1
|
Hu H, Dong K, Yan B, Mu Y, Liao Y, Zhang L, Guo S, Xiao X, Wang X. Highly-sensitive and homogenous detection of 8-oxoguanine based DNA oxidative damage by a CRISPR-enhanced structure-switching aptamer assay. Biosens Bioelectron 2023; 239:115588. [PMID: 37597500 DOI: 10.1016/j.bios.2023.115588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
8-oxoguanine (8-oxoG) based DNA damage is the most common type of DNA damage which greatly affect gene expression. Therefore, accurate quantification of 8-oxoG based DNA damage is of high clinical significance. However, current methods for 8-oxoG detection struggle to balance convenience, low cost, and sensitivity. Herein, we have proposed and investigated the shortened crRNA mode of CRISPR-Cas12a system and greatly enhanced its signal-to-noise ratio. Taking advantages of the shortened crRNA mode, we further developed a CRISPR-enhanced structure-switching aptamer assay (CESA) for 8-oxoG. The analytical performance of CESA was thoroughly investigated via detecting free 8-oxoG and 8-oxoG on gDNA. The CESA displayed impressive sensitivity for free 8-oxoG, with detection and quantification limits of 32.3 pM and 0.107 nM. These limits modestly rose to 64.5 pM and 0.215 nM when examining 8-oxoG on gDNA. To demonstrate the clinical practicability and significance of the CESA system, we further applied it to measuring 8-oxoG levels in 7 plasma samples (Cervical carcinoma, 11.87 ± 0.69 nM VS. Healthy control, 2.66 ± 0.42 nM), 24 seminal plasma samples (Asthenospermia, 22.29 ± 7.48 nM VS. Normal sperm, 9.75 ± 3.59 nM), 10 breast-tissue gDNA samples (Breast cancer, 2.77 ± 0.63 nM/μg VS. Healthy control, 0.41 ± 0.09 nM/μg), and 24 sperm gDNA samples (Asthenospermia, 28.62 ± 4.84 VS. Normal sperm, 16.67 ± 3.31). This work not only proposes a novel design paradigm of shortened crRNA for developing CRISPR-Cas12a based biosensors but also offers a powerful tool for detecting 8-oxoG based DNA damage.
Collapse
Affiliation(s)
- Hao Hu
- Department of Breast Surgery, Second Hospital of Jilin University, No.4026 Yatai Street, Nanguan District, Changchun, 130041, China; Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kejun Dong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bei Yan
- Ningxia Human Sperm Bank, General Hospital of Ningxia Medical University, Yinchuan, 750004, PR China; Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yaoqin Mu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yangwei Liao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Songcheng Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xianjin Xiao
- Department of Breast Surgery, Second Hospital of Jilin University, No.4026 Yatai Street, Nanguan District, Changchun, 130041, China; Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Wuhan Huchuang Biotechnology Co, Ltd, No.818 Gaoxin Avenue, Wuhan, 430070, China.
| | - Xinyu Wang
- Department of Breast Surgery, Second Hospital of Jilin University, No.4026 Yatai Street, Nanguan District, Changchun, 130041, China.
| |
Collapse
|
2
|
Artymowicz M, Struck-Lewicka W, Wiczling P, Markuszewski M, Markuszewski MJ, Siluk D. Targeted quantitative metabolomics with a linear mixed-effect model for analysis of urinary nucleosides and deoxynucleosides from bladder cancer patients before and after tumor resection. Anal Bioanal Chem 2023; 415:5511-5528. [PMID: 37460824 PMCID: PMC10444683 DOI: 10.1007/s00216-023-04826-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 08/23/2023]
Abstract
In the present study, we developed and validated a fast, simple, and sensitive quantitative method for the simultaneous determination of eleven nucleosides and deoxynucleosides from urine samples. The analyses were performed with the use of liquid chromatography coupled with triple quadrupole mass spectrometry. The sample pretreatment procedure was limited to centrifugation, vortex mixing of urine samples with a methanol/water solution (1:1, v/v), evaporation and dissolution steps. The analysis lasted 20 min and was performed in dynamic multiple reaction monitoring mode (dMRM) in positive polarity. Process validation was conducted to determine the linearity, precision, accuracy, limit of quantification, stability, recovery and matrix effect. All validation procedures were carried out in accordance with current FDA and EMA regulations. The validated method was applied for the analysis of 133 urine samples derived from bladder cancer patients before tumor resection and 24 h, 2 weeks, and 3, 6, 9, and 12 months after the surgery. The obtained data sets were analyzed using a linear mixed-effect model. The analysis revealed that concentration level of 2-methylthioadenosine was decreased, while for inosine, it was increased 24 h after tumor resection in comparison to the preoperative state. The presented quantitative longitudinal study of urine nucleosides and deoxynucleosides before and up to 12 months after bladder tumor resection brings additional prospective insight into the metabolite excretion pattern in bladder cancer disease. Moreover, incurred sample reanalysis was performed proving the robustness and repeatability of the developed targeted method.
Collapse
Affiliation(s)
- Małgorzata Artymowicz
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Aleja Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Wiktoria Struck-Lewicka
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Aleja Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Paweł Wiczling
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Aleja Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Marcin Markuszewski
- Department of Urology, Medical University of Gdańsk, Mariana Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | - Michał J Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Aleja Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Danuta Siluk
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Aleja Gen. J. Hallera 107, 80-416, Gdańsk, Poland.
| |
Collapse
|
3
|
Circadian and chemotherapy-related changes in urinary modified nucleosides excretion in patients with metastatic colorectal cancer. Sci Rep 2021; 11:24015. [PMID: 34907230 PMCID: PMC8671418 DOI: 10.1038/s41598-021-03247-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
Urinary levels of modified nucleosides reflect nucleic acids turnover and can serve as non-invasive biomarkers for monitoring tumour circadian dynamics, and treatment responses in patients with metastatic colorectal cancer. In 39 patients, median overnight urinary excretion of LC-HRMS determinations of pseudouridine, was ~ tenfold as large as those of 1-methylguanosine, 1-methyladenosine, or 4-acetylcytidine, and ~ 100-fold as large as those of adenosine and cytidine. An increase in any nucleoside excretion after chemotherapy anticipated plasma carcinoembryonic antigen progression 1–2 months later and was associated with poor survival. Ten fractionated urines were collected over 2-days in 29 patients. The median value of the rhythm-adjusted mean of urinary nucleoside excretion varied from 64.3 for pseudouridine down to 0.61 for cytidine. The rhythm amplitudes relative to the 24-h mean of 6 nucleoside excretions were associated with rest duration, supporting a tight link between nucleosides turnover and the rest-activity rhythm. Moreover, the amplitude of the 1-methylguanosine rhythm was correlated with the rest-activity dichotomy index, a significant predictor of survival outcome in prior studies. In conclusion, urinary excretion dynamics of modified nucleosides appeared useful for the characterization of the circadian control of cellular proliferation and for tracking early responses to treatments in colorectal cancer patients.
