littlewood-Evans
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Bettina Rudolph
- PK Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Marc Laisney
- PK Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - David Ledieu
- Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Karen Beltz
- PK Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Jean Quancard
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Frédéric Bornancin
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Thomas Calzascia
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
13
|
Abstract
Primary atopic disorders describes a series of monogenic diseases that have allergy- or atopic effector–related symptoms as a substantial feature. The underlying pathogenic genetic lesions help illustrate fundamental pathways in atopy, opening up diagnostic and therapeutic options for further study in those patients, but ultimately for common allergic diseases as well. Key pathways affected in these disorders include T cell receptor and B cell receptor signaling, cytokine signaling, skin barrier function, and mast cell function, as well as pathways that have not yet been elucidated. While comorbidities such as classically syndromic presentation or immune deficiency are often present, in some cases allergy alone is the presenting symptom, suggesting that commonly encountered allergic diseases exist on a spectrum of monogenic and complex genetic etiologies that are impacted by environmental risk factors.
Collapse
Affiliation(s)
- Joshua D. Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
14
|
Martin K, Touil R, Kolb Y, Cvijetic G, Murakami K, Israel L, Duraes F, Buffet D, Glück A, Niwa S, Bigaud M, Junt T, Zamurovic N, Smith P, McCoy KD, Ohashi PS, Bornancin F, Calzascia T. Malt1 Protease Deficiency in Mice Disrupts Immune Homeostasis at Environmental Barriers and Drives Systemic T Cell-Mediated Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2019; 203:2791-2806. [PMID: 31659015 DOI: 10.4049/jimmunol.1900327] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
The paracaspase Malt1 is a key regulator of canonical NF-κB activation downstream of multiple receptors in both immune and nonimmune cells. Genetic disruption of Malt1 protease function in mice and MALT1 mutations in humans results in reduced regulatory T cells and a progressive multiorgan inflammatory pathology. In this study, we evaluated the altered immune homeostasis and autoimmune disease in Malt1 protease-deficient (Malt1PD) mice and the Ags driving disease manifestations. Our data indicate that B cell activation and IgG1/IgE production is triggered by microbial and dietary Ags preferentially in lymphoid organs draining mucosal barriers, likely as a result of dysregulated mucosal immune homeostasis. Conversely, the disease was driven by a polyclonal T cell population directed against self-antigens. Characterization of the Malt1PD T cell compartment revealed expansion of T effector memory cells and concomitant loss of a CD4+ T cell population that phenotypically resembles anergic T cells. Therefore, we propose that the compromised regulatory T cell compartment in Malt1PD animals prevents the efficient maintenance of anergy and supports the progressive expansion of pathogenic, IFN-γ-producing T cells. Overall, our data revealed a crucial role of the Malt1 protease for the maintenance of intestinal and systemic immune homeostasis, which might provide insights into the mechanisms underlying IPEX-related diseases associated with mutations in MALT1.
Collapse
Affiliation(s)
- Kea Martin
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Ratiba Touil
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Yeter Kolb
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Grozdan Cvijetic
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Kiichi Murakami
- The Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Laura Israel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Fernanda Duraes
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - David Buffet
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Anton Glück
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Satoru Niwa
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Marc Bigaud
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Tobias Junt
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Natasa Zamurovic
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Philip Smith
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Kathy D McCoy
- Department of Clinical Research, University Clinic for Visceral Surgery and Medicine, University Hospital, 3010 Bern, Switzerland; and
| | - Pamela S Ohashi
- The Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | - Frédéric Bornancin
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Thomas Calzascia
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland;
| |
Collapse
|
15
|
Wiegmann H, Reunert J, Metze D, Marquardt T, Engel T, Kunde V, Ehl S, Foell D, van den Heuvel I, Oji V, Wittkowski H. Refining the dermatological spectrum in primary immunodeficiency: mucosa-associated lymphoid tissue lymphoma translocation protein 1 deficiency mimicking Netherton/Omenn syndromes. Br J Dermatol 2019; 182:202-207. [PMID: 31049936 DOI: 10.1111/bjd.18091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 12/28/2022]
Abstract
