1
|
Khan MA, Bhusal S, Lau CL, Krupnick AS. Bronchial anastomotic complications as a microvascular disruption in a mouse model of airway transplantation. Front Immunol 2025; 16:1567657. [PMID: 40438113 PMCID: PMC12116303 DOI: 10.3389/fimmu.2025.1567657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/23/2025] [Indexed: 06/01/2025] Open
Abstract
Lung transplantation (LTx) offers a last resort for patients battling end-stage lung disease. Even though short-term survival has improved, these patients still face several long-term challenges, such as chronic rejection and ischemic bronchial anastomosis. In lung transplant recipients, the bronchial anastomosis is prone to complications-such as poor wound healing, necrosis, stenosis, and dehiscence-due to the marginal blood supply at this site. During peri-LTx, hypoxia and ischemia stimulate fibrotic and inflammatory cytokines at anastomotic sites, leading to abnormal collagen production and excessive granulation, which impair wound healing. Despite meticulous techniques, bronchial anastomosis remains a major cause of morbidity and mortality among lung transplant recipients. After LTx, most bronchial complications are attributed to ischemic insult since normal bronchial blood flow is disrupted, and bronchial revascularization usually takes two to four weeks, making the anastomotic bronchial vessels dependent on pulmonary artery circulation. It is clear that hypoxia, inflammation, oxidative stress, and extracellular matrix remodeling play critical roles in bronchial complications, but there is no small animal model to study them. In the context of LTx, mouse tracheal models are essential tools for studying bronchial complications, particularly ischemia, fibrosis, and stenosis, as well as evaluating potential therapeutic interventions. A well-established mouse model of orthotopic tracheal transplantation (OTT) mimics the anastomosis of the bronchi and the subsequent microvascular injury, providing a pathological correlation with anastomotic complications. A series of previous studies using the OTT model explored the microvascularization, ischemia-reperfusion, airway epithelial injury, and fibrotic remodeling effects after airway anastomosis. This review describes OTT as a model of airway anastomotic complications, which is crucial for understanding the immunological and molecular pathways as seen in clinical bronchial anastomoses, as well as improving anastomotic healing and reducing complications through targeted therapeutic strategies.
Collapse
|
2
|
Khan MA, Lau CL, Krupnick AS. Monitoring regulatory T cells as a prognostic marker in lung transplantation. Front Immunol 2023; 14:1235889. [PMID: 37818354 PMCID: PMC10561299 DOI: 10.3389/fimmu.2023.1235889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Lung transplantation is the major surgical procedure, which restores normal lung functioning and provides years of life for patients suffering from major lung diseases. Lung transplant recipients are at high risk of primary graft dysfunction, and chronic lung allograft dysfunction (CLAD) in the form of bronchiolitis obliterative syndrome (BOS). Regulatory T cell (Treg) suppresses effector cells and clinical studies have demonstrated that Treg levels are altered in transplanted lung during BOS progression as compared to normal lung. Here, we discuss levels of Tregs/FOXP3 gene expression as a crucial prognostic biomarker of lung functions during CLAD progression in clinical lung transplant recipients. The review will also discuss Treg mediated immune tolerance, tissue repair, and therapeutic strategies for achieving in-vivo Treg expansion, which will be a potential therapeutic option to reduce inflammation-mediated graft injuries, taper the toxic side effects of ongoing immunosuppressants, and improve lung transplant survival rates.