Collapse
|
4
|
Amalric A, Bastide A, Attina A, Choquet A, Vialaret J, Lehmann S, David A, Hirtz C. Quantifying RNA modifications by mass spectrometry: a novel source of biomarkers in oncology. Crit Rev Clin Lab Sci 2021; 59:1-18. [PMID: 34473579 DOI: 10.1080/10408363.2021.1958743] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Despite significant progress in targeted therapies, cancer recurrence remains a major cause of mortality worldwide. Identification of accurate biomarkers, through molecular profiling in healthy and cancer patient samples, will improve diagnosis and promote personalized medicine. While genetic and epigenetic alterations of DNA are currently exploited as cancer biomarkers, their robustness is limited by tumor heterogeneity. Recently, cancer-associated changes in RNA marks have emerged as a promising source of diagnostic and prognostic biomarkers. RNA epigenetics (also known as epitranscriptomics) is an emerging field in which at least 150 chemical modifications in all types of RNA (mRNA, tRNA, lncRNA, rRNA, and microRNA) have been detected. These modifications fine-tune gene expression in both physiological and pathological processes. A growing number of studies have established links between specific modified nucleoside levels in solid/liquid biopsies, and cancer onset and progression. In this review, we highlight the potential role of epitranscriptomic markers in refining cancer diagnosis and/or prognosis. RNA modification patterns may contain important information for establishing an initial diagnosis, monitoring disease evolution, and predicting response to treatment. Furthermore, recent developments in mass spectrometry allow reliable quantification of RNA marks in solid biopsies and biological fluids. We discuss the great potential of mass spectrometry for identifying epitranscriptomic biomarker signatures in cancer diagnosis. While there are various methods to quantify modified nucleosides, most are unable to detect and quantify more than one type of RNA modification at a time. Mass spectrometry analyses, especially GC-MS/MS and LC-MS/MS, overcome this limitation and simultaneously detect modified nucleosides by multiple reaction monitoring. Indeed, several groups are currently validating mass spectrometry methods that quantify several nucleosides at one time in liquid biopsies. The challenge now is to exploit these powerful analytical tools to establish epitranscriptomic signatures that should open new perspectives in personalized medicine. This review summarizes the growing clinical field of analysis of RNA modifications and discusses pre-analytical and analytical approaches, focusing in particular on the development of new mass spectrometry tools and their clinical applications.
Collapse
Affiliation(s)
- Amandine Amalric
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France.,University of Montpellier, IRMB-PPC, INM, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Amandine Bastide
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Aurore Attina
- University of Montpellier, IRMB-PPC, INM, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Armelle Choquet
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Jerome Vialaret
- University of Montpellier, IRMB-PPC, INM, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Sylvain Lehmann
- University of Montpellier, IRMB-PPC, INM, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Alexandre David
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France.,University of Montpellier, IRMB-PPC, INM, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Christophe Hirtz
- University of Montpellier, IRMB-PPC, INM, CHU Montpellier, INSERM CNRS, Montpellier, France
| |
Collapse
|
5
|
Jadda R, Madhumanchi S, Suedee R. Novel adsorptive materials by adenosine 5'-triphosphate imprinted-polymer over the surface of polystyrene nanospheres for selective separation of adenosine 5'-triphosphate biomarker from urine. J Sep Sci 2019; 42:3662-3678. [PMID: 31591808 DOI: 10.1002/jssc.201900583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 01/07/2023]
Abstract
In this study, we have developed a method to assess adenosine 5'-triphosphate by adsorptive extraction using surface adenosine 5'-triphosphate-imprinted polymer over polystyrene nanoparticles (412 ± 16 nm) for selective recognition/separation from urine. Molecularly imprinted polymer was synthesized by emulsion copolymerization reaction using adenosine 5'-triphosphate as a template, functional monomers (methacrylic acid, N-isopropyl acrylamide, and dimethylamino ethylmethacrylate) and a crosslinker, methylenebisacrylamide. The binding capacities of imprinted and non-imprinted polymers were measured using high-performance liquid chromatography with UV detection with a detection limit of 1.6 ± 0.02 µM of adenosine 5'-triphosphate in the urine. High binding affinity (QMIP , 42.65 µmol/g), and high selectivity and specificity to adenosine 5'-triphosphate compared to other competitive nucleotides including adenosine 5'-diphosphate, adenosine 5'-monophosphate, and analogs such as adenosine, adenine, uridine, uric acid, and creatinine were observed. The imprinting efficiency of imprinted polymer is 2.11 for urine (QMIP , 100.3 µmol/g) and 2.51 for synthetic urine (QMIP , 48.5 µmol/g). The extraction protocol was successfully applied to the direct extraction of adenosine 5'-triphosphate from spiked human urine indicating that this synthesized molecularly imprinted polymer allowed adenosine 5'-triphosphate to be preconcentrated while simultaneously interfering compounds were removed from the matrix. These submicron imprinted polymers over nano polystyrene spheres have a potential in the pharmaceutical industries and clinical analysis applications.
Collapse
Affiliation(s)
- Ramana Jadda
- Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Thailand
| | - Sreenu Madhumanchi
- Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Thailand
| | - Roongnapa Suedee
- Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
6
|
Development and validation of a rapid LC–MS/MS method for determination of methylated nucleosides and nucleobases in urine. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1128:121775. [DOI: 10.1016/j.jchromb.2019.121775] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022]
|
7
|
Mohyuddin A, Hussain D, Fatima B, Athar M, Ashiq MN, Najam-ul-Haq M. Gallic acid functionalized UiO-66 for the recovery of ribosylated metabolites from human urine samples. Talanta 2019; 201:23-32. [DOI: 10.1016/j.talanta.2019.03.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
|
8
|
Burton C, Ma Y. Current Trends in Cancer Biomarker Discovery Using Urinary Metabolomics: Achievements and New Challenges. Curr Med Chem 2019; 26:5-28. [PMID: 28914192 DOI: 10.2174/0929867324666170914102236] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/26/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND The development of effective screening methods for early cancer detection is one of the foremost challenges facing modern cancer research. Urinary metabolomics has recently emerged as a potentially transformative approach to cancer biomarker discovery owing to its noninvasive sampling characteristics and robust analytical feasibility. OBJECTIVE To provide an overview of new developments in urinary metabolomics, cover the most promising aspects of hyphenated techniques in untargeted and targeted metabolomics, and to discuss technical and clinical limitations in addition to the emerging challenges in the field of urinary metabolomics and its application to cancer biomarker discovery. METHODS A systematic review of research conducted in the past five years on the application of urinary metabolomics to cancer biomarker discovery was performed. Given the breadth of this topic, our review focused on the five most widely studied cancers employing urinary metabolomics approaches, including lung, breast, bladder, prostate, and ovarian cancers. RESULTS As an extension of conventional metabolomics, urinary metabolomics has benefitted from recent technological developments in nuclear magnetic resonance, mass spectrometry, gas and liquid chromatography, and capillary electrophoresis that have improved urine metabolome coverage and analytical reproducibility. Extensive metabolic profiling in urine has revealed a significant number of altered metabolic pathways and putative biomarkers, including pteridines, modified nucleosides, and acylcarnitines, that have been associated with cancer development and progression. CONCLUSION Urinary metabolomics presents a transformative new approach toward cancer biomarker discovery with high translational capacity to early cancer screening.
Collapse
Affiliation(s)
- Casey Burton
- Department of Chemistry and Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO, United States
| | - Yinfa Ma
- Department of Chemistry and Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO, United States
| |
Collapse
|
9
|
Nour Eldin EEM, El-Readi MZ, Nour Eldein MM, Alfalki AA, Althubiti MA, Mohamed Kamel HF, Eid SY, Al-Amodi HS, Mirza AA. 8-Hydroxy-2'-deoxyguanosine as a Discriminatory Biomarker for Early Detection of Breast Cancer. Clin Breast Cancer 2018; 19:e385-e393. [PMID: 30683611 DOI: 10.1016/j.clbc.2018.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/30/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Breast cancer (BC) is one of the most prevalent and reported cancers among Saudi women. Detection of BC in the early invasive stage (stages I, II) has an advantage in treating patients over detection in the late invasive stage (stages III, IV). Tumor markers are used to aid in diagnosis, treatment monitoring, and recurrence detection of malignant tumors. 8-hydroxy-2'-deoxyguanosine (8-OHdG) is a marker of nucleic damage owing to oxidative stress. PATIENTS AND METHODS We studied the blood levels of 8-OHdG in 50 women with benign breast tumors, 50 women with BC, and 50 healthy women as a control group. RESULTS The concentrations of 8-OHdG were significantly increased in the BC group (55.2 ng/dL) compared with the benign tumor group (30.2 ng/dL) and with the healthy control group (9.08 ng/dL). The same pattern was observed with other diagnostic markers, including carcinoembryonic antigen and cancer antigen 15-3. Significant positive correlations between 8-OHdG and both carcinoembryonic antigen (r = 0.63; P < .001) and cancer antigen 15-3 (r = 0.51; P < .001) were noticed. The levels of 8-OHdG were significantly higher in stage I (81 ng/dL) compared with stage II (51 ng/dL; P < .05), stage III (38 ng/dL; P < .01), and stage IV (19 ng/dL; P < .001). In addition, serum 8-OHdG had a high diagnostic performance in BC (area under the curve, 0.86; sensitivity = 82%; specificity = 80% at cutoff value 21.4 ng/mL). 8-OHdG is associated with BC risk according to logistic regression analysis. CONCLUSION We concluded that the significant increase of serum levels of 8-OHdG in patients with BC can be used as a potential noninvasive biomarker for early detection of BC. However, large sample sizes from different stages and types of BC should be included in any future study to confirm the present findings before translating the findings into routine clinical application.
