1
|
Martinelli C, Ercoli A, Vizzielli G, Burk SR, Cuomo M, Satasiya V, Kacem H, Braccia S, Mazzarotti G, Miriello I, Tchamou MN, Restaino S, Arcieri M, Poli A, Tius V, Parisi S, Pergolizzi S, Iatì G, Nibali CC, Pizzimenti C, Pepe L, Ieni A, Cortellino S, Giordano A. Liquid biopsy in gynecological cancers: a translational framework from molecular insights to precision oncology and clinical practice. J Exp Clin Cancer Res 2025; 44:140. [PMID: 40340939 PMCID: PMC12060497 DOI: 10.1186/s13046-025-03371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/17/2025] [Indexed: 05/10/2025] Open
Abstract
Liquid biopsy offers a noninvasive method to identify and monitor tumor-derived biomarkers, including circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), exosomes, microRNAs, and tumor-educated platelets, that provide real-time insights into the biological behavior of gynecological cancers. The detection of these markers has the potential to revolutionize cancer management by enabling earlier detection, providing novel data to personalize treatments, and predicting disease recurrence before clinical imaging and predicting disease recurrence before clinical imaging can confirm progression, thereby also guiding complex clinical decision-making. However, because this new "omics" layer introduces additional complexity, it must be fully understood, from its biological rationale to technical development and clinical integration, to prevent confusion or misapplication. That is why, focusing on 14 critical fields of inquiry, our goal is to map the current state of liquid biopsy from bench to bedside while highlighting practical considerations for clinical integration. Each topic integrates recent advances in assay sensitivity, biomarker variability, and data interpretation, underscoring how standardized protocols and robust analytical methods are pivotal for reliable results. We then translate these findings into disease-specific insights, examining how liquid biopsy could refine early detection, minimal residual disease assessment, and therapy guidance in endometrial, cervical, and ovarian cancers. Although several FDA-approved assays and promising commercial tests illustrate the field's rapid evolution, many translational hurdles remain, including the need for harmonized protocols, larger prospective clinical trials, and cost-effectiveness analyses. Crucially, our synthesis clarifies the pivotal role of interdisciplinary collaboration. Oncologists, laboratory scientists, and industry partners must align on standardized procedures and clinically relevant endpoints. Without such coordination, promising biomarkers may remain confined to research settings, limiting their practical benefit. Taken together, our review offers a translational view designed to contextualize liquid biopsy in gynecological oncology.
Collapse
Affiliation(s)
- Canio Martinelli
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, 1900 N 12 St, Philadelphia, PA, 19122, USA
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", Unit of Obstetrics and Gynecology, University of Messina, Via Consolare Valeria 1, Messina, 98124, Italy
| | - Alfredo Ercoli
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", Unit of Obstetrics and Gynecology, University of Messina, Via Consolare Valeria 1, Messina, 98124, Italy
| | - Giuseppe Vizzielli
- Clinic of Obstetrics and Gynecology, Santa Maria Della Misericordia" University Hospital, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Sharon Raffaella Burk
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, 1900 N 12 St, Philadelphia, PA, 19122, USA
- Department of Medical Biotechnology, University of Siena, Via Aldo Moro 2, Siena, 53100, Italy
| | - Maria Cuomo
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, 1900 N 12 St, Philadelphia, PA, 19122, USA
- Department of Medical Biotechnology, University of Siena, Via Aldo Moro 2, Siena, 53100, Italy
| | - Vrunda Satasiya
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, 1900 N 12 St, Philadelphia, PA, 19122, USA
- Department of Medical Biotechnology, University of Siena, Via Aldo Moro 2, Siena, 53100, Italy
| | - Housem Kacem
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, 1900 N 12 St, Philadelphia, PA, 19122, USA
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Simone Braccia
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, 1900 N 12 St, Philadelphia, PA, 19122, USA
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, Naples, 80131, Italy
| | - Giulio Mazzarotti
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, 1900 N 12 St, Philadelphia, PA, 19122, USA
- Department of Medical Biotechnology, University of Siena, Via Aldo Moro 2, Siena, 53100, Italy
| | - Irene Miriello
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, 1900 N 12 St, Philadelphia, PA, 19122, USA
| | - Manuela Nana Tchamou
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, 1900 N 12 St, Philadelphia, PA, 19122, USA
- Department of Medical Biotechnology, University of Siena, Via Aldo Moro 2, Siena, 53100, Italy
| | - Stefano Restaino
- Clinic of Obstetrics and Gynecology, Santa Maria Della Misericordia" University Hospital, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Martina Arcieri
- Clinic of Obstetrics and Gynecology, Santa Maria Della Misericordia" University Hospital, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Alice Poli
- Clinic of Obstetrics and Gynecology, Santa Maria Della Misericordia" University Hospital, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Veronica Tius
- Clinic of Obstetrics and Gynecology, Santa Maria Della Misericordia" University Hospital, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Silvana Parisi
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, 98125, Italy
| | - Stefano Pergolizzi
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, 98125, Italy
| | - Giuseppe Iatì
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, 98125, Italy
| | - Chiara Conti Nibali
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", Unit of Obstetrics and Gynecology, University of Messina, Via Consolare Valeria 1, Messina, 98124, Italy
| | - Cristina Pizzimenti
- Section of Pathological Anatomy, Department of Human Pathology of Adult and Evolutive Age "Gaetano Barresi", G. Martino Hospital, Messina, 98125, Italy
| | - Ludovica Pepe
- Section of Pathological Anatomy, Department of Human Pathology of Adult and Evolutive Age "Gaetano Barresi", G. Martino Hospital, Messina, 98125, Italy
| | - Antonio Ieni
- Section of Pathological Anatomy, Department of Human Pathology of Adult and Evolutive Age "Gaetano Barresi", G. Martino Hospital, Messina, 98125, Italy
| | - Salvatore Cortellino
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Naples, Italy.
- Laboratory of Molecular Oncology, Research Hospital, Campobasso, 86100, Italy.
- SHRO Italia Foundation ETS, Candiolo, Turin, Italy.
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, 1900 N 12 St, Philadelphia, PA, 19122, USA.
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
2
|
Fukuda A, Mizuno T, Yoshida T, Sunami K, Kubo T, Koyama T, Yonemori K, Okusaka T, Kato K, Ohe Y, Yatabe Y, Yamamoto N. Upfront liquid biopsy in patients with advanced solid tumors who were not feasible for tissue-based next-generation sequencing. Jpn J Clin Oncol 2025:hyaf065. [PMID: 40251768 DOI: 10.1093/jjco/hyaf065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/03/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025] Open
Abstract
BACKGROUND Liquid biopsy has been developed as an alternative to tissue-based sequencing for detecting genomic alterations in solid tumors. However, the clinical utility of liquid biopsy in patients with solid tumors for whom tissue-based next-generation sequencing (NGS) is infeasible has not been well-characterized, particularly in previously untreated individuals. METHODS This prospective study evaluated the clinical impact of liquid biopsy, focusing on six solid tumor types. Overall, 109 patients were enrolled and underwent liquid biopsy using Guardant360 (Guardant Health, Redwood City, CA, USA). Among these, 94 (86.3%) patients were previously untreated. RESULTS The most common cancer type was non-small cell lung cancer (n = 57, 52.3%), followed by pancreatic (n = 35, 32.1%), biliary tract (n = 8, 7.3%), gastric (n = 5, 4.6%), colorectal (n = 3, 2.8%), and triple-negative breast (n = 1, 0.9%) cancers. The success rate of liquid biopsy was 99.1%, and the median turnaround time from blood collection to results was 7 days (range: 5-22 days). Actionable alterations were detected in 31 (28.4%) patients, and 8.3% of them received matched therapy based on alterations identified by liquid biopsy. Among previously untreated patients, actionable mutations were identified in 29.8%, and 8.5% received matched therapy. CONCLUSIONS In patients with advanced solid tumors for which tissue-based NGS is not feasible, performing upfront liquid biopsy could lead to the detection of actionable alterations and help guide targeted therapies. CLINICAL TRIAL REGISTRY UMIN Clinical Trials Registry (UMIN000041722).
Collapse
Affiliation(s)
- Akito Fukuda
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takaaki Mizuno
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Kuniko Sunami
- Department of Laboratory Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Takashi Kubo
- Department of Laboratory Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Kan Yonemori
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Ken Kato
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Noboru Yamamoto
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
3
|
Galvez-Nino M, Roque K, Ruiz R, Namuche F, Paitan V, Arrese T, Zegarra J, Oblitas G, Gonzalez L, Maco L, Cabrera MDP, Coello R, Portugal Del Pino JL, Ezquerra JC, Perez Roca R, Coanqui O, Valdiviezo N, Olivera M, Vidaurre T, Aguilar Cartagena A, Mas L. Real-world clinical practice and outcomes in Peruvian patients with advanced EGFR T790M mutation positive NSCLC: A multicenter analysis. Cancer Treat Res Commun 2025; 43:100906. [PMID: 40147101 DOI: 10.1016/j.ctarc.2025.100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/04/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
INTRODUCTION Despite osimertinib being the standard therapy for advanced EGFR T790M mutation positive NSCLC, in many Latin American countries, access to molecular testing and targeted therapies is limited, directly impacting patient outcomes. This study describes the real-world management and outcomes of Peruvian patients with advanced EGFR-mutated NSCLC who develop the T790M mutation. METHODS We conducted a multicenter retrospective study including patients from nine Peruvian institutions, both public and private, who progressed to first-line EGFR TKI and developed T790M mutation, detected between January 2018 and December 2023. We evaluated demographic, clinico-pathological features and treatment data, including diagnostic pathway, treatment patterns, and survival outcomes. RESULTS Seventy-eight patients were included; T790M was detected by liquid biopsy in 52.6 % of cases. Median time from progression to T790M detection was 59.5 days (7-244). Osimertinib was administered to 62.8 % of patients after detection, with a median initiation time of 42 days (1-104). Median overall survival (OS) from first-line treatment was 46.6 months for patients who received osimertinib, 23.9 months for those receiving other therapies, and 16.1 months for those without treatment (p = 0.001). Among osimertinib-treated patients, the objective response rate (ORR) was 59.2 %, with a median progression-free survival (PFS) of 15.8 months. Median OS from osimertinib initiation was 16.3 months, significantly longer than for patients receiving other treatments after T790M detection (9.7 months; p = 0.002). CONCLUSIONS This study confirms the real-world effectiveness of osimertinib in Peruvian patients with advanced EGFR T790M positive NSCLC and highlights the importance of timely detection and access to targeted therapies.
Collapse
Affiliation(s)
- Marco Galvez-Nino
- Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru; Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Katia Roque
- Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru; Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Rossana Ruiz
- Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru; Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | - Tulio Arrese
- Instituto Regional de Enfermedades Neoplásicas Centro, Junin, Peru
| | - Jorge Zegarra
- Instituto Regional de Enfermedades Neoplásicas Centro, Junin, Peru
| | | | | | | | | | | | | | | | | | | | | | - Mivael Olivera
- Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
| | - Tatiana Vidaurre
- Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru; Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Luis Mas
- Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru; Universidad Peruana Cayetano Heredia, Lima, Peru; Oncosalud - AUNA, Lima, Peru
| |
Collapse
|
4
|
Fusco N, Malapelle U. Next-generation sequencing for PTEN testing in HR+/HER2- metastatic breast cancer. Crit Rev Oncol Hematol 2025; 207:104626. [PMID: 39909182 DOI: 10.1016/j.critrevonc.2025.104626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Molecular alterations in the Phosphoinositide 3-kinase (PI3K) pathway are key drivers of tumorigenesis and progression in hormone receptor-positive, HER2-negative (HR+/HER2 -) metastatic breast cancer (MBC). These genomic changes are actionable through targeted therapeutic agents. In particular, access to these therapies depends on accurate molecular testing of PIK3CA, AKT1, and PTEN. Next-generation sequencing (NGS) has emerged as a transformative diagnostic tool, offering a comprehensive analysis of PI3K pathway alterations while concurrently evaluating other actionable markers, such as ESR1 and BRCA. Acknowledging its clinical importance, the European Society for Medical Oncology (ESMO) recommends NGS of tumor or plasma samples as the standard of care for patients with HR+ /HER2 - MBC. Although resource-intensive, NGS represents a significant advancement in MBC diagnostics, ensuring that therapeutic decisions are informed by a detailed and multidimensional molecular profile. This review highlights the capabilities of NGS for PI3K pathway testing in HR+ /HER2 - MBC, with a particular focus on the spectrum of PTEN alterations.