Collapse
|
3
|
Tan ZH, Liu L, Dharmadhikari S, Shontz KM, Kreber L, Sperber S, Yu J, Byun WY, Nyirjesy SC, Manning A, Reynolds SD, Chiang T. Partial decellularization eliminates immunogenicity in tracheal allografts. Bioeng Transl Med 2023; 8:e10525. [PMID: 37693070 PMCID: PMC10487308 DOI: 10.1002/btm2.10525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 09/12/2023] Open
Abstract
There is currently no suitable autologous tissue to bridge large tracheal defects. As a result, no standard of care exists for long-segment tracheal reconstruction. Tissue engineering has the potential to create a scaffold from allografts or xenografts that can support neotissue regeneration identical to the native trachea. Recent advances in tissue engineering have led to the idea of partial decellularization that allows for the creation of tracheal scaffolds that supports tracheal epithelial formation while preserving mechanical properties. However, the ability of partial decellularization to eliminate graft immunogenicity remains unknown, and understanding the immunogenic properties of partially decellularized tracheal grafts (PDTG) is a critical step toward clinical translation. Here, we determined that tracheal allograft immunogenicity results in epithelial cell sloughing and replacement with dysplastic columnar epithelium and that partial decellularization creates grafts that are able to support an epithelium without histologic signs of rejection. Moreover, allograft implantation elicits CD8+ T-cell infiltration, a mediator of rejection, while PDTG did not. Hence, we establish that partial decellularization eliminates allograft immunogenicity while creating a scaffold for implantation that can support spatially appropriate airway regeneration.
Collapse
Affiliation(s)
- Zheng Hong Tan
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's HospitalColumbusOhioUSA
- College of Medicine, The Ohio State UniversityColumbusOhioUSA
| | - Lumei Liu
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's HospitalColumbusOhioUSA
| | - Sayali Dharmadhikari
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's HospitalColumbusOhioUSA
- College of Medicine, The Ohio State UniversityColumbusOhioUSA
| | - Kimberly M. Shontz
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's HospitalColumbusOhioUSA
| | - Lily Kreber
- College of Medicine, The Ohio State UniversityColumbusOhioUSA
| | - Sarah Sperber
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's HospitalColumbusOhioUSA
| | - Jane Yu
- College of Medicine, The Ohio State UniversityColumbusOhioUSA
| | - Woo Yul Byun
- College of Medicine, The Ohio State UniversityColumbusOhioUSA
| | - Sarah C. Nyirjesy
- Department of Pediatric OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
| | - Amy Manning
- Department of Pediatric OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
| | - Susan D. Reynolds
- Center for Perinatal Research, Nationwide Children's HospitalColumbusOhioUSA
| | - Tendy Chiang
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's HospitalColumbusOhioUSA
- Department of Pediatric OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
| |
Collapse
|
4
|
Kazmi S, Khan MA, Shamma T, Altuhami A, Assiri AM, Broering DC. Therapeutic nexus of T cell immunometabolism in improving transplantation immunotherapy. Int Immunopharmacol 2022; 106:108621. [PMID: 35189469 DOI: 10.1016/j.intimp.2022.108621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 11/26/2022]
Abstract
Immunometabolism is a therapeutic strategy to tune immune cells through metabolic reprogramming, which allows immune cells to be differentiated according to their energy requirements. Recent therapeutic strategies targeting immunometabolism suggest that intracellular metabolic reprogramming controls T cell activation, proliferation, and differentiation into effector (Teff) or regulatory (Treg) cells. Immunometabolism is being studied for the treatment of inflammatory diseases, including those associated with solid organ transplantation (SOT). Here, we review immunometabolic regulation of immune cells, with a particular focus on Treg metabolic regulation and liver kinase B1 (LKB1) signaling, which stabilize Tregs and prevent inflammation-associated tissue injuries. All in all, here we discussed how targeting T cell immunometabolism modulates Teff and Treg-mediated immune responses, which can be used to boost Treg differentiation, stability, and ultimately favor immunotolerance in clinical transplants.
