1
|
Zhang W, Teng F, Lan X, Liu P, Wang A, Zhang F, Cui Z, Guan J, Sun X. A novel finding relates to the involvement of ATF3/DOCK8 in Alzheimer's disease pathogenesis. J Alzheimers Dis 2025; 105:1385-1399. [PMID: 40267290 DOI: 10.1177/13872877251336266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
BackgroundThe involvement of microglia is likely to be pivotal in the pathogenesis of Alzheimer's disease (AD) by modulating the deposition of amyloid-β (Aβ) plaques. The deletion of Dedicator of cytokinesis 8 (DOCK8) has a protective effect in mouse with neurodegenerative diseases.ObjectiveTo explore the underlying mechanism of DOCK8 in AD.MethodsIn present study, we first the detected the expression of DOCK8 in the hippocampal tissue of APP/PS1 mice. Then, the expression of DOCK8 was knocked down in the hippocampal tissue of APP/PS1 mice, and the effects of DOCK8 down-regulation on cognitive function, the microglia migration around Aβ plaques, and the cell division cycle 42 (Cdc42)/p38 mitogen-activated protein kinase (MAPK) signaling pathway were detected. Next, the effects of DOCK8 knockdown on Aβ-induced migration and activation of BV-2 cells as well as the MAPK signaling pathway were detected. Finally, the transcriptional regulation of DOCK by transcription factor 3 (ATF3) was detected by a dual luciferase reporter assay.ResultsDOCK8 expression exerts a significant upregulation in the hippocampus of APP/PS1 mice. However, following the DOCK8 knockdown, there was a significant recovery in the results of the behavioral tests and a notable reduction in microglial expression. Moreover, the high expression of DOCK8 mediated by ATF3 successfully triggered the Cdc42/p38 MAPK signaling pathway, thereby enhancing the migration and recruitment of microglia towards senile plaques, accelerating the production of Aβ plaques.ConclusionsATF3-mediated high expression of DOCK8 accelerates the production of Aβ plaques, and participates in the pathogenesis of AD.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, People's Republic of China
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Fei Teng
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xifa Lan
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, People's Republic of China
| | - Peihui Liu
- Neurointerventional Department, Huludao Central Hospital, Huludao, Liaoning, People's Republic of China
| | - Aiming Wang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Fan Zhang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Zhiqiang Cui
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
- School of Pharmacy, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jingwei Guan
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaohong Sun
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
- Science Experiment Center, China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
2
|
Alsharidah S, Elhussein A, Al-Herz W. Haploidentical stem cell transplantation in DOCK8 deficiency: a case report of successful outcomes. Blood Coagul Fibrinolysis 2025:00001721-990000000-00199. [PMID: 40356586 DOI: 10.1097/mbc.0000000000001351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/18/2025] [Indexed: 05/15/2025]
Abstract
DOCK8 deficiency syndrome, formerly known as autosomal recessive hyper-IgE syndrome (AR-HIES), is a rare combined immunodeficiency disorder characterized by recurrent infections, eczema, eosinophilia, and elevated immunoglobulin E (IgE) levels. We present a case of a 6-year-old girl with DOCK8 deficiency syndrome, who experienced recurrent skin infections and molluscum contagiosum since infancy. Genetic testing confirmed the diagnosis. Due to the high morbidity and mortality associated with DOCK8 deficiency syndrome, she underwent hematopoietic stem cell transplantation (HSCT) from her father. Posttransplant, the patient's skin condition significantly improved, and she achieved full donor chimerism. This case highlights the importance of considering DOCK8 deficiency in patients with recurrent infections, eczema, eosinophilia, and high IgE levels, and the potential curative effect of HSCT for these patients.
Collapse
Affiliation(s)
| | - Ahmed Elhussein
- Pediatric Hematology Oncology Department, NBK Children's Hospital
| | - Waleed Al-Herz
- Allergy and Clinical Immunology Unit, Pediatrics Department, Alsabah Hospital, Sabah
- Pediatric Department, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
3
|
Rimland CA, Lam MT, Lee PY. DOCK8 at the crossroads of immunodeficiency and hyperinflammation. J Allergy Clin Immunol 2025; 155:1199-1201. [PMID: 39716548 DOI: 10.1016/j.jaci.2024.12.1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Affiliation(s)
- Casey A Rimland
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Mass
| | - Michael T Lam
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
4
|
Di Spirito F, Pisano M, Di Palo MP, De Benedetto G, Rizki I, Franci G, Amato M. Periodontal Status and Herpesiviridae, Bacteria, and Fungi in Gingivitis and Periodontitis of Systemically Compromised Pediatric Subjects: A Systematic Review. CHILDREN (BASEL, SWITZERLAND) 2025; 12:375. [PMID: 40150657 PMCID: PMC11941093 DOI: 10.3390/children12030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Gingivitis and periodontitis are microbially associated diseases, with some features characteristic of pediatric age and others linked to systemic diseases. While the role of periodontal pathogenic bacteria is well recognized, the contribution of fungi and viruses, particularly Herpesviridae, remains controversial. Studies in adults have highlighted the presence of Herpesviridae, but evidence in pediatric subjects, especially systemically compromised, is limited. This systematic review aimed to assess periodontal status (e.g., health, gingivitis, periodontitis, necrotizing gingivitis, and/or periodontitis) and the subgingival and/or salivary microbial (bacterial, viral, and fungal) profile in systemically compromised pediatric (≤18 years) subjects with gingivitis and/or periodontitis compared to clinical periodontal health. METHODS The review protocol was registered on PROSPERO (CRD42024597695) and followed the PRISMA statement. Data from eight studies were descriptively analyzed and qualitatively assessed through ROBINS-I and JBI tools. RESULTS CMV was frequently detected, particularly in necrotizing gingivitis (19.40%). EBV was found in necrotizing gingivitis (20.69%) and periodontitis (10.34%); HSV was mainly associated with gingivitis and necrotizing gingivitis. Bacteria species in periodontitis included Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium, and Campylobacter species. Candida albicans was detected in periodontitis, suggesting a fungal involvement in the disease's pathogenesis. Although the bacterial and fungal profile was not investigated, limited viral presence was noted in subjects with healthy periodontium, indicating a stable microbiome. CONCLUSIONS These findings underscore the dynamics of microbial interactions in the progression of periodontal disease in systemically compromised pediatric subjects.
Collapse
Affiliation(s)
- Federica Di Spirito
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.P.); (M.P.D.P.); (G.D.B.); (I.R.); (M.A.)
| | | | | | | | | | | | | |
Collapse
|
5
|
AlYafie R, Velayutham D, van Panhuys N, Jithesh PV. The genetics of hyper IgE syndromes. Front Immunol 2025; 16:1516068. [PMID: 40040707 PMCID: PMC11876172 DOI: 10.3389/fimmu.2025.1516068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
Hyper IgE syndromes (HIES) form a rare group of primary immunodeficiency disorders (PIDs) distinguished by persistent skin abscesses, dermatitis, allergies, and infections, in addition to their characteristic high serum IgE levels. Autosomal dominant (AD) and autosomal recessive (AR) genetic defects have been reported in HIES. From a clinical perspective, AD-HIES cases generally exhibit several non-immunologic features, including connective tissue, dental and skeletal abnormalities, whilst AR-HIES conditions have a higher incidence of neurologic complications and cutaneous viral infections. Genetic defects associated with HIES lead to impaired immune signaling, affecting pathways crucial for immune cell development, function, and immune response to pathogens/allergens. As a result, HIES patients are predisposed to recurrent bacterial and/or fungal infections, as well as atopic allergic responses. In many cases, the exact biological mechanisms responsible for the variations observed in the clinical phenotypes between the two inherited forms of HIES are still unclear. In this review, we describe the genetic basis of HIES with a distinction between the AR-HIES and AD-HIES forms, to better comprehend the different underlying molecular mechanisms, a distinction which is imperative for the accurate diagnosis, management, and development of targeted therapies for HIES patients.
Collapse
Affiliation(s)
- Randa AlYafie
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar
- Laboratory of Immunoregulation, Research Department, Sidra Medicine, Doha, Qatar
| | - Dinesh Velayutham
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar
| | - Nicholas van Panhuys
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar
- Laboratory of Immunoregulation, Research Department, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
6
|
Sonmez G, Ulum B, Tenekeci AK, Caka C, Şahin A, Kazancıoğlu A, Ozbek B, Yaz İ, Esenboğa S, Çağdaş D. Recurrent eosinophilia with a novel homozygous ARPC1B mutation. Front Med 2025; 19:174-180. [PMID: 39609360 DOI: 10.1007/s11684-024-1106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/18/2024] [Indexed: 11/30/2024]
Abstract
Cytoskeletal network dysregulation is a pivotal determinant in various immunodeficiencies and autoinflammatory conditions. This report reviews the significance of actin remodeling in disease pathogenesis, focusing on the Arp2/3 complex and its regulatory subunit actin related protein 2/3 complex subunit 1B (ARPC1B). A spectrum of cellular dysfunctions associated with ARPC1B deficiency, impacting diverse immune cell types, is elucidated. The study presents a patient featuring recurrent and persistent eosinophilia attributed to homozygous ARPC1B mutation alongside concomitant compound heterozygous cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations. We used ARPC1B antibody to stain the patient's peripheral blood lymphocytes and those of the control. The defect in the ARPC1B gene in the present patient caused absent/low expression by immunofluorescence microscopy. The intricate interplay between cytoskeletal defects and immunological manifestations underscores the complexity of disease phenotypes, warranting further exploration for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Gamze Sonmez
- Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Baris Ulum
- Department of Pediatric Immunology, Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, 06100, Turkey
| | | | - Canan Caka
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, 06100, Turkey
| | - Ali Şahin
- School of Medicine, Selcuk University, Konya, 42250, Turkey
| | - Alp Kazancıoğlu
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, 06100, Turkey
| | - Begum Ozbek
- Department of Pediatric Immunology, Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, 06100, Turkey
| | - İsmail Yaz
- Department of Pediatric Immunology, Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, 06100, Turkey
| | - Saliha Esenboğa
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, 06100, Turkey
- Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, 06100, Turkey
| | - Deniz Çağdaş
- Department of Pediatric Immunology, Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, 06100, Turkey.
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, 06100, Turkey.
- Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, 06100, Turkey.
| |
Collapse
|
7
|
Trombello S, Jarisch A, Willasch A, Rettinger E, Fekadu-Siebald J, Holzinger D, Adelmann R, Bader P, Bakhtiar S. Case report: Advanced age at transplantation and pre-emptive treatment with dupilumab in DOCK8 deficiency. Front Immunol 2025; 15:1507494. [PMID: 39936153 PMCID: PMC11810938 DOI: 10.3389/fimmu.2024.1507494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/02/2024] [Indexed: 02/13/2025] Open
Abstract
Dedicator of cytokinesis 8 (DOCK8) deficiency is a combined immunodeficiency (CID) due to biallelic mutations in the gene encoding DOCK8. Major clinical phenomena are recurrent severe infections of the lungs and skin, atopic eczema, and predisposition to malignancy leading to a poor prognosis. Typical findings include highly elevated IgE and eosinophilia. Allogeneic hematopoietic stem cell transplantation (alloHSCT) is indicated as the only curative treatment option. We present a patient with advanced disease undergoing alloHSCT at the age of 11 years after individualized pre-treatment using dupilumab and rituximab resulting in a decrease in IgE levels and clinical improvement of the skin condition. Additionally, in a review of the literature, we summarize morbidity and outcome in DOCK8-deficient patients older than 8 years of age receiving alloHSCT. Life-threatening infections, malignancy, and disease-related complications with organ damage pre-transplant are challenging in older DOCK8-deficient patients. The therapeutic role of dupilumab in DOCK8 deficiency should be evaluated in larger studies.