Collapse
Affiliation(s)
- Nicola Fusco
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy.
| | - Umberto Malapelle
- Department of Public Health, Federico II University of Naples, Naples 80131, Italy.
| |
Collapse
|
5
|
Leite da Silva LF, Saldanha EF, de Menezes JSA, Halamy Pereira L, de Bragança dos Santos JAR, Buonopane IR, de Souza EM, de Menezes CUG, Lopes G. Plasma ctDNA kinetics as a predictor of systemic therapy response for advanced non-small cell lung cancer: a systematic review and meta-analysis. Oncologist 2025; 30:oyae344. [PMID: 39998904 PMCID: PMC11853598 DOI: 10.1093/oncolo/oyae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/07/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Predicting early treatment response in advanced non-small cell lung cancer (NSCLC) is challenging. Longitudinal monitoring of circulating tumor DNA (ctDNA) can track tumor response to treatments like immune checkpoint blockade (ICB) and correlate with outcomes. This meta-analysis evaluated whether ctDNA clearance or decrease is associated with improved survival across various settings in NSCLC. METHODS A systematic review of MEDLINE, EMBASE, and Cochrane databases (up to April 2024) identified studies evaluating the impact of ctDNA kinetics on survival outcomes in non-curative NSCLC settings. Pooled hazard ratios (HR) for progression-free survival (PFS) and overall survival (OS) were calculated using a random effects model. RESULTS We included 32 studies with 3047 NSCLC patients receiving systemic therapies such as targeted therapy (TT), ICB, and chemotherapy. Meta-analysis of 31 studies showed that ctDNA decrease/clearance was linked to improved PFS (HR: 0.32 [0.26, 0.40], I² = 63%, P < .01). Subgroup analysis indicated strong PFS benefits from ctDNA clearance (HR: 0.27 [0.20, 0.36]). Similar improvements were seen across patients undergoing targeted therapy (HR: 0.34) and ICB (HR: 0.33). Analysis of 25 studies revealed a significant association between ctDNA reduction and better OS (HR: 0.31 [0.23, 0.42], I² = 47%, P < .01). Subgroup findings were consistent for both TT (HR: 0.41) and ICB (HR: 0.32). Sensitivity analysis demonstrated that ctDNA clearance/decrease was consistently associated with improved PFS across study designs and ctDNA analysis methods. There was no significant variation in hazard ratios for PFS based on NSCLC subtypes, smoking status, or sex. CONCLUSION Plasma ctDNA kinetics was associated with improved survival outcomes in patients diagnosed with advanced NSCLC undergoing treatment with TT and ICB.
Collapse
Affiliation(s)
- Luís F Leite da Silva
- Departmento de Ciências Médicas, Universidade Federal Fluminense, Niterói, RJ 24033-900, Brazil
| | - Erick F Saldanha
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, ON M5G 2M9, Canada
| | | | - Leonardo Halamy Pereira
- Departmento de Ciências Médicas, Universidade Federal Fluminense, Niterói, RJ 24033-900, Brazil
| | | | | | - Erito M de Souza
- Departmento de Ciências Médicas, Universidade Federal Fluminense, Niterói, RJ 24033-900, Brazil
| | | | - Gilberto Lopes
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, United States
| |
Collapse
|
6
|
Moon GY, Dalkiran B, Park HS, Shin D, Son C, Choi JH, Bang S, Lee H, Doh I, Kim DH, Jeong WJ, Bu J. Dual Biomarker Strategies for Liquid Biopsy: Integrating Circulating Tumor Cells and Circulating Tumor DNA for Enhanced Tumor Monitoring. BIOSENSORS 2025; 15:74. [PMID: 39996976 PMCID: PMC11852634 DOI: 10.3390/bios15020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025]
Abstract
The liquid biopsy has gained significant attention in cancer diagnostics, with circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) being recognized as key biomarkers for tumor detection and monitoring. However, each biomarker possesses inherent limitations that restrict its standalone clinical utility, such as the rarity and heterogeneity of CTCs and the variable sensitivity and specificity of ctDNA assays. This highlights the necessity of integrating both biomarkers to maximize diagnostic and prognostic potential, offering a more comprehensive understanding of the tumor biology and therapeutic response. In this review, we summarize clinical studies that have explored the combined analysis of CTCs and ctDNA as biomarkers, providing insights into their synergistic value in diverse tumor types. Specifically, this paper examines the individual advantages and limitations of CTCs and ctDNA, details the findings of combined biomarker studies across various cancers, highlights the benefits of dual biomarker approaches over single-biomarker strategies, and discusses future prospects for advancing personalized oncology through liquid biopsies. By offering a comprehensive overview of clinical studies combining CTCs and ctDNA, this review serves as a guideline for researchers and clinicians aiming to enhance biomarker-based strategies in oncology and informs biosensor design for improved biomarker detection.
Collapse
Affiliation(s)
- Ga Young Moon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Basak Dalkiran
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Hyun Sung Park
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Dongjun Shin
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Chaeyeon Son
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Jung Hyun Choi
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
- Division of Biomedical Metrology, Korea Research Institute of Standards and Science, 267 Gajeongno, Yuseong-gu, Daejeon 34113, Republic of Korea; (I.D.); (D.H.K.)
| | - Seha Bang
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Hosu Lee
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Il Doh
- Division of Biomedical Metrology, Korea Research Institute of Standards and Science, 267 Gajeongno, Yuseong-gu, Daejeon 34113, Republic of Korea; (I.D.); (D.H.K.)
| | - Dong Hyung Kim
- Division of Biomedical Metrology, Korea Research Institute of Standards and Science, 267 Gajeongno, Yuseong-gu, Daejeon 34113, Republic of Korea; (I.D.); (D.H.K.)
| | - Woo-jin Jeong
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Jiyoon Bu
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Biohybrid Systems Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
7
|
Gavryushin AV, Papusha LI, Veselkov AA, Zaitseva MA, Khukhlaeva EA, Konovalov AN, Druy AE. [Liquid biopsy for detection of H3K27m and BRAF V600E mutations in patients with diffuse brainstem tumors]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2025; 89:11-19. [PMID: 39907662 DOI: 10.17116/neiro20258901111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Despite the progress in understanding the pathogenesis of diffuse brainstem tumors, treatment of these neoplasms is usually empirical and conducted without morphological and molecular verification. Liquid biopsy is a minimally invasive technique providing data on tumor biology without standard biopsy. This method is based on analysis of cell-free nucleic acids (predominantly, extracellular DNA) in biological fluids with detection of specific mutations. Despite wide implementation in diagnosis and disease monitoring in extracranial malignancies, it is infrequently applied in neuro-oncology. OBJECTIVE To estimate diagnostic value of liquid biopsy in detecting H3K27 and BRAF V600E mutations in patients with diffuse brainstem tumors. MATERIAL AND METHODS Lumbar puncture with cerebrospinal fluid sampling was performed in 16 patients (5 children and 11 adults) with diffuse brainstem tumors verified by neuroimaging data. Cell-free DNA (cfDNA) was used in digital droplet PCR for determination of H3F3A K28M and BRAF V600E oncogenic missense variants. In 14 patients, investigation of cfDNA was performed in parallel with analysis of correspondent mutations in DNA derived from tumor tissue. RESULTS None patient had BRAF V600E mutation. H3F3A K28M variant was detected in 5 CSF samples and 6 tumor specimens from patients who underwent surgical biopsy. Thus, overall sensitivity of the method in determination of H3F3A K28M variant was 92.9% (13/14). CONCLUSION Liquid biopsy is highly informative for identifying the specific mutation H3F3A K28M and often verifies diffuse brainstem glioma without standard biopsy.
Collapse
Affiliation(s)
- A V Gavryushin
- Burdenko Neurosurgical Center, Moscow, Russia
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - L I Papusha
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - M A Zaitseva
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | | | - A E Druy
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
8
|
Harary PM, Rajaram S, Chen MS, Hori YS, Park DJ, Chang SD. Genomic predictors of radiation response: recent progress towards personalized radiotherapy for brain metastases. Cell Death Discov 2024; 10:501. [PMID: 39695143 DOI: 10.1038/s41420-024-02270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Radiotherapy remains a key treatment modality for both primary and metastatic brain tumors. Significant technological advances in precision radiotherapy, such as stereotactic radiosurgery and intensity-modulated radiotherapy, have contributed to improved clinical outcomes. Notably, however, molecular genetics is not yet widely used to inform brain radiotherapy treatment. By comparison, genetic testing now plays a significant role in guiding targeted therapies and immunotherapies, particularly for brain metastases (BM) of lung cancer, breast cancer, and melanoma. Given increasing evidence of the importance of tumor genetics to radiation response, this may represent a currently under-utilized means of enhancing treatment outcomes. In addition, recent studies have shown potentially actionable mutations in BM which are not present in the primary tumor. Overall, this suggests that further investigation into the pathways mediating radiation response variability is warranted. Here, we provide an overview of key mechanisms implicated in BM radiation resistance, including intrinsic and acquired resistance and intratumoral heterogeneity. We then discuss advances in tumor sampling methods, such as a collection of cell-free DNA and RNA, as well as progress in genomic analysis. We further consider how these tools may be applied to provide personalized radiotherapy for BM, including patient stratification, detection of radiotoxicity, and use of radiosensitization agents. In addition, we describe recent developments in preclinical models of BM and consider their relevance to investigating radiation response. Given the increase in clinical trials evaluating the combination of radiotherapy and targeted therapies, as well as the rising incidence of BM, it is essential to develop genomically informed approaches to enhance radiation response.
Collapse
Affiliation(s)
- Paul M Harary
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanjeeth Rajaram
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Maggie S Chen
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Yusuke S Hori
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - David J Park
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| | - Steven D Chang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
9
|
Shiller M, Johnson M, Auber R, Patel SP. Clinical perspectives on the value of testing for STK11 and KEAP1 mutations in advanced NSCLC. Front Oncol 2024; 14:1459737. [PMID: 39703851 PMCID: PMC11655323 DOI: 10.3389/fonc.2024.1459737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/05/2024] [Indexed: 12/21/2024] Open
Abstract
Standard first-line therapy for patients with metastatic non-small cell lung cancer (mNSCLC) without identified actionable mutations consists of regimens comprising immune checkpoint inhibitors (ICIs), alone or in combination with platinum-based chemotherapy (CTx). However, approximately 20-30% of patients with mNSCLC (including some patients with high tumor programmed cell death ligand-1 expression) display primary resistance to ICIs, either alone or in combination with CTx. Mutations in tumor suppressor genes serine/threonine kinase 11 (STK11), and Kelch-like ECH-associated protein 1 (KEAP1) often detected in patients with Kirsten rat sarcoma virus mutations, are associated with an aggressive disease phenotype and resistance to standard ICI regimens. Consequently, there is an important need for effective treatments for patients with NSCLC with STK11 or KEAP1 mutations. In this article, we describe new data on the prevalence of STK11 and KEAP1 mutations in a large clinical population, consider practicalities around the detection of these mutations using available biomarker testing methodologies, and describe experiences of managing some of these difficult-to-treat patients in our clinical practice.
Collapse
Affiliation(s)
- Michelle Shiller
- Department of Pathology, Baylor University Medical Center, Dallas, TX, United States
| | - Melissa Johnson
- Department of Medical Oncology, Sarah Cannon Cancer Research Institute, Nashville, TN, United States
| | - Robert Auber
- Department of Molecular Oncology, PathGroup, Nashville, TN, United States
| | - Sandip Pravin Patel
- Division of Hematology and Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
10
|
Shah A, Apple J, Burgos G, Lankin J, Cohn J, Mulvihill E, Cambron-Mellott MJ. Physician preferences of biomarker testing strategies in newly diagnosed stage IV non-small cell lung cancer patients. Future Oncol 2024; 20:3229-3243. [PMID: 39552591 DOI: 10.1080/14796694.2024.2419351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Aim: To understand physicians' attitudes and behaviors regarding EGFR testing and retesting strategies in newly diagnosed metastatic non-small cell lung cancer patients.Materials & methods: Oncologists and pathologists completed an online, cross-sectional survey.Results: Most oncologists (73.3%) and pathologists (53.4%) agreed that concurrent testing increases sensitivity for detecting EGFR mutations. Upon tissue insufficiency, oncologists and pathologists reported using liquid biopsy 77.0% and 39.0% of the time, respectively. Tumor accessibility, smoking status, patient willingness and age were key drivers of tissue re-biopsy. Most oncologists reported high confidence in proceeding to first-line therapy based solely on liquid biopsy (60.7-80.0%); fewer pathologists (37.9%) were comfortable with this decision.Conclusion: Variation in physicians' perceptions of testing and retesting highlights the need for greater stakeholder consensus.