Collapse
Affiliation(s)
- Shadab Kazmi
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| | - Mohammad Afzal Khan
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| | - Talal Shamma
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| | - Abdullah Altuhami
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| | - Abdullah Mohammed Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia.
| | - Dieter Clemens Broering
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| |
Collapse
|
5
|
Khan MA, Shamma T, Altuhami A, Ahmed HA, Assiri AM, Broering DC. CTLA4-Ig mediated immunosuppression favors immunotolerance and restores graft in mouse airway transplants. Pharmacol Res 2022; 178:106147. [PMID: 35227891 DOI: 10.1016/j.phrs.2022.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 11/25/2022]
Abstract
CTLA4-Ig is a potent costimulatory blocker that inhibits T cell activation during alloimmune inflammation and increases graft survival and function. CTLA4-Ig-mediated immunosuppression has been demonstrated to support transplant function in various clinical trials and preclinical settings, but its effects on the balance between regulatory T cells (Tregs) and effector T cells (Teffs), as well as complement activation, are less well investigated. In the present study, we proposed to investigate the effects of CTLA4-Ig mediated immunosuppression on the phase of immunotolerance and the subsequent graft microvascular and epithelial repair during the progression of subepithelial fibrosis in a mouse model of orthotopic trachea transplantation. Briefly, CTLA4-Ig treated allografts (2 mg/kg, I.P.), untreated allografts, and syngrafts were serially monitored for peripheral FOXP3+ Tregs, antibody-mediated complement activation (C3d and C4d), tissue oxygenation, donor-recipient microvascular blood flow, and subsequent tissue remodeling following transplantation. Our data demonstrate that CTLA4-Ig mediated immunosuppression significantly results in late increases in both peripheral CD4+/CD8+ FOXP3+ Tregs and serum IL-10, but prevents the microvascular deposition of IgG, complement factor C3d, and epithelial C4d respectively, which proportionally improved blood flow and tissue oxygenation in the graft and, thus, promotes graft repair. Also, it restored the airway lumen, epithelium, and prevented the progression of subepithelial collagen deposition up to 90 days after transplantation. This study demonstrates that CTLA4-Ig-mediated immunosuppression potentially modulates both effector response and a late surge of regulatory activity to preserve graft microvasculature and rescue allograft from sustained hypoxia and ischemia and thereby limits subepithelial fibrosis.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre Riyadh, Saudi Arabia.
| | - Talal Shamma
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre Riyadh, Saudi Arabia
| | - Abdullah Altuhami
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre Riyadh, Saudi Arabia
| | - Hala Abdalrahman Ahmed
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre Riyadh, Saudi Arabia
| | | | - Dieter Clemens Broering
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Kazmi S, Khan MA, Shamma T, Altuhami A, Ahmed HA, Mohammed Assiri A, Broering DC. Targeting Interleukin-10 Restores Graft Microvascular Supply and Airway Epithelium in Rejecting Allografts. Int J Mol Sci 2022; 23:1269. [PMID: 35163192 PMCID: PMC8836023 DOI: 10.3390/ijms23031269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Interleukin-10 (IL-10) is a vital regulatory cytokine, which plays a constructive role in maintaining immune tolerance during an alloimmune inflammation. Our previous study highlighted that IL-10 mediated immunosuppression established the immune tolerance phase and thereby modulated both microvascular and epithelial integrity, which affected inflammation-associated graft malfunctioning and sub-epithelial fibrosis in rejecting allografts. Here, we further investigated the reparative effects of IL-10 on microvasculature and epithelium in a mouse model of airway transplantation. To investigate the IL-10 mediated microvascular and epithelial repair, we depleted and reconstituted IL-10, and monitored graft microvasculature, airway epithelium, and associated repair proteins. Our data demonstrated that both untreated control allografts and IL-10 (-) allografts showed a significant early (d6) increase in microvascular leakiness, drop-in tissue oxygenation, blood perfusion, and denuded airway epithelium, which is associated with loss of adhesion protein Fascin-1 and β-catenin on vascular endothelial cells at d10 post-transplantation. However, IL-10 (+) promotes early microvascular and airway epithelial repair, and a proportional increase in endothelial Fascin-1, and β-catenin at d10 post-transplantation. Moreover, airway epithelial cells also express a significantly higher expression of FOXJ1 and β-catenin in syngrafts and IL-10 (+) allografts as compared to IL-10 (-) and untreated controls at d10 post-transplantation. Collectively, these findings demonstrated that IL-10 mediated microvascular and epithelial changes are associated with the expression of FOXJ1, β-catenin, and Fascin-1 proteins on the airway epithelial and vascular endothelial cells, respectively. These findings establish a potential reparative modulation of IL-10 associated microvascular and epithelial repair, which could provide a vital therapeutic strategy to facilitate graft repair in clinical settings.
