1
|
Lim QY, Leung D, Lam CK, Yang X, Cheong KN, Yik AKH, Yang J, Chan KW, Lee PPW, Tsumura M, Au EYL, Rosa Duque JS, Okada S, Lau YL. Case report: A novel de novo germline loss-of-function mutation in the STAT1 transactivation domain in two Chinese siblings, with the elder sibling presenting with multifocal Bacillus Calmette-Guerin osteomyelitis. Front Immunol 2025; 15:1504816. [PMID: 39840042 PMCID: PMC11747594 DOI: 10.3389/fimmu.2024.1504816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
Signal transducer and activator of transcription 1 (STAT1) gene mutations have broad clinical phenotypes, classified by the inheritance pattern and functional state. Individuals with autosomal dominant STAT1 deficiency are more susceptible to intracellular bacteria, the hallmark of which is Mendelian susceptibility to mycobacterial diseases (MSMDs) that are associated with increased risks of invasive disease by weakly virulent mycobacteria. We report a novel de novo heterozygous missense mutation in exon 23 of the STAT1 gene (NM_007315.4):c.2129C>T(p.Ser710Phe) (S710F), located in the transactivation domain (TAD) for two Chinese siblings, whereby the index patient presented with multifocal osteomyelitis after Bacillus Calmette-Guerin (BCG) vaccine, while the younger sibling was spared the infection, as BCG vaccination was withheld at birth. STAT1 loss-of-function was confirmed by the gamma-activated sequence reporter assay, representing the first loss-of-function mutation in the TAD of the STAT1 gene. Both parents did not have the same mutation, and this finding is suggestive of gonadal mosaicism.
Collapse
Affiliation(s)
- Qin Ying Lim
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Daniel Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Crystal K. Lam
- Division of Clinical Immunology, Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Xingtian Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kai N. Cheong
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Andrew K. H. Yik
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jing Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Koon-Wing Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Pamela P. W. Lee
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
- Department of Paediatrics, The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
| | - Miyuki Tsumura
- Department of Paediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Elaine Y. L. Au
- Division of Clinical Immunology, Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Jaime S. Rosa Duque
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Satoshi Okada
- Department of Paediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Asano T, Noma K, Mizoguchi Y, Karakawa S, Okada S. Human STAT1 gain of function with chronic mucocutaneous candidiasis: A comprehensive review for strengthening the connection between bedside observations and laboratory research. Immunol Rev 2024; 322:81-97. [PMID: 38084635 DOI: 10.1111/imr.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 03/20/2024]
Abstract
Germline human heterozygous STAT1 gain-of-function (GOF) variants were first discovered a common cause of chronic mucocutaneous candidiasis (CMC) in 2011. Since then, numerous STAT1 GOF variants have been identified. A variety of clinical phenotypes, including fungal, viral, and bacterial infections, endocrine disorders, autoimmunity, malignancy, and aneurysms, have recently been revealed for STAT1 GOF variants, which has led to the expansion of the clinical spectrum associated with STAT1 GOF. Among this broad range of complications, it has been determined that invasive infections, aneurysms, and malignancies are poor prognostic factors for STAT1 GOF. The effectiveness of JAK inhibitors as a therapeutic option has been established, although further investigation of their long-term utility and side effects is needed. In contrast to the advancements in treatment options, the precise molecular mechanism underlying STAT1 GOF remains undetermined. Two primary hypotheses for this mechanism involve impaired STAT1 dephosphorylation and increased STAT1 protein levels, both of which are still controversial. A precise understanding of the molecular mechanism is essential for not only advancing diagnostics but also developing therapeutic interventions. Here, we provide a comprehensive review of STAT1 GOF with the aim of establishing a stronger connection between bedside observations and laboratory research.
Collapse
Affiliation(s)
- Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kosuke Noma
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| |
Collapse
|
3
|
Asano T, Utsumi T, Kagawa R, Karakawa S, Okada S. Inborn errors of immunity with loss- and gain-of-function germline mutations in STAT1. Clin Exp Immunol 2023; 212:96-106. [PMID: 36420581 PMCID: PMC10128167 DOI: 10.1093/cei/uxac106] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/01/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
STAT1 dysfunction causes a wide range of immune dysregulation phenotypes, which have been classified into four disease types, namely, (i) autosomal recessive (AR) complete STAT1 deficiency, (ii) AR partial STAT1 deficiency, (iii) autosomal dominant (AD) STAT1 deficiency, and (iv) AD STAT1 gain of function (GOF), based on their mode of inheritance and function. Disease types (i, ii, and iii) are caused by STAT1 loss-of-function (LOF) mutations, whereas disease type (iv) is caused by STAT1 GOF mutations. Therefore, the functional analysis of mutations is necessary for the precise diagnosis.
