1
|
Cao L, Xi Y, Jing Z, Bao Z, Bai B, Lian X, Zhang X, Di J, Liu F. Exploring Research Trends and Mechanisms: Maternal Diabetes and Neural Tube Defects (1991-2023). J Multidiscip Healthc 2025; 18:1107-1121. [PMID: 40026865 PMCID: PMC11871925 DOI: 10.2147/jmdh.s501402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
Background Neural tube defect (NTD) is the second most common congenital neuropathy in the world. Maternal diabetes is an important factor leading to the occurrence of NTD in offspring. However, existing studies lack a systematic analysis of the correlation between maternal diabetes and NTDs, as well as an exploration of NTD pathogenesis and associated preventive strategies. Consequently, there is a need for a thorough examination of the literature pertaining to NTDs and maternal diabetes to elucidate a comprehensive understanding, identify research focal points, and anticipate future developmental trends. Methods The literature related to NTDs and maternal diabetes from 1991 to 2023 was retrieved from the Web of Science Core Collection (WoSCC). Bibliometric software CiteSpace (version 6.2.6) was used for co-occurrence/citation network analysis and to draw a knowledge visualization map. Results A total of 382 articles and reviews were included in the final analysis. Findings revealed an increasing trend in annual publication rates. The University of Maryland Baltimore emerged as the institution with the highest number of publications, while the American Journal of Obstetrics and Gynecology and Birth Defects Research Part A-Clinical and Molecular Teratology stood out as the most prolific research journals. EA Reece was identified as the leading contributor in this domain. The United States emerged as the global leader in this field, making the most significant contribution to research endeavors. The cluster analysis of keywords obtained eight clusters, and the research focus was on the pathogenesis of NTDs induced by maternal diabetes. Conclusion This study employed bibliometric methods to visualize the research landscape of NTDs induced by maternal diabetes, aiming to comprehend trends and identify key areas of interest in this domain. By studying the relevant mechanisms, we will search for new key targets. Meanwhile, future research needs to further explore new treatment strategies.
Collapse
Affiliation(s)
- Lijun Cao
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yujia Xi
- Department of Urology, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Male Reproductive Health Research Center, Shanxi Medical University, Jinzhong, Shanxi, People’s Republic of China
| | - Zhinan Jing
- Male Reproductive Health Research Center, Shanxi Medical University, Jinzhong, Shanxi, People’s Republic of China
| | - Zhuocheng Bao
- Male Reproductive Health Research Center, Shanxi Medical University, Jinzhong, Shanxi, People’s Republic of China
| | - Bo Bai
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xia Lian
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiuping Zhang
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jingkai Di
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Fan Liu
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
2
|
Apata T, Samuel D, Valle L, Crimmins SD. Type 1 Diabetes and Pregnancy: Challenges in Glycemic Control and Maternal-Fetal Outcomes. Semin Reprod Med 2024; 42:239-248. [PMID: 39379044 DOI: 10.1055/s-0044-1791704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Managing type 1 diabetes during pregnancy presents significant challenges due to physiological and hormonal changes. These factors contribute to major changes in insulin sensitivity, complicating efforts to achieve and sustain optimal blood glucose levels. Poorly controlled glucose levels during pregnancy can result in diabetic embryopathy and elevate the risks of maternal complications such as hypertensive disorders and diabetic ketoacidosis. Fetal complications may include preterm birth, fetal demise, and admission to neonatal intensive care units. It is essential to recognize that there is no universal approach to managing glycemic control in pregnant women with T1DM and care should be individualized. Effective management requires a multidisciplinary approach involving regular monitoring, adjustments in insulin therapy, dietary modifications, and consistent prenatal care. Continuous glucose monitoring has emerged as a valuable tool for real-time glucose monitoring, facilitating tighter glycemic control. Education and support for self-management are important in addressing these challenges. Future developments in technology and personalized approaches to care show promising potential for advancing diabetes management during pregnancy. This provides a comprehensive overview of current literature on the challenges with the management of T1DM during pregnancy, focusing on its impact on maternal and neonatal outcomes and highlighting effective strategies for achieving optimal glycemic control.
Collapse
Affiliation(s)
- Tejumola Apata
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Rochester Medical Center, Rochester, New York
| | - Dennis Samuel
- Division of Endocrinology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Laticia Valle
- Division of Endocrinology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Sarah D Crimmins
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
3
|
Delgado Y, Gaytan C, Perez N, Miranda E, Morales BC, Santos M. Association of congenital heart defects (CHD) with factors related to maternal health and pregnancy in newborns in Puerto Rico. CONGENIT HEART DIS 2024; 19:19-31. [PMID: 38912385 PMCID: PMC11192526 DOI: 10.32604/chd.2024.046339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/09/2024] [Indexed: 06/25/2024]
Abstract
Background Given the pervasive issues of obesity and diabetes both in Puerto Rico and the broader United States, there is a compelling need to investigate the intricate interplay among BMI, pregestational, and gestational maternal diabetes, and their potential impact on the occurrence of congenital heart defects (CHD) during neonatal development. Methods Using the comprehensive System of Vigilance and Surveillance of Congenital Defects in Puerto Rico, we conducted a focused analysis on neonates diagnosed with CHD between 2016 and 2020. Our assessment encompassed a range of variables, including maternal age, gestational age, BMI, pregestational diabetes, gestational diabetes, hypertension, history of abortion, and presence of preeclampsia. Results A cohort of 673 patients was included in our study. The average maternal age was 26 years, within a range of 22 to 32 years. The mean gestational age measured 39 weeks, with a median span of 38 to 39 weeks. Of the 673 patients, 274 (41%) mothers gave birth to neonates diagnosed with CHD. Within this group, 22 cases were linked to pre-gestational diabetes, while 202 were not; 20 instances were associated with gestational diabetes, compared to 200 without; and 148 cases exhibited an overweight or obese BMI, whereas 126 displayed a normal BMI. Conclusion We identified a statistically significant correlation between pre-gestational diabetes mellitus and the occurrence of CHD. However, our analysis did not show a statistically significant association between maternal BMI and the likelihood of CHD. These results may aid in developing effective strategies to prevent and manage CHD in neonates.
Collapse
Affiliation(s)
- Yamixa Delgado
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, 00726, Puerto Rico
| | - Caliani Gaytan
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, 00726, Puerto Rico
| | - Naydi Perez
- Hispanic Alliance for Clinical and Translational Research, University of Puerto Rico Medical Sciences Campus, San Juan, 00936, Puerto Rico
| | - Eric Miranda
- Department of Internal Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, 00936, Puerto Rico
| | - Bryan Colón Morales
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, 00726, Puerto Rico
| | - Mónica Santos
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, 00726, Puerto Rico
| |
Collapse
|
4
|
Nakano H, Nakano A. The role of metabolism in cardiac development. Curr Top Dev Biol 2024; 156:201-243. [PMID: 38556424 DOI: 10.1016/bs.ctdb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Metabolism is the fundamental process that sustains life. The heart, in particular, is an organ of high energy demand, and its energy substrates have been studied for more than a century. In recent years, there has been a growing interest in understanding the role of metabolism in the early differentiation of pluripotent stem cells and in cancer research. Studies have revealed that metabolic intermediates from glycolysis and the tricarboxylic acid cycle act as co-factors for intracellular signal transduction, playing crucial roles in regulating cell behaviors. Mitochondria, as the central hub of metabolism, are also under intensive investigation regarding the regulation of their dynamics. The metabolic environment of the fetus is intricately linked to the maternal metabolic status, and the impact of the mother's nutrition and metabolic health on fetal development is significant. For instance, it is well known that maternal diabetes increases the risk of cardiac and nervous system malformations in the fetus. Another notable example is the decrease in the risk of neural tube defects when pregnant women are supplemented with folic acid. These examples highlight the profound influence of the maternal metabolic environment on the fetal organ development program. Therefore, gaining insights into the metabolic environment within developing fetal organs is critical for deepening our understanding of normal organ development. This review aims to summarize recent findings that build upon the historical recognition of the environmental and metabolic factors involved in the developing embryo.
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States; Cardiology Division, Department of Medicine, UCLA, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, United States; Molecular Biology Institute, UCLA, Los Angeles, CA, United States; Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
5
|
Ibrahim S, Gaborit B, Lenoir M, Collod-Beroud G, Stefanovic S. Maternal Pre-Existing Diabetes: A Non-Inherited Risk Factor for Congenital Cardiopathies. Int J Mol Sci 2023; 24:16258. [PMID: 38003449 PMCID: PMC10671602 DOI: 10.3390/ijms242216258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Congenital heart defects (CHDs) are the most common form of birth defects in humans. They occur in 9 out of 1000 live births and are defined as structural abnormalities of the heart. Understanding CHDs is difficult due to the heterogeneity of the disease and its multifactorial etiology. Advances in genomic sequencing have made it possible to identify the genetic factors involved in CHDs. However, genetic origins have only been found in a minority of CHD cases, suggesting the contribution of non-inherited (environmental) risk factors to the etiology of CHDs. Maternal pregestational diabetes is associated with a three- to five-fold increased risk of congenital cardiopathies, but the underlying molecular mechanisms are incompletely understood. According to current hypotheses, hyperglycemia is the main teratogenic agent in diabetic pregnancies. It is thought to induce cell damage, directly through genetic and epigenetic dysregulations and/or indirectly through production of reactive oxygen species (ROS). The purpose of this review is to summarize key findings on the molecular mechanisms altered in cardiac development during exposure to hyperglycemic conditions in utero. It also presents the various in vivo and in vitro techniques used to experimentally model pregestational diabetes. Finally, new approaches are suggested to broaden our understanding of the subject and develop new prevention strategies.
Collapse
Affiliation(s)
- Stéphanie Ibrahim
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France;
| | - Bénédicte Gaborit
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, 13005 Marseille, France
| | - Marien Lenoir
- Department of Congenital Heart Surgery, La Timone Children Hospital, APHM, Aix Marseille University, 13005 Marseille, France
| | | | - Sonia Stefanovic
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France;
| |
Collapse
|
6
|
Perkovic-Kepeci S, Cirkovic A, Milic N, Dugalic S, Stanisavljevic D, Milincic M, Kostic K, Milic N, Todorovic J, Markovic K, Aleksic Grozdic N, Gojnic Dugalic M. Doppler Indices of the Uterine, Umbilical and Fetal Middle Cerebral Artery in Diabetic versus Non-Diabetic Pregnancy: Systematic Review and Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1502. [PMID: 37629792 PMCID: PMC10456372 DOI: 10.3390/medicina59081502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023]
Abstract
Background and Objectives: The aim of this study was to assess the differences in Doppler indices of the uterine (Ut), umbilical (UA), and middle cerebral artery (MCA) in diabetic versus non-diabetic pregnancies by conducting a comprehensive systematic review of the literature with a meta-analysis. Materials and Methods: PubMed, Web of Science, and SCOPUS were searched for studies that measured the pulsatility index (PI), resistance index (RI), and systolic/diastolic ratio index (S/D ratio) of the umbilical artery, middle cerebral artery, and uterine artery in diabetic versus non-diabetic pregnancies. Two reviewers independently evaluated the eligibility of studies, abstracted data, and performed quality assessments according to standardized protocols. The standardized mean difference (SMD) was used as a measure of effect size. Heterogeneity was assessed using the I2 statistic. Publication bias was evaluated by means of funnel plots. Results: A total of 62 publications were included in the qualitative and 43 in quantitative analysis. The UA-RI, UtA-PI, and UtA-S/D ratios were increased in diabetic compared with non-diabetic pregnancies. Subgroup analysis showed that levels of UtA-PI were significantly higher during the third, but not during the first trimester of pregnancy in diabetic versus non-diabetic pregnancies. No differences were found for the UA-PI, UA-S/D ratio, MCA-PI, MCA-RI, MCA-S/D ratio, or UtA-RI between diabetic and non-diabetic pregnancies. Conclusions: This meta-analysis revealed the presence of hemodynamic changes in uterine and umbilical arteries, but not in the middle cerebral artery in pregnancies complicated by diabetes.