Collapse
Affiliation(s)
- Shadab Kazmi
- Transplantation Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (S.K.); (T.S.); (A.A.); (D.C.B.)
| | - Mohammad Afzal Khan
- Transplantation Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (S.K.); (T.S.); (A.A.); (D.C.B.)
| | - Talal Shamma
- Transplantation Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (S.K.); (T.S.); (A.A.); (D.C.B.)
| | - Abdullah Altuhami
- Transplantation Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (S.K.); (T.S.); (A.A.); (D.C.B.)
| | - Hala Abdalrahman Ahmed
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (H.A.A.); (A.M.A.)
| | - Abdullah Mohammed Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (H.A.A.); (A.M.A.)
- College of Medicine, Alfaisal University, Riyadh 12713, Saudi Arabia
| | - Dieter Clemens Broering
- Transplantation Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (S.K.); (T.S.); (A.A.); (D.C.B.)
| |
Collapse
|
7
|
Khan MA, Ashoor GA, Shamma T, Alanazi F, Altuhami A, Kazmi S, Ahmed HA, Mohammed Assiri A, Clemens Broering D. IL-10 Mediated Immunomodulation Limits Subepithelial Fibrosis and Repairs Airway Epithelium in Rejecting Airway Allografts. Cells 2021; 10:1248. [PMID: 34069395 PMCID: PMC8158696 DOI: 10.3390/cells10051248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Interleukin-10 plays a vital role in maintaining peripheral immunotolerance and favors a regulatory immune milieu through the suppression of T effector cells. Inflammation-induced microvascular loss has been associated with airway epithelial injury, which is a key pathological source of graft malfunctioning and subepithelial fibrosis in rejecting allografts. The regulatory immune phase maneuvers alloimmune inflammation through various regulatory modulators, and thereby promotes graft microvascular repair and suppresses the progression of fibrosis after transplantation. The present study was designed to investigate the therapeutic impact of IL-10 on immunotolerance, in particular, the reparative microenvironment, which negates airway epithelial injury, and fibrosis in a mouse model of airway graft rejection. Here, we depleted and reconstituted IL-10, and serially monitored the phase of immunotolerance, graft microvasculature, inflammatory cytokines, airway epithelium, and subepithelial collagen in rejecting airway transplants. We demonstrated that the IL-10 depletion suppresses FOXP3+ Tregs, tumor necrosis factor-inducible gene 6 protein (TSG-6), graft microvasculature, and establishes a pro-inflammatory phase, which augments airway epithelial injury and subepithelial collagen deposition while the IL-10 reconstitution facilitates FOXP3+ Tregs, TSG-6 deposition, graft microvasculature, and thereby favors airway epithelial repair and subepithelial collagen suppression. These findings establish a potential reparative modulation of IL-10-associated immunotolerance on microvascular, epithelial, and fibrotic remodeling, which could provide a vital therapeutic option to rescue rejecting transplants in clinical settings.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| | | | - Talal Shamma
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| | - Fatimah Alanazi
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| | - Abdullah Altuhami
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| | - Shadab Kazmi
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| | - Hala Abdalrahman Ahmed
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (H.A.A.); (A.M.A.)