Collapse
Affiliation(s)
- Takaki Asano
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takanori Utsumi
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Reiko Kagawa
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
4
|
Ono R, Tsumura M, Shima S, Matsuda Y, Gotoh K, Miyata Y, Yoto Y, Tomomasa D, Utsumi T, Ohnishi H, Kato Z, Ishiwada N, Ishikawa A, Wada T, Uhara H, Nishikomori R, Hasegawa D, Okada S, Kanegane H. Novel STAT1 Variants in Japanese Patients with Isolated Mendelian Susceptibility to Mycobacterial Diseases. J Clin Immunol 2023; 43:466-478. [PMID: 36336768 DOI: 10.1007/s10875-022-01396-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Heterozygous dominant-negative (DN) STAT1 variants are responsible for autosomal dominant (AD) Mendelian susceptibility to mycobacterial disease (MSMD). In this paper, we describe eight MSMD cases from four kindreds in Japan. METHODS An inborn error of immunity-related gene panel sequencing was performed using genomic DNA extracted from whole blood samples. The identified variants were validated using Sanger sequencing. Functional analysis was evaluated with a luciferase reporter assay and co-transfection assay in STAT1-deficient cells. RESULTS Patient 1.1 was a 20-month-old boy with multifocal osteomyelitis and paravertebral abscesses caused by Mycobacterium bovis bacillus Calmette-Guérin (BCG). Although the paravertebral abscess was refractory to antimycobacterial drugs, the addition of IFN-γ and drainage of the abscess were effective. Intriguingly, his mother (patient 1.2) showed an uneventful clinical course except for treatment-responsive tuberculous spondylitis during adulthood. Patient 2.1 was an 8-month-old boy with lymphadenopathy and lung nodules caused by BCG. He responded well to antimycobacterial drugs. His mother (patient 2.2) was healthy. Patient 3.1 was a 11-year-old girl with suspected skin tuberculosis. Her brother (patient 3.2) had BCG-osis, but their mother (patient 3.3) was healthy. Patient 4 was an 8-month-old girl with left axillary and supraclavicular lymphadenopathy associated with BCG vaccination. Kindreds 1, 2, and 3 were shown to have novel heterozygous variants (V642F, R588C, and R649G) in STAT1, respectively. Kindred 4 had previously reported heterozygous variants (Q463H). A luciferase reporter assay in STAT1-deficient cells followed by IFN-γ stimulation confirmed that these variants are loss-of-function. In addition, with co-transfection assay, we confirmed all of these variants had DN effect on WT STAT1. CONCLUSION Four kindred MSMD subjects with 3 novel variants and 1 known variant in STAT1 were identified in this study. AD STAT1 deficiency might be prevalent in Japanese patients with BCG-associated MSMD.
Collapse
Affiliation(s)
- Rintaro Ono
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Saho Shima
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Yusuke Matsuda
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan.
| | - Kenji Gotoh
- Department of Infection Control and Prevention, Kurume University School of Medicine, Fukuoka, Japan.
| | - Yurina Miyata
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Yuko Yoto
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Dan Tomomasa
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takanori Utsumi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Zenichiro Kato
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
- Structural Medicine, United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Naruhiko Ishiwada
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Aki Ishikawa
- Department of Medical Genetics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University, Sapporo, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8519, Japan.