Collapse
Affiliation(s)
- Sonja Perkovic-Kepeci
- General Hospital Pancevo, 26000 Pancevo, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (K.K.); (N.M.); (K.M.); (M.G.D.)
| | - Andja Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.M.); (D.S.)
| | - Natasa Milic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.M.); (D.S.)
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Stefan Dugalic
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (S.D.); (M.M.)
| | - Dejana Stanisavljevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.M.); (D.S.)
| | - Milos Milincic
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (S.D.); (M.M.)
| | - Konstantin Kostic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (K.K.); (N.M.); (K.M.); (M.G.D.)
| | - Nikola Milic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (K.K.); (N.M.); (K.M.); (M.G.D.)
| | - Jovana Todorovic
- Institute of Social Medicine, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ksenija Markovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (K.K.); (N.M.); (K.M.); (M.G.D.)
| | - Natasa Aleksic Grozdic
- Institute for Process Engineering Environmental Engineering and Technical Life Sciences, Technical University of Vienna, 1180 Vienna, Austria;
| | - Miroslava Gojnic Dugalic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (K.K.); (N.M.); (K.M.); (M.G.D.)
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (S.D.); (M.M.)
| |
Collapse
|
7
|
Schindler M, Geisler SM, Seeling T, Navarrete Santos A. Ectopic Lipid Accumulation Correlates with Cellular Stress in Rabbit Blastocysts from Diabetic Mothers. Int J Mol Sci 2023; 24:11776. [PMID: 37511535 PMCID: PMC10380447 DOI: 10.3390/ijms241411776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Maternal diabetes mellitus in early pregnancy leads to hyperlipidemia in reproductive tract organs and an altered embryonic environment. To investigate the consequences on embryonic metabolism, the effect of high environmental-lipid levels was studied in rabbit blastocysts cultured with a lipid mixture in vitro and in blastocysts from diabetic, hyperlipidemic rabbits in vivo. The gene and protein expression of marker molecules involved in lipid metabolism and stress response were analyzed. In diabetic rabbits, the expression of embryoblast genes encoding carnitine palmityl transferase 1 and peroxisome proliferator-activated receptors α and γ increased, whereas trophoblast genes encoding for proteins associated with fatty acid synthesis and β-oxidation decreased. Markers for endoplasmic (activating transcription factor 4) and oxidative stress (nuclear factor erythroid 2-related factor 2) were increased in embryoblasts, while markers for cellular redox status (superoxide dismutase 2) and stress (heat shock protein 70) were increased in trophoblasts from diabetic rabbits. The observed regulation pattern in vivo was consistent with an adaptation response to the hyperlipidemic environment, suggesting that maternal lipids have an impact on the intracellular metabolism of the preimplantation embryo in diabetic pregnancy and that embryoblasts are particularly vulnerable to metabolic stress.
Collapse
Affiliation(s)
- Maria Schindler
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University, 06108 Halle, Germany
| | - Sophia Mareike Geisler
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University, 06108 Halle, Germany
| | - Tom Seeling
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University, 06108 Halle, Germany
| | - Anne Navarrete Santos
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University, 06108 Halle, Germany
| |
Collapse
|
8
|
Chen ZY, Mao SF, Guo LH, Qin J, Yang LX, Liu Y. Effect of maternal pregestational diabetes mellitus on congenital heart diseases. World J Pediatr 2023; 19:303-314. [PMID: 35838899 DOI: 10.1007/s12519-022-00582-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The increasing population of diabetes mellitus in adolescent girls and women of childbearing age contributes to a large number of pregnancies with maternal pregestational diabetes mellitus. Congenital heart diseases are a common adverse outcome in mothers with pregestational diabetes mellitus. However, there is little systematic information between maternal pregestational diabetes mellitus and congenital heart diseases in the offspring. DATA SOURCES Literature selection was performed in PubMed. One hundred and seven papers were cited in our review, including 36 clinical studies, 26 experimental studies, 31 reviews, eight meta-analysis articles, and six of other types. RESULTS Maternal pregestational diabetes mellitus poses a high risk of congenital heart diseases in the offspring and causes variety of phenotypes of congenital heart diseases. Factors such as persistent maternal hyperglycemia, oxidative stress, polymorphism of uncoupling protein 2, polymorphism of adiponectin gene, Notch 1 pathway, Nkx2.5 disorders, dysregulation of the hypoxia-inducible factor 1, and viral etiologies are associated with the occurrence of congenital heart diseases in the offspring of mothers with pregestational diabetes mellitus. Treatment options including blood sugar-reducing, anti-oxidative stress drug supplements and exercise can help to prevent maternal pregestational diabetes mellitus from inducing congenital heart diseases. CONCLUSIONS Our review contributes to a better understanding of the association between maternal pregestational diabetes mellitus and congenital heart diseases in the offspring and to a profound thought of the mechanism, preventive and therapeutic measurements of congenital heart diseases caused by maternal pregestational diabetes mellitus.
Collapse
Affiliation(s)
- Zhi-Yan Chen
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, 643000, China
| | - Shuang-Fa Mao
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, 643000, China
| | - Ling-Hong Guo
- Department of Pharmacology, West China School of Basic Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jian Qin
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, 643000, China
| | - Li-Xin Yang
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, 643000, China
| | - Yin Liu
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, 643000, China.
- Department of Pharmacology, West China School of Basic Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
- Animal Research Institute, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Embryonic Hyperglycemia Disrupts Myocardial Growth, Morphological Development, and Cellular Organization: An In Vivo Experimental Study. Life (Basel) 2023; 13:life13030768. [PMID: 36983924 PMCID: PMC10056749 DOI: 10.3390/life13030768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Hyperglycemia during gestation can disrupt fetal heart development and increase postnatal cardiovascular disease risk. It is therefore imperative to identify early biomarkers of hyperglycemia during gestation-induced fetal heart damage and elucidate the underlying molecular pathomechanisms. Clinical investigations of diabetic adults with heart dysfunction and transgenic mouse studies have revealed that overexpression or increased expression of TNNI3K, a heart-specific kinase that binds troponin cardiac I, may contribute to abnormal cardiac remodeling, ventricular hypertrophy, and heart failure. Optimal heart function also depends on the precise organization of contractile and excitable tissues conferred by intercellular occlusive, adherent, and communicating junctions. The current study evaluated changes in embryonic heart development and the expression levels of sarcomeric proteins (troponin I, desmin, and TNNI3K), junctional proteins, glucose transporter-1, and Ki-67 under fetal hyperglycemia. Stage 22HH Gallus domesticus embryos were randomly divided into two groups: a hyperglycemia (HG) group, in which individual embryos were injected with 30 mmol/L glucose solution every 24 h for 10 days, and a no-treatment (NT) control group, in which individual embryos were injected with physiological saline every 24 h for 10 days (stage 36HH). Embryonic blood glucose, height, and weight, as well as heart size, were measured periodically during treatment, followed by histopathological analysis and estimation of sarcomeric and junctional protein expression by western blotting and immunostaining. Hyperglycemic embryos demonstrated delayed heart maturation, with histopathological analysis revealing reduced left and right ventricular wall thickness (−39% and −35% vs. NT). Immunoexpression levels of TNNI3K and troponin 1 increased (by 37% and 39%, respectively), and desmin immunofluorescence reduced (by 23%). Embryo-fetal hyperglycemia may trigger an increase in the expression levels of TNNI3K and troponin I, as well as dysfunction of occlusive and adherent junctions, ultimately inducing abnormal cardiac remodeling.
Collapse
|
10
|
Pang SL, Ho CHA, Law CML, Yang Y, Leung YY. Pre-Epiglottic Baton Plate in the Management of Upper Airway Obstruction in an Infant with Femoral Facial Syndrome: A Case Report. Cleft Palate Craniofac J 2023; 60:367-375. [PMID: 34787010 DOI: 10.1177/10556656211059705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Femoral facial syndrome (FFS) is a rare condition which may present with hypoplasia or aplasia of the femora and unusual facies characterized by long philtrum, thin upper lip and micrognathia. We present the case of a ten-month old infant with FFS who had retroglossal obstruction and who was treated with a pre-epiglottic baton plate. The pre-epiglottic baton plate can be a simple, non-invasive and effective tool for the clinical management of syndromic patients with mild-to-moderate upper airway obstruction due to micrognathia.
Collapse
Affiliation(s)
- Si Ling Pang
- Oral and Maxillofacial Surgery, Faculty of Dentistry, 25809The University of Hong Kong, Hong Kong
| | - Cheuk Hin Angus Ho
- Department of Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Chun Man Lorie Law
- Maxillofacial Department, Dental Laboratory, 66392The Prince Philip Dental Hospital, Hong Kong
| | - Yanqi Yang
- Department of Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Yiu Yan Leung
- Oral and Maxillofacial Surgery, Faculty of Dentistry, 25809The University of Hong Kong, Hong Kong
| |
Collapse
|
11
|
Nigericin Abrogates Maternal and Embryonic Oxidative Stress in the Streptozotocin-Induced Diabetic Pregnant Rats. Appl Biochem Biotechnol 2023; 195:801-815. [PMID: 36190644 DOI: 10.1007/s12010-022-04100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 01/24/2023]
Abstract
Hyperglycemic exposure in diabetic pregnancy can lead to many developmental changes, such as delayed development, fetal malformations, and fetal/embryo death. These detrimental complications are collectively known as diabetic embryopathy or teratogenesis. The current study focuses to discover the therapeutic properties of the nigericin against the STZ-stimulated diabetic embryopathy via alleviation of maternal and embryonic oxidative stress. The male and female rats at a 1:1 ratio were permitted to mate overnight to establish the course of pregnancy. The pregnant rats were distributed into four groups control, diabetic pregnant (via administering 40 mg/kg of STZ), and diabetic + 10 and 20 mg/kg of nigericin-administered (via oral gavage from days 5 to 12) groups, respectively. The glucose level, urine output, diet intake, and body weight were determined carefully. The embryo and placenta weight and implantation rates were examined, and data were tabulated. The total protein and lipid profiles were assessed using respective kits. The oxidative stress markers and antioxidant enzymes were examined using respective assay kits. The 10 and 20 mg/kg of nigericin treatment decreased the glucose level and urine output and improved the diet intake and body weight gain in diabetic pregnant rats. The nigericin also decreased the total protein, cholesterol, triglycerides, and very-low-density lipoprotein (VLDL) and improved the high-density lipoprotein (HDL) in the serum of pregnant rats. The levels of malondialdehyde (MDA), reactive oxygen species (ROS), and protein carbonyls were decreased by the nigericin in both liver and embryos of the pregnant rats. The levels of glutathione (GSH), total thiols, and activities of catalase (CAT), glutathione reductase (GR), superoxide dismutase (SOD), glutathione peroxidase (GPX), and glutathione S-transferase (GST) were improved by the nigericin in the diabetic pregnant rats. Altogether, these results provide evidence that nigericin treatment remarkably attenuates the diabetes-stimulated embryopathy in rats. The nigericin effectively decreased embryo lethality, reduced glucose and dyslipidemia, and relieves oxidative stress via upregulating the antioxidant enzyme activities. Hence, it can be a talented therapeutic agent to treat diabetic pregnancy-associated complications.