Collapse
Affiliation(s)
- Anne Shah
- AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Jon Apple
- AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Gabriela Burgos
- Oracle Life Sciences, Oracle Corporation, World Headquarters, 2300 Oracle Way, Austin, TX 78741, USA
| | - Josh Lankin
- Oracle Life Sciences, Oracle Corporation, World Headquarters, 2300 Oracle Way, Austin, TX 78741, USA
| | - Jesse Cohn
- Oracle Life Sciences, Oracle Corporation, World Headquarters, 2300 Oracle Way, Austin, TX 78741, USA
| | - Emily Mulvihill
- Oracle Life Sciences, Oracle Corporation, World Headquarters, 2300 Oracle Way, Austin, TX 78741, USA
| | - M Janelle Cambron-Mellott
- Oracle Life Sciences, Oracle Corporation, World Headquarters, 2300 Oracle Way, Austin, TX 78741, USA
| |
Collapse
|
11
|
Tegeler CM, Hartkopf AD, Banys-Paluchowski M, Krawczyk N, Fehm T, Jaeger BAS. Circulating Tumor DNA in Early and Metastatic Breast Cance-Current Role and What Is Coming Next. Cancers (Basel) 2024; 16:3919. [PMID: 39682108 DOI: 10.3390/cancers16233919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 12/18/2024] Open
Abstract
The progress that has been made in recent years in relation to liquid biopsies in general and circulating tumor DNA (ctDNA) in particular can be seen as groundbreaking for the future of breast cancer treatment, monitoring and early detection. Cell-free DNA (cfDNA) consists of circulating DNA fragments released by various cell types into the bloodstream. A portion of this cfDNA, known as ctDNA, originates from malignant cells and carries specific genetic mutations. Analysis of ctDNA provides a minimally invasive method for diagnosis, monitoring response to therapy, and detecting the emergence of resistance. Several methods are available for the analysis of ctDNA, each with distinct advantages and limitations. Quantitative polymerase chain reaction is a well-established technique widely used due to its high sensitivity and specificity, particularly for detecting known mutations. In addition to the detection of individual mutations, multigene analyses were developed that could detect several mutations at once, including rarer mutations. These methods are complementary and can be used strategically depending on the clinical question. In the context of metastatic breast cancer, ctDNA holds particular promise as it allows for the dynamic monitoring of tumor evolution. Through ctDNA analysis, mutations in the ESR1 or PIK3CA genes, which are associated with therapy resistance, can be identified. This enables the early adjustment of treatment and has the potential to significantly enhance clinical outcome. The application of ctDNA in early breast cancer is an ongoing investigation. In (neo)adjuvant settings, there is preliminary data indicating that ctDNA can be used for therapy monitoring and risk stratification to decide on post-neoadjuvant strategies. In the monitoring of aftercare, the detection of ctDNA appears to be several months ahead of routine imaging. However, the feasibility of implementing this approach in a clinical setting remains to be seen. While the use of ctDNA as a screening method for the asymptomatic population would be highly advantageous due to its minimally invasive nature, the available data on its clinical benefit are still insufficient. Nevertheless, ctDNA represents the most promising avenue for fulfilling this potential future need.
Collapse
Affiliation(s)
- Christian Martin Tegeler
- Department of Obstetrics and Gynecology, University Hospital Tübingen, 72076 Tübingen, Germany
- Department of Peptide-Based Immunotherapy, Institute of Immunology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Andreas Daniel Hartkopf
- Department of Obstetrics and Gynecology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Maggie Banys-Paluchowski
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany
| | - Natalia Krawczyk
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, 40225 Duesseldorf, Germany
- Center for Integrated Oncology (CIO) ABCD, 40225 Duesseldorf, Germany
| | - Tanja Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, 40225 Duesseldorf, Germany
- Center for Integrated Oncology (CIO) ABCD, 40225 Duesseldorf, Germany
| | - Bernadette Anna Sophia Jaeger
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, 40225 Duesseldorf, Germany
- Center for Integrated Oncology (CIO) ABCD, 40225 Duesseldorf, Germany
| |
Collapse
|
12
|
Vakkalagadda CV, Dressler DB, Sun Z, Fuchs J, Liu Y, Silberman P, Ragam A, Kircher S, Patel JD, Mohindra NA. The Impact of Next-Generation Sequencing Workflows on Outcomes in Advanced Lung Cancer: A Retrospective Analysis at One Academic Health System. Cancers (Basel) 2024; 16:3654. [PMID: 39518093 PMCID: PMC11545180 DOI: 10.3390/cancers16213654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE Broad-based molecular testing with next-generation sequencing (NGS) is now the standard of care in advanced non-small cell lung cancer (NSCLC). Two approaches to molecular testing are (1) reflexive testing at pathologic NSCLC confirmation, often using an in-house molecular panel, and (2) send-out testing to private vendors, ordered by a clinician. This study explored the outcomes with reflex versus send-out testing. METHODS A retrospective chart review was conducted of patients diagnosed with de novo stage IV NSCLC in 2019 and 2020 at three hospitals in the same system, one academic hospital (Northwestern Memorial Hospital, or NMH) utilizing reflex, in-house NGS, and two community-based hospitals (Central DuPage Hospital, or CDH, and Delnor, or D) sending out tissue samples for testing. The outcomes assessed were the time from biopsy to results, biopsy to treatment, the incidence of first-line targetable mutations and the use of first-line targeted therapies, and overall survival. RESULTS In total, 191 patients met the inclusion criteria, 85 at NMH, 106 at CDH + D, and in total, 131 in 2019 and 60 in 2020. The time to results was significantly shorter with reflexive NGS when compared with send-out testing; the time to treatment was also shorter but not statistically significant. At CDH + D, the time to results was significantly shorter with a limited panel than with comprehensive testing, but the time to treatment was similar. NGS testing rates were 95% at NMH and 84.5% at CDH + D (p = 0.009), with 31.0% at NMH receiving 1L targeted therapies versus 20.8% at CDH + D (p = 0.08). In 2019, the median time from biopsy to treatment was 35 days at NMH and 38 days at CDH and Delnor; in 2020, time to treatment was 26 days and 37 days, respectively. Overall survival trended longer in 2020 relative to 2019 independent of site. CONCLUSION Reflexive NGS testing is associated with a shorter time to actionable results and higher rates of first-line targetable mutations than send-out testing. In practices with send-out testing, limited panels had slightly faster turnaround times but no difference in time to treatment. If resources allow, reflexive NGS should be considered in healthcare systems for patients with NSCLC.
Collapse
Affiliation(s)
- Chetan V. Vakkalagadda
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (N.A.M.)
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Danielle B. Dressler
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (N.A.M.)
- Division of Hematology Oncology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Zequn Sun
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (N.A.M.)
| | - Joseph Fuchs
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (N.A.M.)
| | - Yingzhe Liu
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (N.A.M.)
| | - Philip Silberman
- Enterprise Data Warehouse, Clinical and Translational Sciences Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Avanthi Ragam
- Northwestern Medicine Delnor Hospital, Geneva, IL 60134, USA
| | - Sheetal Kircher
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (N.A.M.)
| | - Jyoti D. Patel
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (N.A.M.)
| | - Nisha A. Mohindra
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (N.A.M.)
| |
Collapse
|
13
|
Abdul Manap AS, Ngwenya FM, Kalai Selvan M, Arni S, Hassan FH, Mohd Rudy AD, Abdul Razak NN. Lung cancer cell-derived exosomes: progress on pivotal role and its application in diagnostic and therapeutic potential. Front Oncol 2024; 14:1459178. [PMID: 39464709 PMCID: PMC11502357 DOI: 10.3389/fonc.2024.1459178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Lung cancer is frequently detected in an advanced stage and has an unfavourable prognosis. Conventional therapies are ineffective for the treatment of metastatic lung cancer. While certain molecular targets have been identified as having a positive response, the absence of appropriate drug carriers prevents their effective utilization. Lung cancer cell-derived exosomes (LCCDEs) have gained attention for their involvement in the development of cancer, as well as their potential for use in diagnosing, treating, and predicting the outcome of lung cancer. This is due to their biological roles and their inherent ability to transport biomolecules from the donor cells. Lung cancer-associated cell-derived extracellular vesicles (LCCDEVs) have the ability to enhance cell proliferation and metastasis, influence angiogenesis, regulate immune responses against tumours during the development of lung cancer, control drug resistance in lung cancer treatment, and are increasingly recognised as a crucial element in liquid biopsy evaluations for the detection of lung cancer. Therapeutic exosomes, which possess inherent intercellular communication capabilities, are increasingly recognised as effective vehicles for targeted drug delivery in precision medicine for tumours. This is due to their exceptional biocompatibility, minimal immunogenicity, low toxicity, prolonged circulation in the bloodstream, biodegradability, and ability to traverse different biological barriers. Currently, multiple studies are being conducted to create new means of diagnosing and predicting outcomes using LCCDEs, as well as to develop techniques for utilizing exosomes as effective carriers for medication delivery. This paper provides an overview of the current state of lung cancer and the wide range of applications of LCCDEs. The encouraging findings and technologies suggest that the utilization of LCCDEs holds promise for the clinical treatment of lung cancer patients.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | | | - Syarafina Arni
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | | | | | | |
Collapse
|
14
|
Breadner D, Hwang DM, Husereau D, Cheema P, Doucette S, Ellis PM, Kassam S, Leighl N, Maziak DE, Selvarajah S, Sheffield BS, Juergens RA. Implementation of Liquid Biopsy in Non-Small-Cell Lung Cancer: An Ontario Perspective. Curr Oncol 2024; 31:6017-6031. [PMID: 39451753 PMCID: PMC11505603 DOI: 10.3390/curroncol31100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths in Canada, with non-small-cell lung cancer (NSCLC) accounting for the majority of cases. Timely access to comprehensive molecular profiling is critical for selecting biomarker-matched targeted therapies, which lead to improved outcomes in advanced NSCLC. Tissue biopsy samples are the gold standard for molecular profiling; however, several challenges can prevent timely and complete molecular profiling from being performed, causing delays in treatment or suboptimal therapy selection. Liquid biopsy offers a minimally invasive method for molecular profiling by analyzing circulating tumour DNA (ctDNA) and RNA (cfRNA) in plasma, potentially overcoming these barriers. This paper discusses the outcomes of a multidisciplinary working group in Ontario, which proposed three eligibility criteria for liquid biopsy reimbursement: (1) insufficient tissue for complete testing or failed tissue biomarker testing; (2) suspected advanced NSCLC where tissue biopsy is not feasible; and (3) high-risk patients who may deteriorate before tissue results are available. The group also addressed considerations for assay selection, implementation, and economic impact. These discussions aim to inform reimbursement and implementation strategies for liquid biopsy in Ontario's public healthcare system, recognizing the need for ongoing evaluation as technology and evidence evolve.
Collapse
Affiliation(s)
- Daniel Breadner
- Verspeeten Family Cancer Centre, London Health Sciences Center, London, ON N6A 5W9, Canada
| | - David M. Hwang
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Don Husereau
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Parneet Cheema
- Division of Medical Oncology, William Osler Health System, Brampton, ON L6R 3J7, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Peter M. Ellis
- Division of Medical Oncology, Juravinski Cancer Centre, Hamilton, ON L8V 5C2, Canada (R.A.J.)
- Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Shaqil Kassam
- Southlake Stronach Regional Cancer Centre, Newmarket, ON L3Y 2P9, Canada
| | - Natasha Leighl
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Donna E. Maziak
- Department of Thoracic Surgery, The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
| | - Shamini Selvarajah
- Laboratory Medicine Program, Division of Genome Diagnostics, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Brandon S. Sheffield
- Division of Advanced Diagnostics, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Rosalyn A. Juergens
- Division of Medical Oncology, Juravinski Cancer Centre, Hamilton, ON L8V 5C2, Canada (R.A.J.)
- Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
15
|
Ospina AV. Overview of the Role of Liquid Biopsy in Non-small Cell Lung Cancer (NSCLC). Clin Oncol (R Coll Radiol) 2024; 36:e371-e380. [PMID: 39048406 DOI: 10.1016/j.clon.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Solid tumour tissue has traditionally been used for cancer molecular diagnostics. Recently, biomarker assessment in blood or liquid biopsies has become relevant because it allows genotyping in a less invasive and costly manner. In addition, it is a very useful technique in cases with insufficient tumour samples. Recent data have shown that this method can provide the baseline molecular characteristics of the tumour and resistance changes that emerge during cancer treatment. In terms of diagnostic application, the platforms available for clinical use in lung cancer focus on the isolation and detection of circulating DNA (ctDNA) and generally cover a limited number of mutations in genes such as epidermal growth factor receptor (EGFR), Kirsten rat sarcoma viral oncogene homolog (KRAS) and BRAF, as well as anaplastic lymphoma kinase (ALK) rearrangements. In parallel, there are plasma genotyping platforms based on next-generation sequencing (NGS) techniques, which are much broader in scope, allowing multiple genes to be studied simultaneously in a more efficient manner. More recently, promising research scenarios for liquid biopsy have emerged, such as its utility for early diagnosis and evaluation of minimal residual disease after oncological treatment. In light of these advances, knowledge of the benefits and limitations of liquid biopsy, as well as awareness of emerging information on new indications for this technique in non-small cell lung cancer (NSCLC), are of paramount importance in developing more effective management strategies for patients with this neoplasm.
Collapse
Affiliation(s)
- A V Ospina
- Instituto Investigación Sanitaria Puerta de Hierro - Segovia de Arana (IDIPHISA), Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, C/Manuel de Falla, 1 Majadahonda, Madrid, 28222, Spain.
| |
Collapse
|
16
|
Batista IA, Machado JC, Melo SA. Advances in exosomes utilization for clinical applications in cancer. Trends Cancer 2024; 10:947-968. [PMID: 39168775 DOI: 10.1016/j.trecan.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Exosomes are regarded as having transformative potential for clinical applications. Exosome-based liquid biopsies offer a noninvasive method for early cancer detection and real-time disease monitoring. Clinical trials are underway to validate the efficacy of exosomal biomarkers for enhancing diagnostic accuracy and predicting treatment responses. Additionally, engineered exosomes are being developed as targeted drug delivery systems that can navigate the bloodstream to deliver therapeutic agents to tumor sites, thus enhancing treatment efficacy while minimizing systemic toxicity. Exosomes also exhibit immunomodulatory properties, which are being harnessed to boost antitumor immune responses. In this review, we detail the latest advances in clinical trials and research studies, underscoring the potential of exosomes to revolutionize cancer care.
Collapse
Affiliation(s)
- Inês A Batista
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José C Machado
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; P.CCC Porto Comprehensive Cancer Centre, Raquel Seruca, Portugal
| | - Sonia A Melo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; P.CCC Porto Comprehensive Cancer Centre, Raquel Seruca, Portugal.
| |
Collapse
|
17
|
Hofman P. Liquid and Tissue Biopsies for Lung Cancer: Algorithms and Perspectives. Cancers (Basel) 2024; 16:3340. [PMID: 39409960 PMCID: PMC11482622 DOI: 10.3390/cancers16193340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
The targeted therapies and immunotherapies in thoracic oncology, particularly for NS-NSCLC, are associated with an increase in the number of predictive biomarkers to be assessed in routine clinical practice. These treatments are administered thanks to marketing authorization for use in daily practice or are evaluated during clinical trials. Since the molecular targets to be identified are more and more complex and numerous, it is now mandatory to use NGS. NGS can be developed from both tissue and fluid (mainly blood). The blood tests in oncology, so-called "liquid biopsies" (LB), are performed with plasmatic circulating free DNA (cf-DNA) and are complementary to the molecular testing performed with a TB. LB use in lung cancer is associated with international guidelines, but additional algorithms could be set up. However, even if useful for better care of patients, notably with advanced and metastatic NS-NSCLC, until now LB are not often integrated into daily practice, at least in Europe and notably in France. The purpose of this review is to describe the different opportunities and algorithms leading to the identification of the molecular signature of NS-NSCLC, using both tissue and liquid biopsies, and to introduce the principle limitations but also some perspectives in this field.
Collapse
Affiliation(s)
- Paul Hofman
- IHU RespirERA, Côte d’Azur University, 30 Avenue de la Voie Romaine, 06002 Nice Cedex 01, France;
- Laboratoire de Pathologie Clinique et Experimentale, Centre Hospitalier Universitaire de Nice, Hospital-Related Biobank (BB-0033-00025), Côte d’Azur University, 30 Avenue de la Voie Romaine, 06002 Nice Cedex 01, France
- FHU OncoAge, Pasteur Hospital, Côte d’Azur University, 30 Avenue de la Voie Romaine, 06002 Nice Cedex 01, France
| |
Collapse
|
18
|
Nguyen NP, Page BR, Giap H, Dahbi Z, Vinh-Hung V, Gorobets O, Mohammadianpanah M, Motta M, Portaluri M, Arenas M, Bonet M, Lara PC, Kim L, Dutheil F, Natoli E, Loganadane G, Lehrman D, Bose S, Kaur S, Blanco SC, Chi A. Immunotherapy and Radiotherapy for Older Patients with Locally Advanced Non-Metastatic Non-Small-Cell Lung Cancer Who Are Not Candidates for or Decline Surgery and Chemotherapy: A Practical Proposal by the International Geriatric Radiotherapy Group. Cancers (Basel) 2024; 16:3112. [PMID: 39272970 PMCID: PMC11394154 DOI: 10.3390/cancers16173112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
The standard of care for locally advanced non-small-cell lung cancer (NSCLC) is either surgery combined with chemotherapy pre- or postoperatively or concurrent chemotherapy and radiotherapy. However, older and frail patients may not be candidates for surgery and chemotherapy due to the high mortality risk and are frequently referred to radiotherapy alone, which is better tolerated but carries a high risk of disease recurrence. Recently, immunotherapy with immune checkpoint inhibitors (ICIs) may induce a high response rate among cancer patients with positive programmed death ligand 1 (PD-L1) expression. Immunotherapy is also well tolerated among older patients. Laboratory and clinical studies have reported synergy between radiotherapy and ICI. The combination of ICI and radiotherapy may improve local control and survival for NSCLC patients who are not candidates for surgery and chemotherapy or decline these two modalities. The International Geriatric Radiotherapy Group proposes a protocol combining radiotherapy and immunotherapy based on the presence or absence of PD-L1 to optimize the survival of those patients.
Collapse
Affiliation(s)
- Nam P Nguyen
- Department of Radiation Oncology, Howard University, Washington, DC 20059, USA
| | - Brandi R Page
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Huan Giap
- Radiation Oncology Proton Therapy, OSF HeathCare Cancer Institute, University of Illinois, Peoria, IL 61603, USA
| | - Zineb Dahbi
- Department of Radiation Oncology, Mohammed VI University of Health Sciences, Casablanca 82403, Morocco
| | - Vincent Vinh-Hung
- Department of Radiation Oncology, Centre Hospitalier Public du Cotentin, 50100 Cherbourg-en-Cotentin, France
| | - Olena Gorobets
- Department of Oral Surgery, Cancer Tech Care Association, Perpignan 66000, France
| | - Mohammad Mohammadianpanah
- Colorectal Research Center, Department of Radiation Oncology, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Micaela Motta
- Department of Radiation Oncology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Maurizio Portaluri
- Department of Radiation Oncology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Meritxell Arenas
- Department of Radiation Oncology, Sant Joan de Reus University Hospital, University of Rovira I Virgili, 43007 Tarragona, Spain
| | - Marta Bonet
- Department of Radiation Oncology, Arnau de Vilanova University Hospital, 25198 Lleida, Spain
| | - Pedro Carlos Lara
- Department of Radiation Oncology, Fernando Pessoria Canarias Las Palmas University, 35002 Las Palmas, Spain
| | - Lyndon Kim
- Division of Neuro-Oncology, Mount Sinai Hospital, New York, NY 10029, USA
| | - Fabien Dutheil
- Department of Radiation Oncology, Clinique Sainte Clotilde, 97400 Saint Denis, France
| | - Elena Natoli
- Department of Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Radiation Oncology, Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studorium, Bologna University, 40126 Bologna, Italy
| | | | - David Lehrman
- Department of Radiation Oncology, International Geriatric Radiotherapy Group, Washington, DC 20001, USA
| | - Satya Bose
- Department of Radiation Oncology, Howard University, Washington, DC 20059, USA
| | - Sarabjot Kaur
- Department of Radiation Oncology, Howard University, Washington, DC 20059, USA
| | - Sergio Calleja Blanco
- Department of Oral Maxillofacial Surgery, Howard University, Washington, DC 20059, USA
| | - Alexander Chi
- Department of Radiation Oncology, Capital University Xuanwu Hospital, Beijing 100053, China
| |
Collapse
|
19
|
Lu D, Shangguan Z, Su Z, Lin C, Huang Z, Xie H. Artificial intelligence-based plasma exosome label-free SERS profiling strategy for early lung cancer detection. Anal Bioanal Chem 2024; 416:5089-5096. [PMID: 39017700 DOI: 10.1007/s00216-024-05445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
As a lung cancer biomarker, exosomes were utilized for in vitro diagnosis to overcome the lack of sensitivity of conventional imaging and the potential harm caused by tissue biopsy. However, given the inherent heterogeneity of exosomes, the challenge of accurately and reliably recognizing subtle differences in the composition of exosomes from clinical samples remains significant. Herein, we report an artificial intelligence-assisted surface-enhanced Raman spectroscopy (SERS) strategy for label-free profiling of plasma exosomes for accurate diagnosis of early-stage lung cancer. Specifically, we build a deep learning model using exosome spectral data from lung cancer cell lines and normal cell lines. Then, we extracted the features of cellular exosomes by training a convolutional neural network (CNN) model on the spectral data of cellular exosomes and used them as inputs to a support vector machine (SVM) model. Eventually, the spectral features of plasma exosomes were combined to effectively distinguish adenocarcinoma in situ (AIS) from healthy controls (HC). Notably, the approach demonstrated significant performance in distinguishing AIS from HC samples, with an area under the curve (AUC) of 0.84, sensitivity of 83.3%, and specificity of 83.3%. Together, the results demonstrate the utility of exosomes as a biomarker for the early diagnosis of lung cancer and provide a new approach to prescreening techniques for lung cancer.
Collapse
Affiliation(s)
- Dechan Lu
- School of Mechanical, Electrical & Information Engineering, PuTian University, PuTian, Fujian, 351100, China
| | - Zhikun Shangguan
- School of Mechanical, Electrical & Information Engineering, PuTian University, PuTian, Fujian, 351100, China
| | - Zhehao Su
- School of Mechanical, Electrical & Information Engineering, PuTian University, PuTian, Fujian, 351100, China
| | - Chuan Lin
- School of Mechanical, Electrical & Information Engineering, PuTian University, PuTian, Fujian, 351100, China.
| | - Zufang Huang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350117, China.
| | - Haihe Xie
- School of Mechanical, Electrical & Information Engineering, PuTian University, PuTian, Fujian, 351100, China.
| |
Collapse
|
20
|
Parisi F, De Luca G, Mosconi M, Lastraioli S, Dellepiane C, Rossi G, Puglisi S, Bennicelli E, Barletta G, Zullo L, Santamaria S, Mora M, Ballestrero A, Montecucco F, Bellodi A, Del Mastro L, Lambertini M, Barisione E, Cittadini G, Tagliabue E, Spagnolo F, Tagliamento M, Coco S, Dono M, Genova C. Front-line liquid biopsy for early molecular assessment and treatment of hospitalized lung cancer patients. Cancer Treat Res Commun 2024; 41:100839. [PMID: 39217684 DOI: 10.1016/j.ctarc.2024.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Molecular characterization is pivotal for managing non-small cell lung cancer (NSCLC), although this process is often time-consuming and patients' conditions might worsen while molecular analyses are processed. Our primary aim was to evaluate the performance of "up-front" next-generation sequencing (NGS) through liquid biopsy (LB) of hospitalized patients with newly detected lung neoplasm in parallel with conventional diagnosis. The secondary aim included longitudinal monitoring through LB of patients with oncogenic alterations at baseline. METHODS We enrolled 47 consecutive patients immediately after hospitalization and radiological detection of symptomatic lung neoplasm. LB from peripheral blood was performed at baseline, in parallel with conventional biopsy (CB), when feasible. Additionally, LBs were repeated during treatment in patients with actionable gene alterations at baseline. Oncomine™ Lung cfTNA Research Assay panel was employed for processing plasma samples in NGS. RESULTS 47 hospitalized patients were enrolled. LB identified 28 patients with gene alterations, including mutations of EGFR (n = 7), KRAS (n = 12), ERBB2 (n = 1), TP53 (n = 2), BRAF (n = 1), one ALK rearrangement, and 4 patients with combined mutations involving EGFR, KRAS and PIK3CA. LB and CB were consistent, except for two patients. Three patients with positive LB for oncogenic drivers did not undergo CB due to contraindications. Median time to molecular results after LB was significantly lower compared to time to molecular report after CB (11 versus 22 days, p < 0.001). CONCLUSIONS Despite limited numbers, our study supports the role of front-line LB for improving management of symptomatic patients with lung cancer, potentially leading to early targeted therapy initiation.