| | - Abdullah Mohammed Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (H.A.A.); (A.M.A.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Dieter Clemens Broering
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| |
Collapse
|
8
|
Khan MA. Regulatory T cells mediated immunomodulation during asthma: a therapeutic standpoint. J Transl Med 2020; 18:456. [PMID: 33267824 PMCID: PMC7713035 DOI: 10.1186/s12967-020-02632-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Asthma is an inflammatory disease of the lung airway network, which is initiated and perpetuated by allergen-specific CD4+ T cells, IgE antibodies, and a massive release of Th2 cytokines. The most common clinical manifestations of asthma progression include airway inflammation, pathological airway tissue and microvascular remodeling, which leads to airway hyperresponsiveness (AHR), and reversible airway obstruction. In addition to inflammatory cells, a tiny population of Regulatory T cells (Tregs) control immune homeostasis, suppress allergic responses, and participate in the resolution of inflammation-associated tissue injuries. Preclinical and clinical studies have demonstrated a tremendous therapeutic potential of Tregs in allergic airway disease, which plays a crucial role in immunosuppression, and rejuvenation of inflamed airways. These findings supported to harness the immunotherapeutic potential of Tregs to suppress airway inflammation and airway microvascular reestablishment during the progression of the asthma disease. This review addresses the therapeutic impact of Tregs and how Treg mediated immunomodulation plays a vital role in subduing the development of airway inflammation, and associated airway remodeling during the onset of disease.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
9
|
Yu J, Xu H, Cui J, Chen S, Zhang H, Zou Y, Zhao J, Le S, Jiang L, Chen Z, Liu H, Zhang D, Xia J, Wu J. PLK1 Inhibition alleviates transplant-associated obliterative bronchiolitis by suppressing myofibroblast differentiation. Aging (Albany NY) 2020; 12:11636-11652. [PMID: 32541091 PMCID: PMC7343459 DOI: 10.18632/aging.103330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Chronic allograft dysfunction (CAD) resulting from fibrosis is the major limiting factor for long-term survival of lung transplant patients. Myofibroblasts promote fibrosis in multiple organs, including the lungs. In this study, we identified PLK1 as a promoter of myofibroblast differentiation and investigated the mechanism by which its inhibition alleviates transplant-associated obliterative bronchiolitis (OB) during CAD. High-throughput bioinformatic analyses and experiments using the murine heterotopic tracheal transplantation model revealed that PLK1 is upregulated in grafts undergoing CAD as compared with controls, and that inhibiting PLK1 alleviates OB in vivo. Inhibition of PLK1 in vitro reduced expression of the specific myofibroblast differentiation marker α-smooth muscle actin (α-SMA) and decreased phosphorylation of both MEK and ERK. Importantly, we observed a similar phenomenon in human primary fibroblasts. Our results thus highlight PLK1 as a promising therapeutic target for alleviating transplant-associated OB through suppression of TGF-β1-mediated myofibroblast differentiation.
Collapse
Affiliation(s)
- Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Heng Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jikai Cui
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shanshan Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yanqiang Zou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jing Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Sheng Le
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Lang Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Dan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
10
|
Khan MA, Shamma T, Kazmi S, Altuhami A, Ahmed HA, Assiri AM, Broering DC. Hypoxia-induced complement dysregulation is associated with microvascular impairments in mouse tracheal transplants. J Transl Med 2020; 18:147. [PMID: 32234039 PMCID: PMC7110829 DOI: 10.1186/s12967-020-02305-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Complement Regulatory Proteins (CRPs), especially CD55 primarily negate complement factor 3-mediated injuries and maintain tissue homeostasis during complement cascade activation. Complement activation and regulation during alloimmune inflammation contribute to allograft injury and therefore we proposed to investigate a crucial pathological link between vascular expression of CD55, active-C3, T cell immunity and associated microvascular tissue injuries during allograft rejection. METHODS Balb/c→C57BL/6 allografts were examined for microvascular deposition of CD55, C3d, T cells, and associated tissue microvascular impairments during rejection in mouse orthotopic tracheal transplantation. RESULTS Our findings demonstrated that hypoxia-induced early activation of HIF-1α favors a cell-mediated inflammation (CD4+, CD8+, and associated proinflammatory cytokines, IL-2 and TNF-α), which proportionally triggers the downregulation of CRP-CD55, and thereby augments the uncontrolled release of active-C3, and Caspase-3 deposition on CD31+ graft vascular endothelial cells. These molecular changes are pathologically associated with microvascular deterioration (low tissue O2 and Blood flow) and subsequent airway epithelial injuries of rejecting allografts as compared to non-rejecting syngrafts. CONCLUSION Together, these findings establish a pathological correlation between complement dysregulation, T cell immunity, and microvascular associated injuries during alloimmune inflammation in transplantation.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Talal Shamma
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Shadab Kazmi
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Abdullah Altuhami
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Hala Abdalrahman Ahmed
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Abdullah Mohammed Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
- Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Dieter Clemens Broering
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Aykar SS, Reynolds DE, McNamara MC, Hashemi NN. Manufacturing of poly(ethylene glycol diacrylate)-based hollow microvessels using microfluidics. RSC Adv 2020; 10:4095-4102. [PMID: 35492659 PMCID: PMC9049053 DOI: 10.1039/c9ra10264g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022] Open
Abstract
Biocompatible and self-standing poly(ethylene glycol diacrylate)-based hollow microvessels were fabricated from a microfluidic device using microfluidic principles.