Collapse
|
12
|
Alam MJ, Uppulapu SK, Tiwari V, Varghese B, Mohammed SA, Adela R, Arava SK, Banerjee SK. Pregestational diabetes alters cardiac structure and function of neonatal rats through developmental plasticity. Front Cardiovasc Med 2022; 9:919293. [PMID: 36176990 PMCID: PMC9514058 DOI: 10.3389/fcvm.2022.919293] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Pregestational diabetes (PGDM) leads to developmental impairment, especially cardiac dysfunction, in their offspring. The hyperglycemic microenvironment inside the uterus alters the cardiac plasticity characterized by electrical and structural remodeling of the heart. The altered expression of several transcription factors due to hyperglycemia during fetal development might be responsible for molecular defects and phenotypic changes in the heart. The molecular mechanism of the developmental defects in the heart due to PGDM remains unclear. To understand the molecular defects in the 2-days old neonatal rats, streptozotocin-induced diabetic female rats were bred with healthy male rats. We collected 2-day-old hearts from the neonates and identified the molecular basis for phenotypic changes. Neonates from diabetic mothers showed altered electrocardiography and echocardiography parameters. Transcriptomic profiling of the RNA-seq data revealed that several altered genes were associated with heart development, myocardial fibrosis, cardiac conduction, and cell proliferation. Histopathology data showed the presence of focal cardiac fibrosis and increased cell proliferation in neonates from diabetic mothers. Thus, our results provide a comprehensive map of the cellular events and molecular pathways perturbed in the neonatal heart during PGDM. All of the molecular and structural changes lead to developmental plasticity in neonatal rat hearts and develop cardiac anomalies in their early life.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
- Non-communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Shravan Kumar Uppulapu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Vikas Tiwari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Bincy Varghese
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Soheb Anwar Mohammed
- Non-communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Sudheer Kumar Arava
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay K. Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
- Non-communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India
- *Correspondence: Sanjay K. Banerjee,
| |
Collapse
|
13
|
Kokhanov A. Congenital Abnormalities in the Infant of a Diabetic Mother. Neoreviews 2022; 23:e319-e327. [PMID: 35490182 DOI: 10.1542/neo.23-5-e319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Diabetes mellitus is among the most common chronic diseases worldwide. Infants of diabetic mothers are at increased risk of having congenital abnormalities. Tremendous progress has been achieved in the pregnancy care of diabetic women; however, the risk of birth defects associated with maternal diabetes still exists. These anomalies might arise in many organs and systems of the developing fetus. Many mechanisms have been implicated in the teratogenicity of maternal diabetes and it is critical to achieve good glycemic control before conception in women with diabetes. Neonatal clinicians must be able to identify patients at risk and recognize the signs of diabetic embryopathy. This article presents a review of congenital anomalies associated with maternal diabetes.
Collapse
Affiliation(s)
- Artemiy Kokhanov
- Department of Neonatology, Memorial Care Miller Children's and Women's Hospital Long Beach, Long Beach, CA
| |
Collapse
|
14
|
Yilmaz F, Micili SC, Erbil G. The role of FGF-4 and FGFR-2 on preimplantation embryo development in experimental maternal diabetes. Gynecol Endocrinol 2022; 38:248-252. [PMID: 34904519 DOI: 10.1080/09513590.2021.2005782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Diabetes mellitus can cause spontaneous abortion, neonatal diseases, congenital malformations, and death. There are many studies related to the damage of in vitro hyperglycemia on embryogenesis in literature, but not enough studies on in vivo hyperglycemia effects on embryogenesis. Fibroblast growth factor (FGF) molecules play an essential role in pre-implantation embryo development and diabetes pathogenesis. In our study, we researched whether FGF-4 and FGFR-2 were playing a role in maternal diabetes' effects on embryo development. MATERIAL AND METHODS Thirty adult virgin female BALB/c mice were randomly divided into two groups: control and diabetic. The experimental diabetes model was generated by streptozotocin (55 mg/kg, once, intraperitoneally). The control and the diabetic group were mated. Embryos were collected at the morula and blastocyte stages corresponding to the third and fourth days of pregnancy. Embryo's FGF-4 and FGFR-2 molecules were evaluated by their immunofluorescence staining and immunoreactivity score. RESULT The results clearly showed that the FGF-4 and FGFR-2 immunofluorescence reactivity was higher in the diabetes group. CONCLUSION We concluded that FGF-4 and FGFR-2 overexpression might impair mouse pre-implantation embryo development in maternal diabetes and suggest investigating whether they have crucial effects on human embryo development and infertility in maternal diabetes.
Collapse
Affiliation(s)
- Filiz Yilmaz
- IVF Center, Hitit University Erol Olcok Research and Training Hospital, Corum, Turkey
| | - Serap Cilaker Micili
- Faculty of Medicine, Department of Histology and Embryology, Dokuz Eylul University, Izmir, Turkey
| | - Guven Erbil
- Faculty of Medicine, Department of Histology and Embryology, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
15
|
Mao A, Reno A, Galliani CA, Alemayehu H, Bhat R. Preterm Infant of Diabetic Mother with a Retrorectal Mass: A Troubling Tail Tale. Neoreviews 2022; 23:e117-e120. [PMID: 35102385 DOI: 10.1542/neo.23-2-e117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Allen Mao
- University of South Alabama College of Medicine, Mobile, AL
| | - Amanda Reno
- Department of Pediatrics, University of South Alabama, Mobile, AL
| | | | - Hanna Alemayehu
- Department of Pediatric Surgery, University of South Alabama, Mobile, AL
| | - Ramachandra Bhat
- Department of Pediatrics, University of South Alabama, Mobile, AL
| |
Collapse
|
16
|
Al-Biltagi M, El razaky O, El Amrousy D. Cardiac changes in infants of diabetic mothers. World J Diabetes 2021; 12:1233-1247. [PMID: 34512889 PMCID: PMC8394229 DOI: 10.4239/wjd.v12.i8.1233] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/11/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a systemic chronic metabolic disorder characterized by increased insulin resistance and/or β- cell defects. It affects all ages from the foetal life, neonates, childhood to late adulthood. Gestational diabetes is a critical risk factor for congenital heart diseases (CHDs). Moreover, the risk increases with low maternal education, high body mass index at conception, undiagnosed pre-gestational diabetes, inadequate antenatal care, improper diabetes control, and maternal smoking during pregnancy. Maternal DM significantly affects the foetal heart and foetal–placental circulation in both structure and function. Cardiac defects, myocardial hypertrophy are three times more prevalent in infants of diabetic mothers (IDMs). Antenatal evaluation of the cardiac function and structures can be performed with foetal electrocardiography and echocardiography. Postnatal cardiac evaluation can be performed with natal and postnatal electrocardiography and echocardiography, detection of early atherosclerotic changes by measuring aortic intima-media thickness, and retinal vascular changes by retinal photography. Ameliorating the effects of diabetes during pregnancy on the offspring depends mainly on pregestational and gestational diabetes prevention. However, other measures to reduce the risk, such as using medications, nutritional supplements, or probiotics, still need more research. This review discusses the mechanism of foetal sequels and the risk factors that increase the prevalence of CHDs in gestational DM, the various cardiac outcomes of gestational DM on the foetus and offspring, cardiac evaluation of foetuses and IDMs, and how to alleviate the consequences of gestational DM on the offspring.
Collapse
Affiliation(s)
- Mohammed Al-Biltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 35127, Egypt
- Department of Pediatrics, University Medical Center, Arabian Gulf University, Manama 26671, Bahrain
| | - Osama El razaky
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 35127, Egypt
| | - Doaa El Amrousy
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 35127, Egypt
| |
Collapse
|
17
|
Fitriasari S, Trainor PA. Diabetes, Oxidative Stress, and DNA Damage Modulate Cranial Neural Crest Cell Development and the Phenotype Variability of Craniofacial Disorders. Front Cell Dev Biol 2021; 9:644410. [PMID: 34095113 PMCID: PMC8174788 DOI: 10.3389/fcell.2021.644410] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Craniofacial malformations are among the most common birth defects in humans and they often have significant detrimental functional, aesthetic, and social consequences. To date, more than 700 distinct craniofacial disorders have been described. However, the genetic, environmental, and developmental origins of most of these conditions remain to be determined. This gap in our knowledge is hampered in part by the tremendous phenotypic diversity evident in craniofacial syndromes but is also due to our limited understanding of the signals and mechanisms governing normal craniofacial development and variation. The principles of Mendelian inheritance have uncovered the etiology of relatively few complex craniofacial traits and consequently, the variability of craniofacial syndromes and phenotypes both within families and between families is often attributed to variable gene expression and incomplete penetrance. However, it is becoming increasingly apparent that phenotypic variation is often the result of combinatorial genetic and non-genetic factors. Major non-genetic factors include environmental effectors such as pregestational maternal diabetes, which is well-known to increase the risk of craniofacial birth defects. The hyperglycemia characteristic of diabetes causes oxidative stress which in turn can result in genotoxic stress, DNA damage, metabolic alterations, and subsequently perturbed embryogenesis. In this review we explore the importance of gene-environment associations involving diabetes, oxidative stress, and DNA damage during cranial neural crest cell development, which may underpin the phenotypic variability observed in specific craniofacial syndromes.
Collapse
Affiliation(s)
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
18
|
Carroll DT, Sassin AM, Aagaard KM, Gannon M. Developmental effects of in utero metformin exposure. TRENDS IN DEVELOPMENTAL BIOLOGY 2021; 14:1-17. [PMID: 36589485 PMCID: PMC9802655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, the intrauterine environment influences fetal programming and development, affecting offspring disease susceptibility in adulthood. In recent years, therapeutic use of the Type 2 diabetes drug metformin has expanded to the treatment of pre-diabetes, polycystic ovarian syndrome, and gestational diabetes. Because metformin both undergoes renal excretion and binds to receptors on the placenta, the fetus receives equivalent maternal dosing. Although no teratogenic nor short-term harmful fetal impact of metformin is known to occur, the effects of metformin exposure on longer-range offspring development have not yet been fully elucidated. This review encapsulates the (albeit limited) existing knowledge regarding the potential longer-term impact of intrauterine metformin exposure on the development of key organs including the liver, central nervous system, heart, gut, and endocrine pancreas in animal models and humans. We discuss molecular and cellular mechanisms that would be altered in response to treatment and describe the potential consequences of these developmental changes on postnatal health. Further studies regarding the influence of metformin exposure on fetal programming and adult metabolic health will provide necessary insight to its long-term risks, benefits, and limitations in order to guide decisions for use of metformin during pregnancy.