Collapse
Affiliation(s)
- Sophia Trombello
- Division for Stem Cell Transplantation and Immunology, Department for Pediatrics, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
- Children’s Hospital, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrea Jarisch
- Division for Stem Cell Transplantation and Immunology, Department for Pediatrics, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Andre Willasch
- Division for Stem Cell Transplantation and Immunology, Department for Pediatrics, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Eva Rettinger
- Division for Stem Cell Transplantation and Immunology, Department for Pediatrics, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Julia Fekadu-Siebald
- Division for Stem Cell Transplantation and Immunology, Department for Pediatrics, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Dirk Holzinger
- Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany
- Department of Applied Health Sciences, University of Applied Sciences Bochum, Bochum, Germany
| | - Roland Adelmann
- Department for Children and Adolescents Medicine, Hospital Oberberg, Gummersbach, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation and Immunology, Department for Pediatrics, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Shahrzad Bakhtiar
- Division for Stem Cell Transplantation and Immunology, Department for Pediatrics, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Singh N, Ranganath P, Jayaram A, Jhawar P, Kotecha U, Janardhanan J, Kumar H, Sudheer KA, Ali SMN, Arigela K, Ginigeri C, Bhattad S. Clinical and molecular profile of 20 patients with DOCK8 deficiency-a single-center experience from Southern India. Immunol Res 2024; 73:8. [PMID: 39666233 DOI: 10.1007/s12026-024-09571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/21/2024] [Indexed: 12/13/2024]
Abstract
DOCK8 deficiency is the most common cause of autosomal recessive hyper-IgE syndrome (AR-HIES). The clinical spectrum is wide resulting in combined immunodeficiency, atopy, autoimmunity, and malignancies. To study the clinical and molecular profile of 20 patients with DOCK8 deficiency. Four hundred and eight patients with various inborn errors of immunity (IEIs) were diagnosed in the Pediatric Immunology Unit of our hospital during the study period of February 2017 to August 2023. Based on the clinical and immunological phenotype, DOCK8 deficiency was suspected in 31 patients. Genetic studies confirmed DOCK8 deficiency in 20 patients, and their profile was analyzed in detail. Twenty patients from 17 kindreds were diagnosed with DOCK8 deficiency. The female-to-male ratio was 1.2:1. The mean age at onset of symptoms and diagnosis was 9.8 and 69.8 months, respectively. Thirteen out of 17 families (76%) reported consanguinity. Eczema was the presenting manifestation in 19 patients (95%). Mucocutaneous manifestations included oromucosal hyperpigmentation (n = 8), scalp seborrhoea (n = 2), psoriasis (n = 2), and alopecia (n = 1). The spectrum of infections included pneumonia (n = 14), otitis media (n = 6), gastrointestinal infections (n = 6), cutaneous viral infections (n = 5), oral candidiasis (n = 4), and meningoencephalitis (n = 2). Three patients had developed bronchiectasis. Four patients had autoimmune manifestations including autoimmune hemolytic anemia (n = 2) and vasculitis (n = 2). The whole exome sequencing showed deletions (8 kindreds) as the most common mutation in the DOCK8 gene. Overall, 11 of these mutations were novel. Ten patients were on monthly intravenous immunoglobulin therapy and antibiotic prophylaxis at the time of writing this paper. Three patients underwent hematopoietic stem cell transplants elsewhere, two of whom succumbed to post-transplant complications and one is doing well. Nine patients died during the study period. We present one of the largest single-center experiences on DOCK8 deficiency from India. A significant delay in the diagnosis contributed to poor outcomes in our cohort.
Collapse
Affiliation(s)
- Neha Singh
- Paediatric Immunology and Rheumatology Unit, Aster CMI Hospital, Bengaluru, India
| | - Priya Ranganath
- Clinical Genetics, Neuberg Center for Genomic Medicine, Ahmedabad, Gujarat, India
| | | | - Prerna Jhawar
- Department of Fetal Medicine, Cloud Nine Hospital, Bengaluru, India
| | - Udhaya Kotecha
- Clinical Genetics, Neuberg Center for Genomic Medicine, Ahmedabad, Gujarat, India
| | - Jyothi Janardhanan
- Paediatric Immunology and Rheumatology Unit, Aster CMI Hospital, Bengaluru, India
| | - Harish Kumar
- Pediatric Intensive Care Unit, Department of Paediatrics, Aster CMI Hospital, Bengaluru, India
| | - K A Sudheer
- Department of Paediatrics, Aster CMI Hospital, Bengaluru, India
| | | | - Karthik Arigela
- Pediatric Intensive Care Unit, Department of Paediatrics, Aster CMI Hospital, Bengaluru, India
| | - Chetan Ginigeri
- Pediatric Intensive Care Unit, Department of Paediatrics, Aster CMI Hospital, Bengaluru, India
| | - Sagar Bhattad
- Paediatric Immunology and Rheumatology Unit, Aster CMI Hospital, Bengaluru, India.
| |
Collapse
|
9
|
Oktelik FB, Wang M, Keles S, Eke Gungor H, Cansever M, Can S, Karakoc-Aydiner E, Baris S, Schmitz-Abe K, Benamar M, Chatila TA. DOCK8 deficiency due to a deep intronic variant in two kindreds with hyper-IgE syndrome. Clin Immunol 2024; 268:110384. [PMID: 39437980 PMCID: PMC11531991 DOI: 10.1016/j.clim.2024.110384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Dedicator of cytokinesis 8 (DOCK8) deficiency underlies the majority of cases of patients with autosomal recessive form of the hyper-immunoglobulin E syndrome (HIES). Most DOCK8 mutations involve deletions and splice junction mutations that abrogate protein expression. However, a few patients whose presentation is reminiscent of DOCK8 deficiency have no identifiable mutations. Using Whole Exome Sequencing (WES), we identified a deep intronic homozygous DOCK8 variant located in intron 36 (c.4626 + 76 A > G) in two unrelated patients with features of HIES that resulted in an in-frame 75 base pair intronic sequence insertion in DOCK8 cDNA, resulting in a premature stop codon (p.S1542ins6Ter). This variant resulted in variable decrease in DOCK8 expression that was associated with impaired T cell receptor-triggered actin polymerization, decreased IL-6-induced STAT3 phosphorylation, reduced expression of the Th17 cell markers CCR6 and IL-17, and higher frequencies of GATA3+ T cells indicative of Th2 skewing. Our approach extends the reach of WES in identifying disease-related intronic variants. It highlights the role of non-coding mutations in immunodeficiency disorders, including DOCK8 deficiency, and emphasizes the need to explore these mutations in unexplained inborn errors of immunity.
Collapse
Affiliation(s)
- Fatma Betul Oktelik
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Immunology, Aziz Sancar Institute of Experimental Medicine (Aziz Sancar DETAE), Istanbul University, Istanbul, Turkiye; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Muyun Wang
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Sevgi Keles
- Necmettin Erbakan University, Medical Faculty, Department of Pediatric Allergy and Immunology, Konya, Turkiye
| | - Hatice Eke Gungor
- University of Health Sciences, Kayseri City Hospital, Department of Pediatric Allergy and Immunology, Kayseri, Turkiye
| | - Murat Cansever
- University of Health Sciences, Kayseri City Hospital, Department of Pediatric Allergy and Immunology, Kayseri, Turkiye
| | - Salim Can
- Marmara University, School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkiye; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkiye; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkiye
| | - Elif Karakoc-Aydiner
- Marmara University, School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkiye; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkiye; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkiye
| | - Safa Baris
- Marmara University, School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkiye; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkiye; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkiye
| | - Klaus Schmitz-Abe
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Jackson Health System, Miami, FL, USA
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Galletta F, Gambadauro A, Foti Randazzese S, Passanisi S, Sinatra V, Caminiti L, Zirilli G, Manti S. Pathophysiology of Congenital High Production of IgE and Its Consequences: A Narrative Review Uncovering a Neglected Setting of Disorders. Life (Basel) 2024; 14:1329. [PMID: 39459629 PMCID: PMC11509725 DOI: 10.3390/life14101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Elevated serum IgE levels serve as a critical marker for uncovering hidden immunological disorders, particularly inborn errors of immunity (IEIs), which are often misdiagnosed as common allergic conditions. IgE, while typically associated with allergic diseases, plays a significant role in immune defense, especially against parasitic infections. However, extremely high levels of IgE can indicate more severe conditions, such as Hyper-IgE syndromes (HIES) and disorders with similar features, including Omenn syndrome, Wiskott-Aldrich syndrome, and IPEX syndrome. Novel insights into the genetic mutations responsible for these conditions highlight their impact on immune regulation and the resulting clinical features, including recurrent infections, eczema, and elevated IgE. This narrative review uniquely integrates recent advances in the genetic understanding of IEIs and discusses how these findings impact both diagnosis and treatment. Additionally, emerging therapeutic strategies, such as hematopoietic stem cell transplantation (HSCT) and gene therapies, are explored, underscoring the potential for personalized treatment approaches. Emphasizing the need for precise diagnosis and tailored interventions aims to enhance patient outcomes and improve the quality of care for those with elevated IgE levels and associated immunological disorders.
Collapse
Affiliation(s)
| | | | | | - Stefano Passanisi
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, University of Messina, 98124 Messina, Italy; (F.G.); (A.G.); (S.F.R.); (V.S.); (L.C.); (G.Z.)
| | | | | | | | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, University of Messina, 98124 Messina, Italy; (F.G.); (A.G.); (S.F.R.); (V.S.); (L.C.); (G.Z.)
| |
Collapse
|
11
|
Sun Z, Wei R, Pan C, Ni C, Zhang X, Guan W, Cheng R, Gu Y, Yu H, He K, Zhang Z, Yu X, Yao Z. Successfully treated with siltuximab and prednisone in a 7-year-old girl with DOCK8-deficiency presenting as recurrent wart-like lesions: a case report. Front Immunol 2024; 15:1414573. [PMID: 39044832 PMCID: PMC11263070 DOI: 10.3389/fimmu.2024.1414573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
Dedicator of cytokinesis 8 (DOCK8) deficiency represents a primary immunodeficiency with a wide range of clinical symptoms, including recurrent infections, atopy, and increased malignancy risk. This study presents a case of a 6-year-old girl with DOCK8 deficiency, characterized by severe, treatment-resistant herpetic infections who was successfully treated with siltuximab and glucocorticoids. The successful use of siltuximab in achieving remission highlights the pivotal role of interleukin-6 (IL-6) in DOCK8 deficiency pathogenesis and suggests that IL-6 modulation can be critical in managing DOCK8 deficiency-related viral infections, which may inform future therapeutic strategies for DOCK8 deficiency and similar immunodeficiencies.
Collapse
Affiliation(s)
- Zhe Sun
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruoqu Wei
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chaolan Pan
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cheng Ni
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xue Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenbin Guan
- Department of Pathology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruhong Cheng
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Gu
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Yu
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kejun He
- Department of Pediatric Hematology and Oncology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhen Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xia Yu
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhirong Yao
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Frommherz L, Akçetin L, Hauck F, Giehl K. [Relevant cutaneous manifestations as indications for inborn errors of immunity]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2024; 75:577-586. [PMID: 38856791 DOI: 10.1007/s00105-024-05331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 06/11/2024]
Abstract
Inborn errors of immunity (IEI) can affect different parts of the immune system and manifest especially through pathological infection susceptibility and immune dysregulation. Cutaneous manifestations of IEI can hint at the underlying immunodeficiency and the tendency for infection and inflammation. These manifestations can present as recurring eczema, erythema, abscesses, and hair loss with poor response to therapy. Cutaneous manifestations can be specific for certain IEI, or rather unspecific. Together with clinical course and severity, they can indicate the diagnosis. Early and accurate recognition, diagnosis, and treatment are crucial for optimizing patient outcomes. The diagnosis can be determined through a detailed patient history, clinical examination, and immunological diagnostics. Collaboration between immunologists and dermatologists is vital for comprehensive care and improvement of life quality.
