1
|
Zhang JH. Effect of Nutritional Management on the Nutritional Status and Quality of Life of Patients with Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2025; 20:487-496. [PMID: 40046826 PMCID: PMC11881604 DOI: 10.2147/copd.s494323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Aim Chronic obstructive pulmonary disease (COPD) is a progressive respiratory condition characterized by airflow limitation, which often leads to malnutrition and reduced quality of life. This study aims to evaluate the effect of individualized nutritional management on the nutritional status, pulmonary function, and overall quality of life of patients with COPD. Methods This research is a retrospective analysis, and the patients were grouped according to the treatment methods. This study involved 100 patients with chronic obstructive pulmonary disease and were hospitalized at our hospital from March 2022 to March 2024. Among them, 43 patients with individualized nutritional management were classified as the observation group, 57 patients with regular dietary therapy management were classified as the control group. We collect clinical data on lung function, nutritional status, scores of quality of life, psychological state evaluation index, clinical efficacy, and diet satisfaction. Results The total effective rate of the observation group was 88.37%, which was higher than that of the control group (85.96%), and the differences were statistically significant (P < 0.05). The FEV1, FVC and FVE1% of the observation group were significantly higher than those of the control group after intervention (all P < 0.05). Moreover, after the intervention, the 6-Minute Walk Test (6MWT) distance increased, and COPD Assessment Test (CAT) scores decreased significantly in both groups, with the observation group showing greater improvements (P < 0.05). Conclusion Nutrition management has a remarkable clinical curative effect in treating COPD patients, which can improve their nutritional status and quality of life.
Collapse
Affiliation(s)
- Jian-Hui Zhang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Nantong City, Nantong, Jiangsu, 226000, People’s Republic of China
| |
Collapse
|
2
|
Zhang J, Moll M, Hobbs BD, Bakke P, Regan EA, Xu H, Dupuis J, Chiles JW, McDonald MLN, Divo MJ, Silverman EK, Celli BR, O’Connor GT, Cho MH. Genetically Predicted Body Mass Index and Mortality in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2024; 210:890-899. [PMID: 38471013 PMCID: PMC11506912 DOI: 10.1164/rccm.202308-1384oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/11/2024] [Indexed: 03/14/2024] Open
Abstract
Rationale: Body mass index (BMI) is associated with chronic obstructive pulmonary disease (COPD) mortality, but the underlying mechanisms are unclear. The effect of genetic variants aggregated into a polygenic score may elucidate the causal mechanisms and predict risk. Objectives: To examine the associations of genetically predicted BMI with all-cause and cause-specific mortality in COPD. Methods: We developed a polygenic score (PGS) for BMI (PGSBMI) and tested for associations of the PGSBMI with all-cause, respiratory, and cardiovascular mortality in participants with COPD from the COPDGene (Genetic Epidemiology of COPD), ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points), and Framingham Heart studies. We calculated the difference between measured BMI and PGS-predicted BMI (BMIdiff) and categorized participants into groups of discordantly low (BMIdiff <20th percentile), concordant (BMIdiff between the 20th and 80th percentiles), and discordantly high (BMIdiff >80th percentile) BMI. We applied Cox models, examined potential nonlinear associations of the PGSBMI and BMIdiff with mortality, and summarized results with meta-analysis. Measurements and Main Results: We observed significant nonlinear associations of measured BMI and BMIdiff, but not PGSBMI, with all-cause mortality. In meta-analyses, a one-standard deviation increase in the PGSBMI was associated with an increased hazard for cardiovascular mortality (hazard ratio [HR], 1.29; 95% confidence interval [CI], 1.12-1.49), but not for respiratory or all-cause mortality. Compared with participants with concordant measured and genetically predicted BMI, those with discordantly low BMI had higher risks for all-cause mortality (HR, 1.57; 95% CI, 1.41-1.74) and respiratory death (HR, 2.01; 95% CI, 1.61-2.51). Conclusions: In people with COPD, a higher genetically predicted BMI is associated with higher cardiovascular mortality but not respiratory mortality. Individuals with a discordantly low BMI have higher all-cause and respiratory mortality rates than those with a concordant BMI.