| |
Collapse
|
5
|
Ye F, Zhang W, Dong J, Peng M, Fan C, Deng W, Zhang H, Yang L. A novel STAT1 loss-of-function mutation associated with Mendelian susceptibility to mycobacterial disease. Front Cell Infect Microbiol 2022; 12:1002140. [PMID: 36339330 PMCID: PMC9635896 DOI: 10.3389/fcimb.2022.1002140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/10/2022] [Indexed: 11/20/2022] Open
Abstract
Mendelian susceptibility to mycobacterial diseases (MSMD) is a rare congenital immune deficiency characterized by susceptibility to weakly virulent mycobacteria. Loss-of-function (LOF) mutation of signal transducer and activator of transcription 1 (STAT1) is one of the common genetic causes of MSMD. In this study, we identified a patient who presented with multiple lymph node enlargements and multiple osteolytic disruptions. Mycobacterium gordonae infection was confirmed by metagenomic next-generation sequencing. Whole-exome sequencing identified a novel paternal heterozygous mutation in exon 22 of STAT1 (NM_007315.4, c.1892T>C, p.Val631Ala). This variant was confirmed pathogenic by multiple software predictions. Based on functional assays, STAT1 expression in STAT1V631A cells was not different from STAT1WT cells. But STAT1V631A mutation caused much lower activation of STAT1 when stimulated by interferon-γ (IFN-γ). Fluorescence localization analysis revealed that both STAT1V631A and STAT1WT proteins were located in the cytoplasm, and only a few STAT1V631A proteins were translocated to the nucleus in response to IFN-γ. These results suggest that STAT1V631A leads to LOF in IFN-γ-mediated mycobacterial immunity, resulting in MSMD. Treatment with antibiotics has achieved ideal disease control for this patient, and no adverse events occurred during follow-up. The STAT1 LOF deficiency is a genetic cause of MSMD, which should be considered in patients with mycobacterial disease, especially those with bone involvement.
Collapse
|
6
|
Chen X, Chen J, Chen R, Mou H, Sun G, Yang L, Jia Y, Zhao Q, Wen W, Zhou L, Ding Y, Tang X, Yang J, An Y, Zhao X. Genetic and Functional Identifying of Novel STAT1 Loss-of-Function Mutations in Patients with Diverse Clinical Phenotypes. J Clin Immunol 2022; 42:1778-1794. [PMID: 35976469 DOI: 10.1007/s10875-022-01339-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Mutations in signal transducer and activator of transcription 1 (STAT1) cause a broad spectrum of disease phenotypes. Heterozygous STAT1 loss-of-function (LOF) mutations cause Mendelian susceptibility to mycobacterial diseases (MSMD) infection, which is attributable to impaired IFN-γ signaling. The identification of novel mutations may extend the phenotypes associated with autosomal dominant (AD) STAT1 deficiency. METHODS Five patients with heterozygous STAT1 variations were recruited and their clinical and immunologic phenotypes were analyzed, with particular reference to JAK-STAT1 signaling pathways. RESULTS Four, heterozygous STAT1 deficiency mutations were identified, three of which were novel mutations. Two of the mutations were previously unreported mRNA splicing mutations in AD STAT1-deficient patients. Patients with heterozygous STAT1 deficiency suffered not only mycobacterial infection, but also intracellular non-mycobacterial bacterial infection and congenital multiple malformations. AD-LOF mutation impaired IFN-γ-mediated STAT1 phosphorylation, gamma-activated sequence (GAS), and IFN-stimulated response element (ISRE) transcription activity and IFN-induced gene expression to different extents, which might account for the diverse clinical manifestations observed in these patients. CONCLUSION The infectious disease susceptibility and phenotypic spectrum of patients with AD STAT1-LOF are broader than simply MSMD. The susceptibility to infections and immunological deficiency phenotypes, observed in AD-LOF patients, confirms the importance of STAT1 in host-pathogen interaction and immunity. However, variability in the nature and extent of these phenotypes suggests that functional analysis is required to identify accurately novel, heterozygous STAT1 mutations, associated with pathogenicity. Aberrant splice of STAT1 RNA could result in AD-LOF for STAT1 signaling which need more cases for confirmation.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Junjie Chen
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ran Chen
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Huilin Mou
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Gan Sun
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lu Yang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yanjun Jia
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qin Zhao
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Wen Wen
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lina Zhou
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yuan Ding
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xuemei Tang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jun Yang
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, Shenzhen, 518000, China
| | - Yunfei An
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Xiaodong Zhao
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
7
|
STAT1 and Its Crucial Role in the Control of Viral Infections. Int J Mol Sci 2022; 23:ijms23084095. [PMID: 35456913 PMCID: PMC9028532 DOI: 10.3390/ijms23084095] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
The signal transducer and activator of transcription (STAT) 1 protein plays a key role in the immune response against viruses and other pathogens by transducing, in the nucleus, the signal from type I, type II and type III IFNs. STAT1 activates the transcription of hundreds of genes, some of which have been well characterized for their antiviral properties. STAT1 gene deletion in mice and complete STAT1 deficiency in humans both cause rapid death from severe infections. STAT1 plays a key role in the immunoglobulin class-switch recombination through the upregulation of T-bet; it also plays a key role in the production of T-bet+ memory B cells that contribute to tissue-resident humoral memory by mounting an IgG response during re-infection. Considering the key role of STAT1 in the antiviral immune response, many viruses, including dangerous viruses such as Ebola and SARS-CoV-2, have developed different mechanisms to inhibit this transcription factor. The search for drugs capable of targeting the viral proteins implicated in both viral replication and IFN/STAT1 inhibition is important for the treatment of the most dangerous viral infections and for future viral pandemics, as shown by the clinical results obtained with Paxlovid in patients infected with SARS-CoV-2.