Collapse
Affiliation(s)
- Leonie Frommherz
- Zentrum für seltene und genetische Hautkrankheiten, Klinik und Poliklinik für Dermatologie und Allergologie, LMU Klinikum - Campus Innenstadt | Frauenlobstr. 9-11, 80337, München, Deutschland
| | - Larissa Akçetin
- Zentrum für seltene und genetische Hautkrankheiten, Klinik und Poliklinik für Dermatologie und Allergologie, LMU Klinikum - Campus Innenstadt | Frauenlobstr. 9-11, 80337, München, Deutschland
| | - Fabian Hauck
- Immundefektambulanz, Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, LMU Klinikum, München, Deutschland
| | - Kathrin Giehl
- Zentrum für seltene und genetische Hautkrankheiten, Klinik und Poliklinik für Dermatologie und Allergologie, LMU Klinikum - Campus Innenstadt | Frauenlobstr. 9-11, 80337, München, Deutschland.
| |
Collapse
|
13
|
Nunes J, Tafesse R, Mao C, Purcell M, Mo X, Zhang L, Long M, Cyr MG, Rader C, Muthusamy N. Siglec-6 as a therapeutic target for cell migration and adhesion in chronic lymphocytic leukemia. Nat Commun 2024; 15:5180. [PMID: 38890323 PMCID: PMC11189495 DOI: 10.1038/s41467-024-48678-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
Siglec-6 is a lectin receptor with restricted expression in the placenta, mast cells and memory B-cells. Although Siglec-6 is expressed in patients with chronic lymphocytic leukemia (CLL), its pathophysiological role has not been elucidated. We describe here a role for Siglec-6 in migration and adhesion of CLL B cells to CLL- bone marrow stromal cells (BMSCs) in vitro and compromised migration to bone marrow and spleen in vivo. Mass spectrometry analysis revealed interaction of Siglec-6 with DOCK8, a guanine nucleotide exchange factor. Stimulation of MEC1-002 CLL cells with a Siglec-6 ligand, sTn, results in Cdc42 activation, WASP protein recruitment and F-actin polymerization, which are all associated with cell migration. Therapeutically, a Siglec-6/CD3-bispecific T-cell-recruiting antibody (T-biAb) improves overall survival in an immunocompetent mouse model and eliminates CLL cells in a patient derived xenograft model. Our findings thus reveal a migratory role for Siglec-6 in CLL, which can be therapeutically targeted using a Siglec-6 specific T-biAb.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Humans
- Animals
- Cell Movement
- Cell Adhesion
- Lectins/metabolism
- Mice
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Female
- B-Lymphocytes/metabolism
- B-Lymphocytes/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Cell Line, Tumor
- Mesenchymal Stem Cells/metabolism
- Male
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jessica Nunes
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Rakeb Tafesse
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Charlene Mao
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Matthew Purcell
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Liwen Zhang
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, USA
| | - Meixiao Long
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Matthew G Cyr
- UF Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Christoph Rader
- UF Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Natarajan Muthusamy
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
14
|
Leung CWM, Leung TF. Retained primary teeth: A clinical complaint not to be dismissed. Paediatr Child Health 2024; 29:133-134. [PMID: 38827365 PMCID: PMC11141607 DOI: 10.1093/pch/pxad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/21/2023] [Indexed: 06/04/2024] Open
Abstract
Retained primary teeth (RPT) may be an isolated finding, or one associated with other clinical complaints. In order to achieve timely and accurate diagnosis, it is helpful for paediatricians to perform thorough work-up for these patients. The article aims at providing an overview of the inborn medical causes that may be related to children with RPT, as well as their corresponding investigation and treatment modalities.
Collapse
Affiliation(s)
- Christy W M Leung
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ting Fan Leung
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- Department of Paediatrics, Prince of Wales Hospital, Hong Kong SAR
| |
Collapse
|
15
|
Li YY, Murai K, Lyu J, Honda M. Roles Played by DOCK11, a Guanine Nucleotide Exchange Factor, in HBV Entry and Persistence in Hepatocytes. Viruses 2024; 16:745. [PMID: 38793626 PMCID: PMC11125634 DOI: 10.3390/v16050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
HBV infection is challenging to cure due to the persistence of viral covalently closed circular viral DNA (cccDNA). The dedicator of cytokinesis 11 (DOCK11) is recognized as a guanine nucleotide exchange factor (GEF) for CDC42 that has been reported to be required for HBV persistence. DOCK11 is expressed in both the cytoplasm and nucleus of human hepatocytes and is functionally associated with retrograde trafficking proteins Arf-GAP with GTPase domain, ankyrin repeat, and pleckstrin homology domain-containing protein 2 (AGAP2), and ADP-ribosylation factor 1 (ARF1), together with the HBV capsid, in the trans-Golgi network (TGN). This opens an alternative retrograde trafficking route for HBV from early endosomes (EEs) to the TGN and then to the endoplasmic reticulum (ER), thereby avoiding lysosomal degradation. DOCK11 also facilitates the association of cccDNA with H3K4me3 and RNA Pol II for activating cccDNA transcription. In addition, DOCK11 plays a crucial role in the host DNA repair system, being essential for cccDNA synthesis. This function can be inhibited by 10M-D42AN, a novel DOCK11-binding peptide, leading to the suppression of HBV replication both in vitro and in vivo. Treatment with a combination of 10M-D42AN and entecavir may represent a promising therapeutic strategy for patients with chronic hepatitis B (CHB). Consequently, DOCK11 may be seen as a potential candidate molecule in the development of molecularly targeted drugs against CHB.
Collapse
Affiliation(s)
- Ying-Yi Li
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, 13-1, Takaramachi, Kanazawa 920-8640, Japan
| | - Kazuhisa Murai
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, 13-1, Takaramachi, Kanazawa 920-8640, Japan
| | - Junyan Lyu
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, 13-1, Takaramachi, Kanazawa 920-8640, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, 13-1, Takaramachi, Kanazawa 920-8640, Japan
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, 13-1, Takaramachi, Kanazawa 920-8640, Japan
| |
Collapse
|
16
|
Qin Y, Ma J, Vinuesa CG. Monogenic lupus: insights into disease pathogenesis and therapeutic opportunities. Curr Opin Rheumatol 2024; 36:191-200. [PMID: 38420886 PMCID: PMC7616038 DOI: 10.1097/bor.0000000000001008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of the genes and molecular pathways involved in monogenic lupus, the implications for genome diagnosis, and the potential therapies targeting these molecular mechanisms. RECENT FINDINGS To date, more than 30 genes have been identified as contributors to monogenic lupus. These genes are primarily related to complement deficiency, activation of the type I interferon (IFN) pathway, disruption of B-cell and T-cell tolerance and metabolic pathways, which reveal the multifaceted nature of systemic lupus erythematosus (SLE) pathogenesis. SUMMARY In-depth study of the causes of monogenic lupus can provide valuable insights into of pathogenic mechanisms of SLE, facilitate the identification of effective biomarkers, and aid in developing therapeutic strategies.
Collapse
Affiliation(s)
- Yuting Qin
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jianyang Ma
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Carola G. Vinuesa
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- The Francis Crick Institute, London, UK
| |
Collapse
|
17
|
Kumar Jindal A, Sil A, Aggarwal R, Tyagi R, Mondal S, Singh A, Barman P, Chawla S, Loganathan SK, Gupta K, Vinay K, Mahajan R, Saikia B, Kaur G, Sharma R, Saka R, Bhatia A, Sankhyan N, Pandiarajan V, Pilania R, Dhaliwal M, Sharma S, Vyas S, Suri D, Rawat A, Singh S. Clinical, immunological and molecular profiles of DOCK8 deficiency in six patients from a tertiary care centre in North India. Clin Exp Dermatol 2024; 49:226-234. [PMID: 37815217 DOI: 10.1093/ced/llad345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Dedicator of cytokinesis protein 8 (DOCK8) deficiency is an autosomal recessive form of combined immunodeficiency. This rare disorder is characterized by an increased predisposition to allergy, autoimmunity and malignancies. OBJECTIVES To analyse clinical, immunological and molecular profiles of patients with DOCK8 deficiency. METHODS Clinic records of all patients attending the primary immunodeficiency clinic from 2018 to 2021 were reviewed. Six patients from five families were found to have DOCK8 deficiency. RESULTS Median age at diagnosis was 7.5 years (range 2-13), with a male/female ratio of 5 : 1. Among the six patients, recurrent eczematous skin lesions were the predominant cutaneous manifestation, present in five patients (83%). Warts and molluscum contagiosum were evident in two patients (33%) and one patient (16%), respectively. Two patients had recalcitrant prurigo nodularis lesions and two had epidermodysplasia verruciformis-like lesions. Food allergies and asthma were reported by one patient each. Of the six patients, recurrent sinopulmonary infections were detected in five (83%). Epstein-Barr virus-driven non-Hodgkin lymphoma with liver metastases was the only case of malignancy, in a 4-year-old boy. IgE was elevated in all patients. Lymphopenia and eosinophilia were observed in three patients (50%) and five patients (83.3%), respectively. Genetic analysis showed DOCK8 pathogenic variants in all patients: homozygous deletion mutations in two patients, compound heterozygous deletion mutations in one, and homozygous nonsense mutations in two. A novel pathogenic homozygous missense variant in the DOCK8 gene was identified in one patient. CONCLUSIONS DOCK8 deficiency should be considered as a possibility in any patient with early onset eczema, cutaneous viral infections and increased predisposition to allergy, autoimmunity and malignancy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Anmol Bhatia
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Naveen Sankhyan
- Paediatric Neurology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | | - Sameer Vyas
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | |
Collapse
|
18
|
Opoka-Winiarska V, Winiarska N, Lejman M, Gdak M, Gosik K, Lewandowski F, Niedźwiedzka-Rystwej P, Grywalska E. DOCK8 Mutation in Patient with Juvenile Idiopathic Arthritis and Sjögren's Syndrome. Int J Mol Sci 2024; 25:2259. [PMID: 38396937 PMCID: PMC10888949 DOI: 10.3390/ijms25042259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
This study investigated the association between autoimmunity and immunodeficiency in pediatric patients, focusing on the case of a 15-year-old female diagnosed with juvenile idiopathic arthritis (JIA) and secondary Sjögren's syndrome. The patient presented with a variety of symptoms, including joint pain, bronchial asthma, leukopenia, and skin lesions. Genetic testing revealed a de novo mutation in the DOCK8 gene, associated with DOCK8 deficiency, a condition usually associated with immunodeficiencies. The clinical course, diagnostic pathway, and treatment history are detailed, highlighting the importance of molecular diagnostics in understanding the genetic basis of rheumatic diseases. This case highlights the need to consider innate immune errors in patients with multiple diseases or atypical symptoms of rheumatic diseases. Furthermore, the study highlights the importance of targeted treatment, including genetic counseling, to improve patient outcomes. The observed association between autoimmunity and immune deficiency reinforces the importance of molecular testing in elucidating the causes of previously idiopathic rheumatic diseases, contributing to improved patient care and quality of life.
Collapse
Affiliation(s)
- Violetta Opoka-Winiarska
- Department of Paediatric Pulmonology and Rheumatology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Natalia Winiarska
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Małgorzata Gdak
- University Children’s Hospital in Lublin, 20-093 Lublin, Poland;
| | - Krzysztof Gosik
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (K.G.); (E.G.)
| | - Filip Lewandowski
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | | | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (K.G.); (E.G.)
| |
Collapse
|
19
|
Wobma H, Janssen E. Expanding IPEX: Inborn Errors of Regulatory T Cells. Rheum Dis Clin North Am 2023; 49:825-840. [PMID: 37821198 DOI: 10.1016/j.rdc.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Regulatory T cells (Tregs) are critical for enforcing peripheral tolerance. Monogenic "Tregopathies" affecting Treg development, stability, and/or function commonly present with polyautoimmunity, atopic disease, and infection. While autoimmune manifestations may present in early childhood, as more disorders are characterized, conditions with later onset have been identified. Treg numbers in the blood may be decreased in Tregopathies, but this is not always the case, and genetic testing should be pursued when there is high clinical suspicion. Currently, hematopoietic cell transplantation is the only curative treatment, but gene therapies are in development, and small molecule inhibitors/biologics may also be used.
Collapse
Affiliation(s)
- Holly Wobma
- Division of Immunology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Erin Janssen
- Department of Pediatrics, Division of Pediatric Rheumatology, Michigan Medicine, C.S. Mott Children's Hospital, 1500 East Medical Center Drive, SPC 5718, Ann Arbor, MI 48109, USA.
| |
Collapse
|
20
|
Zhang C, Chang L, Yang X, Khan R, Liu D. Severe atypical hydroa vacciniforme-like lymphoproliferative disorder in a patient with hyper IgE syndromes due to DOCK8 gene mutation. Indian J Dermatol Venereol Leprol 2023; 89:874-877. [PMID: 37317769 DOI: 10.25259/ijdvl_409_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/01/2023] [Indexed: 06/16/2023]
Affiliation(s)
- Chaoyin Zhang
- Department of Dermatology and Venereology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Chang
- Department of Dermatology and Venereology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Yang
- Department of Dermatology and Venereology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Raqib Khan
- Department of Dermatology and Venereology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Donghua Liu
- Department of Dermatology and Venereology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
21
|
Kasap N, Kara A, Celik V, Bilgic Eltan S, Akay Haci I, Kose H, Aygun A, Akkelle E, Yakici N, Guner SN, Reisli I, Keles S, Cekic S, Kilic SS, Karaca NE, Gulez N, Genel F, Ozen A, Yucelten AD, Karakoc-Aydiner E, Schmitz-Abe K, Baris S. Atypical Localization of Eczema Discriminates DOCK8 or STAT3 Deficiencies from Atopic Dermatitis. J Clin Immunol 2023; 43:1882-1890. [PMID: 37507632 DOI: 10.1007/s10875-023-01554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
PURPOSE Autosomal recessive dedicator of cytokinesis 8 (DOCK8-/-) and autosomal dominant signal transducer and activator of transcription 3 (STAT3-/+) deficiencies are inborn errors of immunity (IEI) disorders present with the classic features of eczema and create a dilemma during differentiation from atopic dermatitis (AD). Therefore, an appropriate approach is required for eczema to diagnose DOCK8-/- and STAT3-/+ early. Here, we described a set of clinical and immunological variables, including atypical AD localizations and lymphocyte subsets, to differentiate DOCK8-/- or STAT3-/+ from AD. METHODS This multicenter study involved 100 patients with DOCK8-/- and STAT3-/+ and moderate/severe AD. We recruited disease manifestations, including detailed localizations of eczema, infections, and allergy. Principle component analysis (PCA) was used to discriminate DOCK8-/- or STAT3-/+ from AD. RESULTS There were 43 patients with DOCK8-/-, 23 with STAT3-/+, and 34 with AD. Pneumonia, severe infections, mucocutaneous candidiasis, and skin abscesses were commonly observed in DOCK8 and STAT3 deficiencies. Atypical skin involvement with neonatal rash, retro auricular, axillary, sacral, and genital eczema discriminate DOCK8-/- and STAT3-/+ from AD with high specificity ranges between 73.5 and 94.1% and positive predictive index ranges between 55 and 93.1%. Together with using absolute numbers of CD3+, CD4+, and CD8+ T cells, the combined clinical and laboratory features showed perfect differentiation between DOCK8-/- or STAT3-/+ and AD via PCA. CONCLUSIONS The described features can be easily implemented by physicians providing early diagnosis of DOCK8 and STAT3 deficiencies.