Collapse
Affiliation(s)
- Jingzhou Zhang
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Channing Division of Network Medicine, and
| | - Matthew Moll
- Channing Division of Network Medicine, and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Brian D. Hobbs
- Channing Division of Network Medicine, and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Hanfei Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Québec, Canada
| | - Joe W. Chiles
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Merry-Lynn N. McDonald
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Miguel J. Divo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Edwin K. Silverman
- Channing Division of Network Medicine, and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bartolome R. Celli
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - George T. O’Connor
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- NHLBI Framingham Heart Study, Framingham, Massachusetts
| | - Michael H. Cho
- Channing Division of Network Medicine, and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Justel Enríquez A, Rabat-Restrepo JM, Vilchez-López FJ, Tenorio-Jiménez C, García-Almeida JM, Irles Rocamora JA, Pereira-Cunill JL, Martínez Ramírez MJ, Molina-Puerta MJ, Molina Soria JB, Rebollo-Pérez MI, Olveira G, García-Luna PP. Practical Guidelines by the Andalusian Group for Nutrition Reflection and Investigation (GARIN) on Nutritional Management of Patients with Chronic Obstructive Pulmonary Disease: A Review. Nutrients 2024; 16:3105. [PMID: 39339705 PMCID: PMC11434837 DOI: 10.3390/nu16183105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Malnutrition is common in chronic obstructive pulmonary disease (COPD) patients and is associated with worse lung function and greater severity. This review by the Andalusian Group for Nutrition Reflection and Investigation (GARIN) addresses the nutritional management of adult COPD patients, focusing on Morphofunctional Nutritional Assessment and intervention in clinical practice. A systematic literature search was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, followed by critical appraisal based on Scottish Intercollegiate Guidelines Network (SIGN) guidelines. Recommendations were graded according to the European Society for Clinical Nutrition and Metabolism (ESPEN) system. The results were discussed among GARIN members, with consensus determined using a Likert scale. A total of 24 recommendations were made: 2(A), 6(B), 2(O), and 14(GPP). Consensus exceeded 90% for 17 recommendations and was 75-90% for 7. The care of COPD patients is approached from a nutritional perspective, emphasizing nutritional screening, morphofunctional assessment, and food intake in early disease stages. Nutritional interventions include dietary advice, recommendations on food group intake, and the impact of specialized nutritional treatment, particularly oral nutritional supplements. Other critical aspects, such as physical activity and quality of life, are also analyzed. These recommendations provide practical guidance for managing COPD patients nutritionally in clinical practice.
Collapse
Affiliation(s)
- Alicia Justel Enríquez
- Servicio de Endocrinología y Nutrición, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Juana M. Rabat-Restrepo
- Servicio de Endocrinología y Nutrición, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain; (J.-A.I.R.); (P.P.G.-L.)
| | | | - Carmen Tenorio-Jiménez
- Endocrinology and Nutrition Clinical Management Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - José M. García-Almeida
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga/Plataforma Bionand, 29010 Málaga, Spain
| | - José-Antonio Irles Rocamora
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain; (J.-A.I.R.); (P.P.G.-L.)
- UGC Endocrinología y Nutrición, Hospital Universitario Valme, 41014 Sevilla, Spain
| | - José L. Pereira-Cunill
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain; (J.-A.I.R.); (P.P.G.-L.)
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
- Endocrine Diseases Research Group, Institute of Biomedicine of Seville (IBIS), 41007 Sevilla, Spain
| | - María J. Martínez Ramírez
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario de Jaén, 23007 Jaén, Spain
- Facultad de Medicina, Universidad de Jaén, 23071 Jaén, Spain
| | - María J. Molina-Puerta
- UGC Endocrinología y Nutrición, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
| | | | - María I. Rebollo-Pérez
- Servicio de Endocrinología y Nutrición, Hospital Juan Ramón Jiménez, 21005 Huelva, Spain
| | - Gabriel Olveira
- Instituto de Investigación Biomédica de Málaga/Plataforma Bionand, 29010 Málaga, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Medicina y Dermatología, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Pedro P. García-Luna
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain; (J.-A.I.R.); (P.P.G.-L.)