Collapse
Affiliation(s)
- Darian T. Carroll
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Alexa M. Sassin
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, and Departments of Molecular and Human Genetics, and Molecular and Cell Biology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| | - Kjersti M. Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, and Departments of Molecular and Human Genetics, and Molecular and Cell Biology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Department of Veterans Affairs Tennessee Valley, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
19
|
Sheikh MA, Emerald BS, Ansari SA. Stem cell fate determination through protein O-GlcNAcylation. J Biol Chem 2021; 296:100035. [PMID: 33154167 PMCID: PMC7948975 DOI: 10.1074/jbc.rev120.014915] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Embryonic and adult stem cells possess the capability of self-renewal and lineage-specific differentiation. The intricate balance between self-renewal and differentiation is governed by developmental signals and cell-type-specific gene regulatory mechanisms. A perturbed intra/extracellular environment during lineage specification could affect stem cell fate decisions resulting in pathology. Growing evidence demonstrates that metabolic pathways govern epigenetic regulation of gene expression during stem cell fate commitment through the utilization of metabolic intermediates or end products of metabolic pathways as substrates for enzymatic histone/DNA modifications. UDP-GlcNAc is one such metabolite that acts as a substrate for enzymatic mono-glycosylation of various nuclear, cytosolic, and mitochondrial proteins on serine/threonine amino acid residues, a process termed protein O-GlcNAcylation. The levels of GlcNAc inside the cells depend on the nutrient availability, especially glucose. Thus, this metabolic sensor could modulate gene expression through O-GlcNAc modification of histones or other proteins in response to metabolic fluctuations. Herein, we review evidence demonstrating how stem cells couple metabolic inputs to gene regulatory pathways through O-GlcNAc-mediated epigenetic/transcriptional regulatory mechanisms to govern self-renewal and lineage-specific differentiation programs. This review will serve as a primer for researchers seeking to better understand how O-GlcNAc influences stemness and may catalyze the discovery of new stem-cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Muhammad Abid Sheikh
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.
| |
Collapse
|
20
|
Crimmins SD, Ginn-Meadow A, Jessel RH, Rosen JA. Leveraging Technology to Improve Diabetes Care in Pregnancy. Clin Diabetes 2020; 38:486-494. [PMID: 33384473 PMCID: PMC7755043 DOI: 10.2337/cd20-0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pregnant women with diabetes are at higher risk of adverse outcomes. Prevention of such outcomes depends on strict glycemic control, which is difficult to achieve and maintain. A variety of technologies exist to aid in diabetes management for nonpregnant patients. However, adapting such tools to meet the demands of pregnancy presents multiple challenges. This article reviews the key attributes digital technologies must offer to best support diabetes management during pregnancy, as well as some digital tools developed specifically to meet this need. Despite the opportunities digital health tools present to improve the care of people with diabetes, in the absence of robust data and large research studies, the ability to apply such technologies to diabetes in pregnancy will remain imperfect.
Collapse
Affiliation(s)
- Sarah D. Crimmins
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Angela Ginn-Meadow
- University of Maryland Center for Diabetes and Endocrinology, University of Maryland Medical Center Midtown Campus, Baltimore, MD
| | - Rebecca H. Jessel
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Julie A. Rosen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
21
|
Borodina I, Kenny LC, McCarthy CM, Paramasivan K, Pretorius E, Roberts TJ, van der Hoek SA, Kell DB. The biology of ergothioneine, an antioxidant nutraceutical. Nutr Res Rev 2020; 33:190-217. [PMID: 32051057 PMCID: PMC7653990 DOI: 10.1017/s0954422419000301] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Ergothioneine (ERG) is an unusual thio-histidine betaine amino acid that has potent antioxidant activities. It is synthesised by a variety of microbes, especially fungi (including in mushroom fruiting bodies) and actinobacteria, but is not synthesised by plants and animals who acquire it via the soil and their diet, respectively. Animals have evolved a highly selective transporter for it, known as solute carrier family 22, member 4 (SLC22A4) in humans, signifying its importance, and ERG may even have the status of a vitamin. ERG accumulates differentially in various tissues, according to their expression of SLC22A4, favouring those such as erythrocytes that may be subject to oxidative stress. Mushroom or ERG consumption seems to provide significant prevention against oxidative stress in a large variety of systems. ERG seems to have strong cytoprotective status, and its concentration is lowered in a number of chronic inflammatory diseases. It has been passed as safe by regulatory agencies, and may have value as a nutraceutical and antioxidant more generally.
Collapse
Affiliation(s)
- Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Louise C. Kenny
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Crown Street, LiverpoolL8 7SS, UK
| | - Cathal M. McCarthy
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Republic of Ireland
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Republic of Ireland
| | - Kalaivani Paramasivan
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| | - Timothy J. Roberts
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| | - Steven A. van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| |
Collapse
|
22
|
Sudden cardiac death in children with congenital heart disease: a critical review of the literature. Cardiol Young 2020; 30:1559-1565. [PMID: 33109295 DOI: 10.1017/s1047951120003613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sudden cardiac death is an uncommon but yet catastrophic event, which can occur in neonates and young children. Although extensive research has been carried out assessing the underlying causes, there still remains a degree of uncertainty around this area. Congenital heart disease (CHD) is one known cause of sudden cardiac death in children, the aetiology of which embraces virally induced mechanisms, genetic susceptibility, drug-induced, and maternal factors. Screening tools and investigations including electrocardiograms and echocardiograms alongside a concise history taking and physical examination can be used to identify the potential cardiovascular risk factors of sudden death. This review has comprehensively studied the causes and risk factors for sudden cardiac death in children with CHD and provides a collation and summary of the evidence available so far underpinning the complex link between the two. Moreover, current screening and prevention methods are discussed in detail in order to increase awareness and understanding of how we can improve patient outcomes.
Collapse
|
23
|
Ding Z, Zhou H, McCauley N, Ko G, Zhang KK, Xie L. In ovo hyperglycemia causes congenital limb defects in chicken embryos via disruption of cell proliferation and apoptosis. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165955. [PMID: 32877749 DOI: 10.1016/j.bbadis.2020.165955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/05/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
While the correlation between diabetes during pregnancy and birth defects is well-established, how hyperglycemia causes developmental abnormalities remains unclear. In this study, we developed a novel "hyperglycemic" chicken embryonic model by administrating various doses of glucose to fertilized eggs at embryonic stages HH16 or HH24. When the embryos were collected at HH35, the LD50 was 1.57 g/Kg under HH16 treatment and 0.93 g/Kg under HH24 treatment, indicating that "hyperglycemic" environments can be lethal for the embryos. When exposed to a dose equal to or higher than 1 g/Kg glucose at HH16 or HH24, more than 40% of the surviving chicken embryos displayed heart defects and/or limb defects. The limb defects were associated with proliferation defects of both the wing and leg buds indicated by reduced numbers of p-H3S10 labeled cells. These limb defects were also associated with ectopic apoptosis in the leg bud and expression changes of key apoptotic genes. Furthermore, glucose treatment induced decreased expression of genes involved in Shh-signaling, chondrogenesis, and digit patterning in the limb bud. In summary, our data demonstrated that a high-glucose environment induces congenital heart and limb defects associated with disrupted cell proliferation and apoptosis, possibly through depressed Shh-signaling.
Collapse
Affiliation(s)
- Zehuan Ding
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America
| | - Huijuan Zhou
- Department of Statistics, Texas A&M University, College Station, TX, United States of America
| | - Naomi McCauley
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America
| | - Gladys Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States of America
| | - Ke K Zhang
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America; Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX, United States of America
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America.
| |
Collapse
|
24
|
Changes in Stemness Properties, Differentiation Potential, Oxidative Stress, Senescence and Mitochondrial Function in Wharton's Jelly Stem Cells of Umbilical Cords of Mothers with Gestational Diabetes Mellitus. Stem Cell Rev Rep 2020; 15:415-426. [PMID: 30645713 DOI: 10.1007/s12015-019-9872-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gestational diabetes mellitus (GDM) has been associated with an increased risk of maternal and neonatal morbidity. The Wharton's jelly (WJ) of the umbilical cord (UC) is a useful indicator of the deleterious effects of hyperglycemia on fetal tissues as it represents the fetus embryologically, physiologically and genetically. We studied WJ mesenchymal stem cells (hWJSCs) from UC from mothers without GDM (Normal; n = 3); insulin-controlled GDM mothers (GDMi; n = 3) and diet-controlled GDM mothers (GDMd; n = 3)]. Cell proliferation, stemness markers, telomerase, osteogenic and chondrogenic differentiation, antioxidant enzymes and gene expression for mitochondrial function (ND2, TFAM, PGC1α, and NDUFB9) were significantly lower in GDMi-hWJSCs and GDMd-hWJSCs compared to normal hWJSCs (P < 0.05). On the other hand, cell cycle inhibitors (p16, p21, p27) and p53 were remarkably up-regulated in GDMi-hWJSCs and GDMd-hWJSCs compared to normal hWJSCs. The results from this study confirmed that maternal hyperglycemia even though managed with insulin or diet, induced changes in the properties of the WJ and its cells. These changes may also be observed in fetal tissues and if true, prevention of the onset of gestational diabetes should be a priority over management. Generation of tissues that simulate those of the fetus such as pancreatic and cardiovascular cells from GDM-hWJSCs by direct differentiation or via induced pluripotent stem cell reprogramming provide possible platforms to evaluate the effects of glucose on specific fetal organ.
Collapse
|
25
|
Slaats RH, Schwach V, Passier R. Metabolic environment in vivo as a blueprint for differentiation and maturation of human stem cell-derived cardiomyocytes. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165881. [PMID: 32562698 DOI: 10.1016/j.bbadis.2020.165881] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 12/26/2022]
Abstract
Patient-derived human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are increasingly being used for disease modeling, drug screening and regenerative medicine. However, to date, an immature, fetal-like, phenotype of hPSC-CMs restrains their full potential. Increasing evidence suggests that the metabolic state, particularly important for provision of sufficient energy in highly active contractile CMs and anabolic and regulatory processes, plays an important role in CM maturation, which affects crucial functional aspects of CMs, such as contractility and electrophysiology. During embryonic development the heart is subjected to metabolite concentrations that differ substantially from that of hPSC-derived cardiac cell cultures. A deeper understanding of the environmental and metabolic cues during embryonic heart development and how these change postnatally, will provide a framework for optimizing cell culture conditions and maturation of hPSC-CMs. Maturation of hPSC-CMs will improve the predictability of disease modeling, drug screening and drug safety assessment and broadens their applicability for personalized and regenerative medicine.
Collapse
Affiliation(s)
- Rolf H Slaats
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Drienerlolaan 5, 7500AE Enschede, the Netherlands
| | - Verena Schwach
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Drienerlolaan 5, 7500AE Enschede, the Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Drienerlolaan 5, 7500AE Enschede, the Netherlands; Department of Anatomy and Embryology, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, the Netherlands.
| |
Collapse
|
26
|
Abbasi F, Baradaran R, Khoshdel-Sarkarizi H, Kargozar S, Hami J, Mohammadipour A, Kheradmand H, Haghir H. Distribution pattern of nicotinic acetylcholine receptors in developing cerebellum of rat neonates born of diabetic mothers. J Chem Neuroanat 2020; 108:101819. [PMID: 32522497 DOI: 10.1016/j.jchemneu.2020.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Faeze Abbasi
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Raheleh Baradaran
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Hoda Khoshdel-Sarkarizi
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Hami
- Department of Anatomical Sciences, School of Medicine, BirjandUniversity of Medical Sciences, Birjand, Iran
| | - Abbas Mohammadipour
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Hamed Kheradmand
- Hazrat Rasoul Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Haghir
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran; Medical Genetic Research Center (MGRC), School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Zhao M, Diao J, Huang P, Li J, Li Y, Yang Y, Luo L, Zhang S, Chen L, Wang T, Zhu P, Qin J. Association of Maternal Diabetes Mellitus and Polymorphisms of the NKX2.5 Gene in Children with Congenital Heart Disease: A Single Centre-Based Case-Control Study. J Diabetes Res 2020; 2020:3854630. [PMID: 33062711 PMCID: PMC7533784 DOI: 10.1155/2020/3854630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/19/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is one of the most common birth defects among newborns, accounting for a large proportion of infant mortality worldwide. However, the mechanisms remain largely undefinable. This study aimed to investigate the association of CHD in offspring of mothers with diabetes mellitus (DM) and single nucleotide polymorphisms (SNPs) of NKX2.5. METHODS AND RESULTS A case-control study of 620 mothers of CHD patients and 620 mothers of healthy children admitted to Hunan Children's Hospital from November 2017 to December 2019 was conducted. We collected the mothers' information by questionnaire and detected children's NKX2.5 variants with a MassARRAY system. The interaction coefficient (γ) was used to quantify the estimated gene-environment interactions. Univariate and multivariate analyses both showed that the infants had a higher risk of CHD if their mothers had a history of DM, including gestational DM (GDM) during this pregnancy (adjusted odds ratio [aOR = 4.98]), GDM in previous pregnancies (aOR = 4.30), and pregestational DM (PGDM) in the 3 months before this pregnancy (aOR = 6.78). Polymorphisms of the NKX2.5 gene at rs11802669 (C/C vs. T/T: aOR = 4.97; C/T vs. T/T: aOR = 2.15) and rs2277923 (T/T vs. C/C, aOR = 1.74; T/C vs. C/C, aOR = 1.61) were significantly associated with the risk of CHD in offspring. In addition, significant interactions between maternal DM and NKX2.5 genetic variants at rs11802669 (aOR = 8.12) and rs2277923 (aOR = 17.72) affecting the development of CHD were found. CONCLUSIONS These results suggest that maternal DM, NKX2.5 genetic variants, and their interactions are significantly associated with the risk of CHD in offspring.