The proteinase mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), which forms part of the caspase recruitment domain-containing protein 11-B-cell lymphoma 10-MALT1 signalosome complex, plays a direct role in nuclear factor kappa B activation. Here, we describe the case of a female infant with severe immune dysregulation leading to recurrent systemic infections, failure to thrive and severe crises of ichthyosiform erythroderma with high levels of serum IgE. Hence, initial symptoms indicated Netherton syndrome or Omenn syndrome. Surprisingly, sequence analyses of SPINK5 and RAG1/RAG2, respectively, excluded these diseases. During the hospital stay the patient's health deteriorated, despite intensive care therapy, and she died. In order to delineate the diagnosis, whole-exome sequencing was performed. Two compound heterozygous mutations in MALT1 were found and verified by Sanger sequencing (exon 2 c.245T>C, exon 2 c.310dup), which led to a MALT1 deficiency at the protein level. Based on these results, an immunological analysis was performed, as was immunofluorescence staining of key skin proteins, to confirm a diagnosis of MALT1 deficiency. This case report provides a closer description of the clinical and histological skin phenotype of MALT1 deficiency, and we conclude that MALT1 deficiency must be considered a possible differential diagnosis of Netherton and Omenn syndromes. What's already known about this topic? Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) deficiency is a combined immunodeficiency. MALT1 is part of the caspase recruitment domain-containing protein 11-B-cell lymphoma 10-MALT1 signalosome complex, which is essential for nuclear factor kappa B activation. Current publications describe a phenotype of recurrent systemic infections; only in a few cases has an inflammatory involvement of the integument been described. What does this study add? A closer description of the cutaneous phenotype of MALT1 deficiency in a patient with two novel MALT1 mutations. Immune mapping of follicular epidermis shows lympho-epithelial Kazal-type-related inhibitor is reduced in MALT1 deficiency and absent on interfollicular staining. Clinically, MALT1 deficiency mimics Netherton syndrome and Omenn syndrome, and should be considered a differential diagnosis.
Collapse
Affiliation(s)
- H Wiegmann
- Department of Dermatology, University Hospital Muenster, Muenster, Germany
| | - J Reunert
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - D Metze
- Department of Dermatology, University Hospital Muenster, Muenster, Germany
| | - T Marquardt
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - T Engel
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - V Kunde
- Department of Neonatology, Christliches Kinderhospital Osnabrück, Osnabrück, Germany
| | - S Ehl
- Center for Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany
| | - D Foell
- Department of Pediatric Rheumatology and Immunology, University Hospital Muenster, Muenster, Germany
| | - I van den Heuvel
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - V Oji
- Department of Dermatology, University Hospital Muenster, Muenster, Germany
| | - H Wittkowski
- Department of Pediatric Rheumatology and Immunology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
16
|
Monajemi M, Fisk S, Pang YCF, Leung J, Menzies SC, Ben-Othman R, Cai B, Kollmann TR, Rozmus J, Sly LM. Malt1 deficient mice develop osteoporosis independent of osteoclast-intrinsic effects of Malt1 deficiency. J Leukoc Biol 2019; 106:863-877. [PMID: 31313375 DOI: 10.1002/jlb.5vma0219-054r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/13/2019] [Accepted: 06/23/2019] [Indexed: 11/09/2022] Open
Abstract
This study tested the hypothesis that mucosa associated lymphoid tissue 1 (Malt1) deficiency causes osteoporosis in mice by increasing osteoclastogenesis and osteoclast activity. A patient with combined immunodeficiency (CID) caused by MALT1 deficiency had low bone mineral density resulting in multiple low impact fractures that was corrected by hematopoietic stem cell transplant (HSCT). We have reported that Malt1 deficient Mϕs, another myeloid cell type, are hyper-responsive to inflammatory stimuli. Our objectives were to determine whether Malt1 deficient mice develop an osteoporosis-like phenotype and whether it was caused by Malt1 deficiency in osteoclasts. We found that Malt1 deficient mice had low bone volume by 12 weeks of age, which was primarily associated with reduced trabecular bone. Malt1 protein is expressed and active in osteoclasts and is induced by receptor activator of NF-κB ligand (RANKL) in preosteoclasts. Malt1 deficiency did not impact osteoclast differentiation or activity in vitro. However, Malt1 deficient (Malt1-/- ) mice had more osteoclasts in vivo and had lower levels of serum osteoprotegerin (OPG), an endogenous inhibitor of osteoclastogenesis. Inhibition of Malt1 activity in Mϕs induced MCSF production, required for osteoclastogenesis, and decreased OPG production in response to inflammatory stimuli. In vitro, MCSF increased and OPG inhibited osteoclastogenesis, but effects were not enhanced in Malt1 deficient osteoclasts. These data support the hypothesis that Malt1 deficient mice develop an osteoporotic phenotype with increased osteoclastogenesis in vivo, but suggest that this is caused by inflammation rather than an effect of Malt1 deficiency in osteoclasts.