Collapse
Affiliation(s)
- Nurhan Kasap
- Division of Pediatric Allergy/Immunology, Faculty of Medicine, Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Altan Kara
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, Turkey
| | - Velat Celik
- Faculty of Medicine, Pediatric Allergy and Immunology, Trakya University, Edirne, Turkey
| | - Sevgi Bilgic Eltan
- Division of Pediatric Allergy/Immunology, Faculty of Medicine, Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Idil Akay Haci
- Department of Pediatric Allergy and Immunology, Dr Behçet Uz Children's Hospital, Izmir, Turkey
| | - Hulya Kose
- Department of Pediatric Immunology and Rheumatology, Medical Faculty, Uludag University, Bursa, Turkey
| | - Ayse Aygun
- Department of Pediatrics, Division of Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Emre Akkelle
- Pediatric Allergy and Immunology Department, Sancaktepe Training and Research Hospital, Istanbul, Turkey
| | - Nalan Yakici
- Pediatric Allergy and Immunology Department, Faculty of Medicine, Karadeniz Teknik University, Trabzon, Turkey
| | - Sukru Nail Guner
- Division of Pediatric Allergy and Immunology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Division of Pediatric Allergy and Immunology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Sukru Cekic
- Department of Pediatric Immunology and Rheumatology, Medical Faculty, Uludag University, Bursa, Turkey
| | - Sara Sebnem Kilic
- Department of Pediatric Immunology and Rheumatology, Medical Faculty, Uludag University, Bursa, Turkey
| | - Neslihan Edeer Karaca
- Department of Pediatrics, Division of Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Nesrin Gulez
- Department of Pediatric Allergy and Immunology, Dr Behçet Uz Children's Hospital, Izmir, Turkey
| | - Ferah Genel
- Department of Pediatric Allergy and Immunology, Dr Behçet Uz Children's Hospital, Izmir, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy/Immunology, Faculty of Medicine, Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayse Deniz Yucelten
- Department of Dermatology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy/Immunology, Faculty of Medicine, Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Klaus Schmitz-Abe
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Safa Baris
- Division of Pediatric Allergy/Immunology, Faculty of Medicine, Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey.
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey.
| |
Collapse
|
22
|
Mandato E, Yan Q, Ouyang J, Paczkowska J, Qin Y, Hao Y, Bojarczuk K, Hansen J, Chapuy B, Rodig SJ, Khan SJ, Redd RA, Shipp MA. MYD88L265P augments proximal B-cell receptor signaling in large B-cell lymphomas via an interaction with DOCK8. Blood 2023; 142:1219-1232. [PMID: 37467575 DOI: 10.1182/blood.2023019865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically and genetically heterogeneous disease with at least 5 recognized molecular subtypes. Cluster 5 (C5)/MCD tumors frequently exhibit concurrent alterations in the toll-like receptor (TLR) and B-cell receptor (BCR) pathway members, MYD88L265P and CD79B, and have a less favorable prognosis. In healthy B cells, the synergy between TLR and BCR signaling pathways integrates innate and adaptive immune responses and augments downstream NF-κB activation. In addition, physiologic TLR9 pathway engagement via MYD88, protein tyrosine kinase 2 (PYK2), and dedicator of cytokinesis 8 (DOCK8) increases proximal BCR signaling in healthy murine B cells. Although C5/MCD DLBCLs are selectively sensitive to Bruton tyrosine kinase (BTK) inhibition in in vitro studies and certain clinical trials, the role of mutated MYD88 in proximal BCR signaling remains undefined. Using engineered DLBCL cell line models, we found that concurrent MYD88L265P and CD79B alterations significantly increased the magnitude and duration of proximal BCR signaling, at the level of spleen tyrosine kinase and BTK, and augmented PYK2-dependent DOCK8 phosphorylation. MYD88L265P DLBCLs have significantly increased colocalization of DOCK8 with both MYD88 and the proximal BCR-associated Src kinase, LYN, in comparison with MYD88WT DLBCLs, implicating DOCK8 in MYD88L265P/proximal BCR cross talk. Additionally, DOCK8 depletion selectively decreased proximal BCR signaling, cellular proliferation, and viability of DLBCLs with endogenous MYD88L265P/CD79BY196F alterations and increased the efficacy of BTK blockade in these lymphomas. Therefore, MYD88L265P/DOCK8-enhanced proximal BCR signaling is a likely mechanism for the increased sensitivity of C5/MCD DLBCLs to BTK blockade.
Collapse
Affiliation(s)
- Elisa Mandato
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Qingsheng Yan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jing Ouyang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Bristol Myers Squibb, Cambridge, MA
| | - Julia Paczkowska
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Yan Qin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Parthenon Therapeutics, Boston, MA
| | - Yansheng Hao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | - Kamil Bojarczuk
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Julia Hansen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Björn Chapuy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Hematology, Oncology, and Tumor Immunology, Charité - University Medical Center Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Sumbul Jawed Khan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Robert A Redd
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Margaret A Shipp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
23
|
Kono A, Wakamatsu M, Umezawa Y, Muramatsu H, Fujiwara H, Tomomasa D, Inoue K, Hattori K, Mitsui T, Takada H, Minegishi Y, Takahashi Y, Yamamoto M, Mori T, Kanegane H. Successful treatment of DOCK8 deficiency by allogeneic hematopoietic cell transplantation from alternative donors. Int J Hematol 2023; 118:519-525. [PMID: 37131080 DOI: 10.1007/s12185-023-03613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Dedicator of cytokinesis 8 (DOCK8) deficiency is a rare autosomal recessive inborn error of immunity (IEI) characterized by eczematous dermatitis, elevated serum IgE, and recurrent infections, comprising a seemingly hyper-IgE syndrome (HIES). DOCK8 deficiency is only curable with allogeneic hematopoietic cell transplantation (HCT), but the outcome of HCT from alternative donors is not fully understood. Here, we describe the cases of two Japanese patients with DOCK8 deficiency who were successfully treated by allogeneic HCT from alternative donors. Patient 1 underwent cord blood transplantation at the age of 16 years, and Patient 2 underwent haploidentical peripheral blood stem cell transplantation with post-transplant cyclophosphamide at the age of 22 years. Each patient received a fludarabine-based conditioning regimen. Their clinical manifestations, including refractory molluscum contagiosum, promptly improved post-HCT. They achieved successful engraftment and immune reconstitution without serious complications. Alternative donor sources such as cord blood and haploidentical donors can be options for allogeneic HCT for DOCK8 deficiency.
Collapse
Affiliation(s)
- Asuka Kono
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Manabu Wakamatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Umezawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Fujiwara
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Dan Tomomasa
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kento Inoue
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Keiichiro Hattori
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tetsuo Mitsui
- Department of Pediatrics, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hidetoshi Takada
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshiyuki Minegishi
- Division of Molecular Medicine, Institute of Advanced Enzyme Research, Tokushima University, Tokushima, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Yamamoto
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Takehiko Mori
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
24
|
Johar RA, Hasanain A, Khouqeer Y. Efficacy of Dupilumab in Treating Atopic Dermatitis With Recurrent Eczema Herpeticum in a Patient With DOCK8-Deficiency Hyper-IgE Syndrome: A Case Report. Cureus 2023; 15:e43360. [PMID: 37701007 PMCID: PMC10494277 DOI: 10.7759/cureus.43360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 09/14/2023] Open
Abstract
Dupilumab, a monoclonal antibody targeting interleukin 4 and interleukin 13, was used to successfully induce remission of chronic, disseminated eczema herpeticum in a six-year-old girl who has DOCK8-deficiency hyper-IgE syndrome. The patient was started on 200 mg of dupilumab administered once every four weeks. The patient had achieved complete resolution of all active herpetic lesions by the time her third dose was due. During the course of three months, she had not developed any new lesions, and significant improvement of the patient's skin, scalp, hair restoration, and nails was appreciated.
Collapse
Affiliation(s)
- Reshale A Johar
- Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | - Afnan Hasanain
- Dermatology, King Faisal Specialist Hospital and Research Centre, Jeddah, SAU
| | - Yousef Khouqeer
- Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| |
Collapse
|
25
|
Sharma M, Leung D, Momenilandi M, Jones LC, Pacillo L, James AE, Murrell JR, Delafontaine S, Maimaris J, Vaseghi-Shanjani M, Del Bel KL, Lu HY, Chua GT, Di Cesare S, Fornes O, Liu Z, Di Matteo G, Fu MP, Amodio D, Tam IYS, Chan GSW, Sharma AA, Dalmann J, van der Lee R, Blanchard-Rohner G, Lin S, Philippot Q, Richmond PA, Lee JJ, Matthews A, Seear M, Turvey AK, Philips RL, Brown-Whitehorn TF, Gray CJ, Izumi K, Treat JR, Wood KH, Lack J, Khleborodova A, Niemela JE, Yang X, Liang R, Kui L, Wong CSM, Poon GWK, Hoischen A, van der Made CI, Yang J, Chan KW, Rosa Duque JSD, Lee PPW, Ho MHK, Chung BHY, Le HTM, Yang W, Rohani P, Fouladvand A, Rokni-Zadeh H, Changi-Ashtiani M, Miryounesi M, Puel A, Shahrooei M, Finocchi A, Rossi P, Rivalta B, Cifaldi C, Novelli A, Passarelli C, Arasi S, Bullens D, Sauer K, Claeys T, Biggs CM, Morris EC, Rosenzweig SD, O’Shea JJ, Wasserman WW, Bedford HM, van Karnebeek CD, Palma P, Burns SO, Meyts I, Casanova JL, Lyons JJ, Parvaneh N, Nguyen ATV, Cancrini C, Heimall J, Ahmed H, McKinnon ML, Lau YL, Béziat V, Turvey SE. Human germline heterozygous gain-of-function STAT6 variants cause severe allergic disease. J Exp Med 2023; 220:e20221755. [PMID: 36884218 PMCID: PMC10037107 DOI: 10.1084/jem.20221755] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
STAT6 (signal transducer and activator of transcription 6) is a transcription factor that plays a central role in the pathophysiology of allergic inflammation. We have identified 16 patients from 10 families spanning three continents with a profound phenotype of early-life onset allergic immune dysregulation, widespread treatment-resistant atopic dermatitis, hypereosinophilia with esosinophilic gastrointestinal disease, asthma, elevated serum IgE, IgE-mediated food allergies, and anaphylaxis. The cases were either sporadic (seven kindreds) or followed an autosomal dominant inheritance pattern (three kindreds). All patients carried monoallelic rare variants in STAT6 and functional studies established their gain-of-function (GOF) phenotype with sustained STAT6 phosphorylation, increased STAT6 target gene expression, and TH2 skewing. Precision treatment with the anti-IL-4Rα antibody, dupilumab, was highly effective improving both clinical manifestations and immunological biomarkers. This study identifies heterozygous GOF variants in STAT6 as a novel autosomal dominant allergic disorder. We anticipate that our discovery of multiple kindreds with germline STAT6 GOF variants will facilitate the recognition of more affected individuals and the full definition of this new primary atopic disorder.