Collapse
Affiliation(s)
- Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingyi Diao
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Peng Huang
- Department of Cardiothoracic Surgery, Hunan Children's Hospital, Changsha, Hunan, China
| | - Jinqi Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yihuan Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yang Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liu Luo
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Senmao Zhang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Letao Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Tingting Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jiabi Qin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Changsha, Hunan, China
| |
Collapse
|
28
|
Mowla S, Gissler M, Räisänen S, Kancherla V. Association between maternal pregestational diabetes mellitus and spina bifida: A population-based case-control study, Finland, 2000-2014. Birth Defects Res 2019; 112:186-195. [PMID: 31774241 DOI: 10.1002/bdr2.1624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/28/2019] [Accepted: 11/11/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Maternal pregestational diabetes mellitus (PGDM) is a known risk factor for neural tube defects. We examined the association between maternal PGDM and spina bifida in the offspring using PGDM status from medical records in Finland. METHODS We conducted a nationally representative, multiregistry, population-based case-control study in Finland. Cases were included if they were live or stillborn infants and diagnosed with spina bifida and delivered between years 2000 and 2014 in Finland. Controls were Finnish infants without spina bifida or other major structural birth defects and delivered during the same time period as cases. Clinical and demographic data were obtained by linking multiple national health registers and census. Crude and adjusted odds ratios (ORs) and 95% confidence intervals (CI) for PGDM were estimated using logistic regression analysis. Interaction by maternal obesity was examined. RESULTS Our study included 181 spina bifida cases (61% isolated) and 876,672 controls. Overall, 2.2% percent of all case, and 0.5% of control mothers, had PGDM during pregnancy. Maternal PGDM was significantly associated with an increased odds of spina bifida (adjusted OR 4.35; 95% CI 1.37, 13.82). A similar association was found in our subanalysis on isolated spina bifida cases (adjusted OR 4.41; 95% CI 1.07, 18.24). There was no significant interaction by maternal obesity. CONCLUSIONS Maternal PGDM was positively associated with spina bifida in Finland, and maternal obesity did not modify this effect. We lacked information on maternal PGDM for electively terminated and spontaneously aborted cases; results should be interpreted with caution.
Collapse
Affiliation(s)
- Sanjida Mowla
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Mika Gissler
- Information Services Department, Helsinki, Finland, THL Finnish Institute for Health and Welfare and Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Sari Räisänen
- School of Health Care and Social Services, Tampere University of Applied Sciences, Tampere, Finland
| | - Vijaya Kancherla
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| |
Collapse
|
29
|
Shauly-Aharonov M, Barenholz-Goultschin O. Real-Time Change-Point Detection Algorithm with an Application to Glycemic Control for Diabetic Pregnant Women. Methodol Comput Appl Probab 2019. [DOI: 10.1007/s11009-019-09716-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Ritchie HE, Oakes D, Farrell E, Ababneh D, Howe A. Fetal hypoxia and hyperglycemia in the formation of phenytoin-induced cleft lip and maxillary hypoplasia. Epilepsia Open 2019; 4:443-451. [PMID: 31440725 PMCID: PMC6698684 DOI: 10.1002/epi4.12352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Phenytoin exposure during the first trimester of pregnancy increases the risk of maxillary hypoplasia and cleft lip. The etiology of phenytoin embryopathy is unknown. Interestingly, phenytoin is also known to induce hyperglycemia in humans as well as rats. This study uses a rat model of fetal phenytoin syndrome to examine the role of hyperoxia, hyperglycemia, and arachidonic acid deficiency in the development of cleft lip and maxillary hypoplasia. METHODS Pregnant rats were dosed with phenytoin during the critical period of lip development (day 11 of pregnancy) with or without supplemental oxygen, insulin, or arachidonic acid. The fetuses from all studies were examined at term. RESULTS The frequency of cleft lip and maxillary hypoplasia was reduced by treating dams at the time of phenytoin exposure with either increased oxygen or insulin. However, in fetuses from phenytoin-treated dams dosed with arachidonic acid, the incidence of severe lip deformities remained the same although there was an increase in normal and mildly affected fetuses. Interestingly, this occurred in embryos from hyperglycemic dams. SIGNIFICANCE Together, the results from these experiments suggest phenytoin-induced malformations may be a multifactorial process as malformations were not solely linked to a hyperglycemic state of the dam.
Collapse
Affiliation(s)
- Helen E. Ritchie
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Diana Oakes
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Emma Farrell
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Deena Ababneh
- Department of Basic Engineering Sciences, College of EngineeringImam Abdulrahman bin Faisal UniversityDammamSaudi Arabia
| | - Andrew Howe
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
31
|
Głombik K, Trojan E, Kurek A, Budziszewska B, Basta-Kaim A. Inflammatory Consequences of Maternal Diabetes on the Offspring Brain: a Hippocampal Organotypic Culture Study. Neurotox Res 2019; 36:357-375. [PMID: 31197747 PMCID: PMC6616224 DOI: 10.1007/s12640-019-00070-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 01/09/2023]
Abstract
Gestational diabetes is a disorder associated with abnormal chronic inflammation that poses a risk to the developing fetus. We investigated the effects of experimentally induced diabetes (streptozotocin model) in Wistar female rats on the inflammatory status of the hippocampi of their offspring. Additionally, the impact of antidiabetic drugs (metformin and glyburide) on inflammatory processes was evaluated. Organotypic hippocampal cultures (OHCs) were prepared from the brains of the 7-day-old rat offspring of control and diabetic mother rats. On the 7th day in vitro, the cultures were pretreated with metformin (3 μM) or glyburide (1 μM) and then stimulated for 24 h with lipopolysaccharide (LPS, 1 μg/ml). The OHCs obtained from the offspring of diabetic mothers were characterized by the increased mortality of cells and an enhanced susceptibility to damage caused by LPS. Although we showed that LPS stimulated the secretion of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) in the control and diabetic cultures, the levels of IL-1β and IL-6 in the OHC medium obtained from the offspring of diabetic mothers were more pronounced. In the diabetic cultures, enhanced levels of TLR-4 and the overactivation of the NLRP3 inflammasome were demonstrated. Metformin and glyburide pretreatment normalized the LPS-induced IL-1β secretion in the control and diabetic cultures. Furthermore, glyburide diminished both: LPS-induced IL-6 and TNF-α secretion in the control and diabetic cultures and increased NF-κB p65 subunit phosphorylation. Glyburide also diminished the levels of the NLRP3 subunit and caspase-1, but only in the diabetic cultures. The results showed that maternal diabetes affected inflammatory processes in the offspring brain and increased hippocampal sensitivity to the LPS-induced inflammatory response. The use of antidiabetic agents, especially glyburide, had a beneficial impact on the changes caused by maternal diabetes.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland.
| | - Ewa Trojan
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Anna Kurek
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Bogusława Budziszewska
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| |
Collapse
|
32
|
Basu M, Garg V. Maternal hyperglycemia and fetal cardiac development: Clinical impact and underlying mechanisms. Birth Defects Res 2019; 110:1504-1516. [PMID: 30576094 DOI: 10.1002/bdr2.1435] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022]
Abstract
Congenital heart disease (CHD) is the most common type of birth defect and is both a significant pediatric and adult health problem, in light of a growing population of survivors. The etiology of CHD has been considered to be multifactorial with genetic and environmental factors playing important roles. The combination of advances in cardiac developmental biology, which have resulted in the elucidation of molecular pathways regulating normal cardiac morphogenesis, and genome sequencing technology have allowed the discovery of numerous genetic contributors of CHD ranging from chromosomal abnormalities to single gene variants. Conversely, mechanistic details of the contribution of environmental factors to CHD remain unknown. Maternal diabetes mellitus (matDM) is a well-established and increasingly prevalent environmental risk factor for CHD, but the underlying etiologic mechanisms by which pregestational matDM increases the vulnerability of embryos to cardiac malformations remains largely elusive. Here, we will briefly discuss the multifactorial etiology of CHD with a focus on the epidemiologic link between matDM and CHD. We will describe the animal models used to study the underlying mechanisms between matDM and CHD and review the numerous cellular and molecular pathways affected by maternal hyperglycemia in the developing heart. Last, we discuss how this increased understanding may open the door for the development of novel prevention strategies to reduce the incidence of CHD in this high-risk population.
Collapse
Affiliation(s)
- Madhumita Basu
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Vidu Garg
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
33
|
Zhao Z, Cao L, Hernández-Ochoa E, Schneider MF, Reece EA. Disturbed intracellular calcium homeostasis in neural tube defects in diabetic embryopathy. Biochem Biophys Res Commun 2019; 514:960-966. [PMID: 31092336 DOI: 10.1016/j.bbrc.2019.05.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 11/19/2022]
Abstract
Pregnancies complicated by preexisting maternal diabetes mellitus are associated with a higher risk of birth defects in infants, known as diabetic embryopathy. The common defects seen in the central nervous system result from failure of neural tube closure. The formation of neural tube defects (NTDs) is associated with excessive programmed cell death (apoptosis) in the neuroepithelium under hyperglycemia-induced intracellular stress conditions. The early cellular response to hyperglycemia remains to be identified. We hypothesize that hyperglycemia may disturb intracellular calcium (Ca2+) homeostasis, which perturbs organelle function and apoptotic regulation, resulting in increased apoptosis and embryonic NTDs. In an animal model of diabetic embryopathy, we performed Ca2+ imaging and observed significant increases in intracellular Ca2+ ([Ca2+]i) in the embryonic neural epithelium. Blocking T-type Ca2+ channels with mibefradil, but not L-type with verapamil, significantly blunted the increases in [Ca2+]i, implicating an involvement of channel type-dependent Ca2+ influx in hyperglycemia-perturbed Ca2+ homeostasis. Treatment of diabetic pregnant mice with mibefradil during neurulation significantly reduced NTD rates in the embryos. This effect was associated with decreases in apoptosis, alleviation of endoplasmic reticulum stress, and increases of anti-apoptotic factors. Taken together, our data suggest an important role of Ca2+ influx in hyperglycemia-induced NTDs and of T-type Ca2+ channels as a potential target to prevent birth defects in diabetic pregnancies.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Lixue Cao
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erick Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Paige SL, Yang W, Priest JR, Botto LD, Shaw GM, Collins RT. Risk factors associated with the development of double-inlet ventricle congenital heart disease. Birth Defects Res 2019; 111:640-648. [PMID: 30920163 DOI: 10.1002/bdr2.1501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/21/2019] [Accepted: 03/12/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND Congenital heart disease (CHD) is the most common birth defect group and a significant contributor to neonatal and infant death. CHD with single ventricle anatomy, including hypoplastic left heart syndrome (HLHS), tricuspid atresia (TA), and various double-inlet ventricle (DIV) malformations, is the most complex with the highest mortality. Prenatal risk factors associated with HLHS have been studied, but such data for DIV are lacking. METHODS We analyzed DIV cases and nonmalformed controls in the National Birth Defects Prevention Study, a case-control, multicenter population-based study of birth defects. Random forest analysis identified potential predictor variables for DIV, which were included in multivariable models to estimate effect magnitude and directionality. RESULTS Random forest analysis identified pre-pregnancy diabetes, history of maternal insulin use, maternal total lipid intake, paternal race, and intake of several foods and nutrients as potential predictors of DIV. Logistic regression confirmed pre-pregnancy diabetes, maternal insulin use, and paternal race as risk factors for having a child with DIV. Additionally, higher maternal total fat intake was associated with a reduced risk. CONCLUSIONS Maternal pre-pregnancy diabetes and history of insulin use were associated with an increased risk of having an infant with DIV, while maternal lipid intake had an inverse association. These novel data provide multiple metabolic pathways for investigation to identify better the developmental etiologies of DIV and suggest that public health interventions targeting diabetes prevention and management in women of childbearing age could reduce CHD risk.