Collapse
Affiliation(s)
- Francesca Parisi
- Medical Oncology 2 Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giuseppa De Luca
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Manuela Mosconi
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Sonia Lastraioli
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Dellepiane
- Medical Oncology 2 Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giovanni Rossi
- Medical Oncology 2 Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Puglisi
- Medical Oncology 2 Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elisa Bennicelli
- Medical Oncology 2 Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giulia Barletta
- Medical Oncology 2 Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lodovica Zullo
- Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Sara Santamaria
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Mora
- Pathological Anatomy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alberto Ballestrero
- Department of Internal Medicine and Medical Specialties, University of Genoa, Italy; Academic Internal Medicine with Oncology Focus Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine and Medical Specialties, University of Genoa, Italy
| | - Andrea Bellodi
- Academic Internal Medicine with Oncology Focus Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucia Del Mastro
- Department of Internal Medicine and Medical Specialties, University of Genoa, Italy; Academic Oncology Unit; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties, University of Genoa, Italy; Academic Oncology Unit; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuela Barisione
- Interventional Pulmonology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giuseppe Cittadini
- Oncologic and Interventional Radiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elena Tagliabue
- Interventional Pulmonology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Spagnolo
- Medical Oncology 2 Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genoa, Italy
| | - Marco Tagliamento
- Department of Internal Medicine and Medical Specialties, University of Genoa, Italy; Academic Oncology Unit; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mariella Dono
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Carlo Genova
- Department of Internal Medicine and Medical Specialties, University of Genoa, Italy; Academic Oncology Unit; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
21
|
Rathor A, Malik PS, Tanwar P, Khurana S, Baskarane H, Pushpam D, Nambirajan A, Jain D. 'Plasma first' approach for detecting epidermal growth factor receptor mutation in advanced non-small cell lung carcinoma. J Cancer Res Clin Oncol 2024; 150:371. [PMID: 39066920 PMCID: PMC11283418 DOI: 10.1007/s00432-024-05828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/31/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION The treatment approach for recently diagnosed advanced non-small cell lung cancer (NSCLC) with EGFR mutations primarily relies on confirming the tissue diagnosis as non-squamous NSCLC. This routine clinical practice of tissue diagnosis imposes several barriers and delays in turnaround time (TAT) for biomarker testing, significantly delaying the time to treatment. The objective of this study is to investigate the 'plasma first' approach for detection of EGFR mutation in advanced stage treatment naïve NSCLC patients. METHODS We prospectively collected blood samples of treatment naïve patients with clinical and radiological suspicion of advanced stage NSCLC prior to obtaining tissue biopsy. Plasma cfDNA was tested for EGFR mutation using two different methods. We compared the sensitivity and TAT of liquid biopsy with tissue biopsy. RESULTS In total, we analyzed plasma cell-free DNA (cfDNA) of 236 patients suspected of having advanced NSCLC for EGFR mutations. We observed a notably shorter turnaround time (TAT) of 3 days, which was significantly quicker compared to the 12-day TAT for tissue biopsy (p < 0.05). The ddPCR method had a sensitivity of 82.8%, which was higher than 66.34% sensitivity of ARMS-PCR. The current study also highlights that there is no significant difference in the clinical outcome of the patients whether treated based on liquid biopsy only or tissue biopsy (median progression-free survival of 11.56 vs. 11.9 months; p = 0.94). CONCLUSIONS Utilizing a 'plasma first' strategy, given its shorter turnaround time, strong positive concordance and comparable outcomes to tissue biopsy, emerges as a highly specific and reliable method for detecting EGFR mutations in advanced-stage NSCLC.
Collapse
Affiliation(s)
- Amber Rathor
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, Dr.B.R.A.IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Pranay Tanwar
- Department of Laboratory Oncology, Dr.B.R.A.IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Sachin Khurana
- Department of Medical Oncology, Dr.B.R.A.IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Hemavathi Baskarane
- Department of Medical Oncology, Dr.B.R.A.IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Deepam Pushpam
- Department of Medical Oncology, Dr.B.R.A.IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Aruna Nambirajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
22
|
Turabi K, Klute K, Radhakrishnan P. Decoding the Dynamics of Circulating Tumor DNA in Liquid Biopsies. Cancers (Basel) 2024; 16:2432. [PMID: 39001494 PMCID: PMC11240538 DOI: 10.3390/cancers16132432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Circulating tumor DNA (ctDNA), a fragment of tumor DNA found in the bloodstream, has emerged as a revolutionary tool in cancer management. This review delves into the biology of ctDNA, examining release mechanisms, including necrosis, apoptosis, and active secretion, all of which offer information about the state and nature of the tumor. Comprehensive DNA profiling has been enabled by methods such as whole genome sequencing and methylation analysis. The low abundance of the ctDNA fraction makes alternative techniques, such as digital PCR and targeted next-generation exome sequencing, more valuable and accurate for mutation profiling and detection. There are numerous clinical applications for ctDNA analysis, including non-invasive liquid biopsies for minimal residual disease monitoring to detect cancer recurrence, personalized medicine by mutation profiling for targeted therapy identification, early cancer detection, and real-time evaluation of therapeutic response. Integrating ctDNA analysis into routine clinical practice creates promising avenues for successful and personalized cancer care, from diagnosis to treatment and follow-up.
Collapse
Affiliation(s)
- Khadija Turabi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kelsey Klute
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
23
|
Wiedower JA, Forbes SP, Tsai LJ, Liao J, Raez LE. Real-world clinical and economic outcomes for patients with advanced non-small cell lung cancer enrolled in a clinical trial following comprehensive genomic profiling via liquid biopsy. J Manag Care Spec Pharm 2024; 30:660-671. [PMID: 38950156 PMCID: PMC11220364 DOI: 10.18553/jmcp.2024.30.7.660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
BACKGROUND Oncology clinical trial enrollment is strongly recommended for patients with cancer who are not eligible for established and approved therapies. Many trials are specific to biomarker-targeted therapies, which are typically managed as specialty pharmacy services. Comprehensive genomic profiling (CGP) of advanced cancers has been shown to detect biomarkers, guide targeted treatment, improve outcomes, and result in the clinical trial enrollment of patients, which is modeled to offset pharmacy costs experienced by US payers, yet payer policy coverage remains inconsistent. A common concern limiting coverage of CGP by payers is the potential of identifying biomarkers beyond guideline-recommended treatments, which creates a perception that insurance companies are being positioned to "pay for research." However, these biomarkers can increase clinical trial eligibility, and specialty pharmacy management may have an interest in maximizing the clinical trial enrollment of members. OBJECTIVE To investigate if clinical trial enrollment following liquid biopsy CGP for non-small cell lung cancer (NSCLC) is clinically and/or economically impactful from a payer claims perspective. METHODS Clinical and economic outcomes were studied using a real-world clinical genomic database (including payer claims data) from patients with NSCLC who enrolled in clinical trials immediately following liquid biopsy CGP (using Guardant360) and matched NSCLC patient controls also tested with liquid biopsy CGP. RESULTS Real-world overall survival was significantly (log-rank P < 0.0001) better for patients enrolled in clinical trials with similar costs of care, albeit with more outpatient encounters among those enrolled compared with matched controls. CONCLUSIONS The results, together with previous analyses, suggest that, in addition to the clinical benefits associated with targeted therapies directed by CGP and other testing approaches, payers and specialty pharmacy managers may consider clinical trial direction and enrollment as a clinical and economic benefit of liquid biopsy CGP and adopt this into coverage decision frameworks and formularies.
Collapse
Affiliation(s)
- Julie A. Wiedower
- Department of Nursing, Clemson University, SC
- Guardant Health, Redwood City, CA
| | | | | | | | - Luis E. Raez
- Thoracic Oncology Program, Memorial Cancer Institute/Memorial Healthcare System, Florida Atlantic University, Pembroke Pines
| |
Collapse
|
24
|
Peters S, Gadgeel SM, Mok T, Nadal E, Kilickap S, Swalduz A, Cadranel J, Sugawara S, Chiu CH, Yu CJ, Moskovitz M, Tanaka T, Nersesian R, Shagan SM, Maclennan M, Mathisen M, Bhagawati-Prasad V, Diarra C, Assaf ZJ, Archer V, Dziadziuszko R. Entrectinib in ROS1-positive advanced non-small cell lung cancer: the phase 2/3 BFAST trial. Nat Med 2024; 30:1923-1932. [PMID: 38898120 PMCID: PMC11271410 DOI: 10.1038/s41591-024-03008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/18/2024] [Indexed: 06/21/2024]
Abstract
Although comprehensive biomarker testing is recommended for all patients with advanced/metastatic non-small cell lung cancer (NSCLC) before initiation of first-line treatment, tissue availability can limit testing. Genomic testing in liquid biopsies can be utilized to overcome the inherent limitations of tissue sampling and identify the most appropriate biomarker-informed treatment option for patients. The Blood First Assay Screening Trial is a global, open-label, multicohort trial that evaluates the efficacy and safety of multiple therapies in patients with advanced/metastatic NSCLC and targetable alterations identified by liquid biopsy. We present data from Cohort D (ROS1-positive). Patients ≥18 years of age with stage IIIB/IV, ROS1-positive NSCLC detected by liquid biopsies received entrectinib 600 mg daily. At data cutoff (November 2021), 55 patients were enrolled and 54 had measurable disease. Cohort D met its primary endpoint: the confirmed objective response rate (ORR) by investigator was 81.5%, which was consistent with the ORR from the integrated analysis of entrectinib (investigator-assessed ORR, 73.4%; data cutoff May 2019, ≥12 months of follow-up). The safety profile of entrectinib was consistent with previous reports. These results demonstrate consistency with those from the integrated analysis of entrectinib in patients with ROS1-positive NSCLC identified by tissue-based testing, and support the clinical value of liquid biopsies to inform clinical decision-making. The integration of liquid biopsies into clinical practice provides patients with a less invasive diagnostic method than tissue-based testing and has faster turnaround times that may expedite the reaching of clinical decisions in the advanced/metastatic NSCLC setting. ClinicalTrials.gov registration: NCT03178552 .