Collapse
Affiliation(s)
| | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Mohamed Mahmoud Nour Eldein
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia; Department of Medical Biochemistry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Albagir Ali Alfalki
- Department of Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Mohammad Ahmad Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Hala Fawzy Mohamed Kamel
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia; Department of Medical Biochemistry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Safaa Yehia Eid
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Hiba Saeed Al-Amodi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Ahmad A Mirza
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Rageh AH, Pyell U. “Pseudostationary Ion-Exchanger” Sweeping as an Online Enrichment Technique in the Determination of Nucleosides in Urine via Micellar Electrokinetic Chromatography. Chromatographia 2018. [DOI: 10.1007/s10337-018-3570-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Patejko M, Struck-Lewicka W, Siluk D, Waszczuk-Jankowska M, Markuszewski MJ. Urinary Nucleosides and Deoxynucleosides. Adv Clin Chem 2018; 83:1-51. [PMID: 29304899 DOI: 10.1016/bs.acc.2017.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Urinary nucleosides and deoxynucleosides are mainly known as metabolites of RNA turnover and oxidative damage of DNA. For several decades these metabolites have been examined for their potential use in disease states including cancer and oxidative stress. Subsequent improvements in analytical sensitivity and specificity have provided a reliable means to measure these unique molecules to better assess their relationship to physiologic and pathophysiologic conditions. In fact, some are currently used as antiviral and antitumor agents. In this review we provide insight into their molecular characteristics, highlight current separation techniques and detection methods, and explore potential clinical usefulness.
Collapse
|
12
|
Guo C, Ding P, Xie C, Ye C, Ye M, Pan C, Cao X, Zhang S, Zheng S. Potential application of the oxidative nucleic acid damage biomarkers in detection of diseases. Oncotarget 2017; 8:75767-75777. [PMID: 29088908 PMCID: PMC5650463 DOI: 10.18632/oncotarget.20801] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/27/2017] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) are generated after exposure to harmful environmental factors and during normal cellular metabolic processes. The balance of the generating and scavenging of ROS plays a significant role in living cells. The accumulation of ROS will lead to oxidative damage to biomolecules including nucleic acid. Although many types of oxidative nucleic acid damage products have been identified, 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoG) has been commonly chosen as the biomarkers of oxidative damage to DNA and RNA, respectively. It has been demonstrated that oxidative damage to nucleic acid is an initiator in pathogenesis of numerous diseases. Thus, oxidative nucleic acid damage biomarkers have the potential to be utilized for detection of diseases. Herein, we reviewed the relationship of oxidative nucleic acid damage and development of various diseases including cancers (colorectal cancer, gastrointestinal cancer, breast cancer, lung cancer, epithelial ovarian carcinoma, esophageal squamous cell carcinoma), neurodegenerative disorders and chronic diseases (diabetes and its complications, cardiovascular diseases). The potential of oxidative nucleic acid damage biomarkers for detection of diseases and drug development were described. Moreover, the approaches for detection of these biomarkers were also summarized.
Collapse
Affiliation(s)
- Cheng Guo
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Peili Ding
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Cong Xie
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chenyang Ye
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Minfeng Ye
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, China
| | - Chi Pan
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiaoji Cao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Suzhan Zhang
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Shu Zheng
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
13
|
Guo C, Li X, Ye M, Xu F, Yu J, Xie C, Cao X, Guo M, Yuan Y, Zheng S. Discriminating patients with early-stage breast cancer from benign lesions by detection of oxidative DNA damage biomarker in urine. Oncotarget 2017; 8:53100-53109. [PMID: 28881796 PMCID: PMC5581095 DOI: 10.18632/oncotarget.17831] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is one of the most commonly diagnosed and death-related cancers in women worldwide. Mammography is routinely used for screening and invasive examinations such as painful tissue biopsies were recommended for patients with abnormal screening outcomes. However, a considerable proportion of these cases turn out to be benign lesions. Thus, novel non-invasive approach for discriminating breast cancer from benign lesions is desirable. Herein, we applied a high-throughput ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) analysis to determine the oxidative DNA damage biomarker, 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) in urine samples from 60 patients with early-stage breast cancer (stage I, II), 51 patients with benign breast diseases and 73 healthy volunteers. We demonstrated that the concentration of urinary 8-oxodG in patients with early-stage breast cancer was significantly higher not only than that in healthy controls, but also than that in patients with benign breast diseases, whereas no significant difference of urinary 8-oxodG level was observed between benign breast diseases group and healthy control group. Moreover, there was significant difference between early-stage breast cancer group and non-cancerous group which consisted of benign breast diseases patients and healthy controls. Besides, logistic regression analysis and receiver operator characteristic (ROC) curve analysis were also performed. Our findings indicate that the marked increase of 8-oxodG in urine may serve as a potential biomarker for the risk estimation, early screening and detection of breast cancer, particularly for discriminating early-stage breast cancer from benign lesions.
Collapse
Affiliation(s)
- Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiaofen Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Minfeng Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, China
| | - Fei Xu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jiekai Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Cong Xie
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaoji Cao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
14
|
Shandiz FH, Ghaffarzadegan K, Fariman SJ, Akbarzadeh M, Elyasi S, Mohammadpour AH. Evaluation of serum levels of 8-oxo-2′-deoxyguanosine as a prognostic factor in nonmetastatic breast cancer patients. BREAST CANCER MANAGEMENT 2017. [DOI: 10.2217/bmt-2017-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: 8-OxodG protein has been introduced recently as a new biomarker for breast cancer, according to its role in tumor progression and invasion. In this study, we investigated prognostic value of 8-Oxo-2′-deoxyguanosine (8-OxodG) protein in nonmetastatic breast cancer patients excluding confounding factor. Materials & methods: Before any adjuvant chemotherapy or surgery, serum level of 8-OxodG protein was determined in 79 patients with nonmetastatic breast cancer. All patients follow up for 5 years regarding cancer recurrence and survival. Results: Cumulative risk of recurrence 5 years after the beginning of the study was 0.86 and there was no significant correlation between 8-OxodG and the recurrence rate (p = 0.78). Conclusion: The serum levels of 8-OxodG protein may not be an appropriate prognostic factor in breast cancer.