Collapse
|
8
|
Abdrabou SSMA, Toita N, Ichihara S, Tozawa Y, Takahashi M, Fujiwara SI, Ashida T, Ohara O, Ariga T, Manabe A, Konno M, Yamada M. Absent X-linked inhibitor of apoptosis protein expression in T cell blasts and causal mutations including non-coding deletion. Pediatr Int 2022; 64:e14892. [PMID: 34145698 DOI: 10.1111/ped.14892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND X-linked inhibitor of apoptosis protein (XIAP) deficiency is one of inborn errors of immunity characterized by recurrent hemophagocytic lymphohistiocytosis and refractory inflammatory bowel disease (IBD), mimicking Crohn's disease. The aim of this study is to make an accurate diagnosis of XIAP deficiency based on genetic and XIAP expression studies and to investigate endoscopic findings shared by patients with this disease. METHODS Four male patients with recurrent hemophagocytic lymphohistiocytosis and long-term refractory IBD were studied for the diagnosis of XIAP deficiency. Endoscopic findings of the four patients were also studied in parallel. RESULTS These four patients were diagnosed with XIAP deficiency based on the absent XIAP expression in cultured T-cell blasts. Sequence analysis of the responsible gene, XIAP, demonstrated two novel nonsense mutations of p.Gln114X and p.Glu25X, and a previously reported nonsense mutation of p.Arg381X. Although no mutations in the coding region were detected in the fourth patient, further studies demonstrated a novel 2,199 bp deletion encompassing non-coding exon 1, presumably affecting transcription and stability of XIAP mRNA. All of the patients eventually underwent hematopoietic stem cell transplantation, leading to a complete or partial remission of IBD. These four patients shared an endoscopic finding of multiple wide and longitudinal ulcers with straight and non-raised edge in the colon. CONCLUSIONS X-linked inhibitor of apoptosis protein expression in T-cell blasts could facilitate the diagnosis of this disease, especially with causal mutations in non-coding regions.
Collapse
Affiliation(s)
| | - Nariaki Toita
- Department of Pediatrics, Sapporo Kosei General Hospital, Sapporo, Japan
| | - Shin Ichihara
- Department of Surgical Pathology, Sapporo Kosei General Hospital, Sapporo, Japan
| | - Yusuke Tozawa
- Department of Pediatrics, Division of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Michiko Takahashi
- Department of Pediatrics, Sapporo Kosei General Hospital, Sapporo, Japan
| | - Shin-Ichi Fujiwara
- Department of Pediatrics, Sapporo Kosei General Hospital, Sapporo, Japan
| | | | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Tadashi Ariga
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Atsushi Manabe
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mutsuko Konno
- Department of Pediatrics, Sapporo Kosei General Hospital, Sapporo, Japan
| | - Masafumi Yamada
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Liu Z, Zhou M, Yuan C, Ni Z, Liu W, Tan Y, Zhang D, Zhou X, Zou T, Wang J, Hou M, Peng X, Zhang X. Two novel STAT1 mutations cause Mendelian susceptibility to mycobacterial disease. Biochem Biophys Res Commun 2021; 591:124-129. [PMID: 34815077 DOI: 10.1016/j.bbrc.2021.11.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 01/02/2023]
Abstract
Mendelian susceptibility to mycobacterial disease (MSMD) is a rare monogenetic disease, which is characterized by susceptibility to some weakly virulent mycobacteria. Here, we explored the pathogenic genes and molecular mechanisms of MSMD patients. We recruited three patients diagnosed with MSMD from two families. Two novel mutations (c.1228A > G, p.K410E and c.2071A > G, p.M691V) in STAT1 gene were identified from two families. The translocation of K410E mutant STAT1 protein into nucleus was not affected. The binding ability between gamma-activating sequence (GAS) and K410E mutant STAT1 protein was significantly reduced, which will reduce the interaction between STAT1 protein with the promoters of target genes. The M691V mutant STAT1 protein cannot translocate into the nucleus after IFN-γ stimulation, which will affect the STAT1 protein form gamma-activating factors (GAF) and bind the GAS in the promoter region of downstream target genes. Taken together, our results showed that the mutation of K410E led to impaired binding of STAT1 to target DNA, and the mutation of M691V prevented the transport of STAT1 into the nucleus, which led to MSMD. Together, we identified two novel mutations (c.1228A > G, p.K410E and c.2071A > G, p.M691V) in STAT1 gene in MSMD patients, and deciphered the molecular mechanism of MSMD caused by STAT1 mutations.