Collapse
Affiliation(s)
- Mahdis Monajemi
- Department of Pediatrics, Division of Gastroenterology, the University of British Columbia, Vancouver, British Columbia, Canada
| | - Shera Fisk
- Department of Pediatrics, Division of Gastroenterology, the University of British Columbia, Vancouver, British Columbia, Canada
| | - Yvonne C F Pang
- Department of Pediatrics, Division of Gastroenterology, the University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica Leung
- Department of Pediatrics, Division of Gastroenterology, the University of British Columbia, Vancouver, British Columbia, Canada
| | - Susan C Menzies
- Department of Pediatrics, Division of Gastroenterology, the University of British Columbia, Vancouver, British Columbia, Canada
| | - Rym Ben-Othman
- Department of Pediatrics, Division of Infectious Diseases, the University of British Columbia, Vancouver, British Columbia, Canada
| | - Bing Cai
- Department of Pediatrics, Division of Infectious Diseases, the University of British Columbia, Vancouver, British Columbia, Canada
| | - Tobias R Kollmann
- Telethon Kids Institute, Perth Children's Hospital, the University of Western Australia, Nedlands, Western Australia, Australia
| | - Jacob Rozmus
- Division of Hematology and Oncology, BC Children's Hospital Research Institute, the University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura M Sly
- Department of Pediatrics, Division of Gastroenterology, the University of British Columbia, Vancouver, British Columbia, Canada.,Telethon Kids Institute, Perth Children's Hospital, the University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
17
|
Scott O, Roifman CM. NF-κB pathway and the Goldilocks principle: Lessons from human disorders of immunity and inflammation. J Allergy Clin Immunol 2019; 143:1688-1701. [PMID: 30940520 DOI: 10.1016/j.jaci.2019.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 01/12/2023]
Abstract
Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling pathways play a key role in various cell processes related to host immunity. The last few years have seen an explosion of disorders associated with NF-κB components from core members of the canonical and noncanonical cascades to adaptor protein and ubiquitination-related enzymes. Disease phenotypes have extended beyond susceptibility to infections and include autoimmunity, lymphoproliferation, atopy, and inflammation. Concurrently, studies are unveiling a tightly regulated system marked by extensive cross-talk between the canonical and noncanonical pathways, as well as among the NF-κB and other signaling pathways. As the rate of discovery in the realm of NF-κB defects accelerates, this review presents a timely summary of major known defects causing human disease, as well as diagnostic, therapeutic, and research challenges and opportunities.
Collapse
Affiliation(s)
- Ori Scott
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Chaim M Roifman
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada; Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children.