Collapse
Affiliation(s)
- Fatemeh Homaei Shandiz
- Solid Tumor Treatment Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Saeed Jahani Fariman
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Akbarzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Khamis MM, Adamko DJ, El-Aneed A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. MASS SPECTROMETRY REVIEWS 2017; 36:115-134. [PMID: 25881008 DOI: 10.1002/mas.21455] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/05/2014] [Accepted: 10/05/2014] [Indexed: 05/25/2023]
Abstract
Urine metabolomics has recently emerged as a prominent field for the discovery of non-invasive biomarkers that can detect subtle metabolic discrepancies in response to a specific disease or therapeutic intervention. Urine, compared to other biofluids, is characterized by its ease of collection, richness in metabolites and its ability to reflect imbalances of all biochemical pathways within the body. Following urine collection for metabolomic analysis, samples must be immediately frozen to quench any biogenic and/or non-biogenic chemical reactions. According to the aim of the experiment; sample preparation can vary from simple procedures such as filtration to more specific extraction protocols such as liquid-liquid extraction. Due to the lack of comprehensive studies on urine metabolome stability, higher storage temperatures (i.e. 4°C) and repetitive freeze-thaw cycles should be avoided. To date, among all analytical techniques, mass spectrometry (MS) provides the best sensitivity, selectivity and identification capabilities to analyze the majority of the metabolite composition in the urine. Combined with the qualitative and quantitative capabilities of MS, and due to the continuous improvements in its related technologies (i.e. ultra high-performance liquid chromatography [UPLC] and hydrophilic interaction liquid chromatography [HILIC]), liquid chromatography (LC)-MS is unequivocally the most utilized and the most informative analytical tool employed in urine metabolomics. Furthermore, differential isotope tagging techniques has provided a solution to ion suppression from urine matrix thus allowing for quantitative analysis. In addition to LC-MS, other MS-based technologies have been utilized in urine metabolomics. These include direct injection (infusion)-MS, capillary electrophoresis-MS and gas chromatography-MS. In this article, the current progresses of different MS-based techniques in exploring the urine metabolome as well as the recent findings in providing potentially diagnostic urinary biomarkers are discussed. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:115-134, 2017.
Collapse
Affiliation(s)
- Mona M Khamis
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
- Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Darryl J Adamko
- Department of Pediatrics, College of Medicine, University of Saskatchewan, 103 Hospital Drive, Saskatoon, SK, Canada
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| |
Collapse
|
16
|
Jinno D, Kanemitsu Y, Saitoh K, Nankumo S, Tsukamoto H, Matsumoto Y, Abe T, Tomioka Y. Rapid and selective simultaneous quantitative analysis of modified nucleosides using multi-column liquid chromatography-tandem mass spectrometry. J Anal Sci Technol 2017. [DOI: 10.1186/s40543-017-0110-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
17
|
Mohyuddin A, Hussain D, Najam-ul-Haq M. Polydopamine assisted functionalization of boronic acid on magnetic nanoparticles for the selective extraction of ribosylated metabolites from urine. RSC Adv 2017. [DOI: 10.1039/c6ra28369a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A novel strategy for the rapid and selective extraction of ribosylated metabolites by dopamine assisted functionalization of boronic acid on magnetic (Fe3O4@PDA-FPBA) nanoparticles has been demonstrated under optimized conditions.
Collapse
Affiliation(s)
- Abrar Mohyuddin
- Division of Analytical Chemistry
- Institute of Chemical Sciences
- Bahauddin Zakariya University
- Multan 60800
- Pakistan
| | - Dilshad Hussain
- Division of Analytical Chemistry
- Institute of Chemical Sciences
- Bahauddin Zakariya University
- Multan 60800
- Pakistan
| | - Muhammad Najam-ul-Haq
- Division of Analytical Chemistry
- Institute of Chemical Sciences
- Bahauddin Zakariya University
- Multan 60800
- Pakistan
| |
Collapse
|
18
|
Saito T, Sugimoto M, Okumoto K, Haga H, Katsumi T, Mizuno K, Nishina T, Sato S, Igarashi K, Maki H, Tomita M, Ueno Y, Soga T. Serum metabolome profiles characterized by patients with hepatocellular carcinoma associated with hepatitis B and C. World J Gastroenterol 2016; 22:6224-6234. [PMID: 27468212 PMCID: PMC4945981 DOI: 10.3748/wjg.v22.i27.6224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/25/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To clarify the characteristics of metabolite profiles in virus-related hepatocellular carcinoma (HCC) patients using serum metabolome analysis.
METHODS: The serum levels of low-molecular-weight metabolites in 68 patients with HCC were quantified using capillary electrophoresis chromatography and mass spectrometry. Thirty and 38 of the patients suffered from hepatitis B virus-related HCC (HCC-B) and hepatitis C virus-related HCC (HCC-C), respectively.
RESULTS: The main metabolites characteristic of HCC were those associated with glutathione metabolism, notably 13 γ-glutamyl peptides, which are by-products of glutathione induction. Two major profiles, i.e., concentration patterns, of metabolites were identified in HCC patients, and these were classified into two groups: an HCC-B group and an HCC-C group including some of the HCC-B cases. The receiver operating characteristic curve for the multiple logistic regression model discriminating HCC-B from HCC-C incorporating the concentrations of glutamic acid, methionine and γ-glutamyl-glycine-glycine showed a highly significant area under the curve value of 0.94 (95%CI: 0.89-1.0, P < 0.0001).
CONCLUSION: The serum levels of γ-glutamyl peptides, as well as their concentration patterns, contribute to the development of potential biomarkers for virus-related HCC. The difference in metabolite profiles between HCC-B and HCC-C may reflect the respective metabolic reactions that underlie the different pathogeneses of these two types of HCC.
Collapse
|
19
|
Iwanowska A, Yusa SI, Nowakowska M, Szczubiałka K. Selective adsorption of modified nucleoside cancer biomarkers by hybrid molecularly imprinted adsorbents. J Sep Sci 2016; 39:3072-80. [DOI: 10.1002/jssc.201600132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/21/2022]
Affiliation(s)
| | - Shin-Ichi Yusa
- Graduate School of Engineering, Department of Materials Science and Chemistry; University of Hyogo; Himeji Hyogo Japan
| | | | | |
Collapse
|
20
|
Dejous C, Hallil H, Raimbault V, Lachaud JL, Plano B, Delépée R, Favetta P, Agrofoglio L, Rebière D. Love Acoustic Wave-Based Devices and Molecularly-Imprinted Polymers as Versatile Sensors for Electronic Nose or Tongue for Cancer Monitoring. SENSORS (BASEL, SWITZERLAND) 2016; 16:E915. [PMID: 27331814 PMCID: PMC4934341 DOI: 10.3390/s16060915] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/09/2016] [Accepted: 06/14/2016] [Indexed: 02/07/2023]
Abstract
Cancer is a leading cause of death worldwide and actual analytical techniques are restrictive in detecting it. Thus, there is still a challenge, as well as a need, for the development of quantitative non-invasive tools for the diagnosis of cancers and the follow-up care of patients. We introduce first the overall interest of electronic nose or tongue for such application of microsensors arrays with data processing in complex media, either gas (e.g., Volatile Organic Compounds or VOCs as biomarkers in breath) or liquid (e.g., modified nucleosides as urinary biomarkers). Then this is illustrated with a versatile acoustic wave transducer, functionalized with molecularly-imprinted polymers (MIP) synthesized for adenosine-5'-monophosphate (AMP) as a model for nucleosides. The device including the thin film coating is described, then static measurements with scanning electron microscopy (SEM) and electrical characterization after each step of the sensitive MIP process (deposit, removal of AMP template, capture of AMP target) demonstrate the thin film functionality. Dynamic measurements with a microfluidic setup and four targets are presented afterwards. They show a sensitivity of 5 Hz·ppm(-1) of the non-optimized microsensor for AMP detection, with a specificity of three times compared to PMPA, and almost nil sensitivity to 3'AMP and CMP, in accordance with previously published results on bulk MIP.
Collapse
Affiliation(s)
- Corinne Dejous
- IMS, University Bordeaux, CNRS UMR 5218, Bordeaux INP, 33405 Talence, France.
| | - Hamida Hallil
- IMS, University Bordeaux, CNRS UMR 5218, Bordeaux INP, 33405 Talence, France.
| | - Vincent Raimbault
- IMS, University Bordeaux, CNRS UMR 5218, Bordeaux INP, 33405 Talence, France.