Collapse
Affiliation(s)
- Solange Peters
- Lausanne University Hospital, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| | - Shirish M Gadgeel
- Henry Ford Cancer Institute/Henry Ford Health System, Detroit, MI, USA
| | - Tony Mok
- State Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR
| | - Ernest Nadal
- Thoracic Oncology Unit, Department of Medical Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Saadettin Kilickap
- Department of Medical Oncology, Instinye University Faculty of Medicine, Istanbul, Turkey
| | - Aurélie Swalduz
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Jacques Cadranel
- Department of Pneumology and Thoracic Oncology, APHP, Hôpital Tenon and GRC04 Theranoscan Sorbonne Université, Paris, France
| | - Shunichi Sugawara
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Sendai, Japan
| | - Chao-Hua Chiu
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Taipei Cancer Center and Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Mor Moskovitz
- Thoracic Cancer Service, Davidoff Cancer Center, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | | | | | | | | | | | | | | | | | | | - Rafal Dziadziuszko
- Department of Oncology and Radiotherapy and Early Clinical Trials Unit, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
25
|
Desai A, Pasquina LW, Nulsen C, Keller-Evans RB, Mata DA, Tukachinsky H, Oxnard GR. Putting comprehensive genomic profiling of ctDNA to work: 10 proposed use cases. THE JOURNAL OF LIQUID BIOPSY 2024; 4:100140. [PMID: 40027147 PMCID: PMC11863816 DOI: 10.1016/j.jlb.2024.100140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 03/05/2025]
Abstract
Liquid biopsy profiling of circulating tumor DNA (ctDNA) has become established as a compelling, pragmatic diagnostic in the care of cancer patients and is now endorsed by multiple cancer care guidelines. Moreover, ctDNA profiling technologies have advanced significantly and offer increasingly comprehensive and reliable insights into cancer. In this review, we focus on applications of ctDNA and propose that a critical untapped opportunity is in considering how we utilize these accessible, scalable technologies across diverse potential applications. With a specific focus on clinical applications, rather than research uses, we describe 10 use cases for ctDNA profiling across four categories: (1) established and (2) emerging applications of ctDNA profiling for therapy selection, (3) incidental detection of secondary genomic findings, and (4) quantification of plasma DNA tumor content.
Collapse
Affiliation(s)
- Aakash Desai
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, AL, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Verzè M, Boscolo Bragadin A, Minari R, Pasello G, Perrone F, Scattolin D, Bordi P, Pluchino M, Leonetti A, Mazzaschi G, Bonatti F, Gnetti L, Bottarelli L, Zulato E, Nardo G, Dalle Fratte C, Padovan A, Bonanno L, Tiseo M, Indraccolo S. NGS detection of gene rearrangements and METexon14 mutations in liquid biopsy of advanced NSCLC patients: A study of two Italian centers. THE JOURNAL OF LIQUID BIOPSY 2024; 4:100143. [PMID: 40027148 PMCID: PMC11863814 DOI: 10.1016/j.jlb.2024.100143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/05/2025]
Abstract
Introduction ctDNA is a useful tool for NGS molecular profiling in advanced NSCLC patients. Its clinical applicability in patients with gene rearrangements is still limited due to a lower detection rate of these types of alterations compared to single SNVs or small indels. To this purpose, we performed a study in two Italian centers to assess the concordance between tissue and plasma samples in the detection of genes fusions (ALK, ROS, RET) and METexon14 mutations in advanced NSCLC patients. Methods Patients with a histological diagnosis of oncogene addicted (ALK, ROS1, RET positive or METexon14 mutated) advanced NSCLC were enrolled at the time of first line of TKI treatment. Plasma samples were harvested before the start of TKI treatment and NGS analysis on ctDNA samples using the AVENIO ctDNA Expanded kit was performed. The Positive Percent Agreement (PPA) between tissue and plasma was calculated. Results Fifty-eight rearranged or METexon14 mutated NSCLC patients were included and 57 ctDNA samples were successfully sequenced. An overall PPA of 37% (21/57) was obtained, with a best performance for RET fusion (80%), intermediate for METexon14 skipping mutations (40%) and ALK rearranged (36%) and a worst one for ROS1 rearranged samples (18%). We found TP53, APC and SMAD4 as most prevalent co-mutated genes (21%, 12% and 10% of patients, respectively). Among different factors considered, increased driver detection rate in patients with extra-thoracic metastases (p = 0.0049) was observed. Significantly shorter survival was observed in patients harboring co-occurring KRAS/NRAS mutations in ctDNA. Conclusions ctDNA testing to detect oncogenic fusions or METexon14 mutations in advanced NSCLC patients is useful, even if type of gene alterations and clinical characteristics could influence the driver detection rate. Liquid biopsy represents a complementary tool to tissue genotyping, however more sensitive approaches for gene fusions and METexon14 detection are needed to implement its strength and reliability.
Collapse
Affiliation(s)
- Michela Verzè
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Boscolo Bragadin
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Giulia Pasello
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Fabiana Perrone
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Daniela Scattolin
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Paola Bordi
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Monica Pluchino
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Giulia Mazzaschi
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Bonatti
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Letizia Gnetti
- Pathology Unit, University Hospital of Parma, Parma, Italy
| | - Lorena Bottarelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elisabetta Zulato
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Giorgia Nardo
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Chiara Dalle Fratte
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Alessia Padovan
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Laura Bonanno
- Medical Oncology 2, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Indraccolo
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| |
Collapse
|
27
|
Mondal D, Shinde S, Sinha V, Dixit V, Paul S, Gupta RK, Thakur S, Vishvakarma NK, Shukla D. Prospects of liquid biopsy in the prognosis and clinical management of gastrointestinal cancers. Front Mol Biosci 2024; 11:1385238. [PMID: 38770216 PMCID: PMC11103528 DOI: 10.3389/fmolb.2024.1385238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Gastrointestinal (GI) cancers account for one-fourth of the global cancer incidence and are incriminated to cause one-third of cancer-related deaths. GI cancer includes esophageal, gastric, liver, pancreatic, and colorectal cancers, mostly diagnosed at advanced stages due to a lack of accurate markers for early stages. The invasiveness of diagnostic methods like colonoscopy for solid biopsy reduces patient compliance as it cannot be frequently used to screen patients. Therefore, minimally invasive approaches like liquid biopsy may be explored for screening and early identification of gastrointestinal cancers. Liquid biopsy involves the qualitative and quantitative determination of certain cancer-specific biomarkers in body fluids such as blood, serum, saliva, and urine to predict disease progression, therapeutic tolerance, toxicities, and recurrence by evaluating minimal residual disease and its correlation with other clinical features. In this review, we deliberate upon various tumor-specific cellular and molecular entities such as circulating tumor cells (CTCs), tumor-educated platelets (TEPs), circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), exosomes, and exosome-derived biomolecules and cite recent advances pertaining to their use in predicting disease progression, therapy response, or risk of relapse. We also discuss the technical challenges associated with translating liquid biopsy into clinical settings for various clinical applications in gastrointestinal cancers.
Collapse
Affiliation(s)
- Deepankar Mondal
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Sapnita Shinde
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Vibha Sinha
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Vineeta Dixit
- Department of Botany, Sri Sadguru Jagjit Singh Namdhari College, Garhwa, Jharkhand, India
| | - Souvik Paul
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Rakesh Kumar Gupta
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | | | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| |
Collapse
|
28
|
Kunimasa K, Tamiya M, Inoue T, Kawamura T, Miyazaki A, Kojitani Y, Honma K, Nishino K. Clinical application of the Lung Cancer Compact Panel TM using various types of cytological specimens in patients with lung cancer. Lung Cancer 2024; 189:107498. [PMID: 38324922 DOI: 10.1016/j.lungcan.2024.107498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND The Lung Cancer Compact PanelTM (compact panel) is a gene panel that can detect driver alterations with high sensitivity in liquid samples, including tumor cells. This study examined the ability of a compact panel to detect genetic mutations in liquid specimens used in clinical practice. METHODS Three cohorts, bronchoscopic biopsy forceps washing (washing cohort), pleural effusion (pleural cohort), and spinal fluid (spinal cohort), were analyzed using the compact panel. Liquid samples were added into the GM (Genemetrics) tubes and analyzed. The washing cohort assessed the concordance rate of gene panel analysis outcomes in tissue specimens derived from the primary tumor. Meanwhile, the pleural cohort investigated the impact of storing specimens for 8 weeks and more on nucleic acid and mutation detection rates. RESULTS In the washing cohort (n = 79), the concordance rate with mutations detected in tissues was 75/79 (94.9 %). This rate reached 100 % when focusing solely on driver alterations for treatment. The pleural cohort (n = 8) showed no deterioration in nucleic acid quality or quantity after 8 weeks of storage in GM tubes. Similarly, in the spinal cohort (n = 9), spinal fluid with malignant cells exhibited driver alterations similar to those in the primary tumor. These findings underscore the efficacy of the compact panel in accurately identifying genetic mutations in different liquid specimens. CONCLUSIONS The compact panel is a reliable tool for detecting driver alterations in various cytological specimens. Its consistent performance across diverse sample types emphasizes its potential for guiding targeted therapies for patients with lung cancer and enhancing precision medicine approaches.
Collapse
Affiliation(s)
- Kei Kunimasa
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan.
| | - Motohiro Tamiya
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Takako Inoue
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Takahisa Kawamura
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Akito Miyazaki
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yoshiki Kojitani
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Keiichiro Honma
- Department of Diagnostic Pathology & Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Kazumi Nishino
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
29
|
Desai A, Vázquez TA, Arce KM, Corassa M, Mack PC, Gray JE, Pellini B. ctDNA for the Evaluation and Management of EGFR-Mutant Non-Small Cell Lung Cancer. Cancers (Basel) 2024; 16:940. [PMID: 38473302 DOI: 10.3390/cancers16050940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Circulating tumor DNA (ctDNA) offers a new paradigm in optimizing treatment strategies for epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC). Its potential spans early-stage disease, influencing adjuvant therapy, to advanced disease, where it aids in identifying genomic markers and resistance mechanisms. This review explores the evolving landscape of utilizing liquid biopsies, specifically circulating tumor DNA (ctDNA), in the management of NSCLC with EGFR mutations. While tissue-based genomic testing remains the cornerstone for clinical decision-making, liquid biopsies offer a well-validated, guideline-recommended alternative approach. Ongoing trials integrating ctDNA for EGFR-mutant NSCLC management are also discussed, shedding light on the potential of ctDNA in early-stage disease, including its applications in prognostication, risk stratification, and minimal residual disease detection post-curative intent treatment. For advanced disease, the role of ctDNA in identifying resistance mechanisms to EGFR tyrosine kinase inhibitors (TKIs) is explored, providing insights into disease progression and guiding treatment decisions. This review also addresses the challenges, including the limitations in sensitivity of current assays for disease recurrence detection, and calls for future studies to refine treatment approaches, standardize reporting, and explore alternative biofluids for enhanced sensitivity. A systematic approach is crucial to address barriers to ctDNA deployment, ensuring equitable access, and facilitating its integration into routine clinical practice.
Collapse
Affiliation(s)
- Aakash Desai
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tadana A Vázquez
- School of Medicine, Ponce Health Sciences University, Ponce, PR 00716, USA
| | - Keishla M Arce
- School of Medicine, Ponce Health Sciences University, Ponce, PR 00716, USA
| | - Marcelo Corassa
- Thoracic Oncology Unit, BP-A Beneficência Portuguesa de São Paulo, São Paulo 01323-001, Brazil
| | - Philip C Mack
- Center for Thoracic Oncology, The Tisch Cancer Institute, Mount Sinai Health System, New York, NY 10029, USA
| | - Jhanelle E Gray
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Bruna Pellini
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| |
Collapse
|
30
|
Pepe F, Venetis K, Cursano G, Frascarelli C, Pisapia P, Vacirca D, Scimone C, Rappa A, Russo G, Mane E, Pagni F, Castellano I, Troncone G, Angelis CD, Curigliano G, Guerini-Rocco E, Malapelle U, Fusco N. PIK3CA testing in hormone receptor-positive/HER2-negative metastatic breast cancer: real-world data from Italian molecular pathology laboratories. Pharmacogenomics 2024; 25:161-169. [PMID: 38440825 DOI: 10.2217/pgs-2023-0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Introduction: PIK3CA gene mutations occur in approximately 40% of hormone receptor-positive/HER2-negative (HR+/HER2-) metastatic breast cancers (MBCs), electing them to targeted therapy. Testing PIK3CA status is complex due to selection of biological specimen and testing method. Materials & methods: This work investigates real-life experience on PIK3CA testing in HR+/HER2- MBC. Clinical, technical and molecular data on PIK3CA testing were collected from two referral laboratories. Additionally, the results of a nationwide PIK3CA survey involving 116 institutions were assessed. Results: Overall, n = 35 MBCs were PIK3CA-mutated, with mutations mostly occurring in exons 9 (n = 19; 51.4%) and 20 (n = 15; 40.5%). The nationwide survey revealed significant variability across laboratories in terms of sampling methodology, technical assessment and clinical report signing healthcare figures for PIK3CA molecular testing in diagnostic routine practice. Conclusion: This study provides insights into the real-world routine of PIK3CA testing in HR+/HER2- MBC and highlights the need for standardization and networking in predictive pathology.