Collapse
Affiliation(s)
- Mehul Sharma
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Daniel Leung
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Lauren C.W. Jones
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Lucia Pacillo
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Academic Dept. of Pediatrics (DPUO), Unit of Clinical Immunology and Vaccinology, IRCCS Bambin Gesù Children Hospital, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Alyssa E. James
- Translational Allergic Immunopathology Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jill R. Murrell
- Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Selket Delafontaine
- Dept. of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Pediatric Immunodeficiencies Division, University Hospitals Leuven, Leuven, Belgium
| | - Jesmeen Maimaris
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Dept. of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Maryam Vaseghi-Shanjani
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Kate L. Del Bel
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Henry Y. Lu
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Dept. of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Gilbert T. Chua
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Allergy Centre, Union Hospital, Hong Kong, China
| | - Silvia Di Cesare
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Oriol Fornes
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
- Dept. of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Zhongyi Liu
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Gigliola Di Matteo
- Academic Dept. of Pediatrics (DPUO), Unit of Clinical Immunology and Vaccinology, IRCCS Bambin Gesù Children Hospital, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Maggie P. Fu
- Dept. of Medical Genetics, The University of British Columbia, Vancouver, Canada
- Genome Science and Technology Program, Faculty of Science, The University of British Columbia, Vancouver, Canada
| | - Donato Amodio
- Academic Dept. of Pediatrics (DPUO), Unit of Clinical Immunology and Vaccinology, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Issan Yee San Tam
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | - Joshua Dalmann
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Robin van der Lee
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
- Dept. of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Géraldine Blanchard-Rohner
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
- Unit of Immunology and Vaccinology, Division of General Pediatrics, Dept. of Woman, Child, and Adolescent Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Susan Lin
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Phillip A. Richmond
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jessica J. Lee
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, Canada
| | - Allison Matthews
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
- Dept. of Paediatrics, University of Toronto, Toronto, Canada
| | - Michael Seear
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Alexandra K. Turvey
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Rachael L. Philips
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Terri F. Brown-Whitehorn
- Dept. of Pediatrics, Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christopher J. Gray
- Pediatrics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kosuke Izumi
- Pediatrics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - James R. Treat
- Pediatrics, Division of Pediatric Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen H. Wood
- Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource, NIAID, NIH, Bethesda, MD, USA
| | - Asya Khleborodova
- NIAID Collaborative Bioinformatics Resource, NIAID, NIH, Bethesda, MD, USA
| | | | - Xingtian Yang
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Rui Liang
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Lin Kui
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Dept. of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Christina Sze Man Wong
- Dept. of Medicine, Divison of Dermatology, The University of Hong Kong, Hong Kong, China
| | - Grace Wing Kit Poon
- Dept. of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong, China
| | - Alexander Hoischen
- Dept. of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Jing Yang
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Koon Wing Chan
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Jaime Sou Da Rosa Duque
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Pamela Pui Wah Lee
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Marco Hok Kung Ho
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Virtus Medical, Hong Kong, China
| | - Brian Hon Yin Chung
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Huong Thi Minh Le
- Pediatric Center, Vinmec Times City International General Hospital, Hanoi, Vietnam
| | - Wanling Yang
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Pejman Rohani
- Pediatrics, Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children’s Medical Center, University of Medical Sciences, Tehran, Iran
| | - Ali Fouladvand
- Pediatrics, Allergy and Clinical Immunology, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Hassan Rokni-Zadeh
- Dept. of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Mohammad Miryounesi
- Dept. of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Mohammad Shahrooei
- Microbiology and Immunology, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Andrea Finocchi
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Paolo Rossi
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- DPUO, Research Unit of Infectivology and Pediatrics Drugs Development, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Beatrice Rivalta
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Academic Dept. of Pediatrics (DPUO), Unit of Clinical Immunology and Vaccinology, IRCCS Bambin Gesù Children Hospital, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Cristina Cifaldi
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Chiara Passarelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Stefania Arasi
- Allergy Unit, Area of Translational Research in Pediatric Specialities, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Dominique Bullens
- Dept. of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Pediatric Allergy Division, University Hospitals Leuven, Leuven, Belgium
| | - Kate Sauer
- Dept. of Pediatrics, Pediatric Pulmonology Division, AZ Sint-Jan Brugge, Brugge, Belgium
- Dept. of Pediatrics, Pediatric Pulmonology Division, University Hospitals Leuven, Leuven, Belgium
| | - Tania Claeys
- Dept. of Pediatrics, Pediatric Gastroenterology Division, AZ Sint-Jan Brugge, Brugge, Belgium
| | - Catherine M. Biggs
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Emma C. Morris
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Dept. of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | | | - John J. O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Wyeth W. Wasserman
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
| | - H. Melanie Bedford
- Dept. of Paediatrics, University of Toronto, Toronto, Canada
- Genetics Program, North York General Hospital, Toronto, Canada
| | - Clara D.M. van Karnebeek
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
- Depts. of Pediatrics and Clinical Genetics, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Paolo Palma
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Academic Dept. of Pediatrics (DPUO), Unit of Clinical Immunology and Vaccinology, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Siobhan O. Burns
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Dept. of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Isabelle Meyts
- Dept. of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Pediatric Immunodeficiencies Division, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jonathan J. Lyons
- Translational Allergic Immunopathology Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nima Parvaneh
- Department of Pediatrics, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Anh Thi Van Nguyen
- Dept. of Immunology, Allergy and Rheumatology, Division of Primary Immunodeficiency, Vietnam National Children’s Hospital, Hanoi, Vietnam
| | - Caterina Cancrini
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Jennifer Heimall
- Dept. of Pediatrics, Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hanan Ahmed
- Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | | | - Yu Lung Lau
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Stuart E. Turvey
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| |
Collapse
|
26
|
Perälä M, Kaustio M, Salava A, Jakkula E, Pelkonen AS, Saarela J, Remitz A, Mäkelä MJ. RELEVANCE OF CODING VARIATION IN FILAGGRIN AND DOCK8 IN FINNISH PEDIATRIC PATIENTS WITH EARLY-ONSET MODERATE-TO-SEVERE ATOPIC DERMATITIS. JID INNOVATIONS 2023. [PMID: 37533579 PMCID: PMC10392095 DOI: 10.1016/j.xjidi.2023.100203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Early-onset, persistent atopic dermatitis (AD) is proposed as a distinct subgroup that may have specific genotypic features. FLG gene loss-of-function variants are the best known genetic factors contributing to epidermal barrier impairment and eczema severity. In a cohort of 140 Finnish children with early-onset moderate-to-severe AD, we investigated the effect of coding variation in FLG and 13 other genes with epidermal barrier or immune function through the use of targeted amplicon sequencing and genotyping. A FLG loss-of-function variant (Arg501Ter, Ser761fs, Arg2447Ter, or Ser3247Ter) was identified in 20 of 140 patients showing higher transepidermal water loss values than patients without these variants. Total FLG loss-of-function variant frequency (7.14%) was significantly higher than in the general Finnish population (2.34%). When tested separately, only Arg2447Ter showed a significant association with AD (P = 0.003104). In addition, a modest association with moderate-to-severe pediatric AD was seen for rs12730241 and rs6587667 (FLG2:Gly137Glu). Loss-of-function variants, previously reported pathogenic variants, or statistically significant enrichment of nonsynonymous coding region variants were not found in the 13 candidate genes studied by amplicon sequencing. However, higher IgE and eosinophil counts were found in carriers of potentially pathogenic DOCK8 missense variants, suggesting that the role of DOCK8 variation in AD should be further investigated in larger cohorts.
Collapse
|
27
|
Ye X, Quan X, Guo X, Wang Z, Wu H. Idiopathic non-cirrhotic portal hypertension in a patient with Talaromyces marneffei infection: a case report. BMC Infect Dis 2023; 23:125. [PMID: 36859274 PMCID: PMC9979503 DOI: 10.1186/s12879-023-08090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND The etiopathogenesis of idiopathic non-cirrhotic portal hypertension (INCPH) is so far poorly understood. Altered immunity, blood diseases, infections, congenital defects and drug exposure have been documented in a part of patients with INCPH owing to increased recognition of the disorder in patients with HIV, or various haematological disorders or autoimmune diseases. We aim to discuss the possible etiopathogenesis of INCPH. CASE PRESENTATION We reported that a patient with intestinal infection of T. Marneffei and hyper-IgE syndrome, a group of rare primary immunodeficiency disorders, was finally diagnosed with INCPH for gastroesophageal variceal bleeding. The diagnosis was mainly based on histopathological features. Transjugular intrahepatic portosystemic shunt was performed and there was no recurrence of melena during the six-month follow-up. CONCLUSION In the context of immunodeficiency, INCPH may associated with intestinal infections. Thus, screening for enterogenic infection and immunological disorders in patients with unexplained portal hypertension is necessary.
Collapse
Affiliation(s)
- Xiuling Ye
- grid.13291.380000 0001 0807 1581Department of Gastroenterology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041 People’s Republic of China
| | - Xin Quan
- grid.13291.380000 0001 0807 1581Department of Gastroenterology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041 People’s Republic of China
| | - Xu Guo
- grid.13291.380000 0001 0807 1581Department of Gastroenterology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041 People’s Republic of China
| | - Zhidong Wang
- grid.13291.380000 0001 0807 1581Department of Gastroenterology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041 People’s Republic of China
| | - Hao Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
28
|
Wong DCP, Ding JL. The mechanobiology of NK cells- 'Forcing NK to Sense' target cells. Biochim Biophys Acta Rev Cancer 2023; 1878:188860. [PMID: 36791921 DOI: 10.1016/j.bbcan.2023.188860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/16/2023]
Abstract
Natural killer (NK) cells are innate immune lymphocytes that recognize and kill cancer and infected cells, which makes them unique 'off-the-shelf' candidates for a new generation of immunotherapies. Biomechanical forces in homeostasis and pathophysiology accrue additional immune regulation for NK immune responses. Indeed, cellular and tissue biomechanics impact NK receptor clustering, cytoskeleton remodeling, NK transmigration through endothelial cells, nuclear mechanics, and even NK-dendritic cell interaction, offering a plethora of unexplored yet important dynamic regulation for NK immunotherapy. Such events are made more complex by the heterogeneity of human NK cells. A significant question remains on whether and how biochemical and biomechanical cues collaborate for NK cell mechanotransduction, a process whereby mechanical force is sensed, transduced, and translated to downstream mechanical and biochemical signalling. Herein, we review recent advances in understanding how NK cells perceive and mechanotransduce biophysical cues. We focus on how the cellular cytoskeleton crosstalk regulates NK cell function while bearing in mind the heterogeneity of NK cells, the direct and indirect mechanical cues for NK anti-tumor activity, and finally, engineering advances that are of translational relevance to NK cell biology at the systems level.
Collapse
Affiliation(s)
- Darren Chen Pei Wong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore.
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, 117543, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, 119077, Singapore.
| |
Collapse
|
29
|
Moser LM, Fekadu J, Willasch A, Rettinger E, Sörensen J, Jarisch A, Kirwil M, Lieb A, Holzinger D, Calaminus G, Bader P, Bakhtiar S. Treatment of inborn errors of immunity patients with inflammatory bowel disease phenotype by allogeneic stem cell transplantation. Br J Haematol 2023; 200:595-607. [PMID: 36214981 DOI: 10.1111/bjh.18497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 12/12/2022]
Abstract
Patients with inborn errors of immunity (IEI) can suffer from treatment-refractory inflammatory bowel disease (IBD) causing failure to thrive and consequences of long-term multiple immunosuppressive treatments. Allogeneic haematopoietic stem cell transplantation (alloHSCT) can serve as a curative treatment option. In this single-centre retrospective cohort study we report on 11 paediatric and young adult IEI patients with IBD and failure to thrive, who had exhausted symptomatic treatment options and received alloHSCT. The cohort included chronic granulomatous disease (CGD), lipopolysaccharide-responsive and beige-like anchor protein (LRBA) deficiency, STAT3 gain-of-function (GOF), Wiskott-Aldrich syndrome (WAS), dedicator of cytokinesis 8 (DOCK8) deficiency and one patient without genetic diagnosis. All patients achieved stable engraftment and immune reconstitution, and gastrointestinal symptoms were resolved after alloHSCT. The overall survival was 11/11 over a median follow-up of 34.7 months. Graft-versus-host disease (GVHD) was limited to grade I-II acute GVHD (n = 5), one case of grade IV acute GVHD and one case of limited chronic GVHD. Since treatment recommendations are limited, this work provides a centre-specific approach to treatment prior to transplant as well as conditioning in IEI patients with severe IBD.