- LAAS, CNRS UPR 8001, 31031 Toulouse, France.
| | - Jean-Luc Lachaud
- IMS, University Bordeaux, CNRS UMR 5218, Bordeaux INP, 33405 Talence, France.
| | - Bernard Plano
- IMS, University Bordeaux, CNRS UMR 5218, Bordeaux INP, 33405 Talence, France.
| | - Raphaël Delépée
- Normandie Univ., UNICAEN, UNIROUEN, ABTE, 14000 Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, 14076 Caen, France.
| | - Patrick Favetta
- ICOA, University Orléans, CNRS, CNRS UMR 7311, F-45067 Orléans, France.
| | - Luigi Agrofoglio
- ICOA, University Orléans, CNRS, CNRS UMR 7311, F-45067 Orléans, France.
| | - Dominique Rebière
- IMS, University Bordeaux, CNRS UMR 5218, Bordeaux INP, 33405 Talence, France.
| |
Collapse
|
21
|
Fan H, Chen P, Wang C, Wei Y. Zirconium-doped magnetic microspheres for the selective enrichment of cis-diol-containing ribonucleosides. J Chromatogr A 2016; 1448:20-31. [PMID: 27130580 DOI: 10.1016/j.chroma.2016.04.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/04/2016] [Accepted: 04/18/2016] [Indexed: 02/07/2023]
Abstract
Zirconium-doped magnetic microspheres (Zr-Fe3O4) for the selective enrichment of cis-diol-containing biomolecules were easily synthesized via a one-step hydrothermal method. Characterization of the microspheres revealed that zirconium was successfully doped into the lattice of Fe3O4 at a doping level of 4.0 at%. Zr-Fe3O4 possessed good magnetic properties and high specificity towards cis-diol molecules, as shown using 28 compounds. For ribonucleosides, the adsorbent not only has favorable anti-interferential abilities but also has a high adsorption capacity up to 159.4μmol/g. As an example of a real application, four ribonucleosides in urine were efficiently enriched and detected via magnetic solid-phase extraction coupled with high-performance liquid chromatography. Under the optimized extraction conditions, the detection limits were determined to be between 0.005 and 0.017μg/mL, and the linearities ranged from 0.02 to 5.00μg/mL (R≥0.996) for these analytes. The accuracy of the analytical method was examined by studying the relative recoveries of the analytes in real urine samples, with recoveries varying from 77.8% to 119.6% (RSDs<10.6%, n=6). The results indicate that Zr-Fe3O4 is a suitable adsorbent for the analysis of cis-diol-containing biomolecules in practical applications.
Collapse
Affiliation(s)
- Hua Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, PR China
| | - Peihong Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, PR China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, PR China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, PR China.
| |
Collapse
|
22
|
Development, validation and application of a fast analytical methodology for the simultaneous determination of DNA- and RNA-derived urinary nucleosides by liquid chromatography coupled to tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1019:132-9. [DOI: 10.1016/j.jchromb.2015.10.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 01/24/2023]
|
23
|
Seidel A, Seidel P, Manuwald O, Herbarth O. Modified nucleosides as biomarkers for early cancer diagnose in exposed populations. ENVIRONMENTAL TOXICOLOGY 2015; 30:956-967. [PMID: 24615900 DOI: 10.1002/tox.21970] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 02/04/2014] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
There is increasing worldwide interest in developing of markers for tumor diagnosis and identification of individuals who are at high cancer risk. Cancer, like other diseases accompanied by metabolic disorders, causes characteristic effects on cell turnover rate, activity of modifying enzymes, and RNA/DNA modifications. This results in an increased excretion of modified nucleosides in cancer patients. Therefore, for many years modified nucleosides have been suggested as tumor markers. The aim of the study was to elucidate further the usefulness of urinary nucleosides as possible markers at early detection of cancer in persons which are exposed against tumor promoting influences during their working life. Uranium miners are exposed to many kinds of pollutants that can cause health damage even lead to carcinogenesis. We analyzed modified nucleosides in urine samples from 92 miners who are at high risk for lung cancer to assess the levels of nucleosides by a multilayer perceptron (MLP) classifier - a neural network model. Eighteen nucleosides/metabolites were detected with reversed-phase high-pressure liquid chromatography (RP-HPLC). A valid set of urinary metabolites were selected and multivariate statistical technique of multilayer perceptron neural network were applied. In a previous study, MLP shows a sensitivity and specificity of 97 and 85%, respectively. MLP classification including the most relevant markers/nucleosides clearly demonstrates the elevation of RNA metabolism in miners, which is associated with possible malignant disease. We found that there were 30 subjects with early health disorders among 92 uranium workers based on MLP technique using modified nucleosides. The combination of RP-HPLC analysis of modified nucleosides and subsequent MLP analyses represents a promising tool for the development of a non-invasive prediction system and may assist in developing management and surveillance procedures.
Collapse
Affiliation(s)
- Annerose Seidel
- Environmental Medicine and Hygiene, Faculty of Medicine, University of Leipzig, Liebigstrasse 27, 04103, Leipzig, Germany
| | - Peter Seidel
- Institute of Medical Biophysics and Physics, Faculty of Medicine, University of Leipzig, Liebigstrasse 27, 04103, Leipzig, Germany
| | - Olaf Manuwald
- Institute of Environmental Medicine, Heinrich-Heine-Strasse 3, 99096, Erfurt, Germany
| | - Olf Herbarth
- Environmental Medicine and Hygiene, Faculty of Medicine, University of Leipzig, Liebigstrasse 27, 04103, Leipzig, Germany
| |
Collapse
|
24
|
Li S, Jin Y, Tang Z, Lin S, Liu H, Jiang Y, Cai Z. A novel method of liquid chromatography-tandem mass spectrometry combined with chemical derivatization for the determination of ribonucleosides in urine. Anal Chim Acta 2015; 864:30-8. [PMID: 25732424 DOI: 10.1016/j.aca.2015.01.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 11/30/2022]
Abstract
Ribonucleosides are the end products of RNA metabolism. These metabolites, especially the modified ribonucleosides, have been extensively evaluated as cancer-related biomarkers. However, the determination of urinary ribonucleosides is still a challenge due to their low abundance, high polarity and serious matrix interferences in urine samples. In this study, a derivatization method based on a chemical reaction between ribonucleosides and acetone to form acetonides was developed for the determination of urinary ribonucleosides. The derivative products, acetonides, were detected by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The methodological evaluation was performed by quantifying four nucleosides for linear range, average recovery, precision, accuracy and stability. The validated procedures were applied to screen modified ribonucleosides in urine samples. Improvement of separation and enhancement of sensitivity were obtained in the analysis. To identify ribonucleosides, inexpensive isotope labeling acetone (acetone-d6) and label-free acetone were applied to form ordinary and deuterated acetonides, respectively. The two groups of samples were separated with orthogonal partial least squares (OPLS). The ordinary and deuterated pairs of acetonides were symmetrically distributed in the S-plot for easy and visual signal identification. After structural confirmation, a total of 56 ribonucleosides were detected, 52 of which were modified ribonucleosides. The application of derivatization, deuterium-labeling and multivariate statistical analysis offers a new option for selective detection of ribonucleosides in biological samples.
Collapse
Affiliation(s)
- Shangfu Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, PR China
| | - Yibao Jin
- Shenzhen Institute for Drug Control, Shenzhen 518055, PR China; State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Zhi Tang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, PR China
| | - Shuhai Lin
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, PR China
| | - Hongxia Liu
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Key Laboratory of Metabolomics at Shenzhen, Shenzhen 518055, PR China
| | - Yuyang Jiang
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, PR China.