| |
Collapse
|
18
|
Bucciol G, Moens L, Bosch B, Bossuyt X, Casanova JL, Puel A, Meyts I. Lessons learned from the study of human inborn errors of innate immunity. J Allergy Clin Immunol 2019; 143:507-527. [PMID: 30075154 PMCID: PMC6358521 DOI: 10.1016/j.jaci.2018.07.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 07/13/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
Abstract
Innate immunity contributes to host defense through all cell types and relies on their shared germline genetic background, whereas adaptive immunity operates through only 3 main cell types, αβ T cells, γδ T cells, and B cells, and relies on their somatic genetic diversification of antigen-specific responses. Human inborn errors of innate immunity often underlie infectious diseases. The range and nature of infections depend on the mutated gene, the deleteriousness of the mutation, and other ill-defined factors. Most known inborn errors of innate immunity to infection disrupt the development or function of leukocytes other than T and B cells, but a growing number of inborn errors affect cells other than circulating and tissue leukocytes. Here we review inborn errors of innate immunity that have been recently discovered or clarified. We highlight the immunologic implications of these errors.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Laboratory of Childhood Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Leen Moens
- Laboratory of Childhood Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium
| | - Barbara Bosch
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Xavier Bossuyt
- Experimental Laboratory Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Howard Hughes Medical Institute, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France; Paris Descartes University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, INSERM U1163, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Isabelle Meyts
- Laboratory of Childhood Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
19
|
An allosteric MALT1 inhibitor is a molecular corrector rescuing function in an immunodeficient patient. Nat Chem Biol 2019; 15:304-313. [PMID: 30692685 DOI: 10.1038/s41589-018-0222-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/06/2018] [Indexed: 12/24/2022]
Abstract
MALT1 paracaspase is central for lymphocyte antigen-dependent responses including NF-κB activation. We discovered nanomolar, selective allosteric inhibitors of MALT1 that bind by displacing the side chain of Trp580, locking the protease in an inactive conformation. Interestingly, we had previously identified a patient homozygous for a MALT1 Trp580-to-serine mutation who suffered from combined immunodeficiency. We show that the loss of tryptophan weakened interactions between the paracaspase and C-terminal immunoglobulin MALT1 domains resulting in protein instability, reduced protein levels and functions. Upon binding of allosteric inhibitors of increasing potency, we found proportionate increased stabilization of MALT1-W580S to reach that of wild-type MALT1. With restored levels of stable MALT1 protein, the most potent of the allosteric inhibitors rescued NF-κB and JNK signaling in patient lymphocytes. Following compound washout, MALT1 substrate cleavage was partly recovered. Thus, a molecular corrector rescues an enzyme deficiency by substituting for the mutated residue, inspiring new potential precision therapies to increase mutant enzyme activity in other deficiencies.
Collapse
|
20
|
Meloni L, Verstrepen L, Kreike M, Staal J, Driege Y, Afonina IS, Beyaert R. Mepazine Inhibits RANK-Induced Osteoclastogenesis Independent of Its MALT1 Inhibitory Function. Molecules 2018; 23:molecules23123144. [PMID: 30513612 PMCID: PMC6320945 DOI: 10.3390/molecules23123144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 12/26/2022] Open
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is an intracellular cysteine protease (paracaspase) that plays an integral role in innate and adaptive immunity. The phenothiazine mepazine has been shown to inhibit the proteolytic activity of MALT1 and is frequently used to study its biological role. MALT1 has recently been suggested as a therapeutic target in rheumatoid arthritis. Here, we analyzed the effect of mepazine on the receptor activator of nuclear factor κ-B (RANK)-induced osteoclastogenesis. The treatment of mouse bone marrow precursor cells with mepazine strongly inhibited the RANK ligand (RANKL)-induced formation of osteoclasts, as well as the expression of several osteoclast markers, such as TRAP, cathepsin K, and calcitonin. However, RANKL induced osteoclastogenesis equally well in bone marrow cells derived from wild-type and Malt1 knock-out mice. Furthermore, the protective effect of mepazine was not affected by MALT1 deficiency. Additionally, the absence of MALT1 did not affect RANK-induced nuclear factor κB (NF-κB) and activator protein 1 (AP-1) activation. Overall, these studies demonstrate that MALT1 is not essential for RANK-induced osteoclastogenesis, and implicate a MALT1-independent mechanism of action of mepazine that should be taken into account in future studies using this compound.