Collapse
Affiliation(s)
- Laura M Moser
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Julia Fekadu
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - André Willasch
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Eva Rettinger
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Jan Sörensen
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Andrea Jarisch
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Marta Kirwil
- Division for Pediatric Gastroenterology, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Adrian Lieb
- Division for Pediatric Gastroenterology, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Dirk Holzinger
- Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany.,Department of Applied Health Sciences, University of Applied Sciences Bochum, Bochum, Germany
| | - Gabriele Calaminus
- Department for Children and Adolescents, University Hospital Bonn, Bonn, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Shahrzad Bakhtiar
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
30
|
Zhou X, Hu J, Xu D, Zhang S, Wang Q. DOCK8 interference alleviates Aβ‑induced damage of BV2 cells by inhibiting STAT3/NLRP3/NF‑κB signaling. Exp Ther Med 2023; 25:134. [PMID: 36845964 PMCID: PMC9947585 DOI: 10.3892/etm.2023.11833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Dementia is defined as memory loss and other cognitive decline and it severely influences daily life. Alzheimer's disease (AD) is the most common cause of dementia. Dedicator of cytokinesis 8 (DOCK8) is reported to be involved in neurological diseases. The present study focused on investigating the role that DOCK8 serves in AD and addressing its hidden regulatory mechanism. Initially, Aβ1-42 (Aβ) was applied for the administration of BV2 cells. Subsequently, the mRNA and protein expression levels of DOCK8 were evaluated utilizing reverse transcription-quantitative PCR (RT-qPCR) and western blotting. After the DOCK8 silencing, immunofluorescence staining (IF), ELISA, wound healing and Transwell assays were applied to assess ionized calcium binding adapter molecule-1 (IBA-1) expression, release of inflammatory factors, migration and invasion in Aβ-induced BV2 cells. IF was used to evaluate cluster of differentiation (CD)11b expression. RT-qPCR and western blotting were to analyze the levels of M1 cell markers inducible nitric oxide synthase (iNOS) and CD86. The expression of STAT3/NLR family pyrin domain containing 3 (NLRP3)/NF-κB signaling-related proteins were determined by western blotting. Finally, the viability and apoptosis in hippocampal HT22 cells with DOCK8 depletion were estimated. Results revealed that Aβ induction greatly stimulated the expression levels of IBA-1 and DOCK8. DOCK8 silencing suppressed Aβ-induced inflammation, migration and invasion of BV2 cells. Additionally, DOCK8 deficiency conspicuously decreased the expression levels of CD11b, iNOS and CD86. The expression of phosphorylated (p-)STAT3, NLRP3, ASC, caspase1 and p-p65 was downregulated in Aβ-induced BV2 cells after DOCK8 depletion. STAT3 activator Colivelin reversed the effects of DOCK8 knockdown on IBA-1 expression, inflammation, migration, invasion and M1 cell polarization. In addition, the viability and apoptosis in hippocampal HT22 cells stimulated by neuroinflammatory release of BV2 cells were repressed following DOCK8 deletion. Collectively, DOCK8 interference alleviated Aβ-induced damage of BV2 cells by inhibiting STAT3/NLRP3/NF-κB signaling.
Collapse
Affiliation(s)
- Xueying Zhou
- Department of Psychiatry, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Ji Hu
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Deyi Xu
- Department of Psychiatry, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Sheng Zhang
- Department of Psychiatry, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Qianyan Wang
- Department of Cardiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| |
Collapse
|
31
|
Yaakoubi R, Mekki N, Ben-Mustapha I, Ben-Khemis L, Bouaziz A, Ben Fraj I, Ammar J, Hamzaoui A, Turki H, Boussofara L, Denguezli M, Haddad S, Ouederni M, Bejaoui M, Chan KW, Lau YL, Mellouli F, Barbouche MR, Ben-Ali M. Diagnostic challenge in a series of eleven patients with hyper IgE syndromes. Front Immunol 2023; 13:1057679. [PMID: 36703986 PMCID: PMC9871884 DOI: 10.3389/fimmu.2022.1057679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Hyper IgE syndromes (HIES) is a heterogeneous group of Inborn Errors of Immunity characterized by eczema, recurrent skin and lung infections associated with eosinophilia and elevated IgE levels. Autosomal dominant HIES caused by loss of function mutations in Signal transducer and activator of transcription 3 (STAT3) gene is the prototype of these disorders. Over the past two decades, advent in genetic testing allowed the identification of ten other etiologies of HIES. Although Dedicator of Cytokinesis 8 (DOCK8) deficiency is no more classified among HIES etiologies but as a combined immunodeficiency, this disease, characterized by severe viral infections, food allergies, autoimmunity, and increased risk of malignancies, shares some clinical features with STAT3 deficiency. The present study highlights the diagnostic challenge in eleven patients with the clinical phenotype of HIES in a resource-limited region. Candidate gene strategy supported by clinical features, laboratory findings and functional investigations allowed the identification of two heterozygous STAT3 mutations in five patients, and a bi-allelic DOCK8 mutation in one patient. Whole Exome Sequencing allowed to unmask atypical presentations of DOCK8 deficiency in two patients presenting with clinical features reminiscent of STAT3 deficiency. Our study underlies the importance of the differential diagnosis between STAT3 and DOCK8 deficiencies in order to improve diagnostic criteria and to propose appropriate therapeutic approaches. In addition, our findings emphasize the role of NGS in detecting mutations that induce overlapping phenotypes.
Collapse
Affiliation(s)
- Roukaya Yaakoubi
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia,Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
| | - Najla Mekki
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia,Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
| | - Imen Ben-Mustapha
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia,Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
| | - Leila Ben-Khemis
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia
| | - Asma Bouaziz
- Department of Pediatrics, Ben Arous Hospital of Tunis, Tunis, Tunisia
| | - Ilhem Ben Fraj
- Department of Pediatrics, National Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Jamel Ammar
- Pulmonology B Department, AbderrahmenMami Hospital, Ariana, Tunisia
| | - Agnès Hamzaoui
- Pulmonology B Department, AbderrahmenMami Hospital, Ariana, Tunisia
| | - Hamida Turki
- Department of Dermatology, HédiChaker Hospital of SFAX, Sfax, Tunisia
| | - Lobna Boussofara
- Department of Dermatology, Farhat Hached Hospital, Sousse, Tunisia
| | | | - Samir Haddad
- Department of Pediatrics, Children Hospital of Tunis, Tunis, Tunisia
| | - Monia Ouederni
- Department of Pediatrics, National Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Mohamed Bejaoui
- Department of Pediatrics, National Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Koon Wing Chan
- Department of Pediatrics and Adolescent Medicine, Li KaShing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yu Lung Lau
- Department of Pediatrics and Adolescent Medicine, Li KaShing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fethi Mellouli
- Department of Pediatrics, National Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Mohamed-Ridha Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia,Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Meriem Ben-Ali
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia,*Correspondence: Meriem Ben-Ali,
| |
Collapse
|
32
|
Giancotta C, Colantoni N, Pacillo L, Santilli V, Amodio D, Manno EC, Cotugno N, Rotulo GA, Rivalta B, Finocchi A, Cancrini C, Diociaiuti A, El Hachem M, Zangari P. Tailored treatments in inborn errors of immunity associated with atopy (IEIs-A) with skin involvement. Front Pediatr 2023; 11:1129249. [PMID: 37033173 PMCID: PMC10073443 DOI: 10.3389/fped.2023.1129249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Inborn errors of immunity associated with atopy (IEIs-A) are a group of inherited monogenic disorders that occur with immune dysregulation and frequent skin involvement. Several pathways are involved in the pathogenesis of these conditions, including immune system defects, alterations of skin barrier and metabolism perturbations. Current technological improvements and the higher accessibility to genetic testing, recently allowed the identification of novel molecular pathways involved in IEIs-A, also informing on potential tailored therapeutic strategies. Compared to other systemic therapy for skin diseases, biologics have the less toxic and the best tolerated profile in the setting of immune dysregulation. Here, we review IEIs-A with skin involvement focusing on the tailored therapeutic approach according to their pathogenetic mechanism.
Collapse
Affiliation(s)
- Carmela Giancotta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicole Colantoni
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lucia Pacillo
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Veronica Santilli
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Donato Amodio
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Emma Concetta Manno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicola Cotugno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Gioacchino Andrea Rotulo
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Beatrice Rivalta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Andrea Finocchi
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Caterina Cancrini
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Andrea Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Paola Zangari
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Correspondence: Paola Zangari
| |
Collapse
|
33
|
Sharma D, Ben Yakov G, Kapuria D, Viana Rodriguez G, Gewirtz M, Haddad J, Kleiner DE, Koh C, Bergerson JRE, Freeman AF, Heller T. Tip of the iceberg: A comprehensive review of liver disease in Inborn errors of immunity. Hepatology 2022; 76:1845-1861. [PMID: 35466407 DOI: 10.1002/hep.32539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/30/2022] [Accepted: 04/17/2022] [Indexed: 12/08/2022]
Abstract
Inborn errors of immunity (IEIs) consist of numerous rare, inherited defects of the immune system that affect about 500,000 people in the United States. As advancements in diagnosis through genetic testing and treatment with targeted immunotherapy and bone marrow transplant emerge, increasing numbers of patients survive into adulthood posing fresh clinical challenges. A large spectrum of hepatobiliary diseases now present in those with immunodeficiency diseases, leading to morbidity and mortality in this population. Awareness of these hepatobiliary diseases has lagged the improved management of the underlying disorders, leading to missed opportunities to improve clinical outcomes. This review article provides a detailed description of specific liver diseases occurring in various inborn errors of immunity. A generalized approach to diagnosis and management of hepatic complications is provided, and collaboration with hepatologists, immunologists, and pathologists is emphasized as a requirement for optimizing management and outcomes.
Collapse
Affiliation(s)
- Disha Sharma
- Department of Internal MedicineMedStar Washington Hospital Center & Georgetown UniversityWashingtonDCUSA.,Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Gil Ben Yakov
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA.,26744Center for Liver DiseaseSheba Medical CenterTel HaShomerIsrael
| | - Devika Kapuria
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA.,Department of GastroenterologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Gracia Viana Rodriguez
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Meital Gewirtz
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - James Haddad
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - David E Kleiner
- 3421Laboratory of PathologyNational Cancer InstituteBethesdaMarylandUSA
| | - Christopher Koh
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and MicrobiologyNIAID, NIHBethesdaMarylandUSA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and MicrobiologyNIAID, NIHBethesdaMarylandUSA
| | - Theo Heller
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| |
Collapse
|
34
|
Lu Y, Li W, Li Y, Zhai W, Zhou X, Wu Z, Jiang S, Liu T, Wang H, Hu R, Zhou Y, Zou J, Hu P, Guan G, Xu Q, Canário AVM, Chen L. Population genomics of an icefish reveals mechanisms of glacier-driven adaptive radiation in Antarctic notothenioids. BMC Biol 2022; 20:231. [PMID: 36224580 PMCID: PMC9560024 DOI: 10.1186/s12915-022-01432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Antarctica harbors the bulk of the species diversity of the dominant teleost fish suborder-Notothenioidei. However, the forces that shape their evolution are still under debate. RESULTS We sequenced the genome of an icefish, Chionodraco hamatus, and used population genomics and demographic modelling of sequenced genomes of 52 C. hamatus individuals collected mainly from two East Antarctic regions to investigate the factors driving speciation. Results revealed four icefish populations with clear reproduction separation were established 15 to 50 kya (kilo years ago) during the last glacial maxima (LGM). Selection sweeps in genes involving immune responses, cardiovascular development, and photoperception occurred differentially among the populations and were correlated with population-specific microbial communities and acquisition of distinct morphological features in the icefish taxa. Population and species-specific antifreeze glycoprotein gene expansion and glacial cycle-paced duplication/degeneration of the zona pellucida protein gene families indicated fluctuating thermal environments and periodic influence of glacial cycles on notothenioid divergence. CONCLUSIONS We revealed a series of genomic evidence indicating differential adaptation of C. hamatus populations and notothenioid species divergence in the extreme and unique marine environment. We conclude that geographic separation and adaptation to heterogeneous pathogen, oxygen, and light conditions of local habitats, periodically shaped by the glacial cycles, were the key drivers propelling species diversity in Antarctica.