| |
Collapse
|
25
|
Struck-Lewicka W, Kaliszan R, Markuszewski MJ. Analysis of urinary nucleosides as potential cancer markers determined using LC–MS technique. J Pharm Biomed Anal 2014; 101:50-7. [DOI: 10.1016/j.jpba.2014.04.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 01/05/2023]
|
26
|
Rageh AH, Pyell U. Boronate affinity-assisted MEKC separation of highly hydrophilic urinary nucleosides using imidazolium-based ionic liquid type surfactant as pseudostationary phase. Electrophoresis 2014; 36:784-95. [DOI: 10.1002/elps.201400357] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/05/2014] [Accepted: 09/20/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Azza H. Rageh
- Department of Chemistry; University of Marburg; Marburg Germany
| | - Ute Pyell
- Department of Chemistry; University of Marburg; Marburg Germany
| |
Collapse
|
27
|
Li Y, Yu H, Zhao W, Xu X, Zhou J, Xu M, Gao W, Yuan G. Analysis of urinary methylated nucleosides of patients with coronary artery disease by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2054-2058. [PMID: 25156594 DOI: 10.1002/rcm.6986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 07/13/2014] [Accepted: 07/13/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE In recent years, methylated nucleosides have been considered to be potential biomarkers to human diseases. The early diagnosis of coronary artery disease (CAD) is an unsolved problem in clinical cardiology. The aim of our study is to evaluate whether urinary methylated nucleosides can serve as useful biomarkers for CAD. METHODS A solid-phase extraction (SPE) column was used for extraction and purification of methylated nucleosides in urine, and high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS) was employed for specific, sensitive and rapid determination of the urinary methylated nucleosides from patients with cardiac events. RESULTS We have analyzed six methylated nucleosides (N(3)-methylcytidine, N(1)-methyladenosine, N(6)-methyladenosine, N(2)-methylguanosine, N(1)-methylguanosine and N(2),N(2)-dimethylguanosine) in urine from 51 patients with CAD and 25 non-CAD controls by HPLC/ESI-MS/MS using selective reaction monitoring (SRM). Our results have shown that there were significant differences in the N(6)-methyladenosine levels from the patients and the non-CAD controls in the urine analyzed. CONCLUSIONS The results have indicated that HPLC/ESI-MS/MS is a highly specific and sensitive tool to measure urinary methylated nucleosides for analysis of CAD. Our result has revealed that the evaluation of urinary methylated nucleosides might be helpful in the analysis of CAD by liquid chromatography/mass spectrometry. Therefore, this N(6)-methyladenosine is worthy of further studies in the near future.
Collapse
Affiliation(s)
- Yanru Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jiao X, Mo Y, Wu Y, He J, Zhang P, Hu R, Luo C, Du J, Fu J, Shi J, Zhou L, Li D. Upregulated plasma and urinary levels of nucleosides as biological markers in the diagnosis of primary gallbladder cancer. J Sep Sci 2014; 37:3033-44. [PMID: 25137411 DOI: 10.1002/jssc.201400638] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 12/28/2022]
Abstract
We first detected aberrant nucleoside levels in the plasma, urine, bile, and tissues from cases and controls to explore them as biomarkers in the diagnosis of gallbladder cancer. Reversed-phase high-performance liquid chromatography was used to assess the levels of ten nucleosides in these samples from gallbladder cancer patients, gallstone patients, and healthy controls. Plasma and urine samples were collected from patients with gallbladder cancer (n = 202), patients with gallstones (n = 203), and healthy controls (n = 205); bile and tissue samples were collected from 91 gallbladder cancer patients, 93 gallstone patients; and 90 were donated after cardiac death. Of the ten nucleosides analyzed, eight urinary nucleosides, five plasma nucleosides, three bile nucleosides, and one tissue nucleoside were significantly upregulated in the gallbladder cancer patients compared to control groups (p < 0.05). Among these upregulated nucleosides, the sensitivity, specificity, and accuracy of urinary nucleosides in the diagnosis of gallbladder cancer patients were 89.4, 97.1, and 95.7%, respectively, those of plasma nucleosides were 91.2, 95.6, and 94.2%, respectively, those of bile nucleosides were 95.3, 96.4, and 95.1%, respectively, and those of tissue nucleosides were 86.2, 93.8, and 92.6%, respectively. These results suggest that nucleosides may be as useful as biological markers for gallbladder cancer.
Collapse
Affiliation(s)
- Xingyuan Jiao
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Determination of urinary nucleosides via borate complexation capillary electrophoresis combined with dynamic pH junction-sweeping-large volume sample stacking as three sequential steps for their on-line enrichment. Anal Bioanal Chem 2014; 406:5877-95. [DOI: 10.1007/s00216-014-8022-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/20/2014] [Accepted: 07/07/2014] [Indexed: 01/14/2023]
|
30
|
Dudley E, Bond L. Mass spectrometry analysis of nucleosides and nucleotides. MASS SPECTROMETRY REVIEWS 2014; 33:302-31. [PMID: 24285362 DOI: 10.1002/mas.21388] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 05/12/2023]
Abstract
Mass spectrometry has been widely utilised in the study of nucleobases, nucleosides and nucleotides as components of nucleic acids and as bioactive metabolites in their own right. In this review, the application of mass spectrometry to such analysis is overviewed in relation to various aspects regarding the analytical mass spectrometric and chromatographic techniques applied and also the various applications of such analysis.
Collapse
Affiliation(s)
- Ed Dudley
- Institute of Mass Spectrometry, College of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | | |
Collapse
|
31
|
Detection of urinary modified nucleosides by a bulk acoustic wave MIP sensor – Results and future work. Ing Rech Biomed 2014. [DOI: 10.1016/j.irbm.2014.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Studzińska S, Buszewski B. Analysis of normal and modified nucleosides in urine samples by high-performance liquid chromatography with different stationary phases. Biomed Chromatogr 2014; 28:1140-6. [DOI: 10.1002/bmc.3135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 12/11/2013] [Accepted: 12/18/2013] [Indexed: 11/06/2022]
Affiliation(s)
- S Studzińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry; Nicolaus Copernicus University; 7 Gagarin St. PL- 87-100 Toruń Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry; Nicolaus Copernicus University; 7 Gagarin St. PL- 87-100 Toruń Poland
| |
Collapse
|
33
|
|
34
|
Lo WY, Jeng LB, Lai CC, Tsai FJ, Lin CT, Chen WTL. Urinary cytidine as an adjunct biomarker to improve the diagnostic ratio for gastric cancer in Taiwanese patients. Clin Chim Acta 2014; 428:57-62. [DOI: 10.1016/j.cca.2013.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/09/2013] [Accepted: 10/09/2013] [Indexed: 12/14/2022]
|
35
|
Hsu WY, Chen CJ, Huang YC, Tsai FJ, Jeng LB, Lai CC. Urinary nucleosides as biomarkers of breast, colon, lung, and gastric cancer in Taiwanese. PLoS One 2013; 8:e81701. [PMID: 24367489 PMCID: PMC3868621 DOI: 10.1371/journal.pone.0081701] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/02/2013] [Indexed: 01/23/2023] Open
Abstract
Urinary nucleosides are associated with many types of cancer. In this study, six targeted urinary nucleosides, namely adenosine, cytidine, 3-methylcytidine, 1-methyladenosine, inosine, and 2-deoxyguanosine, were chosen to evaluate their role as biomarkers of four different types of cancer: lung cancer, gastric cancer, colon cancer, and breast cancer. Urine samples were purified using solid-phase extraction (SPE) and then analyzed using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The Mann-Whitney U test and Principal Component Analysis (PCA) were used to compare differences in urinary nucleosides between patients with one of four types of cancer and healthy controls. The diagnostic sensitivity of single nucleosides for different types of cancer ranged from 14% to 69%. In contrast, the diagnostic sensitivity of a set of six nucleosides ranged from 37% to 69%. The false-positive identification rate associated with the set of six nucleosides in urine was less than 2% compared with that of less than 5% for a single nucleoside. Furthermore, combining the set of six urinary nucleosides with carcinoembryonic antigen improved the diagnostic sensitivity for colon cancer. In summary, the study show that a set of six targeted nucleosides is a good diagnostic marker for breast and colon cancers but not for lung and gastric cancers.