Collapse
Affiliation(s)
- Zhenxing Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Mi Zhou
- Wuhan Jinyintan Hospital, Wuhan, Hubei, China
| | - Chao Yuan
- Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Zhengyi Ni
- Wuhan Jinyintan Hospital, Wuhan, Hubei, China
| | - Wenqiang Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yang Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Dazhi Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaopei Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Tingting Zou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiarui Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Meiqi Hou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xuejie Peng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
10
|
Tsumura M, Miki M, Mizoguchi Y, Hirata O, Nishimura S, Tamaura M, Kagawa R, Hayakawa S, Kobayashi M, Okada S. Enhanced osteoclastogenesis in patients with MSMD due to impaired response to IFN-γ. J Allergy Clin Immunol 2021; 149:252-261.e6. [PMID: 34176646 DOI: 10.1016/j.jaci.2021.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Patients with Mendelian susceptibility to mycobacterial disease (MSMD) experience recurrent and/or persistent infectious diseases associated with poorly virulent mycobacteria. Multifocal osteomyelitis is among the representative manifestations of MSMD. The frequency of multifocal osteomyelitis is especially high in patients with MSMD etiologies that impair cellular response to IFN-γ, such as IFN-γR1, IFN-γR2, or STAT1 deficiency. OBJECTIVES This study sought to characterize the mechanism underlying multifocal osteomyelitis in MSMD. METHODS GM colonies prepared from bone marrow mononuclear cells from patients with autosomal dominant (AD) IFN-γR1 deficiency, AD STAT1 deficiency, or STAT1 gain of function (GOF) and from healthy controls were differentiated into osteoclasts in the presence or absence of IFN-γ. The inhibitory effect of IFN-γ on osteoclastogenesis was investigated by quantitative PCR, immunoblotting, tartrate-resistant acid phosphatase staining, and pit formation assays. RESULTS Increased osteoclast numbers were identified by examining the histopathology of osteomyelitis in patients with AD IFN-γR1 deficiency or AD STAT1 deficiency. In the presence of receptor activator of nuclear factor kappa-B ligand and M-CSF, GM colonies from patients with AD IFN-γR1 deficiency, AD STAT1 deficiency, or STAT1 GOF differentiated into osteoclasts, similar to GM colonies from healthy volunteers. IFN-γ concentration-dependent inhibition of osteoclast formation was impaired in GM colonies from patients with AD IFN-γR1 deficiency or AD STAT1 deficiency, whereas it was enhanced in GM colonies from patients with STAT1 GOF. CONCLUSIONS Osteoclast differentiation is increased in AD IFN-γR1 deficiency and AD STAT1 deficiency due to an impaired response to IFN-γ, leading to excessive osteoclast proliferation and, by inference, increased bone resorption in infected foci, which may underlie multifocal osteomyelitis.
Collapse
Affiliation(s)
- Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Mizuka Miki
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan; Department of Pediatrics, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Osamu Hirata
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan; Hidamari Children Clinic, Hiroshima, Japan
| | - Shiho Nishimura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan; Department of Pediatrics, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Moe Tamaura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan; Department of Pediatrics, Hiroshima-Nishi Medical Center, Hiroshima, Japan
| | - Reiko Kagawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Seiichi Hayakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan; Japanese Red Cross, Chugoku-Shikoku Block Blood Center, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan.
| |
Collapse
|
11
|
Mizoguchi Y, Okada S. Inborn errors of STAT1 immunity. Curr Opin Immunol 2021; 72:59-64. [PMID: 33839590 DOI: 10.1016/j.coi.2021.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/27/2021] [Accepted: 02/27/2021] [Indexed: 02/01/2023]
Abstract
Signal transducer and activator of transcription 1 (STAT1) is a latent cytoplasmic transcription factor that is activated by multiple stimuli, including type I, II, and III interferons and interleukin-27. Inborn errors of human STAT1 immunity underlie 4 distinct disorders: autosomal recessive (AR) complete STAT1 deficiency, AR partial STAT1 deficiency, autosomal dominant (AD) STAT1 deficiency, and AD STAT1 gain-of-function. Each disease presents distinct clinical manifestations, excluding the difference in two AR STAT1 deficiencies, which are mainly explained by severity. This observation reflects the multiple and complex roles of STAT1 and how STAT1-mediated signaling is finely tuned in host immune systems.