Collapse
Affiliation(s)
- Francesco Pepe
- Department of Public Health, Federico II University of Naples, 80131, Naples, Italy
| | - Konstantinos Venetis
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Giulia Cursano
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Chiara Frascarelli
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
- Department of Oncology & Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Pasquale Pisapia
- Department of Public Health, Federico II University of Naples, 80131, Naples, Italy
| | - Davide Vacirca
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Claudia Scimone
- Department of Public Health, Federico II University of Naples, 80131, Naples, Italy
| | - Alessandra Rappa
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Gianluca Russo
- Department of Public Health, Federico II University of Naples, 80131, Naples, Italy
| | - Eltjona Mane
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Fabio Pagni
- Center for Digital Medicine, Department of Medicine & Surgery, University Milan Bicocca, Monza (MB), Italy
- Molecular Pathology & Predictive Medicine PMMP Group, Italian Society of Pathology, SIAPeC, Italy
| | - Isabella Castellano
- Pathology Unit, Department of Medical Sciences, City of Health and Science University Hospital, University of Turin, 10126, Turin, Italy
- Breast Pathology GIPaM Group, Italian Society of Pathology, SIAPeC, Italy
| | - Giancarlo Troncone
- Department of Public Health, Federico II University of Naples, 80131, Naples, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine & Surgery, University Federico II, 80131, Naples, Italy
| | - Giuseppe Curigliano
- Department of Oncology & Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Division of New Drugs & Early Drug Development, European Institute of Oncology, IRCCS, 20141, Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
- Department of Oncology & Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Molecular Pathology & Predictive Medicine PMMP Group, Italian Society of Pathology, SIAPeC, Italy
| | - Umberto Malapelle
- Department of Public Health, Federico II University of Naples, 80131, Naples, Italy
- Molecular Pathology & Predictive Medicine PMMP Group, Italian Society of Pathology, SIAPeC, Italy
| | - Nicola Fusco
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
- Department of Oncology & Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Molecular Pathology & Predictive Medicine PMMP Group, Italian Society of Pathology, SIAPeC, Italy
- Breast Pathology GIPaM Group, Italian Society of Pathology, SIAPeC, Italy
| |
Collapse
|
31
|
Gray JE, Han JY, Telaranta-Keerie A, Huang X, Kohlmann A, Hodge R, Rukazenkov Y, Chmielecki J, Espenschied CR, Lefterova M, Wu YL, Ramalingam SS, Barrett JC, Odegaard JI. Pan-Tumor Analytical Validation and Osimertinib Clinical Validation in EGFR Mutant Non-Small-Cell Lung Cancer, Supporting the First Next-Generation Sequencing Liquid Biopsy in Vitro Diagnostic. J Mol Diagn 2024; 26:73-84. [PMID: 37981090 DOI: 10.1016/j.jmoldx.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/22/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
Comprehensive genotyping is necessary to identify therapy options for patients with advanced cancer; however, many cancers are not tested, partly because of tissue limitations. Next-generation sequencing (NGS) liquid biopsies overcome some limitations, but clinical validity is not established and adoption is limited. Herein, clinical bridging studies used pretreatment plasma samples and data from FLAURA (NCT02296125; n = 441) and AURA3 (NCT02151981; n = 450) pivotal studies to demonstrate clinical validity of Guardant360 CDx (NGS LBx) to identify patients with advanced EGFR mutant non-small-cell lung cancer who may benefit from osimertinib. The primary end point was progression-free survival (PFS). Patients with EGFR mutation as identified by NGS LBx had significant PFS benefit with first-line osimertinib over standard of care (15.2 versus 9.6 months; hazard ratio, 0.41; P < 0.0001) and with later-line osimertinib over chemotherapy (8.3 versus 4.2 months; hazard ratio, 0.34; P < 0.0001). PFS benefits were similar to the original trial cohorts selected by tissue-based EGFR testing. Analytical validation included accuracy, precision, limit of detection, and specificity. Analytical validity was established for EGFR mutation detection and pan-tumor profiling. Panel-wide limit of detection was 0.1% to 0.5%, with 98% to 100% per-sample specificity. Patients with EGFR mutant non-small-cell lung cancer by NGS LBx had improved PFS with osimertinib, confirming clinical validity. Analytical validity was established for guideline-recommended therapeutic targets across solid tumors. The resulting US Food and Drug Administration approval of NGS LBx demonstrated safety and effectiveness for its intended use and is expected to improve adherence to guideline-recommended targeted therapy use.
Collapse
Affiliation(s)
- Jhanelle E Gray
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Ji-Youn Han
- Center for Lung Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Aino Telaranta-Keerie
- Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, Melbourn Royston, United Kingdom
| | - Xiangning Huang
- Oncology Biometrics, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Alexander Kohlmann
- Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Rachel Hodge
- Oncology Biometrics, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Yuri Rukazenkov
- Global Medicines Development, AstraZeneca, Cambridge, United Kingdom
| | - Juliann Chmielecki
- Translational Medicine, Early Research and Development, AstraZeneca, Waltham, Massachusetts
| | | | | | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial Peoples Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Suresh S Ramalingam
- Emory University School of Medicine, Winship Cancer Institute, Atlanta, Georgia
| | - J Carl Barrett
- Translational Medicine, Early Research and Development, AstraZeneca, Waltham, Massachusetts
| | | |
Collapse
|
32
|
Takano AM, Chow CY, Lim KH. Practical challenges in lung cancer pathology: bedside care to treatment decisions. Curr Opin Pulm Med 2024; 30:48-57. [PMID: 37937545 DOI: 10.1097/mcp.0000000000001034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
PURPOSE OF REVIEW Lung cancer is one of the most common malignancies in the whole world, and the pulmonologist is generally the first medical professional to meet the patient and decide what method of tumour sampling is preferable in each specific case. It is imperative for pulmonary physicians to be aware of the intricacies of the diagnostic process, and understand the multiple challenges that are encountered, from the moment the tissue specimen leaves their offices and is sent to the pathology laboratory, until the diagnosis reaches the patient and treating physician. RECENT FINDINGS The new 2021 WHO classification of thoracic tumours recommended a minimum immunohistochemical (IHC) diagnostic panel for nonsmall cell lung cancer (NSCLC), and following publications of different institutional and country-based guidelines, advocated basic molecular testing for epithelial growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK) and programmed cell death ligand 1 (PD-L1) to be initiated by the diagnosing pathologist in all cases of biopsy or resection specimens. In general, sequential testing for molecular biomarkers was not recommended due to tissue wastage, instead next generation sequencing (NGS) diagnostic panel was supported. SUMMARY The lung cancer specimen has to undergo histologic diagnosis through a panel of IHC studies, and -preferably, a reflex molecular study by NGS including several targetable genes. Adequate communication and clinical information preclude the pathologist from "overusing" the tissue for additional studies, while focusing on preservation of material for molecular testing.
Collapse
Affiliation(s)
- Angela Maria Takano
- Department of Anatomical Pathology, Singapore General Hospital, Duke-NUS Medical School
| | - Chun Yuen Chow
- Department of Anatomical Pathology, Singapore General Hospital, Duke-NUS Medical School
| | - Kiat Hon Lim
- Division of Pathology, Singapore General Hospital, Duke-NUS Medical School, Singapore
| |
Collapse
|
33
|
Bestvina CM, Waters D, Morrison L, Emond B, Lafeuille MH, Hilts A, Lefebvre P, He A, Vanderpoel J. Cost of genetic testing, delayed care, and suboptimal treatment associated with polymerase chain reaction versus next-generation sequencing biomarker testing for genomic alterations in metastatic non-small cell lung cancer. J Med Econ 2024; 27:292-303. [PMID: 38391239 DOI: 10.1080/13696998.2024.2314430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
AIMS To assess US payers' per-patient cost of testing associated with next-generation sequencing (NGS) versus polymerase chain reaction (PCR) biomarker testing strategies among patients with metastatic non-small cell lung cancer (mNSCLC), including costs of testing, delayed care, and suboptimal treatment initiation. METHODS A decision tree model considered biomarker testing for genomic alterations using either NGS, sequential PCR testing, or hotspot panel PCR testing. Literature-based model inputs included time-to-test results, costs for testing/medical care, costs of delaying care, costs of immunotherapy [IO]/chemotherapy [CTX] initiation prior to receiving test results, and costs of suboptimal treatment initiation after test results (i.e. costs of first-line IO/CTX in patients with actionable mutations that were undetected by PCR that would have been identified with NGS). The proportion of patients testing positive for a targetable alteration, time to appropriate therapy initiation, and per-patient costs were estimated for NGS and PCR strategies combined. RESULTS In a modeled cohort of 1,000,000 members (25% Medicare, 75% commercial), an estimated 1,119 had mNSCLC and received testing. The proportion of patients testing positive for a targetable alteration was 45.9% for NGS and 40.0% for PCR testing. Mean per-patient costs were lowest for NGS ($8,866) compared to PCR ($18,246), with lower delayed care costs of $1,301 for NGS compared to $3,228 for PCR, and lower costs of IO/CTX initiation prior to receiving test results (NGS: $2,298; PCR:$5,991). Cost savings, reaching $10,496,220 at the 1,000,000-member plan level, were driven by more rapid treatment with appropriate therapy for patients tested with NGS (2.1 weeks) compared to PCR strategies (5.2 weeks). LIMITATIONS Model inputs/assumptions were based on published literature or expert opinion. CONCLUSIONS NGS testing was associated with greater cost savings versus PCR, driven by more rapid results, shorter time to appropriate therapy initiation, and minimized use of inappropriate therapies while awaiting and after test results.
Collapse
Affiliation(s)
- Christine M Bestvina
- University of Chicago Comprehensive Cancer Center; Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Dexter Waters
- Janssen Scientific Affairs, LLC, a Johnson & Johnson company, Horsham, PA, USA
| | | | | | | | | | | | - Andy He
- Janssen Scientific Affairs, LLC, a Johnson & Johnson company, Horsham, PA, USA
| | - Julie Vanderpoel
- Janssen Scientific Affairs, LLC, a Johnson & Johnson company, Horsham, PA, USA
| |
Collapse
|
34
|
Gavryushin AV, Veselkov AA, Khukhlaeva EA, Konovalov AN, Druy AE. [Liquid biopsy in diagnosis of central nervous system tumors]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2024; 88:110-117. [PMID: 39670787 DOI: 10.17116/neiro202488061110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Tumor tissue samples are necessary for histological diagnosis. Biopsy is associated with certain difficulties, especially in neuro-oncology. An alternative approach (liquid biopsy) is currently being developed. The last one is based on analysis of biological fluids regarding DNA of tumors and other biomarkers. This less invasive diagnostic method may be valuable to overcome the disadvantages of traditional biopsy. OBJECTIVE To analyze available literature data on potential benefits and disadvantages of liquid biopsy. MATERIAL AND METHODS We reviewed the PubMed database throughout the last 18 years. RESULTS The main targets for liquid biopsy are circulating tumor cells, extracellular vesicles, free circulating DNA and tumor microRNA. Analysis of these biomarkers is perspective for diagnostics and assessment of diseases in neuro-oncology. However, this technique is still poorly understood and has limitations. Therefore, further research is required to explore its capabilities for wider use in clinical practice. CONCLUSION Tissue and liquid biopsy can improve the accuracy of diagnosis, assessment of prognosis and effectiveness of treatment of CNS tumors.