Collapse
Affiliation(s)
- Wei-Yi Hsu
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- China Medical University, Taichung, Taiwan
| | - Chao-Jung Chen
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chuen Huang
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Long-Bin Jeng
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
- * E-mail: (CCL); (LBJ)
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- * E-mail: (CCL); (LBJ)
| |
Collapse
|
36
|
Rageh AH, Pyell U. Imidazolium-based ionic liquid-type surfactant as pseudostationary phase in micellar electrokinetic chromatography of highly hydrophilic urinary nucleosides. J Chromatogr A 2013; 1316:135-46. [DOI: 10.1016/j.chroma.2013.09.079] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 11/30/2022]
|
37
|
Loft S, Olsen A, Møller P, Poulsen HE, Tjønneland A. Association between 8-oxo-7,8-dihydro-2'-deoxyguanosine excretion and risk of postmenopausal breast cancer: nested case-control study. Cancer Epidemiol Biomarkers Prev 2013; 22:1289-96. [PMID: 23658396 DOI: 10.1158/1055-9965.epi-13-0229] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Oxidative stress may be important in carcinogenesis and a possible risk factor for breast cancer. The urinary excretion of oxidatively generated biomolecules, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), represents biomarkers of oxidative stress, reflecting the rate of global damage to DNA in steady state. METHODS In a nested case-control design, we examined associations between urinary excretion of 8-oxodG and risk of breast cancer in a population-based cohort of 24,697 postmenopausal women aged 50 to 64 years with 3 to 7 years follow-up. The accruing cases of breast cancer were matched to controls by age at diagnosis, baseline age, and hormone replacement therapy (HRT). Spot urine samples collected at entry was analyzed for 8-oxodG by high-performance liquid chromatography with electrochemical detection. Incidence rate ratio (IRR; 95% confidence intervals) based on 336 matched pairs with all information was estimated per unit increase in 8-oxodG divided by creatinine for all and estrogen receptor (ER) positive and negative breast cancers. RESULTS There was a borderline significant positive association between 8-oxodG and risk of all breast cancer (IRR: 1.08; 1.00-1.17 per unit increase in nmol/mmol creatinine). This association was significant with respect to the risk of ER-positive cancer (IRR: 1.11; 1.01-1.23) and among women not using HRT (IRR: 1.11; 0.97-1.26) or with low dietary iron intake (IRR: 1.10; 1.06-1.37 per unit increase) for all breast cancer. CONCLUSIONS We observed positive association between 8-oxodG excretion and risk of especially ER-positive breast cancer. IMPACT Our results suggest that oxidative stress with damage to DNA is important for the development of breast cancer.
Collapse
Affiliation(s)
- Steffen Loft
- Department of Public Health, Section of Enviromental Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
38
|
Struck W, Siluk D, Yumba-Mpanga A, Markuszewski M, Kaliszan R, Markuszewski MJ. Liquid chromatography tandem mass spectrometry study of urinary nucleosides as potential cancer markers. J Chromatogr A 2013; 1283:122-31. [DOI: 10.1016/j.chroma.2013.01.111] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 12/14/2022]
|
39
|
Prasse C, Wagner M, Schulz R, Ternes TA. Oxidation of the antiviral drug acyclovir and its biodegradation product carboxy-acyclovir with ozone: kinetics and identification of oxidation products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:2169-2178. [PMID: 22300376 DOI: 10.1021/es203712z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The oxidation of the antiviral drug acyclovir (ACV) and its main biotransformation product carboxy-acyclovir (carboxy-ACV) by ozone was investigated. Both compounds have recently been detected in surface water, and carboxy-ACV has also been detected in drinking water. The experiments revealed a strong pH dependence of the oxidation of ACV and carboxy-ACV with reaction rate constants increasing by 4 orders of magnitude between the protonated, positively charged form (k(ox,PH(+)), ∼2.5 × 10(2) M(-1) s(-1)) and the deprotonated, negatively charged form (k(ox,P(-)), 3.4 × 10(6) M(-1) s(-1)). At pH 8 a single oxidation product was formed which was identified via LC-LTQ-Orbitrap MS and NMR as N-(4-carbamoyl-2-imino-5-oxoimidazolidin)formamido-N-methoxyacetic acid (COFA). Using Vibrio fischeri , an acute bacterial toxicity was found for COFA while carboxy-ACV revealed no toxic effects. Ozonation experiments with guanine and guanosine at pH 8 led to the formation of the respective 2-imino-5-oxoimidazolidines, confirming that guanine derivatives such as carboxy-ACV are undergoing the same reactions during ozonation. Furthermore, COFA was detected in finished drinking water of a German waterworks after ozonation and subsequent activated carbon treatment.
Collapse
|
40
|
Chen F, Xue J, Zhou L, Wu S, Chen Z. Identification of serum biomarkers of hepatocarcinoma through liquid chromatography/mass spectrometry-based metabonomic method. Anal Bioanal Chem 2011; 401:1899-904. [PMID: 21833635 PMCID: PMC3172404 DOI: 10.1007/s00216-011-5245-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/03/2011] [Accepted: 07/06/2011] [Indexed: 12/22/2022]
Abstract
Late diagnosis of hepatocarcinoma (HCC) is one of the most primary factors for the poor survival of patients. Thereby, identification of sensitive and specific biomarkers for HCC early diagnosis is of great importance in biological medicine to date. In the present study, serum metabolites of the HCC patients and healthy controls were investigated using the improved liquid chromatography-mass spectrometry (LC/MS). A wavelet-based method was utilized to find and align peaks of LC-MS. The characteristic peaks were selected by performing a two-sample t test statistics (p value <0.05). Clustering analysis based on principal component analysis showed a clear separation between HCC patients and healthy individuals. The serum metabolite, namely 1-methyladenosine, was identified as the characteristic metabolite for HCC. Moreover, receiver-operator curves were calculated with 1-methyladenosine and/or alpha fetal protein (AFP). The higher area under curve value was achieved in 1-methyladenosine group than AFP group (0.802 vs. 0.592), and the diagnostic model combining 1-methyladenosine with AFP exhibited significant improved sensitivity, which could identify those patients who missed the diagnosis of HCC by determining serum AFP alone. Overall, these results suggested that LC/MS-based metabonomic study is a potent and promising strategy for identifying novel biomarkers of HCC.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Infectious Disease Diagnosis and Treatment, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 China
| | - Jihua Xue
- State Key Laboratory of Infectious Disease Diagnosis and Treatment, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 China
| | - Linfu Zhou
- Department of Cell Biology, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Shanshan Wu
- State Key Laboratory of Infectious Disease Diagnosis and Treatment, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 China
| | - Zhi Chen
- State Key Laboratory of Infectious Disease Diagnosis and Treatment, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 China
| |
Collapse
|
41
|
Analysis of urinary nucleosides as potential tumor markers in human breast cancer by high performance liquid chromatography/electrospray ionization tandem mass spectrometry. Clin Chim Acta 2011; 412:1861-6. [DOI: 10.1016/j.cca.2011.06.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 06/19/2011] [Accepted: 06/21/2011] [Indexed: 02/08/2023]
|
42
|
Struck W, Waszczuk-Jankowska M, Kaliszan R, Markuszewski MJ. The state-of-the-art determination of urinary nucleosides using chromatographic techniques "hyphenated" with advanced bioinformatic methods. Anal Bioanal Chem 2011; 401:2039-50. [PMID: 21359827 PMCID: PMC3175040 DOI: 10.1007/s00216-011-4789-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/03/2011] [Accepted: 02/08/2011] [Indexed: 11/29/2022]
Abstract
Over the last decade metabolomics has gained increasing popularity and significance in life sciences. Together with genomics, transcriptomics and proteomics, metabolomics provides additional information on specific reactions occurring in humans, allowing us to understand some of the metabolic pathways in pathological processes. Abnormal levels of such metabolites as nucleosides in the urine of cancer patients (abnormal in relation to the levels observed in healthy volunteers) seem to be an original potential diagnostic marker of carcinogenesis. However, the expectations regarding the diagnostic value of nucleosides may only be justified once an appropriate analytical procedure has been applied for their determination. The achievement of good specificity, sensitivity and reproducibility of the analysis depends on the right choice of the phases (e.g. sample pretreatment procedure), the analytical technique and the bioinformatic approach. Improving the techniques and methods applied implies greater interest in exploration of reliable diagnostic markers. This review covers the last 11 years of determination of urinary nucleosides conducted with the use of high-performance liquid chromatography in conjunction with various types of detection, sample pretreatment methods as well as bioinformatic data processing procedures.