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
- Endocrine Diseases Research Group, Institute of Biomedicine of Seville (IBIS), 41007 Sevilla, Spain
| |
Collapse
|
4
|
Holst M, Geisler L, Mikkelsen S, Rasmussen HH, Jørgensen BG, Beck AM. Pulmonary rehabilitation: A cohort study assessing the effectiveness of a multi-professional nutrition intervention. Clin Nutr ESPEN 2024; 62:33-42. [PMID: 38901947 DOI: 10.1016/j.clnesp.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Limited benefit of pulmonary exercise rehabilitation has been associated with fulfilment of energy and protein requirements. OBJECTIVES The aim was to enhance dietary intake towards requirements and to maintain changes after a pulmonary rehabilitation program. METHODS This single arm intervention study included multidisciplinary focus on nutrition and three sessions of individual dietary counselling during a 10-week pulmonary exercise rehabilitation in five municipalities centers. Data were collected at baseline (P0), at the end of intervention (P1) and for two municipalities at three months post intervention (P2). RESULTS Of the 111 included participants, (mean age 70.8 (±9)) 99 (89%) completed the rehabilitation including the three individual dietary counselling's. A very large variation in body composition including body mass index and exercise abilities was found. Protein intake improved from 64 (±22 g) (P0) to 88 (±25 g) (P1) (p < 0.001) and energy intake from 1676 (±505 kcal) (P0) to 1941 (±553 kcal) (p < 0.001) (P1) and Muscle Mass Index increased from 10.6 (±3.2) (P0) to 10.9 (±3.2) (P1) (p = 0.007); number of 30 s chair stand test improved from 10.9 (±2.8) repetitions (P0) to 14.1 (±4.3) repetitions (P1) (p < 0.001), distance in six-minut walking test improved from 377.2 (±131.2 m) (P0) to 404.1 (±128.6 m) (P1) (p < 0.001). Two municipalities completed the three months follow-up. For those, dietary improvements remained stable, including protein intake. CONCLUSION Including three sessions of dietary counselling in a multi-professional effort was associated with improved individualized dietary intake, as well as physical function. Benefits remained almost unchanged after three months. Improvements in function could not be fully explained by improved intakes.
Collapse
Affiliation(s)
- Mette Holst
- Center of Nutrition and Intestinal Failure, Aalborg University Hospital, Søndre Skovvej 5, DK-9000 Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Lea Geisler
- Center of Nutrition and Intestinal Failure, Aalborg University Hospital, Søndre Skovvej 5, DK-9000 Aalborg, Denmark.
| | - Sabina Mikkelsen
- Center of Nutrition and Intestinal Failure, Department of Gastroenterology, Aalborg University Hospital, Søndre Skovvej 5, DK-9000 Aalborg, Denmark.
| | - Henrik H Rasmussen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Center of Nutrition and Intestinal Failure, Department of Gastroenterology, Aalborg University Hospital, Søndre Skovvej 5, DK-9000 Aalborg, Denmark.
| | - Birte G Jørgensen
- Department of Health Promotion, Frederikshavn Municipality, Nytorv 1, DK-9900 Frederikshavn, Denmark.
| | - Anne Marie Beck
- "EATEN" Research Unit for Dieticians and Nutrition Research, "Herlev Hospital, Borgmester Ib Juuls Vej 1, 20th Floor, DK-2730 Herlev, Denmark.
| |
Collapse
|
5
|
Lattanzi G, Lelli D, Antonelli Incalzi R, Pedone C. Effect of Macronutrients or Micronutrients Supplementation on Nutritional Status, Physical Functional Capacity and Quality of Life in Patients with COPD: A Systematic Review and Meta-Analysis. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:473-487. [PMID: 38329722 DOI: 10.1080/27697061.2024.2312852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
Given the importance that a correct and balanced nutrition has on patients with chronic obstructive pulmonary disease (COPD), supplementation of macro and micronutrients has been proposed, but the results of previous meta-analyses are contrasting. We performed an update of the latest evidence through a systematic review and meta-analysis of studies to assess the role of nutritional supplements in improving nutritional status, pulmonary function, physical performance, and quality of life of these patients.We included randomized controlled trials (RCTs) published between 01-01-2010 and 11-01-2023 evaluating the effectiveness of nutritional support in patients affected by stable COPD with an intervention of at least 2 weeks. Primary outcomes were changes in body mass index (BMI) and fat free mass index (FFMI). Secondary outcomes were exercise tolerance (6-min walking test, 6MWT), quality of life (St George's Respiratory Questionnaire, SGRQ) and respiratory function (FEV1). According with supplements type (macronutrients or micronutrients), we calculated the pooled adjusted mean difference (MD) and 95% confidence intervals (95%CIs) of the selected outcomes, using random-effects models in presence of high heterogeneity (I2>50%) or fixed-effects models otherwise. The risk of publication bias was evaluated with the trim and fill method.From 967 articles, 20 RCTs were included. Macronutrients supplementation improved BMI (MD 1.0 kg/m2, 95%CI 0.21-1.79), FFMI (MD 0.77 Kg/m2, 95%CI 0.48-1.06), 6MQT (MD 68.39 m, 95%CI 40.07-96.71), and SGRQ (MD -5.14, 95% CI -7.31-2.97), while it does not ameliorate respiratory function (MD 0.26% 95%CI -1.87-2.40). Micronutrients supplementation alone did not improve any of the considered outcomes.