Collapse
Affiliation(s)
- Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| |
Collapse
|
12
|
MSMD in a 3-Generation Multiplex Kindred Due to Autosomal Dominant STAT1 Deficiency. J Clin Immunol 2020; 41:259-261. [PMID: 33064256 DOI: 10.1007/s10875-020-00890-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/07/2020] [Indexed: 01/01/2023]
|
13
|
Okada S, Asano T, Moriya K, Boisson-Dupuis S, Kobayashi M, Casanova JL, Puel A. Human STAT1 Gain-of-Function Heterozygous Mutations: Chronic Mucocutaneous Candidiasis and Type I Interferonopathy. J Clin Immunol 2020; 40:1065-1081. [PMID: 32852681 DOI: 10.1007/s10875-020-00847-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Heterozygous gain-of-function (GOF) mutations in STAT1 in patients with chronic mucocutaneous candidiasis (CMC) and hypothyroidism were discovered in 2011. CMC is the recurrent or persistent mucocutaneous infection by Candida fungi, and hypothyroidism results from autoimmune thyroiditis. Patients with these diseases develop other infectious diseases, including viral, bacterial, and fungal diseases, and other autoimmune manifestations, including enterocolitis, immune cytopenia, endocrinopathies, and systemic lupus erythematosus. STAT1-GOF mutations are highly penetrant with a median age at onset of 1 year and often underlie an autosomal dominant trait. As many as 105 mutations at 72 residues, including 65 recurrent mutations, have already been reported in more than 400 patients worldwide. The GOF mechanism involves impaired dephosphorylation of STAT1 in the nucleus. Patient cells show enhanced STAT1-dependent responses to type I and II interferons (IFNs) and IL-27. This impairs Th17 cell development, which accounts for CMC. The pathogenesis of autoimmunity likely involves enhanced type I IFN responses, as in other type I interferonopathies. The pathogenesis of other infections, especially those caused by intramacrophagic bacteria and fungi, which are otherwise seen in patients with diminished type II IFN immunity, has remained mysterious. The cumulative survival rates of patients with and without severe disease (invasive infection, cancer, and/or symptomatic aneurysm) at 60 years of age are 31% and 87%, respectively. Severe autoimmunity also worsens the prognosis. The treatment of patients with STAT1-GOF mutations who suffer from severe infectious and autoimmune manifestations relies on hematopoietic stem cell transplantation and/or oral JAK inhibitors.
Collapse
Affiliation(s)
- Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Kunihiko Moriya
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Stephanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.
- Imagine Institute, University of Paris, Paris, France.
| |
Collapse
|
14
|
Sakata S, Tsumura M, Matsubayashi T, Karakawa S, Kimura S, Tamaura M, Okano T, Naruto T, Mizoguchi Y, Kagawa R, Nishimura S, Imai K, Le Voyer T, Casanova JL, Bustamante J, Morio T, Ohara O, Kobayashi M, Okada S. Autosomal recessive complete STAT1 deficiency caused by compound heterozygous intronic mutations. Int Immunol 2020; 32:663-671. [PMID: 32603428 DOI: 10.1093/intimm/dxaa043] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Autosomal recessive (AR) complete signal transducer and activator of transcription 1 (STAT1) deficiency is an extremely rare primary immunodeficiency that causes life-threatening mycobacterial and viral infections. Only seven patients from five unrelated families with this disorder have been so far reported. All causal STAT1 mutations reported are exonic and homozygous. We studied a patient with susceptibility to mycobacteria and virus infections, resulting in identification of AR complete STAT1 deficiency due to compound heterozygous mutations, both located in introns: c.128+2 T>G and c.542-8 A>G. Both mutations were the first intronic STAT1 mutations to cause AR complete STAT1 deficiency. Targeted RNA-seq documented the impairment of STAT1 mRNA expression and contributed to the identification of the intronic mutations. The patient's cells showed a lack of STAT1 expression and phosphorylation, and severe impairment of the cellular response to IFN-γ and IFN-α. The case reflects the importance of accurate clinical diagnosis and precise evaluation, to include intronic mutations, in the comprehensive genomic study when the patient lacks molecular pathogenesis. In conclusion, AR complete STAT1 deficiency can be caused by compound heterozygous and intronic mutations. Targeted RNA-seq-based systemic gene expression assay may help to increase diagnostic yield in inconclusive cases after comprehensive genomic study.