Collapse
Affiliation(s)
- Ying Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Wenhao Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Yalin Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Wanying Zhai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Xuming Zhou
- Institute of Zoology, Chinese Academy of Science, Beijing, China
| | - Zhichao Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Shouwen Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Taigang Liu
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
- College of Information Technology, Shanghai Ocean University, Shanghai, China
| | - Huamin Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Ruiqin Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Yan Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Guijun Guan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Qianghua Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China.
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.
| | - Adelino V M Canário
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.
- Centre of Marine Sciences (CCMAR-CIMAR LA), University of Algarve, Faro, Portugal.
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China.
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
35
|
Le T, Can B, Orge F. Herpes Simplex Conjunctivitis and Recurrent Chalazia in a Patient DOCK8 Deficiency. Ocul Immunol Inflamm 2022; 30:1988-1991. [PMID: 34255603 DOI: 10.1080/09273948.2021.1919309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To report a case of recurrent chalazia and Herpes Simplex conjunctivitis in a patient with DOCK8 deficiency. CASE REPORT We report the case of a 15-year-old male patient with genetically diagnosed DOCK8 deficiency who presented with a left lower eyelid mass and left eye conjunctivitis. The lesion did not resolve despite aggressive measures, including topical steroids, topical antibiotics, and multiple debulking procedures but eventually resolved after the initiation of intravenous acyclovir. The diagnosis of HSV infection was supported by pathology findings from the eyelid mass. CONCLUSION Patients with DOCK8 deficiency can present with a variety of cutaneous viral infections. In our case, a DOCK8-deficient patient with chalazia and conjunctivitis resistant to antibiotics, steroids and debulking responded to intravenous acyclovir.
Collapse
Affiliation(s)
- Tinh Le
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Basak Can
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Center for Pediatric Ophthalmology and Adult Strabismus, Rainbow Babies and Children's Hospital and University Hospitals Eye Institute, Cleveland, Ohio, USA
| | - Faruk Orge
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Center for Pediatric Ophthalmology and Adult Strabismus, Rainbow Babies and Children's Hospital and University Hospitals Eye Institute, Cleveland, Ohio, USA
| |
Collapse
|
36
|
Pan C, Zhao A, Li M. Atopic Dermatitis-like Genodermatosis: Disease Diagnosis and Management. Diagnostics (Basel) 2022; 12:diagnostics12092177. [PMID: 36140582 PMCID: PMC9498295 DOI: 10.3390/diagnostics12092177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Eczema is a classical characteristic not only in atopic dermatitis but also in various genodermatosis. Patients suffering from primary immunodeficiency diseases such as hyper-immunoglobulin E syndromes, Wiskott-Aldrich syndrome, immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, STAT5B deficiency, Omenn syndrome, atypical complete DiGeorge syndrome; metabolic disorders such as acrodermatitis enteropathy, multiple carboxylase deficiency, prolidase deficiency; and other rare syndromes like severe dermatitis, multiple allergies and metabolic wasting syndrome, Netherton syndrome, and peeling skin syndrome frequently perform with eczema-like lesions. These genodermatosis may be misguided in the context of eczematous phenotype. Misdiagnosis of severe disorders unavoidably affects appropriate treatment and leads to irreversible outcomes for patients, which underlines the importance of molecular diagnosis and genetic analysis. Here we conclude clinical manifestations, molecular mechanism, diagnosis and management of several eczema-related genodermatosis and provide accessible advice to physicians.
Collapse
Affiliation(s)
- Chaolan Pan
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Anqi Zhao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Department of Dermatology, The Children’s Hospital of Fudan University, Shanghai 200092, China
- Correspondence: ; Tel.: +86-2125078571
| |
Collapse
|
37
|
Vo NH, Shashi KK, Winant AJ, Liszewski MC, Lee EY. Imaging evaluation of the pediatric mediastinum: new International Thymic Malignancy Interest Group classification system for children. Pediatr Radiol 2022; 52:1948-1962. [PMID: 35476071 DOI: 10.1007/s00247-022-05361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/07/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
Mediastinal masses are commonly identified in the pediatric population with cross-sectional imaging central to the diagnosis and management of these lesions. With greater anatomical definition afforded by cross-sectional imaging, classification of mediastinal masses into the traditional anterior, middle and posterior mediastinal compartments - as based on the lateral chest radiograph - has diminishing application. In recent years, the International Thymic Malignancy Interest Group (ITMIG) classification system of mediastinal masses, which is cross-sectionally based, has garnered acceptance by multiple thoracic societies and been applied in adults. Therefore, there is a need for pediatric radiologists to clearly understand the ITMIG classification system and how it applies to the pediatric population. The main purpose of this article is to provide an updated review of common pediatric mediastinal masses and mediastinal manifestations of systemic disease processes in the pediatric population based on the new ITMIG classification system.
Collapse
Affiliation(s)
- Nhi H Vo
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Kumar K Shashi
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA, 02115, USA
| | - Abbey J Winant
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA, 02115, USA
| | - Mark C Liszewski
- Department of Radiology and Pediatrics, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Edward Y Lee
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA, 02115, USA.
| |
Collapse
|
38
|
Samani A, English KG, Lopez MA, Birch CL, Brown DM, Kaur G, Worthey EA, Alexander MS. DOCKopathies: A systematic review of the clinical pathologies associated with human DOCK pathogenic variants. Hum Mutat 2022; 43:1149-1161. [PMID: 35544951 PMCID: PMC9357139 DOI: 10.1002/humu.24398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 11/06/2022]
Abstract
The Dedicator of Cytokinesis (DOCK) family (DOCK1-11) of genes are essential mediators of cellular migration, growth, and fusion in a variety of cell types and tissues. Recent advances in whole-genome sequencing of patients with undiagnosed genetic disorders have identified several rare pathogenic variants in DOCK genes. We conducted a systematic review and performed a patient database and literature search of reported DOCK pathogenic variants that have been identified in association with clinical pathologies such as global developmental delay, immune cell dysfunction, muscle hypotonia, and muscle ataxia among other categories. We then categorized these pathogenic DOCK variants and their associated clinical phenotypes under several unique categories: developmental, cardiovascular, metabolic, cognitive, or neuromuscular. Our systematic review of DOCK variants aims to identify and analyze potential DOCK-regulated networks associated with neuromuscular diseases and other disease pathologies, which may identify novel therapeutic strategies and targets. This systematic analysis and categorization of human-associated pathologies with DOCK pathogenic variants is the first report to the best of our knowledge for a unique class in this understudied gene family that has important implications in furthering personalized genomic medicine, clinical diagnoses, and improve targeted therapeutic outcomes across many clinical pathologies.
Collapse
Affiliation(s)
- Adrienne Samani
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
| | - Katherine G. English
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
| | - Michael A. Lopez
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
| | - Camille L. Birch
- Department of Pediatrics, Division of Pediatric Hematology and Oncology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
- Center for Computational Genomics and Data Science at Children’s of Alabama, Birmingham, AL 35294
| | - Donna M. Brown
- Department of Pediatrics, Division of Pediatric Hematology and Oncology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
- Center for Computational Genomics and Data Science at Children’s of Alabama, Birmingham, AL 35294
| | - Gurpreet Kaur
- Department of Pediatrics, Division of Pediatric Hematology and Oncology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
- Center for Computational Genomics and Data Science at Children’s of Alabama, Birmingham, AL 35294
| | - Elizabeth A. Worthey
- Department of Pediatrics, Division of Pediatric Hematology and Oncology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
- Center for Computational Genomics and Data Science at Children’s of Alabama, Birmingham, AL 35294
| | - Matthew S. Alexander
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
- UAB Center for Exercise Medicine at the University of Alabama at Birmingham, Birmingham, AL, 35294
- Department of Genetics at the University of Alabama at Birmingham, Birmingham, AL 35294
- UAB Civitan International Research Center (CIRC), at the University of Alabama at Birmingham, Birmingham, AL 35233
- UAB Center for Neurodegeneration and Experimental Therapeutics (CNET), Birmingham, AL 35294, USA
| |
Collapse
|
39
|
Liu Y, Wang H, Cook C, Taylor MA, North JP, Hailer A, Shou Y, Sadik A, Kim E, Purdom E, Cheng JB, Cho RJ. Defining Patient-Level Molecular Heterogeneity in Psoriasis Vulgaris Based on Single-Cell Transcriptomics. Front Immunol 2022; 13:842651. [PMID: 35958578 PMCID: PMC9360479 DOI: 10.3389/fimmu.2022.842651] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Identifying genetic variation underlying human diseases establishes targets for therapeutic development and helps tailor treatments to individual patients. Large-scale transcriptomic profiling has extended the study of such molecular heterogeneity between patients to somatic tissues. However, the lower resolution of bulk RNA profiling, especially in a complex, composite tissue such as the skin, has limited its success. Here we demonstrate approaches to interrogate patient-level molecular variance in a chronic skin inflammatory disease, psoriasis vulgaris, leveraging single-cell RNA-sequencing of CD45+ cells isolated from active lesions. Highly psoriasis-specific transcriptional abnormalities display greater than average inter-individual variance, nominating them as potential sources of clinical heterogeneity. We find that one of these chemokines, CXCL13, demonstrates significant correlation with severity of lesions within our patient series. Our analyses also establish that genes elevated in psoriatic skin-resident memory T cells are enriched for programs orchestrating chromatin and CDC42-dependent cytoskeleton remodeling, specific components of which are distinctly correlated with and against Th17 identity on a single-cell level. Collectively, these analyses describe systematic means to dissect cell type- and patient-level differences in cutaneous psoriasis using high-resolution transcriptional profiles of human inflammatory disease.
Collapse
Affiliation(s)
- Yale Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Dermatology, Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States
| | - Hao Wang
- Department of Statistics, University of California, Berkeley, Berkeley, CA, United States
| | - Christopher Cook
- Department of Dermatology, Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States
| | - Mark A. Taylor
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Jeffrey P. North
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States
| | - Ashley Hailer
- Department of Dermatology, Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States
| | - Yanhong Shou
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Arsil Sadik
- Department of Dermatology, Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Esther Kim
- Department of Plastic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, Berkeley, CA, United States
| | - Jeffrey B. Cheng
- Department of Dermatology, Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Raymond J. Cho, ; Jeffrey B. Cheng,
| | - Raymond J. Cho
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Raymond J. Cho, ; Jeffrey B. Cheng,
| |
Collapse
|
40
|
Current Knowledge of Immunosuppression as a Risk Factor for Skin Cancer Development. Crit Rev Oncol Hematol 2022; 177:103754. [DOI: 10.1016/j.critrevonc.2022.103754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022] Open
|
41
|
Vaseghi-Shanjani M, Snow AL, Margolis DJ, Latrous M, Milner JD, Turvey SE, Biggs CM. Atopy as Immune Dysregulation: Offender Genes and Targets. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1737-1756. [PMID: 35680527 DOI: 10.1016/j.jaip.2022.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Allergic diseases are a heterogeneous group of disorders resulting from exaggerated type 2 inflammation. Although typically viewed as polygenic multifactorial disorders caused by the interaction of several genes with the environment, we have come to appreciate that allergic diseases can also be caused by monogenic variants affecting the immune system and the skin epithelial barrier. Through a myriad of genetic association studies and high-throughput sequencing tools, many monogenic and polygenic culprits of allergic diseases have been described. Identifying the genetic causes of atopy has shaped our understanding of how these conditions occur and how they may be treated and even prevented. Precision diagnostic tools and therapies that address the specific molecular pathways implicated in allergic inflammation provide exciting opportunities to improve our care for patients across the field of allergy and immunology. Here, we highlight offender genes implicated in polygenic and monogenic allergic diseases and list targeted therapeutic approaches that address these disrupted pathways.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - David J Margolis
- Department of Dermatology and Dermatologic Surgery, University of Pennsylvania Medical Center, Philadelphia, Pa; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Medical Center, Philadelphia, Pa
| | - Meriem Latrous
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; St Paul's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
42
|
Liquidano-Pérez E, Maza-Ramos G, Yamazaki-Nakashimada MA, Barragán-Arévalo T, Lugo-Reyes SO, Scheffler-Mendoza S, Espinosa-Padilla SE, González-Serrano ME. [Combined immunodeficiency due to DOCK8 deficiency. State of the art]. REVISTA ALERGIA MÉXICO 2022; 69:31-47. [PMID: 36927749 DOI: 10.29262/ram.v69i1.1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Combinedimmunodeficiency (CID) due to DOCK8 deficiency is an inborn error of immunity (IBD) characterized by dysfunctional T and B lymphocytes; The spectrum of manifestations includes allergy, autoimmunity, inflammation, predisposition to cancer, and recurrent infections. DOCK8 deficiency can be distinguished from other CIDs or within the spectrum of hyper-IgE syndromes by exhibiting profound susceptibility to viral skin infections, associated skin cancers, and severe food allergies. The 9p24.3 subtelomeric locus where DOCK8 is located includes numerous repetitive sequence elements that predispose to the generation of large germline deletions and recombination-mediated somatic DNA repair. Residual production DOCK8 protein contributes to the variable phenotype of the disease. Severe viral skin infections and varicella-zoster virus (VZV)-associated vasculopathy, reflect an essential role of the DOCK8 protein, which is required to maintain lymphocyte integrity as cells migrate through the tissues. Loss of DOCK8 causes immune deficiencies through other mechanisms, including a cell survival defect. In addition, there are alterations in the response of dendritic cells, which explains susceptibility to virus infection and regulatory T lymphocytes that could help explain autoimmunity in patients. Hematopoietic stem cell transplantation (HSCT) is the only curative treatment; it improves eczema, allergies, and susceptibility to infections.