Collapse
Affiliation(s)
- Sharon L Paige
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, California
| | - Wei Yang
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California
| | - James R Priest
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, California
| | - Lorenzo D Botto
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Gary M Shaw
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California
| | - Ronnie Thomas Collins
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, California.,Division of Cardiovascular Medicine, Department of Internal Medicine, Stanford University School of Medicine, Palo Alto, California
| | | |
Collapse
|
35
|
Lacarrubba-Flores MDJ, Carvalho DR, Ribeiro EM, Moreno CA, Esposito AC, Marson FAL, Loureiro T, Cavalcanti DP. Femoral-facial syndrome: A review of the literature and 14 additional patients including a monozygotic discordant twin pair. Am J Med Genet A 2018; 176:1917-1928. [PMID: 30070764 DOI: 10.1002/ajmg.a.40425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 01/31/2023]
Abstract
Femoral-facial syndrome (FFS, OMIM 134780), also known as femoral hypoplasia-unusual face syndrome, is a rare sporadic syndrome associated with maternal diabetes, and comprising femoral hypoplasia/agenesis and a distinct facies characterized by micrognathia, cleft palate, and other minor dysmorphisms. The evaluation of 14 unpublished Brazilian patients, prompted us to make an extensive literature review comparing both sets of data. From 120 previously reported individuals with FFS, 66 were excluded due to: not meeting the inclusion criteria (n = 21); not providing sufficient data to ascertain the diagnosis (n = 29); were better assigned to another diagnosis (n = 3); and, being fetuses of the second trimester (n = 13) due to the obvious difficult to confirm a typical facies. Clinical-radiological and family information from 54 typical patients were collected and compared with the 14 new Brazilian patients. The comparison between the two sets of patients did not show any relevant differences. Femoral involvement was most frequently hypoplasia, observed in 91.2% of patients, and the typical facies was characterized by micrognathia (97%), cleft palate (61.8%), and minor dysmorphisms (frontal bossing 63.6%, short nose 91.7%, long philtrum 94.9%, and thin upper lip 92.3%). Clubfoot (55.9%) was commonly observed. Other observed findings may be part of FFS or may be simply concurrent anomalies since maternal diabetes is a common risk factor. While maternal diabetes was the only common feature observed during pregnancy (50.8%), no evidence for a monogenic basis was found. Moreover, a monozygotic discordant twin pair was described reinforcing the absence of a major genetic factor associated with FFS.
Collapse
Affiliation(s)
- Maria Dora Jazmin Lacarrubba-Flores
- Skeletal Dysplasia Group, Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas [Unicamp], Campinas, São Paulo, Brazil.,Perinatal Genetic Program, Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas [Unicamp], Campinas, São Paulo, Brazil
| | - Daniel Rocha Carvalho
- Genetic Unit, SARAH Network of Rehabilitation Hospital, Federal District, Brasilia, Brazil
| | | | - Carolina Araujo Moreno
- Skeletal Dysplasia Group, Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas [Unicamp], Campinas, São Paulo, Brazil.,Perinatal Genetic Program, Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas [Unicamp], Campinas, São Paulo, Brazil
| | - Ana Carolina Esposito
- Pediatric Division, Hospital Municipal Nossa Senhora do Loreto, Rio de Janeiro, Brazil
| | - Fernando Augusto Lima Marson
- Department of Pediatrics, Faculty of Medical Sciences, University of Campinas [Unicamp], Campinas, São Paulo, Brazil
| | - Thereza Loureiro
- Unit of Medical Genetics, Department of Genetics, Faculty of Medicine, University of São Paulo, Riberão Preto, São Paulo, Brazil
| | - Denise Pontes Cavalcanti
- Skeletal Dysplasia Group, Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas [Unicamp], Campinas, São Paulo, Brazil.,Perinatal Genetic Program, Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas [Unicamp], Campinas, São Paulo, Brazil
| |
Collapse
|
36
|
Tan C, Meng F, Reece EA, Zhao Z. Modulation of nuclear factor-κB signaling and reduction of neural tube defects by quercetin-3-glucoside in embryos of diabetic mice. Am J Obstet Gynecol 2018; 219:197.e1-197.e8. [PMID: 29733843 DOI: 10.1016/j.ajog.2018.04.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 01/25/2023]
Abstract
BACKGROUND Diabetes mellitus in early pregnancy increases the risk of birth defects in infants. Maternal hyperglycemia stimulates the expression of nitric oxide synthase 2, which can be regulated by transcription factors of the nuclear factor-κB family. Increases in reactive nitrogen species generate intracellular stress conditions, including nitrosative, oxidative, and endoplasmic reticulum stresses, and trigger programmed cell death (or apoptosis) in the neural folds, resulting in neural tube defects in the embryo. Inhibiting nitric oxide synthase 2 can reduce neural tube defects; however, the underlying mechanisms require further delineation. Targeting nitric oxide synthase 2 and associated nitrosative stress using naturally occurring phytochemicals is a potential approach to preventing birth defects in diabetic pregnancies. OBJECTIVE This study aims to investigate the effect of quercetin-3-glucoside, a naturally occurring polyphenol flavonoid, in reducing maternal diabetes-induced neural tube defects in an animal model, and to delineate the molecular mechanisms underlying quercetin-3-glucoside action in regulating nitric oxide synthase 2 expression. STUDY DESIGN Female mice (C57BL/6) were induced to develop diabetes using streptozotocin before pregnancy. Diabetic pregnant mice were administered quercetin-3-glucoside (100 mg/kg) daily via gavage feeding, introduction of drug to the stomach directly via a feeding needle, during neurulation from embryonic day 6.5-9.5. After treatment at embryonic day 10.5, embryos were collected and examined for the presence of neural tube defects and apoptosis in the neural tube. Expression of nitric oxide synthase 2 and superoxide dismutase 1 (an antioxidative enzyme) was quantified using Western blot assay. Nitrosative, oxidative, and endoplasmic reticulum stress conditions were assessed using specific biomarkers. Expression and posttranslational modification of factors in the nuclear factor-κB system were investigated. RESULTS Treatment with quercetin-3-glucoside (suspended in water) significantly decreased neural tube defect rate and apoptosis in the embryos of diabetic mice, compared with those in the water-treated diabetic group (3.1% vs. 24.7%; P < .001). Quercetin-3-glucoside decreased the expression of nitric oxide synthase 2 and nitrosative stress (P < .05). It also increased the levels of superoxide dismutase 1 (P < .05), further increasing the antioxidative capacity of the cells. Quercetin-3-glucoside treatment also alleviated of endoplasmic reticulum stress in the embryos of diabetic mice (P < .05). Quercetin-3-glucoside reduced the levels of p65 (P < .05), a member of the nuclear factor-κB transcription factor family, but augmented the levels of the inhibitor of κBα (P < .05), which suppresses p65 nuclear translocation. In association with these changes, the levels of inhibitor of κB kinase-α and inhibitor of κBα phosphorylation were elevated (P < .05). CONCLUSION Quercetin-3-glucoside reduces the neural tube defects rate in the embryos of diabetic dams. Quercetin-3-glucoside suppresses nitric oxide synthase 2 and increases superoxide dismutase 1 expression, leading to alleviation of nitrosative, oxidative, and endoplasmic reticulum stress conditions. Quercetin-3-glucoside may regulate the expression of nitric oxide synthase 2 via modulating the nuclear factor-κB transcription regulation system. Quercetin-3-glucoside, a naturally occurring polyphenol that has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies.
Collapse
|
37
|
Schindler M, Pendzialek M, Grybel KJ, Seeling T, Gürke J, Fischer B, Navarrete Santos A. Adiponectin stimulates lipid metabolism via AMPK in rabbit blastocysts. Hum Reprod 2018; 32:1382-1392. [PMID: 28472298 PMCID: PMC5850832 DOI: 10.1093/humrep/dex087] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/12/2017] [Indexed: 01/02/2023] Open
Abstract
STUDY QUESTION How does a maternal diabetic hyperadiponectineamia affect signal transduction and lipid metabolism in rabbit preimplantation blastocysts? SUMMARY ANSWER In a diabetic pregnancy increased levels of adiponectin led to a switch in embryonic metabolism towards a fatty acid-dependent energy metabolism, mainly affecting genes that are responsible for fatty acid uptake and turnover. WHAT IS KNOWN ALREADY Although studies in cell culture experiments have shown that adiponectin is able to regulate lipid metabolism via 5′-AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor α (PPARα), data on the effects of adiponectin on embryonic lipid metabolism are not available. In a diabetic pregnancy in rabbits, maternal adiponectin levels are elevated fourfold and are accompanied by an increase in intracellular lipid droplets in blastocysts, implying consequences for the embryonic hormonal and metabolic environment. STUDY DESIGN, SIZE, DURATION Rabbit blastocysts were cultured in vitro with adiponectin (1 μg/ml) and with the specific AMPK-inhibitor Compound C for 15 min, 1 h and 4 h (N ≥ 3 independent experiments: for RNA analysis, n ≥ 4 blastocysts per treatment group; for protein analysis three blastocysts pooled per sample and three samples used per experiment). Adiponectin signalling was verified in blastocysts grown in vivo from diabetic rabbits with a hyperadiponectinaemia (N ≥ 3 independent experiments, n ≥ 4 samples per treatment group, eight blastocysts pooled per sample). PARTICIPANTS/MATERIALS, SETTING, METHODS In these blastocysts, expression of molecules involved in adiponectin signalling [adaptor protein 1 (APPL1), AMPK, acetyl-CoA carboxylase (ACC), p38 mitogen-activated protein kinases (p38 MAPK)], lipid metabolism [PPARα, cluster of differentiation 36 (CD36), fatty acid transport protein 4 (FATP4), fatty acid binding protein (FABP4), carnitine palmityl transferase 1 (CPT1), hormone-senstive lipase (HSL), lipoprotein lipase (LPL)] and members of the insulin/insulin-like growth factor (IGF)-system [IGF1, IGF2, insulin receptor (InsR), IGF1 receptor (IGF1R)] were analyzed by quantitative RT-PCR and western blot. Analyses were performed in both models, i.e. adiponectin stimulated blastocysts (in vitro) and in blastocysts grown in vivo under increased adiponectin levels caused by a maternal diabetes mellitus. MAIN RESULTS AND THE ROLE OF CHANCE In both in vitro and in vivo models adiponectin increased AMPK and ACC phosphorylation, followed by an activation of the transcription factor PPARα, and CPT1, the key enzyme of β-oxidation (all P < 0.05 versus control). Moreover, mRNA levels of the fatty acid transporters CD36, FATP4 and FABP4, and HSL were upregulated by adiponectin/AMPK signalling (all P < 0.05 versus control). Under diabetic developmental conditions the amount of p38 MAPK was upregulated (P < 0.01 versus non-diabetic), which was not observed in blastocysts cultured in vitro with adiponectin, indicating that the elevated p38 MAPK was not related to adiponectin. However, a second effect of adiponectin has to be noted: its intensification of insulin sensitivity, by regulating IGF availability and InsR/IGF1R expression. LARGE SCALE DATA Not applicable. LIMITATIONS REASONS FOR CAUTION There are two main limitations for our study. First, human and rabbit embryogenesis can only be compared during blastocyst development. Therefore, the inferences from our findings are limited to the embryonic stages investigated here. Second, the increased adiponectin levels and lack of maternal insulin is only typical for a diabetes mellitus type one model. WIDER IMPLICATIONS OF THE FINDINGS This is the first mechanistic study demonstrating a direct influence of adiponectin on lipid metabolism in preimplantation embryos. The numbers of young women with a diabetes mellitus type one are increasing steadily. We have shown that preimplantation embryos are able to adapt to changes in the uterine milieu, which is mediated by the adiponectin/AMPK signalling. A tightly hormonal control during pregnancy is essential for survival and proper development. In this control process, adiponectin plays a more important role than known so far. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the German Research Council (DFG RTG ProMoAge 2155), the EU (FP7 Epihealth No. 278418, FP7-EpiHealthNet N°317146), COST Action EpiConcept FA 1201 and SALAAM BM 1308. The authors have no conflict(s) of interest to disclose.