Collapse
Affiliation(s)
- Sonoko Sakata
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | | | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shunsuke Kimura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Moe Tamaura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuya Naruto
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Reiko Kagawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shiho Nishimura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kohsuke Imai
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.,Paris University, Imagine Institute, Paris, EU, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.,Paris University, Imagine Institute, Paris, EU, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, EU, France.,Study Center of Immunodeficiencies, Necker Hospital for Sick Children, Paris EU, France.,Howard Hughes Medical Institute, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.,Paris University, Imagine Institute, Paris, EU, France.,Study Center of Immunodeficiencies, Necker Hospital for Sick Children, Paris EU, France.,Department of Clinical Immunology, Aarhus University Hospital, Aarhus N, EU, Denmark
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kasarazu, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
15
|
Fekrvand S, Yazdani R, Olbrich P, Gennery A, Rosenzweig SD, Condino-Neto A, Azizi G, Rafiemanesh H, Hassanpour G, Rezaei N, Abolhassani H, Aghamohammadi A. Primary Immunodeficiency Diseases and Bacillus Calmette-Guérin (BCG)-Vaccine-Derived Complications: A Systematic Review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:1371-1386. [PMID: 32006723 DOI: 10.1016/j.jaip.2020.01.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Bacillus Calmette-Guérin (BCG) vaccine is a live attenuated bacterial vaccine derived from Mycobacterium bovis, which is mostly administered to neonates in regions where tuberculosis is endemic. Adverse reactions after BCG vaccination are rare; however, immunocompromised individuals and in particular patients with primary immunodeficiencies (PIDs) are prone to develop vaccine-derived complications. OBJECTIVE To systematically review demographic, clinical, immunologic, and genetic data of PIDs that present with BCG vaccine complications. Moreover, we performed a meta-analysis aiming to determine the BCG-vaccine complications rate for patients with PID. METHODS We conducted electronic searches on Embase, Web of Science, PubMed, and Scopus (1966 to September 2018) introducing terms related to PIDs, BCG vaccination, and BCG vaccine complications. Studies with human subjects with confirmed PID, BCG vaccination history, and vaccine-associated complications (VACs) were included. RESULTS A total of 46 PIDs associated with BCG-VAC were identified. Severe combined immunodeficiency was the most common (466 cases) and also showed the highest BCG-related mortality. Most BCG infection cases in patients with PID were reported from Iran (n = 219 [18.8%]). The overall frequency of BCG-VAC in the included 1691 PID cases was 41.5% (95% CI, 29.9-53.2; I2 = 98.3%), based on the results of the random-effect method used in this meta-analysis. Patients with Mendelian susceptibility to mycobacterial diseases had the highest frequency of BCG-VACs with a pooled frequency of 90.6% (95% CI, 79.7-1.0; I2 = 81.1%). CONCLUSIONS Several PID entities are susceptible to BCG-VACs. Systemic neonatal PID screening programs may help to prevent a substantial amount of BCG vaccination complications.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| | - Peter Olbrich
- Sección de Infectología e Inmunopatología, Unidad de Pediatría, Hospital Virgen del Rocío/Instituto de Biomedicina de Sevilla, Seville, Spain
| | - Andrew Gennery
- Institute of Cellular Medicine, Newcastle University, and Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes Clinical Center, National Institutes of Health, Bethesda, Md
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hosein Rafiemanesh
- Student Research Committee, Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Network for Immunology in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden; Research Center for Primary Immunodeficiencies, Iran University of Medical Sciences, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
16
|
Rosain J, Kong XF, Martinez-Barricarte R, Oleaga-Quintas C, Ramirez-Alejo N, Markle J, Okada S, Boisson-Dupuis S, Casanova JL, Bustamante J. Mendelian susceptibility to mycobacterial disease: 2014-2018 update. Immunol Cell Biol 2019; 97:360-367. [PMID: 30264912 PMCID: PMC6438774 DOI: 10.1111/imcb.12210] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022]
Abstract
Mendelian susceptibility to mycobacterial disease (MSMD) is caused by inborn errors of IFN-γ immunity. Since 1996, disease-causing mutations have been found in 11 genes, which, through allelic heterogeneity, underlie 21 different genetic disorders. We briefly review here progress in the study of molecular, cellular and clinical aspects of MSMD since the last comprehensive review published in 2014. Highlights include the discoveries of (1) a new genetic etiology, autosomal recessive signal peptide peptidase-like 2 A deficiency, (2) TYK2-deficient patients with a clinical phenotype of MSMD, (3) an allelic form of partial recessive IFN-γR2 deficiency, and (4) two forms of syndromic MSMD: RORγ/RORγT and JAK1 deficiencies. These recent findings illustrate how genetic and immunological studies of MSMD can shed a unique light onto the mechanisms of protective immunity to mycobacteria in humans.