Collapse
Affiliation(s)
- Laura Meloni
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| | - Lynn Verstrepen
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| | - Marja Kreike
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| | - Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| | - Yasmine Driege
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| | - Inna S Afonina
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
21
|
Ruland J, Hartjes L. CARD–BCL-10–MALT1 signalling in protective and pathological immunity. Nat Rev Immunol 2018; 19:118-134. [DOI: 10.1038/s41577-018-0087-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Lu HY, Bauman BM, Arjunaraja S, Dorjbal B, Milner JD, Snow AL, Turvey SE. The CBM-opathies-A Rapidly Expanding Spectrum of Human Inborn Errors of Immunity Caused by Mutations in the CARD11-BCL10-MALT1 Complex. Front Immunol 2018; 9:2078. [PMID: 30283440 PMCID: PMC6156466 DOI: 10.3389/fimmu.2018.02078] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023] Open
Abstract
The caspase recruitment domain family member 11 (CARD11 or CARMA1)-B cell CLL/lymphoma 10 (BCL10)-MALT1 paracaspase (MALT1) [CBM] signalosome complex serves as a molecular bridge between cell surface antigen receptor signaling and the activation of the NF-κB, JNK, and mTORC1 signaling axes. This positions the CBM complex as a critical regulator of lymphocyte activation, proliferation, survival, and metabolism. Inborn errors in each of the CBM components have now been linked to a diverse group of human primary immunodeficiency diseases termed "CBM-opathies." Clinical manifestations range from severe combined immunodeficiency to selective B cell lymphocytosis, atopic disease, and specific humoral defects. This surprisingly broad spectrum of phenotypes underscores the importance of "tuning" CBM signaling to preserve immune homeostasis. Here, we review the distinct clinical and immunological phenotypes associated with human CBM complex mutations and introduce new avenues for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Henry Y Lu
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Bradly M Bauman
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Swadhinya Arjunaraja
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Batsukh Dorjbal
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Monajemi M, Pang YCF, Bjornson S, Menzies SC, van Rooijen N, Sly LM. Malt1 blocks IL-1β production by macrophages in vitro and limits dextran sodium sulfate-induced intestinal inflammation in vivo. J Leukoc Biol 2018; 104:557-572. [PMID: 29901822 DOI: 10.1002/jlb.3vma0118-019r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/03/2018] [Accepted: 05/15/2018] [Indexed: 01/02/2023] Open
Abstract
This study tested the hypothesis that Malt1 deficiency in macrophages contributes to dextran sodium sulfate (DSS)-induced intestinal inflammation in Malt1-deficient mice. In people, combined immunodeficiency caused by a homozygous mutation in the MALT1 gene is associated with increased susceptibility to bacterial infections and chronic inflammation, including severe inflammation along the gastrointestinal tract. The consequences of Malt1 deficiency have largely been attributed to its role in lymphocytes, but Malt1 is also expressed in macrophages, where it is activated downstream of TLR4 and dectin-1. The effect of Malt1 deficiency in murine macrophages and its contribution to DSS-induced colitis have not been investigated. Our objectives were to compare the susceptibility of Malt1+/+ and Malt1-/- mice to DSS-induced colitis, to determine the contribution of macrophages to DSS-induced colitis in Malt1-/- mice, and to assess the effect of innate immune stimuli on Malt1-/- macrophage inflammatory responses. We found that Malt1 deficiency exacerbates DSS-induced colitis in mice, accompanied by higher levels of IL-1β, and that macrophages and IL-1 signaling contribute to pathology in Malt1-/- mice. Malt1-/- macrophages produce more IL-1β in response to either TLR4 or dectin-1 ligation, whereas inhibition of Malt1 proteolytic (paracaspase) activity blocked IL-1β production. TLR4 or dectin-1 stimulation induced Malt1 protein levels but decreased its paracaspase activity. Taken together, these data support the hypothesis that Malt1-/- macrophages contribute to increased susceptibility of Malt1-/- mice to DSS-induced colitis, which is dependent on IL-1 signaling. Increased IL-1β production by MALT1-deficient macrophages may also contribute to chronic inflammation in people deficient in MALT1.
Collapse
Affiliation(s)
- Mahdis Monajemi
- Department of Pediatrics, Division of Gastroenterology, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yvonne C F Pang
- Department of Pediatrics, Division of Gastroenterology, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Saelin Bjornson
- Department of Pediatrics, Division of Gastroenterology, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Susan C Menzies
- Department of Pediatrics, Division of Gastroenterology, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Laura M Sly
- Department of Pediatrics, Division of Gastroenterology, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|