Collapse
Affiliation(s)
- Maria Schindler
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Mareike Pendzialek
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Katarzyna Joanna Grybel
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Tom Seeling
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Jacqueline Gürke
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Bernd Fischer
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Anne Navarrete Santos
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| |
Collapse
|
38
|
Higa R, Roberti S, Mazzucco MB, White V, Jawerbaum A. Effect of the antioxidant idebenone on maternal diabetes-induced embryo alterations during early organogenesis. Reprod Biomed Online 2018; 37:397-408. [PMID: 29857987 DOI: 10.1016/j.rbmo.2018.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 02/09/2023]
Abstract
RESEARCH QUESTION Can maternal treatments with idebenone, a structural analogue of coenzyme Q10, prevent alterations on markers of proinflammatory-prooxidant processes, on the expression of genes involved in mitochondrial biogenesis and function, and on the apoptotic rate in embryos from mild diabetic rats? DESIGN A mild diabetic rat model was induced by neonatal-streptozotocin administration (90 mg/kg subcutaneously). Female diabetic rats and controls were mated with healthy males. From day 1 of pregnancy, control and diabetic rats were orally treated with idebenone (100 mg/kg daily). On day 10.5 of gestation, the embryos were explanted and prepared for immunohistochemical studies, for the evaluation of gene expression by reverse transcription polymerase chain reaction and for TdT (terminal deoxynucleotidyl transferase)-mediated dUDP nick-end-labelling assay analysis. RESULTS Embryos from mild diabetic rats showed increased levels of nitrated proteins, 4-hydroxynonenal and matrix metalloproteinase 9, which were prevented by idebenone administration. We also found a decreased embryonic expression of cytochrome c oxidase and reduced mRNA levels of peroxisome proliferator activated receptor-γ coactivator-1-α and nuclear respiratory factor-1, both of which were prevented by idebenone administration to the diabetic pregnant rats. Embryos from mild diabetic rats also showed an increased apoptotic rate, which was diminished by idebenone treatment. CONCLUSION Maternal idebenone treatment ameliorates altered parameters related to the prooxidant-proinflammatory environment found in embryos from mild diabetic rats, suggesting a putative treatment to prevent diabetes-induced embryo alterations.
Collapse
Affiliation(s)
- Romina Higa
- Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, School of Medicine, University of Buenos Aires, Paraguay 2155 (1121ABG), Buenos Aires, Argentina.
| | - Sabrina Roberti
- Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, School of Medicine, University of Buenos Aires, Paraguay 2155 (1121ABG), Buenos Aires, Argentina
| | - María Belén Mazzucco
- Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, School of Medicine, University of Buenos Aires, Paraguay 2155 (1121ABG), Buenos Aires, Argentina
| | - Verónica White
- Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, School of Medicine, University of Buenos Aires, Paraguay 2155 (1121ABG), Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, School of Medicine, University of Buenos Aires, Paraguay 2155 (1121ABG), Buenos Aires, Argentina
| |
Collapse
|
39
|
Asoglu MR, Gabbay-Benziv R, Turan OM, Turan S. Exposure of the developing heart to diabetic environment and early cardiac assessment: A review. Echocardiography 2018; 35:244-257. [DOI: 10.1111/echo.13811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Mehmet R. Asoglu
- ObstetricsGynecology & Reproductive Sciences; University of Maryland School of Medicine; Baltimore MD USA
| | - Rinat Gabbay-Benziv
- Department of Obstetrics and Gynecology; Hillel Yaffe Medical Center; Hadera Israel
| | - Ozhan M. Turan
- ObstetricsGynecology & Reproductive Sciences; University of Maryland School of Medicine; Baltimore MD USA
| | - Sifa Turan
- ObstetricsGynecology & Reproductive Sciences; University of Maryland School of Medicine; Baltimore MD USA
| |
Collapse
|
40
|
Bequer L, Gómez T, Molina JL, Álvarez A, Chaviano C, Clapés S. Experimental diabetes impairs maternal reproductive performance in pregnant Wistar rats and their offspring. Syst Biol Reprod Med 2017; 64:60-70. [PMID: 29156994 DOI: 10.1080/19396368.2017.1395928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this study was to determine the effect of mild hyperglycemia on metabolism during pregnancy, the maternal reproductive performance, and the characteristics of the offspring in neonatal mild diabetic-induced Wistar rats. The experimental diabetes model was generated by neonatal streptozotocin administration (100 mg of streptozotocin/Kg bw/sc) in female Wistar rats. At adulthood, the control and diabetic group were mated. At the 20th day of gestation, a maternal and fetal blood sample were collected for biochemical measurement. The maternal livers, fetal livers, and placenta were removed for oxidative stress measurements. Maternal reproductive outcomes and fetal and placental morphometric measurements were analyzed. The fetuses were classified as small, appropriate, and large for pregnancy age, and examined for the presence of external anomalies. The diabetic group showed mild hyperglycemia, altered glucose tolerance, increased total cholesterol, triglycerides, and hemoglobin A1c during pregnancy. At the 20th day of gestation the diabetic mothers presented increased reabsorptions and embryonic losses before and after implantation, reduced corpora lutea number, litter size, implantation sites, live fetuses, and decreased efficiency of implantation rate. Similarly, the offspring showed reduced fetal, craniofacial, and placental dimensions, in addition to a higher proportion of small fetuses for pregnancy age. Mild hyperglycemia during pregnancy did not generate marked oxidative stress in the mother, and in fetal liver and placenta decreased antioxidant activity was evident by significant consumption of reduced glutathione. Mild diabetes led to a negative impact on maternal reproductive performance and characteristics of the offspring. This experimental model reproduced maternal and fetal outcomes of pregnant rats presenting controlled diabetes. ABBREVIATIONS bw: body weight; sc: subcutaneous; DM: diabetes mellitus; STZ: streptozotocin; OGTT: oral glucose tolerance test; ITT: insulin tolerance test; GSH: glutathione; MDA: malondialdehyde; AOPPs: advanced oxidation protein products; TBARs: thiobarbituric acid reaction; SPA: small for pregancy age; APA: appropriate for pregnancy age; LPG: large for pregnancy age; ROS: reactive oxygen species.
Collapse
Affiliation(s)
- Leticia Bequer
- a Biomedical Research Center, Medical College of Villa Clara , Cuba
| | - Tahiry Gómez
- a Biomedical Research Center, Medical College of Villa Clara , Cuba
| | - José L Molina
- a Biomedical Research Center, Medical College of Villa Clara , Cuba
| | - Alain Álvarez
- a Biomedical Research Center, Medical College of Villa Clara , Cuba
| | - Claudia Chaviano
- a Biomedical Research Center, Medical College of Villa Clara , Cuba
| | | |
Collapse
|
41
|
Kim G, Cao L, Reece EA, Zhao Z. Impact of protein O-GlcNAcylation on neural tube malformation in diabetic embryopathy. Sci Rep 2017; 7:11107. [PMID: 28894244 PMCID: PMC5593976 DOI: 10.1038/s41598-017-11655-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/25/2017] [Indexed: 01/15/2023] Open
Abstract
Diabetes mellitus in early pregnancy can cause neural tube defects (NTDs) in embryos by perturbing protein activity, causing cellular stress, and increasing programmed cell death (apoptosis) in the tissues required for neurulation. Hyperglycemia augments a branch pathway in glycolysis, the hexosamine biosynthetic pathway (HBP), to increase uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc). GlcNAc can be added to proteins by O-GlcNAc transferase (OGT) to regulate protein activity. In the embryos of diabetic mice, OGT is highly activated in association with increases in global protein O-GlcNAcylation. In neural stem cells in vitro, high glucose elevates O-GlcNAcylation and reactive oxygen species, but the elevations can be suppressed by an OGT inhibitor. Inhibition of OGT in diabetic pregnant mice in vivo decreases NTD rate in the embryos. This effect is associated with reduction in global O-GlcNAcylation, alleviation of intracellular stress, and decreases in apoptosis in the embryos. These suggest that OGT plays an important role in diabetic embryopathy via increasing protein O-GlcNAcylation, and that inhibiting OGT could be a candidate approach to prevent birth defects in diabetic pregnancies.
Collapse
Affiliation(s)
- Gyuyoup Kim
- Department of Obstetrics, Gynecology and Reproductive Sciences,University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lixue Cao
- Department of Obstetrics, Gynecology and Reproductive Sciences,University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences,University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zhiyong Zhao
- Department of Obstetrics, Gynecology and Reproductive Sciences,University of Maryland School of Medicine, Baltimore, Maryland, USA.
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
42
|
Formation of neurodegenerative aggresome and death-inducing signaling complex in maternal diabetes-induced neural tube defects. Proc Natl Acad Sci U S A 2017; 114:4489-4494. [PMID: 28396396 DOI: 10.1073/pnas.1616119114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diabetes mellitus in early pregnancy increases the risk in infants of birth defects, such as neural tube defects (NTDs), known as diabetic embryopathy. NTDs are associated with hyperglycemia-induced protein misfolding and Caspase-8-induced programmed cell death. The present study shows that misfolded proteins are ubiquitinylated, suggesting that ubiquitin-proteasomal degradation is impaired. Misfolded proteins form aggregates containing ubiquitin-binding protein p62, suggesting that autophagic-lysosomal clearance is insufficient. Additionally, these aggregates contain the neurodegenerative disease-associated proteins α-Synuclein, Parkin, and Huntingtin (Htt). Aggregation of Htt may lead to formation of a death-inducing signaling complex of Hip1, Hippi, and Caspase-8. Treatment with chemical chaperones, such as sodium 4-phenylbutyrate (PBA), reduces protein aggregation in neural stem cells in vitro and in embryos in vivo. Furthermore, treatment with PBA in vivo decreases NTD rate in the embryos of diabetic mice, as well as Caspase-8 activation and cell death. Enhancing protein folding could be a potential interventional approach to preventing embryonic malformations in diabetic pregnancies.