Collapse
Affiliation(s)
- Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Descartes University, Imagine Institute, Paris, France, EU
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Children Hospital, Paris, France, EU
| | - Xiao-Fei Kong
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Ruben Martinez-Barricarte
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Descartes University, Imagine Institute, Paris, France, EU
| | - Noé Ramirez-Alejo
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Janet Markle
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Satoshi Okada
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Descartes University, Imagine Institute, Paris, France, EU
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Descartes University, Imagine Institute, Paris, France, EU
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France, EU
- Howard Hughes Medical Institute, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Descartes University, Imagine Institute, Paris, France, EU
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Children Hospital, Paris, France, EU
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| |
Collapse
|
17
|
Nekooie-Marnany N, Deswarte C, Ostadi V, Bagherpour B, Taleby E, Ganjalikhani-Hakemi M, Le Voyer T, Rahimi H, Rosain J, Pourmoghadas Z, Sheikhbahaei S, Khoshnevisan R, Petersheim D, Kotlarz D, Klein C, Boisson-Dupuis S, Casanova JL, Bustamante J, Sherkat R. Impaired IL-12- and IL-23-Mediated Immunity Due to IL-12Rβ1 Deficiency in Iranian Patients with Mendelian Susceptibility to Mycobacterial Disease. J Clin Immunol 2018; 38:787-793. [PMID: 30255293 PMCID: PMC6469360 DOI: 10.1007/s10875-018-0548-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/10/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE Inborn errors of IFN-γ-mediated immunity underlie Mendelian Susceptibility to Mycobacterial Disease (MSMD), which is characterized by an increased susceptibility to severe and recurrent infections caused by weakly virulent mycobacteria, such as Bacillus Calmette-Guérin (BCG) vaccines and environmental, nontuberculous mycobacteria (NTM). METHODS In this study, we investigated four patients from four unrelated consanguineous families from Isfahan, Iran, with disseminated BCG disease. We evaluated the patients' whole blood cell response to IL-12 and IFN-γ, IL-12Rβ1 expression on T cell blasts, and sequenced candidate genes. RESULTS We report four patients from Isfahan, Iran, ranging from 3 months to 26 years old, with impaired IL-12 signaling. All patients suffered from BCG disease. One of them presented mycobacterial osteomyelitis. By Sanger sequencing, we identified three different types of homozygous mutations in IL12RB1. Expression of IL-12Rβ1 was completely abolished in the four patients with IL12RB1 mutations. CONCLUSIONS IL-12Rβ1 deficiency was found in the four MSMD Iranian families tested. It is the first report of an Iranian case with S321* mutant IL-12Rβ1 protein. Mycobacterial osteomyelitis is another type of location of BCG infection in an IL-12Rβ1-deficient patient, notified for the first time in this study.
Collapse
Affiliation(s)
- Nioosha Nekooie-Marnany
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, EU, France
- Paris Descartes University, Paris, EU, France
| | - Vajiheh Ostadi
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Bagherpour
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elaheh Taleby
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, EU, France
- Paris Descartes University, Paris, EU, France
| | - Hamid Rahimi
- Department of Pediatrics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, EU, France
- Paris Descartes University, Paris, EU, France
- Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris AP-HP, Necker Hospital for Sick Children, Paris, EU, France
| | - Zahra Pourmoghadas
- Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saba Sheikhbahaei
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razieh Khoshnevisan
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Daniel Petersheim
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, EU, Germany
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, EU, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, EU, Germany
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, EU, France
- Paris Descartes University, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, EU, France
- Paris Descartes University, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Pediatric Hematology-Immunology Unit, Assistance Publique-Hôpitaux de Paris AP-HP, Necker Hospital for Sick Children, Paris, EU, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, EU, France
- Paris Descartes University, Paris, EU, France
- Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris AP-HP, Necker Hospital for Sick Children, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|