Collapse
Affiliation(s)
- Eduardo Liquidano-Pérez
- Instituto Nacional de Pediatría, Unidad de Investigación en Inmunodeficiencias, Ciudad de México, México
| | | | | | - Tania Barragán-Arévalo
- Fundación de Asistencia Privada, Instituto de Oftalmología Conde de Valenciana, Departamento de Genética, Ciudad de México, México
| | - Saúl Oswaldo Lugo-Reyes
- Instituto Nacional de Pediatría, Unidad de Investigación en Inmunodeficiencias, Ciudad de México, México
| | | | - Sara Elva Espinosa-Padilla
- Instituto Nacional de Pediatría, Unidad de Investigación en Inmunodeficiencias, Ciudad de México, México
| | | |
Collapse
|
43
|
Liquidano-Perez E, Alva-Chaire ADC, Yamazaki-Nakashimada MA, Pesantez Abril ÁA, Solorzano Morales SA, Ramírez Ristori AG, Barragán Arévalo T, Gonzalez-Serrano ME, Scheffler-Mendoza SC, Rodríguez-Jurado R. Lymphomatoid granulomatosis in a patient with DOCK8 deficiency. Pediatr Allergy Immunol 2022; 33:e13804. [PMID: 35754125 DOI: 10.1111/pai.13804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022]
|
44
|
Ganesh R, Sathiyasekeran M, Srinivas S, Narayanan RK. Clinical Spectrum of Monogenic Infantile-Onset Inflammatory Bowel Disease. Indian J Pediatr 2022; 89:497-502. [PMID: 35246832 DOI: 10.1007/s12098-022-04103-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022]
Abstract
Very-early-onset IBD and infantile-onset IBD is extremely rare in children. There is paucity of data with regards to clinical profile and outcome of children with infantile-onset IBD from India. The clinicolaboratory profile, molecular genetic testing and treatment details of 8 children diagnosed with monogenic infantile-onset IBD during 2015-2020 is described here. The median age at onset of symptoms was 3 mo. Sibling death and consanguinity were noted in 4 (50%) each respectively. Diarrhea was the presentation in all (100%) and hematochezia in 5 (62%). Colonic ulcers on colonosopy was seen in 7 infants. The common mutation identified was IL-10R gene in 3 (42%) and LRBA gene mutation in 2 (25%). HSCT was done in 4 children and the rest were managed conservatively. Although there was no mortality in this series, two children (25%) were lost for follow-up.
Collapse
Affiliation(s)
- Ramaswamy Ganesh
- Department of Pediatrics and Metabolic Disorders, Rainbow Children's Hospital, Chennai, Tamil Nadu, 600015, India.
| | - Malathi Sathiyasekeran
- Department of Pediatric Gastroenterology, Rainbow Children's Hospital, Chennai, Tamil Nadu, India
| | - Sankaranarayanan Srinivas
- Department of Pediatric Gastroenterology, Kanchi Kamakoti CHILDS Trust Hospital, Chennai, Tamil Nadu, India
| | - R Karthik Narayanan
- Department of Pediatric Critical Care, Rainbow Children's Hospital, Chennai, Tamil Nadu, India
| |
Collapse
|
45
|
Dev A, Sil A, Jindal AK, Tyagi R, Rawat A, Vinay K. Cutaneous involvement in DOCK8 related immunodeficiency syndrome responding to thalidomide. Dermatol Ther 2022; 35:e15491. [PMID: 35384188 DOI: 10.1111/dth.15491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/23/2022] [Accepted: 04/03/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Anubha Dev
- Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh
| | - Archan Sil
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh
| | - Ankur Kumar Jindal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh
| | - Rahul Tyagi
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh
| | - Keshavamurthy Vinay
- Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh
| |
Collapse
|
46
|
Hyper IgE syndromes: A clinical approach. Clin Immunol 2022; 237:108988. [DOI: 10.1016/j.clim.2022.108988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
|
47
|
Ravendran S, Hernández SS, König S, Bak RO. CRISPR/Cas-Based Gene Editing Strategies for DOCK8 Immunodeficiency Syndrome. Front Genome Ed 2022; 4:793010. [PMID: 35373187 PMCID: PMC8969908 DOI: 10.3389/fgeed.2022.793010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Defects in the DOCK8 gene causes combined immunodeficiency termed DOCK8 immunodeficiency syndrome (DIDS). DIDS previously belonged to the disease category of autosomal recessive hyper IgE syndrome (AR-HIES) but is now classified as a combined immunodeficiency (CID). This genetic disorder induces early onset of susceptibility to severe recurrent viral and bacterial infections, atopic diseases and malignancy resulting in high morbidity and mortality. This pathological state arises from impairment of actin polymerization and cytoskeletal rearrangement, which induces improper immune cell migration-, survival-, and effector functions. Owing to the severity of the disease, early allogenic hematopoietic stem cell transplantation is recommended even though it is associated with risk of unintended adverse effects, the need for compatible donors, and high expenses. So far, no alternative therapies have been developed, but the monogenic recessive nature of the disease suggests that gene therapy may be applied. The advent of the CRISPR/Cas gene editing system heralds a new era of possibilities in precision gene therapy, and positive results from clinical trials have already suggested that the tool may provide definitive cures for several genetic disorders. Here, we discuss the potential application of different CRISPR/Cas-mediated genetic therapies to correct the DOCK8 gene. Our findings encourage the pursuit of CRISPR/Cas-based gene editing approaches, which may constitute more precise, affordable, and low-risk definitive treatment options for DOCK8 deficiency.
Collapse
Affiliation(s)
| | | | | | - Rasmus O. Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
48
|
Abstract
INTRODUCTION As the prevalence of food allergies (FA) increases worldwide, our understanding of its pathophysiology and risk factors is markedly expanding. In the past decades, an increasing number of genes have been linked to FA. Identification of such genes may help in predicting the genetic risk for FA development, age of onset, clinical manifestation, causative allergen(s), and possibly the optimal treatment strategies. Furthermore, identification of these genetic factors can help to understand the complex interactions between genes and the environment in predisposition to FA. AREAS COVERED We outline the recent important progress in determining genetic variants and disease-associated genes in IgE-mediated FA. We focused on the monogenic inborn errors of immunity (IEI) where FA is one of the clinical manifestations, emphasizing the genes and gene variants which were linked to FA with some of the most robust evidence. EXPERT OPINION Genetics play a significant role, either directly or along with environmental factors, in the development of FA. Since FA is a multifactorial disease, it is expected that multiple genes and genetic loci contribute to the risk for its development. Identification of the involved genes should contribute to the area of FA regarding pathogenesis, prediction, recognition, prognosis, prevention, and possibly therapeutic interventions.
Collapse
Affiliation(s)
- Yesim Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine University of California, Irvine, CA
| | - Sami Bahna
- Division of Basic and Clinical Immunology, Department of Medicine University of California, Irvine, CA
| |
Collapse
|
49
|
Hemophagocytic Lymphohistiocytosis Gene Variants in Multisystem Inflammatory Syndrome in Children. BIOLOGY 2022; 11:biology11030417. [PMID: 35336791 PMCID: PMC8945334 DOI: 10.3390/biology11030417] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022]
Abstract
Simple Summary Children with a COVID-19 infection are at risk of developing a novel syndrome called multisystem inflammatory syndrome in children (MIS-C). This disease state is characterized by a high level of inflammation. It is unclear why only some children infected with SARS-CoV-2 later develop MIS-C. There may be genetic risk factors for MIS-C development, but none have previously been reported. We report genetic findings in a group of children with MIS-C. Abstract Multisystem inflammatory syndrome in children (MIS-C) affects few children previously infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In 2020, 45 children admitted to our hospital for MIS-C underwent genetic screening with a commercial 109-immune-gene panel. Thirty-nine children were diagnosed with MIS-C, and 25.4% of the 39 MIS-C patients harbored rare heterozygous missense mutations either in primary hemophagocytic lymphohistiocytosis (pHLH) genes (LYST, STXBP2, PRF1, UNC13D, AP3B1) or the HLH-associated gene DOCK8 (four variants). We demonstrate that foamy virus introduction of cDNA for the four DOCK8 variants into human NK-92 natural killer (NK) cells led to decreased CD107a expression (degranulation) and decreased NK cell lytic function in vitro for each variant. Heterozygous carriers of missense mutations in pHLH genes and DOCK8 may serve as risk factors for development of MIS-C among children previously infected with SARS-CoV-2.
Collapse
|
50
|
Smith KL, Dai D, Modi BP, Sara R, Garabedian E, Marsh RA, Puck J, Secord E, Sullivan KE, Turvey SE, Biggs CM, the USIDNET Consortium. Inborn Errors of Immunity Associated With Type 2 Inflammation in the USIDNET Registry. Front Immunol 2022; 13:831279. [PMID: 35273610 PMCID: PMC8902297 DOI: 10.3389/fimmu.2022.831279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
Background Monogenic conditions that disrupt proper development and/or function of the immune system are termed inborn errors of immunity (IEIs), also known as primary immunodeficiencies. Patients with IEIs often suffer from other manifestations in addition to infection, and allergic inflammation is an increasingly recognized feature of these conditions. Methods We performed a retrospective analysis of IEIs presenting with allergic inflammation as reported in the USIDNET registry. Our inclusion criteria comprised of patients with a reported monogenic cause for IEI where reported lab eosinophil and/or IgE values were available for the patient prior to them receiving potentially curative therapy. Patients were excluded if we were unable to determine the defective gene underlying their IEI. Patients were classified as having eosinophilia or elevated IgE when their record included at least 1 eosinophil count or IgE value that was greater than the age stratified upper limit of normal. We compared the proportion of patients with eosinophilia or elevated IgE with the proportion of samples in a reference population that fall above the upper limit of normal (2.5%). Results The query submitted to the USIDNET registry identified 1409 patients meeting inclusion criteria with a monogenic cause for their IEI diagnosis, of which 975 had eosinophil counts and 645 had IgE levels obtained prior to transplantation or gene therapy that were available for analysis. Overall, 18.8% (183/975) of the patients evaluated from the USIDNET registry had eosinophilia and 20.9% (135/645) had an elevated IgE. IEIs caused by defects in 32 genes were found to be significantly associated with eosinophilia and/or an elevated IgE level, spanning 7 of the 10 IEI categories according to the International Union of Immunological Societies classification. Conclusion Type 2 inflammation manifesting as eosinophilia or elevated IgE is found in a broad range of IEIs in the USIDNET registry. Our findings suggest that allergic immune dysregulation may be more widespread in IEIs than previously reported.
Collapse
Affiliation(s)
- Kelsey L. Smith
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- British Columbia (BC) Children’s Hospital, Vancouver, BC, Canada
| | - Darlene Dai
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- British Columbia (BC) Children’s Hospital, Vancouver, BC, Canada
| | - Bhavi P. Modi
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- British Columbia (BC) Children’s Hospital, Vancouver, BC, Canada
| | - Rahnuma Sara
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- British Columbia (BC) Children’s Hospital, Vancouver, BC, Canada
| | - Elizabeth Garabedian
- National Human Genome Research Institute, Bethesda, MD, United States
- National Institutes of Health, Bethesda, MD, United States
| | - Rebecca A. Marsh
- Cincinnati Children’s Hospital, University of Cincinnati, Cincinnati, OH, United States
| | - Jennifer Puck
- Division of Allergy/Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | | | - Kathleen E. Sullivan
- Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Stuart E. Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- British Columbia (BC) Children’s Hospital, Vancouver, BC, Canada
| | - Catherine M. Biggs
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- British Columbia (BC) Children’s Hospital, Vancouver, BC, Canada
- St Paul’s Hospital, Vancouver, BC, Canada
| | | |
Collapse
|