Collapse
Affiliation(s)
- Saurabh S. Aykar
- Department of Mechanical Engineering
- Iowa State University
- Ames
- USA
| | | | | | - Nicole N. Hashemi
- Department of Mechanical Engineering
- Iowa State University
- Ames
- USA
- Department of Biomedical Sciences
| |
Collapse
|
12
|
Khan MA, Alanazi F, Ahmed HA, Shamma T, Kelly K, Hammad MA, Alawad AO, Assiri AM, Broering DC. iPSC-derived MSC therapy induces immune tolerance and supports long-term graft survival in mouse orthotopic tracheal transplants. Stem Cell Res Ther 2019; 10:290. [PMID: 31547869 PMCID: PMC6757436 DOI: 10.1186/s13287-019-1397-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/16/2019] [Accepted: 08/26/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Lung transplantation is a life-saving surgical replacement of diseased lungs in patients with end-stage respiratory malfunctions. Despite remarkable short-term recovery, long-term lung survival continues to face several major challenges, including chronic rejection and severe toxic side effects due to global immunosuppression. Stem cell-based immunotherapy has been recognized as a crucial immunoregulatory regimen in various preclinical and clinical studies. Despite initial therapeutic outcomes, conventional stem cells face key limitations. The novel Cymerus™ manufacturing facilitates production of a virtually limitless supply of consistent human induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells, which could play a key role in selective immunosuppression and graft repair during rejection. METHODS Here, we demonstrated the impact of iPSC-derived human MSCs on the development of immune tolerance and long-term graft survival in mouse orthotopic airway allografts. BALB/c → C57BL/6 allografts were reconstituted with iPSC-derived MSCs (2 million/transplant/at d0), and allografts were examined for regulatory T cells (Tregs), oxygenation, microvascular blood flow, airway epithelium, and collagen deposition during rejection. RESULTS We demonstrated that iPSC-derived MSC treatment leads to significant increases in hTSG-6 protein, followed by an upregulation of mouse Tregs and IL-5, IL-10, and IL-15 cytokines, which augments graft microvascular blood flow and oxygenation, and thereby maintained a healthy airway epithelium and prevented the subepithelial deposition of collagen at d90 post transplantation. CONCLUSIONS Collectively, these data confirmed that iPSC-derived MSC-mediated immunosuppression has potential to establish immune tolerance and rescue allograft from sustained hypoxic/ischemic phase, and subsequently limits long-term airway epithelial injury and collagen progression, which therapeutically warrant a study of Cymerus iPSC-derived MSCs as a potential management option for immunosuppression in transplant recipients.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Research Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Fatimah Alanazi
- Organ Transplant Research Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Hala Abdalrahman Ahmed
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Talal Shamma
- Organ Transplant Research Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Kilian Kelly
- Cynata Therapeutics Limited, Melbourne, Australia
| | - Mohamed A. Hammad
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Abdullah O. Alawad
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Abdullah Mohammed Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dieter Clemens Broering
- Organ Transplant Research Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Khan MA, Shamma T. Complement factor and T-cell interactions during alloimmune inflammation in transplantation. J Leukoc Biol 2018; 105:681-694. [PMID: 30536904 DOI: 10.1002/jlb.5ru0718-288r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/25/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