Collapse
Affiliation(s)
- A V Gavryushin
- Burdenko Neurosurgical Center, Moscow, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | | | | | - A E Druy
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
35
|
Jansen JP, Ragavan MV, Chen C, Douglas MP, Phillips KA. The Health Inequality Impact of Liquid Biopsy to Inform First-Line Treatment of Advanced Non-Small Cell Lung Cancer: A Distributional Cost-Effectiveness Analysis. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2023; 26:1697-1710. [PMID: 37741446 PMCID: PMC10859998 DOI: 10.1016/j.jval.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVES To perform a distributional cost-effectiveness analysis of liquid biopsy (LB) followed by, if needed, tissue biopsy (TB) (LB-first strategy) relative to a TB-only strategy to inform first-line treatment of advanced non-small cell lung cancer (aNSCLC) from a US payer perspective by which we quantify the impact of LB-first on population health inequality according to race and ethnicity. METHODS With a health economic model, quality-adjusted life-years (QALYs) and costs per patient were estimated for each subgroup. Given the lifetime risk of aNSCLC, and assuming equally distributed opportunity costs, the incremental net health benefits of LB-first were calculated, which were used to estimate general population quality-adjusted life expectancy at birth (QALE) by race and ethnicity with and without LB-first. The degree of QALYs and QALE differences with the strategies was expressed with inequality indices. Their differences were defined as the inequality impact of LB-first. RESULTS LB-first resulted in an additional 0.21 (95% uncertainty interval: 0.07-0.39) QALYs among treated patients, with the greatest gain observed among Asian patients (0.31 QALYs [0.09-0.61]). LB-first resulted in an increase in relative inequality in QALYs among patients, but a minor decrease in relative inequality in QALE. CONCLUSIONS LB-first to inform first-line aNSCLC therapy can improve health outcomes. With current diagnostic performance, the benefit is the greatest among Asian patients, thereby potentially widening racial and ethnic differences in survival among patients with aNSCLC. Assuming equally distributed opportunity costs and access, LB-first does not worsen and, in fact, may reduce inequality in general population health according to race and ethnicity.
Collapse
Affiliation(s)
- Jeroen P Jansen
- Department of Clinical Pharmacy, UCSF Center for Translational and Policy Research on Precision Medicine (TRANSPERS), San Francisco, CA, USA; UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA; UCSF Philip R. Lee Institute for Health Policy, San Francisco, CA, USA.
| | - Meera V Ragavan
- Division of Hematology and Oncology, UCSF Department of Medicine, San Francisco, CA, USA
| | - Cheng Chen
- Department of Clinical Pharmacy, UCSF Center for Translational and Policy Research on Precision Medicine (TRANSPERS), San Francisco, CA, USA
| | - Michael P Douglas
- Department of Clinical Pharmacy, UCSF Center for Translational and Policy Research on Precision Medicine (TRANSPERS), San Francisco, CA, USA
| | - Kathryn A Phillips
- Department of Clinical Pharmacy, UCSF Center for Translational and Policy Research on Precision Medicine (TRANSPERS), San Francisco, CA, USA; UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA; UCSF Philip R. Lee Institute for Health Policy, San Francisco, CA, USA
| |
Collapse
|
36
|
Xie J, Hu B, Gong Y, He S, Lin J, Huang Q, Cheng J. A comparative study on ctDNA and tumor DNA mutations in lung cancer and benign cases with a high number of CTCs and CTECs. J Transl Med 2023; 21:873. [PMID: 38041139 PMCID: PMC10691057 DOI: 10.1186/s12967-023-04746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Liquid biopsy provides a non-invasive approach that enables detecting circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) using blood specimens and theoretically benefits early finding primary tumor or monitoring treatment response as well as tumor recurrence. Despite many studies on these novel biomarkers, their clinical relevance remains controversial. This study aims to investigate the correlation between ctDNA, CTCs, and circulating tumor-derived endothelial cells (CTECs) while also evaluating whether mutation profiling in ctDNA is consistent with that in tumor tissue from lung cancer patients. These findings will help the evaluation and utilization of these approaches in clinical practice. METHODS 104 participants (49 with lung cancer and 31 with benign lesions) underwent CTCs and CTECs detection using integrating subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH) strategy. The circulating cell-free DNA (cfDNA) concentration was measured and the mutational profiles of ctDNA were examined by Roche AVENIO ctDNA Expanded Kit (targeted total of 77 genes) by next generation sequencing (NGS) in 28 patients (20 with lung cancer and 8 with benign lesions) with highest numbers of CTCs and CTECs. Mutation validation in matched tumor tissue DNA was then performed in 9 patients with ctDNA mutations using a customized xGen pan-solid tumor kit (targeted total of 474 genes) by NGS. RESULTS The sensitivity and specificity of total number of CTCs and CTECs for the diagnosis of NSCLC were 67.3% and 77.6% [AUC (95%CI): 0.815 (0.722-0.907)], 83.9% and 77.4% [AUC (95%CI): 0.739 (0.618-0.860)]. The concentration of cfDNA in plasma was statistically correlated with the size of the primary tumor (r = 0.430, P = 0.022) and CYFRA 21-1 (r = 0.411, P = 0.041), but not with the numbers of CTCs and CTECs. In this study, mutations were found to be poorly consistent between ctDNA and tumor DNA (tDNA) in patients, even when numerous CTCs and CTECs were present. CONCLUSION Detection of CTCs and CTECs could be the potential adjunct tool for the early finding of lung cancer. The cfDNA levels are associated with the tumor burden, rather than the CTCs or CTECs counts. Moreover, the poorly consistent mutations between ctDNA and tDNA require further exploration.
Collapse
Affiliation(s)
- Jianzhu Xie
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binjie Hu
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Gong
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sijia He
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Lin
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Huang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jin Cheng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
37
|
García-Pardo M, Leighl N. "Plasma-first" approach for molecular genotyping in non-small cell lung cancer: A narrative review. THE JOURNAL OF LIQUID BIOPSY 2023; 2:100123. [PMID: 40028483 PMCID: PMC11863935 DOI: 10.1016/j.jlb.2023.100123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 03/05/2025]
Abstract
Molecular genotyping is essential for management of patients newly diagnosed with advanced non-small cell lung cancer (NSCLC). Plasma circulating tumor DNA (ctDNA) testing has emerged as a complement to tumor tissue genotyping for advanced NSCLC, especially when tissue or time are limited. The optimal way to integrate ctDNA testing into the diagnostic algorithm for patients with newly diagnosed NSCLC remains unclear. A "plasma-first" approach, using ctDNA genotyping for patients with suspected or confirmed advanced NSCLC before tissue genotyping, may shorten time to treatment and yield a higher rate of detection of actionable genomic alterations. In this review, we discuss current evidence exploring the "plasma-first" approach.
Collapse
Affiliation(s)
- Miguel García-Pardo
- Department of Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Natasha Leighl
- Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Canada
| |
Collapse
|
38
|
Hofman P. Implementation of the clinical practice of liquid biopsies for thoracic oncology the experience of the RespirERA university hospital institute (Nice, France). THE JOURNAL OF LIQUID BIOPSY 2023; 1:100004. [PMID: 40027288 PMCID: PMC11863941 DOI: 10.1016/j.jlb.2023.100004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 03/05/2025]
Abstract
According to international guidelines, it is mandatory to evaluate predictive biomarkers of targeted therapies and the response to immune check point inhibitors for patients with non-squamous non-small cell lung cancer (NS-NSCLC). For this purpose, a tissue sample is nowadays the gold standard, but biofluids, particularly peripheral blood, can be a complementary and sometimes an alternative approach to assess the status of different druggable genomic alterations of advanced NS-NSCLC. A liquid biopsy (LB) is an attractive approah for better treatment decision-making by thoracic oncologists for NSCLC patients in daily practice at both initial diagnosis and tumor progression. We describe the experience of a clinical and molecular pathology laboratory (LPCE, Nice, France) developing the use of in-house LB in thoracic oncology. Moreover, we report the changes in clinical care, the advantages, but also the possible constraints associated with implantation of LB in routine clinical practice.
Collapse
Affiliation(s)
- Paul Hofman
- Côte d’Azur University, IHU RespirERA, FHU OncoAge, Laboratory of Clinical and Experimental Pathology, BB-0033-00025, Louis Pasteur Hospital, Nice, France
- Côte d’Azur University, IRCAN, Inserm U1081, CNRS 7284, France
| |
Collapse
|
39
|
Raez LE, Carracedo C, Rosas D, Alvarez AM. Moving liquid biopsies to the Front-line of lung cancer treatment decisions. THE JOURNAL OF LIQUID BIOPSY 2023; 1:100006. [PMID: 40027286 PMCID: PMC11863809 DOI: 10.1016/j.jlb.2023.100006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 03/05/2025]
Abstract
Liquid biopsies have evolved as a promising non-invasive technology for cancer diagnosis and treatment, as they provide a comprehensive analysis of tumor-derived biomarkers. Prospective multicenter studies have shown the efficacy of liquid biopsies, including circulating tumoral DNA (ctDNA) and more recently cfRNA analysis, in identifying biomarkers for targeted therapies in patients with non-small cell lung cancer (NSCLC). In addition, studies have demonstrated a reduced time to treatment initiation when liquid biopsies are used in conjunction with or in lieu of tissue genotyping. Although liquid biopsies hold excellent potential, there are several obstacles to overcome, including technical limitations, standardization of methodologies, and cost-effectiveness. However, ongoing research and technological advances are conquering these obstacles, resulting in enhanced performance and dependability of liquid biopsy assays. To maximize the clinical utility of liquid biopsies, it is necessary to continue research, validation studies, and standardization initiatives. The incorporation of liquid biopsies into standard clinical practice has the potential to revolutionize the diagnosis and treatment of cancer. These noninvasive tests not only are a great tool for diagnosis but also allow real-time monitoring, guide treatment decisions, and enhance patient outcomes. As the costs of next-generation sequencing (NGS) declines, global access to liquid biopsies is anticipated to increase. Liquid biopsies arrived in the clinical practice after we were familiar with the analysis of genetic aberrations in tissue by next generation sequencing (NGS) that is considered the standard of care in new patients with the diagnosis of metastatic non-small cell lung cancer (NSCLC) and sometimes are used now as complement of tissue analysis or only when there is not enough tissue available. We already have done enough studies that show the non-inferiority and equivalence of liquid biopsies with molecular tissue testing. This article explores recent studies that demonstrate the clinical utility and potential of liquid biopsies in oncology including the possibility to use them at the same time of tissue analysis and the comparison of both with the advantage for the patient to get an earlier result due to the shorter turnaround time of liquid biopsies.
Collapse
Affiliation(s)
- Luis E. Raez
- Thoracic Oncology Program, Memorial Cancer Institute, Memorial Healthcare System, Florida International University (FAU), Florida Cancer Center of Excellence, United States
| | - Carlos Carracedo
- Hematology/Oncology Program, Memorial Cancer Institute, Memorial Healthcare System, United States
| | - Daniel Rosas
- Hematology/Oncology Program, Memorial Cancer Institute, Memorial Healthcare System, United States
| | - Andres M. Alvarez
- Oncology Research Program, Memorial Cancer Institute, Memorial Healthcare System, United States
| |
Collapse
|
40
|
Bertoli E, De Carlo E, Basile D, Zara D, Stanzione B, Schiappacassi M, Del Conte A, Spina M, Bearz A. Liquid Biopsy in NSCLC: An Investigation with Multiple Clinical Implications. Int J Mol Sci 2023; 24:10803. [PMID: 37445976 DOI: 10.3390/ijms241310803] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Tissue biopsy is essential for NSCLC diagnosis and treatment management. Over the past decades, liquid biopsy has proven to be a powerful tool in clinical oncology, isolating tumor-derived entities from the blood. Liquid biopsy permits several advantages over tissue biopsy: it is non-invasive, and it should provide a better view of tumor heterogeneity, gene alterations, and clonal evolution. Consequentially, liquid biopsy has gained attention as a cancer biomarker tool, with growing clinical applications in NSCLC. In the era of precision medicine based on molecular typing, non-invasive genotyping methods became increasingly important due to the great number of oncogene drivers and the small tissue specimen often available. In our work, we comprehensively reviewed established and emerging applications of liquid biopsy in NSCLC. We made an excursus on laboratory analysis methods and the applications of liquid biopsy either in early or metastatic NSCLC disease settings. We deeply reviewed current data and future perspectives regarding screening, minimal residual disease, micrometastasis detection, and their implication in adjuvant and neoadjuvant therapy management. Moreover, we reviewed liquid biopsy diagnostic utility in the absence of tissue biopsy and its role in monitoring treatment response and emerging resistance in metastatic NSCLC treated with target therapy and immuno-therapy.
Collapse
Affiliation(s)
- Elisa Bertoli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Elisa De Carlo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Debora Basile
- Department of Medical Oncology, San Giovanni Di Dio Hospital, 88900 Crotone, Italy
| | - Diego Zara
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Brigida Stanzione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Monica Schiappacassi
- Molecular Oncology Unit, (OMMPPT) Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Alessandro Del Conte
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Alessandra Bearz
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| |
Collapse
|