Collapse
Affiliation(s)
- Wiktoria Struck
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | | | | | | |
Collapse
|
43
|
Roux A, Lison D, Junot C, Heilier JF. Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: A review. Clin Biochem 2011; 44:119-35. [DOI: 10.1016/j.clinbiochem.2010.08.016] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 01/01/2023]
|
44
|
Markuszewski MJ, Struck W, Waszczuk-Jankowska M, Kaliszan R. Metabolomic approach for determination of urinary nucleosides as potential tumor markers using electromigration techniques. Electrophoresis 2010; 31:2300-10. [PMID: 20564268 DOI: 10.1002/elps.200900785] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the postgenome-sequencing era, several large projects have been running recently. Proteomics and other analysis or structural biology are the most active today. Since the late 1990 s, metabolomics has been gaining importance in systems biology, as it provides real-world end points that complement and help in the interpretation of genomic and proteomic data. Comprehensive information about the level changes of numerous metabolites present in the analyzed samples is essential in metabolomic studies. Therefore, the applied analytical techniques must be suitable for the simultaneous analysis of a diverse range of low-molecular-mass endogenous metabolites such as nucleosides at various concentrations and in different matrices, in particular, in urine and serum. In the view of metabolomic study, this domain is obviously significant to understand specific humans' reactions and it can be perceived as a diagnostic and predictive tool in pathological reactions. Since the term "metabolom" has occurred in common scientific use, there have been many publications about possible ways of analysis of nucleosides as metabolites of either oxidative DNA damage or RNA's turnover that are used as the potential tumor markers. Besides, the availability of fast, reproducible and easy to apply analytical techniques that would allow the identification of a large number of metabolites is highly desirable since they may provide detailed information about the progression of a pathological process. This paper, which describes the most relevant electromigration techniques, covers the period starting from the review of Karl H. Schram (Mass Spectrom. Rev. 1998, 17, 131-251) up to the beginning of 2009.
Collapse
Affiliation(s)
- Michal J Markuszewski
- Department of Toxicology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland.
| | | | | | | |
Collapse
|
45
|
Djukovic D, Baniasadi HR, Kc R, Hammoud Z, Raftery D. Targeted serum metabolite profiling of nucleosides in esophageal adenocarcinoma. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:3057-3062. [PMID: 20872639 DOI: 10.1002/rcm.4739] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nucleosides are indicators of the whole-body turnover of transfer RNA. Based on the activity of cancer cells these molecules could potentially be used as cancer biomarkers, and several studies have determined that the metabolic levels of nucleosides are significantly altered in cancer patients compared to control groups. Here we report a targeted metabolite investigation of serum nucleosides in esophageal adenocarcinoma specimens. We quantified eight nucleosides using high-performance liquid chromatography/triple quadrupole mass spectrometry (HPLC/TQMS) and determined that the metabolic levels of 1-methyladenosine (p <2.14 × 10(-7)), N(2),N(2)-dimethylguanosine (p <2.78 × 10(-7)), N(2)-methylguanosine (p <2.48 × 10(-6)) and cytidine (p <6.98 × 10(-4)) were significantly elevated while the concentration of uridine (p <3.74 × 10(-3)) was significantly lowered in serum samples from cancer patients compared to those of control group. Our results suggest that nucleosides could potentially serve as useful biomarkers to identify esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Danijel Djukovic
- Department of Chemistry, Purdue University, 506 Oval Dr., W. Lafayette, IN 47906, USA
| | | | | | | | | |
Collapse
|
46
|
Evans MD, Saparbaev M, Cooke MS. DNA repair and the origins of urinary oxidized 2'-deoxyribonucleosides. Mutagenesis 2010; 25:433-42. [PMID: 20522520 DOI: 10.1093/mutage/geq031] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Monitoring oxidative stress in vivo is made easier by the ability to use samples obtained non-invasively, such as urine. The analysis of DNA oxidation, by measurement of oxidized 2'-deoxyribonucleosides in urine, particularly 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), has been reported extensively in the literature in many situations relating to various pathologies, populations and environmental exposures. Understanding the origins of urinary 8-oxodG, other than it simply being a marker of DNA oxidation or its synthetic precursors, is important to being able to effectively interpret differences in baseline urinary 8-oxodG levels between subject groups and changes in excretion. Diet and cell turnover play negligible roles in contributing to urinary 8-oxodG levels, leaving DNA repair as a primary source of this lesion. However, which repair processes contribute, and to what extent, to urinary 8-oxodG is still open to question. The most rational source would be the activity of selected members of the Nudix hydrolase family of enzymes, sanitizing the deoxyribonucleotide pool via the degradation of 8-oxo-7,8-dihydro-2'-deoxyguanosine-5'-triphosphate and 8-oxo-7,8-dihydro-2'-deoxyguanosine-5'-diphosphate, yielding mononucleotide products that can then be dephosphorylated to 8-oxodG and excreted. However, nucleotide excision repair (NER), transcription-coupled repair, nucleotide incision repair (NIR), mismatch repair and various exonuclease activities, such as proofreading function associated with DNA polymerases, can all feasibly generate initial products that could yield 8-oxodG after further metabolism. A recent study implying that a significant proportion of genomic 8-oxodG exists in the context of tandem lesions, refractory to repair by glycosylases, suggests the roles of NER and/or NIR remain to be further examined and defined as a source of 8-oxodG. 8-OxodG has been the primary focus of investigation, but other oxidized 2'-deoxyribonucleosides have been detected in urine, 2'-deoxythymidine glycol and 5-hydroxymethyl-2'-deoxyuridine; the origins of these compounds in urine, however, are presently even more speculative than for 8-oxodG.
Collapse
Affiliation(s)
- Mark D Evans
- Radiation and Oxidative Stress Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK.
| | | | | |
Collapse
|
47
|
Sova H, Jukkola-Vuorinen A, Puistola U, Kauppila S, Karihtala P. 8-Hydroxydeoxyguanosine: a new potential independent prognostic factor in breast cancer. Br J Cancer 2010; 102:1018-23. [PMID: 20179711 PMCID: PMC2844025 DOI: 10.1038/sj.bjc.6605565] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/07/2010] [Accepted: 01/12/2010] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND 8-Hydroxydeoxyguanosine (8-oxodG) is the commonly used marker of oxidative stress-derived DNA damage. 8-OxodG formation is regulated by local antioxidant capacity and DNA repair enzyme activity. Earlier studies have reported contradictory data on the function of 8-oxodG as a prognostic factor in different cancer types. METHODS We assessed pre-operative serum 8-oxodG levels with an enzyme-linked immunosorbent assay in a well-defined series of 173 breast cancer patients. 8-OxodG expression in the nuclei of cancer cells from 150 of these patients was examined by immunohistochemistry. RESULTS The serum 8-oxodG levels and immunohistochemical 8-oxodG expression were in concordance with each other (P<0.05). Negative 8-oxodG immunostaining was an independent prognostic factor for poor breast cancer-specific survival according to the multivariate analysis (P<0.01). This observation was even more remarkable when ductal carcinomas only (n=140) were considered (P<0.001). A low serum 8-oxodG level was associated statistically significantly with lymphatic vessel invasion and a positive lymph node status. CONCLUSIONS Low serum 8-oxodG levels and a low immunohistochemical 8-oxodG expression were associated with an aggressive breast cancer phenotype. In addition, negative 8-oxodG immunostaining was a powerful prognostic factor for breast cancer-specific death in breast carcinoma patients.
Collapse
MESH Headings
- 8-Hydroxy-2'-Deoxyguanosine
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/diagnosis
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/pathology
- Deoxyguanosine/analogs & derivatives
- Deoxyguanosine/blood
- Deoxyguanosine/metabolism
- Female
- Humans
- Immunohistochemistry
- Middle Aged
- Neoplasm Staging
- Prognosis
- Survival Analysis
Collapse
Affiliation(s)
- H Sova
- Department of Oncology and Radiotherapy, Oulu University Hospital, Finland.
| | | | | | | | | |
Collapse
|