Complement factor and T-cell signaling during an effective alloimmune response plays a key role in transplant-associated injury, which leads to the progression of chronic rejection (CR). During an alloimmune response, activated complement factors (C3a and C5a) bind to their corresponding receptors (C3aR and C5aR) on a number of lymphocytes, including T-regulatory cells (Tregs), and these cell-molecular interactions have been vital to modulate an effective immune response to/from Th1-effector cell and Treg activities, which result in massive inflammation, microvascular impairments, and fibrotic remodeling. Involvement of the complement-mediated cell signaling during transplantation signifies a crucial role of complement components as a key therapeutic switch to regulate ongoing inflammatory state, and further to avoid the progression of CR of the transplanted organ. This review highlights the role of complement-T cell interactions, and how these interactions shunt the effector immune response during alloimmune inflammation in transplantation, which could be a novel therapeutic tool to protect a transplanted organ and avoid progression of CR.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Research Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Talal Shamma
- Organ Transplant Research Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Khan MA, Alanazi F, Ahmed HA, Vater A, Assiri AM, Broering DC. C5a Blockade Increases Regulatory T Cell Numbers and Protects Against Microvascular Loss and Epithelial Damage in Mouse Airway Allografts. Front Immunol 2018; 9:1010. [PMID: 29881374 PMCID: PMC5976734 DOI: 10.3389/fimmu.2018.01010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Microvascular injury during acute rejection has been associated with massive infiltration of CD4+ T effector cells, and the formation of complement products (C3a and C5a). Regulatory T cells (Tregs) are potent immunosuppressors of the adaptive immune system and have proven sufficient to rescue microvascular impairments. Targeting C5a has been linked with improved microvascular recovery, but its effects on the Treg and T effector balance is less well known. Here, we demonstrate the impact of C5a blockade on Treg induction and microvascular restoration in rejecting mouse airway allografts. BALB/c→C57BL/6 allografts were treated with a C5a-neutralizing l-aptamer (10 mg/kg, i.p. at d0 and every second day thereafter), and allografts were serially monitored for Treg infiltration, tissue oxygenation (tpO2), microvascular blood flow, and functional microvasculature between donor and recipients during allograft rejection. We demonstrated that C5a blocking significantly leads to enhanced presence of Tregs in the allograft, reinstates donor-recipient functional microvasculature, improves tpO2, microvascular blood flow, and epithelial repair, followed by an upregulation of IL-5, TGF-β, IL-10 vascular endothelial growth factor, and ANGPT1 gene expression, while it maintained a healthy epithelium and prevented subepithelial collagen deposition at d28 posttransplantation. Together, these data indicate that inhibition of C5a signaling has potential to preserve microvasculature and rescue allograft from a sustained hypoxic/ischemic phase, limits airway tissue remodeling through the induction of Treg-mediated immune tolerance. These findings may be useful in designing anti-C5a therapy in combination with existing immunosuppressive regimens to rescue tissue/organ rejection.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Organ Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fatimah Alanazi
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Organ Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hala Abdalrahman Ahmed
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | - Abdullah Mohammed Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- College of Medicine, AlFaisal University, Riyadh, Saudi Arabia
- Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dieter Clemens Broering
- Organ Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Singh AK, Chan JL, Seavey CN, Corcoran PC, Hoyt RF, Lewis BGT, Thomas ML, Ayares DL, Horvath KA, Mohiuddin MM. CD4+CD25 Hi FoxP3+ regulatory T cells in long-term cardiac xenotransplantation. Xenotransplantation 2018; 25:e12379. [PMID: 29250828 DOI: 10.1111/xen.12379] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/12/2017] [Accepted: 11/24/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND CD4+CD25Hi FoxP3+ T (Treg) cells are a small subset of CD4+ T cells that have been shown to exhibit immunoregulatory function. Although the absolute number of Treg cells in peripheral blood lymphocytes (PBL) is very small, they play an