Collapse
|
43
|
Maternal exosomes in diabetes contribute to the cardiac development deficiency. Biochem Biophys Res Commun 2017; 483:602-608. [DOI: 10.1016/j.bbrc.2016.12.097] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/14/2016] [Indexed: 12/22/2022]
|
44
|
Chen G, Sun W, Liang Y, Chen T, Guo W, Tian W. Maternal diabetes modulates offspring cell proliferation and apoptosis during odontogenesis via the TLR4/NF-κB signalling pathway. Cell Prolif 2016; 50. [PMID: 27981756 DOI: 10.1111/cpr.12324] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/05/2016] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Maternal gestational diabetes leads to an adverse in utero environment and increases the risk of malformations during embryo organogenesis. In the present study, we analysed the effects of maternal diabetes on tooth germ cell proliferation and apoptosis in offspring, and investigated their underlying mechanisms. MATERIALS AND METHODS A rat model of maternal diabetes was induced by intraperitoneal injection of streptozotocin and the pregnant rats were divided into three groups: controls, the diabetic group and diabetic group with insulin treatment. Offspring of the three groups were collected and cell proliferation and apoptosis in tooth germs were analysed. Primary dental papilla cells and dental epithelial stem cells were isolated and treated with high glucose in vitro, in an attempt to simulate maternal diabetes-induced hyperglycaemia in vivo. RESULTS Maternal diabetes significantly affected cell proliferation and apoptosis in offspring tooth germs. The TLR4/NF-ĸB signalling pathway was activated in the tooth germs of offspring of diabetic dams. High glucose treatment activated the TLR4/NF-ĸB signalling pathway in primary dental papilla cells and dental epithelial stem cells in vitro, resulting in suppression of cell proliferation and enhancement of apoptosis. TLR4 knockdown significantly reduced adverse effects induced by high glucose treatment. CONCLUSIONS Maternal gestational diabetes significantly impaired dental epithelial and mesenchymal cell proliferation and apoptosis in offspring, possibly by activation of the TLR4/NF-ĸB signalling pathway.
Collapse
Affiliation(s)
- Guoqing Chen
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Wenhua Sun
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yan Liang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China College of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Tian Chen
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China College of Stomatology, Sichuan University, Chengdu, China.,Department of Pedodontics, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China College of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Boyd R, Patel J, Harden B. Complete Unbalanced Atrioventricular Septal Defect With a Common Arterial Trunk in an Uncontrolled Type 1 Diabetic Mother. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2016. [DOI: 10.1177/8756479316663208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
When performed by a trained sonographer, fetal echocardiography can be instrumental in identifying cardiac pathology and abnormal cardiac physiology before a baby is born. Even though the diagnostic accuracy of a fetal echocardiogram can be limited by maternal body habitus, gestational age, and fetal position, sequential exams allow for detailed analysis of the cardiac structures. Early identification and diagnosis of intrauterine cardiac anomalies and subsequent pregnancy management and delivery planning are essential to providing the best possible outcome for fetuses born with heart defects. In this case study, we describe a rare combination of congenital heart defects diagnosed in an uncontrolled type 1 diabetic mother while in her second trimester of pregnancy.
Collapse
Affiliation(s)
- Roberta Boyd
- Sibley Heart Center Cardiology, Atlanta, GA, USA
| | - Jayur Patel
- Sibley Heart Center Cardiology, Atlanta, GA, USA
| | | |
Collapse
|
46
|
Zhao Z. Reevaluation of Antioxidative Strategies for Birth Defect Prevention in Diabetic Pregnancies. JOURNAL OF BIOMOLECULAR RESEARCH & THERAPEUTICS 2016; 5:145. [PMID: 28824831 PMCID: PMC5560165 DOI: 10.4172/2167-7956.1000145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus in early pregnancy is the most severe maternal disease that is counted for 10% of newborn infants with structural defects. With the rapid increases in the number of diabetic women in childbearing age, the birth defect rate is projected to elevate dramatically. Thus, prevention of embryonic malformations becomes an urgent task. Animal studies have revealed an involvement of oxidative stress in diabetic embryopathy and treatment with antioxidants can reduce embryonic abnormalities. However, the failure of clinical trials using free radical-scavenging antioxidants to alleviate oxidative stress-related diseases prompts researchers to reevaluate the strategy in birth defect prevention. Hyperglycemia also disturbs other intracellular homeostasis, generating aberrant conditions. Perturbed folding of newly synthesized proteins causes accumulation of unfolded and misfolded proteins in the lumen of the endoplasmic reticulum (ER). The ER under the stress activates signaling cascades, known as unfolded protein response, to suppress cell mitosis and/or trigger apoptosis. ER stress can be ameliorated by chemical chaperones, which promote protein folding. Hyperglycemia also stimulates the expression of nitric oxide (NO) synthase 2 (NOS2) to produce high levels of NO and reactive nitrogen species and augment protein nitrosylation and nitration, resulting in nitrosative stress. Inhibition of NOS2 using inhibitors has been demonstrated to reduce embryonic malformations in diabetic animals. Therefore, targeting ER and nitrosative stress conditions using specific agents to prevent birth defects in diabetic pregnancies warrant further investigations. Simultaneously targeting multiple stress conditions using combined agents is a potentially effective and feasible approach.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
47
|
Impairment of synaptic development in the hippocampus of diabetic Goto-Kakizaki rats. Int J Dev Neurosci 2016; 53:58-67. [PMID: 27444810 DOI: 10.1016/j.ijdevneu.2016.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/30/2016] [Accepted: 07/17/2016] [Indexed: 12/28/2022] Open
Abstract
Insulin receptor signaling has been shown to regulate essential aspects of CNS function such as synaptic plasticity and neuronal survival. To elucidate its roles during CNS development in vivo, we examined the synaptic and cognitive development of the spontaneously diabetic Goto-Kakizaki (GK) rats in the present study. GK rats are non-obese models of type 2 diabetes established by selective inbreeding of Wistar rats based on impaired glucose tolerance. Though they start exhibiting only moderate hyperglycemia without changes in plasma insulin levels from 3 weeks postnatally, behavioral alterations in the open-field as well as significant impairments in memory retention compared with Wistar rats were observed at 10 weeks and were worsened at 20 weeks. Alterations in insulin receptor signaling and signs of insulin resistance were detected in the GK rat hippocampus at 3 weeks, as early as in other insulin-responsive peripheral tissues. Significant reduction of an excitatory postsynaptic scaffold protein, PSD95, was found at 5w and later in the hippocampus of GK rats due to the absence of a two-fold developmental increase of this protein observed in Wistar control rats between 3 and 20w. In the GK rat hippocampus, NR2A which is a NMDA receptor subunit selectively anchored to PSD95 was also reduced. In contrast, both NR2B and its anchoring protein, SAP102, showed similar developmental profiles in Wistar and GK rats with expression peaks at 2 and 3w. The results suggest that early alterations in insulin receptor signaling in the GK rat hippocampus may affect cognitive performance by suppressing synaptic maturation.
Collapse
|
48
|
Pankaj PP. Efficacy of Spirulina platensis in improvement of the reproductive performance and easing teratogenicity in hyperglycemic albino mice. Indian J Pharmacol 2016; 47:430-5. [PMID: 26285837 PMCID: PMC4527067 DOI: 10.4103/0253-7613.161271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/20/2014] [Accepted: 06/25/2015] [Indexed: 01/24/2023] Open
Abstract
Objectives: The present study evaluates the therapeutic efficacy of cell suspension of Spirulina platensis (SP) on estrous cycle, fetal development and embryopathy in alloxan (AXN) induced hyperglycemic mice. Materials and Methods: Diabetes was induced by intra-peritoneal administration of AXN. Mice with blood glucose level above 200 mg/dl were divided into Group I (control), Group II (diabetic control), Group III (diabetic control mice fed with SP), and Group IV (control mice fed with SP). Litter counts, estrous cycles, percent survival of litter, and gestation length were recorded. Results: In hyperglycemic mice, a significant (P < 0.05) increase in duration of diestrus (14.48%), estrus (84.21%), and metestrus (164.15%) with concomitant decrease in proestrus phase by 26.13% was recorded when compared with control. Reduction in litter count and survival of litter was 68.67% and 88.38%, respectively, whereas gestation length increased to 14.51% day in diabetic mice, but recovery in these parameters was observed (P < 0.05) when subjected to SP treatment. SP resulted in increased fertility rate from 77.5% to 82.5% and dropped off resorption of the fetus to 33.73% while the survival rate of offspring of diabetic mice went up to 88.89% from 83.61%. Conclusions: These findings suggest that SP is effective in improving the reproductive performance and easing teratogenic effects in diabetic mice and hence warrants further detailed dose-dependent studies to understand its mechanism of action.
Collapse
|
49
|
Diabetes during pregnancy enhanced neuronal death in the hippocampus of rat offspring. Int J Dev Neurosci 2016; 51:28-35. [DOI: 10.1016/j.ijdevneu.2016.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/29/2016] [Accepted: 04/20/2016] [Indexed: 12/30/2022] Open
|
50
|
Cao L, Tan C, Meng F, Liu P, Reece EA, Zhao Z. Amelioration of intracellular stress and reduction of neural tube defects in embryos of diabetic mice by phytochemical quercetin. Sci Rep 2016; 6:21491. [PMID: 26887929 PMCID: PMC4757833 DOI: 10.1038/srep21491] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/25/2016] [Indexed: 02/03/2023] Open
Abstract
Diabetes mellitus in early pregnancy causes birth defects, including neural tube defects (NTDs). Hyperglycemia increases production of nitric oxide (NO) through NO synthase 2 (Nos2) and reactive oxygen species (ROS), generating nitrosative and oxidative stress conditions in the embryo. The present study aimed to target nitrosative stress using a naturally occurring Nos2 inhibitor, quercetin, to prevent NTDs in the embryos of diabetic mice. Daily administration of quercetin to diabetic pregnant mice during the hyperglycemia-susceptible period of organogenesis significantly reduced NTDs and cell apoptosis in the embryos, compared with those of vehicle-treated diabetic pregnant mice. Using HPLC-coupled ESI-MS/MS, quercetin metabolites, including methylated and sulfonylated derivatives, were detected in the conceptuses. The methylated metabolite, 3-O-methylquercetin, was shown to reduce ROS level in embryonic stem cells cultured in high glucose. Quercetin treatment decreased the levels of Nos2 expression, protein nitrosylation, and protein nitration, alleviating nitrosative stress. Quercetin increased the expression of superoxide dismutase 1 and 2, and reduced the levels of oxidative stress markers. Expression of genes of redox regulating enzymes and DNA damage repair factors was upregulated. Our study demonstrates that quercetin ameliorates intracellular stresses, regulates gene expression, and reduces embryonic malformations in diabetic pregnancy.
Collapse
Affiliation(s)
- Lixue Cao
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chengyu Tan
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA.,College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Fantong Meng
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Peiyan Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zhiyong Zhao
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|