important role in suppressing immune reactivity. Several studies have demonstrated that the number of Treg cells, rather than their intrinsic suppressive capacity, may contribute to determining the long-term fate of transplanted grafts. In this study, we analyzed Treg cells in PBL of long-term baboon recipients who have received genetically modified cardiac xenografts from pig donors. METHODS Heterotopic cardiac xenotransplantation was performed on baboons using hearts obtained from GTKO.hCD46 (n = 8) and GTKO.hCD46.TBM (n = 5) genetically modified pigs. Modified immunosuppression regimen included antithymocyte globulin (ATG), anti-CD20, mycophenolate mofetil (MMF), cobra venom factor (CVF), and costimulation blockade (anti-CD154/anti-CD40 monoclonal antibody). FACS analysis was performed on PBLs labeled with anti-human CD4, CD25, and FoxP3 monoclonal antibodies (mAb) to analyze the percentage of Treg cells in six baboons that survived longer than 2 months (range: 42-945 days) after receiving a pig cardiac xenograft. RESULTS Total WBC count was low due to immunosuppression in baboons who received cardiac xenograft from GTKO.hCD46 and GTKO.hCD46.hTBM donor pigs. However, absolute numbers of CD4+CD25Hi FoxP3 Treg cells in PBLs of long-term xenograft cardiac xenograft surviving baboon recipients were found to be increased (15.13 ± 1.50 vs 7.38 ± 2.92; P < .018) as compared to naïve or pre-transplant baboons. Xenograft rejection in these animals was correlated with decreased numbers of regulatory T cells. CONCLUSION Our results suggest that regulatory T (Treg) cells may contribute to preventing or delaying xenograft rejection by controlling the activation and expansion of donor-reactive T cells, thereby masking the antidonor immune response, leading to long-term survival of cardiac xenografts.
Collapse
Affiliation(s)
- Avneesh K Singh
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Joshua L Chan
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Caleb N Seavey
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip C Corcoran
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert F Hoyt
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Billeta G T Lewis
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD, USA
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, USA
| | - Marvin L Thomas
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, USA
| | | | - Keith A Horvath
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Muhammad M Mohiuddin
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
16
|
Khan MA. T regulatory cell mediated immunotherapy for solid organ transplantation: A clinical perspective. Mol Med 2017; 22:892-904. [PMID: 27878210 PMCID: PMC5319206 DOI: 10.2119/molmed.2016.00050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022] Open
Abstract
T regulatory cells (Tregs) play a vital role in suppressing heightened immune responses, and thereby promote a state of immunological tolerance. Tregs modulate both innate and adaptive immunity, which make them a potential candidate for cell-based immunotherapy to suppress uncontrolled activation of graft specific inflammatory cells and their toxic mediators. These grafts specific inflammatory cells (T effector cells) and other inflammatory mediators (Immunoglobulins, active complement mediators) are mainly responsible for graft vascular deterioration followed by acute/chronic rejection. Treg mediated immunotherapy is under investigation to induce allospecific tolerance in various ongoing clinical trials in organ transplant recipients. Treg immunotherapy is showing promising results but the key issues regarding Treg immunotherapy are not yet fully resolved including their mechanism of action, and specific Treg cell phenotype responsible for a state of tolerance. This review highlights the involvement of various subsets of Tregs during immune suppression, novelty of Tregs functions, effects on angiogenesis, emerging technologies for effective Treg expansion, plasticity and safety associated with clinical applications. Altogether this information will assist in designing single/combined Treg mediated therapies for successful clinical trials in solid organ transplantations.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia 11211
| |
Collapse
|