Collapse
Affiliation(s)
- Greta Lattanzi
- Unit of Food Science and Human Nutrition, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Diana Lelli
- Operative Research Unit of Geriatrics, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Raffaele Antonelli Incalzi
- Operative Research Unit of Internal Medicine, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Internal Medicine, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Claudio Pedone
- Operative Research Unit of Geriatrics, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Geriatrics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
6
|
Gao H, Cheng X, Zuo X, Huang Z. Exploring the Impact of Adequate Energy Supply on Nutrition, Immunity, and Inflammation in Elderly Patients with Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2024; 19:1391-1402. [PMID: 38915774 PMCID: PMC11194172 DOI: 10.2147/copd.s450209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/08/2024] [Indexed: 06/26/2024] Open
Abstract
Background Chronic Obstructive Pulmonary Disease (COPD) progression in the elderly is notably influenced by nutritional, immune, and inflammatory status. This study aimed to investigate the impact of adequate energy supply on these indicators in COPD patients. Methods COPD patients meeting specific criteria were recruited and categorized into energy-adequate and energy-deficient groups based on their energy supply. Comparable demographic factors such as age, gender, smoking and drinking history, COPD duration, inhaled drug classification, and home oxygen therapy application were observed. Notable differences were found in BMI and inhaled drug use between the two groups. Results The energy-adequate group exhibited significant improvements in various health indicators, including lymphocyte count, hemoglobin, CRP, total cholesterol, prealbumin, albumin, PNI, SII, SIRI, CAR, and CONUT scores in the secondary auxiliary examination. These positive changes suggest a notable enhancement in nutritional, immune, and inflammatory status. Conclusion This research highlights the substantial benefits of adequate energy supply in elderly COPD patients. The observed improvements in nutritional, immune, and inflammatory markers underscore the importance of addressing energy needs to positively influence disease-related outcomes in this population. These findings have implications for developing targeted interventions to optimize the well-being of elderly individuals with COPD.
Collapse
Affiliation(s)
- Hui Gao
- Department of General Practice, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province430000, People’s Republic of China
| | - Xi Cheng
- Department of General Practice, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province430000, People’s Republic of China
| | - Xu Zuo
- Department of Respiratory and Digestive, Geriatric Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, Hubei Province, 430000, People’s Republic of China
| | - Zhaolan Huang
- Department of Respiratory and Digestive, Geriatric Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, Hubei Province, 430000, People’s Republic of China
| |
Collapse
|
7
|
Khan S, Ahmad Javid S, Ur Rehman S, Akhtar Y, Amir Khan M. A Systematic Review of Cost-Effectiveness Analyses Examining Treatments for Cachexia Syndrome. Nutr Cancer 2024; 76:584-595. [PMID: 38801296 DOI: 10.1080/01635581.2024.2353939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVES This systematic review aims to critically evaluate and synthesize the economic outcomes of various therapeutic strategies employed to manage cachexia patients. METHODS A comprehensive search for randomized controlled trials and observational studies was conducted from January 1, 2000 to December 31, 2023, using PubMed, Google Scholar, Clinical Trials Registry, Cochrane Central Register of Controlled Trials, British Medical Journal, National Health Service Economic Evaluation Database, and ScienceDirect, following PRISMA guidelines. We assessed the quality of the included studies using the Consolidated Health Economic Evaluation Reporting Standards reporting guidelines. RESULTS We identified six high to medium quality economic evaluations in four countries, focusing on cancer, chronic obstructive pulmonary disease, and HIV/AIDS-associated cachexia. The results indicate that combination management strategies, specifically the use of nutritional supplements and exercise, are more cost-effective than usual care for cachexia syndrome. Additionally, two studies showed that dietary supplements alone were more cost-effective than usual care, and pharmacotherapy alone was more cost-effective than a placebo. CONCLUSION Combining several strategies, such as nutritional supplements and exercise, may be the most economically efficient method for managing cachexia compared to usual care or single treatment approaches. However, the restricted and diverse characteristics of the current research hinder the definitive conclusions.
Collapse
Affiliation(s)
- Safeer Khan
- Department of Pharmaceutical Sciences, Institute of Chemical Sciences, Government College University, Lahore, Punjab, Pakistan
| | | | - Sabi Ur Rehman
- Department of Pharmacy, Foreman Christian College (A Chartered University), Lahore, Punjab, Pakistan
| | - Yasmeen Akhtar
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Amir Khan
- Department of Foreign Medical Education, Fergana Institute of Public Health, Fergana, Uzbekistan
| |
Collapse
|
8
|
Bell K, Lawson J, Penz E, Cammer A. Systematic review of tailored dietary advice and dietitian involvement in the treatment of chronic obstructive pulmonary disease (COPD). Respir Med 2024; 225:107584. [PMID: 38467310 DOI: 10.1016/j.rmed.2024.107584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a leading public health concern globally. Interdisciplinary pulmonary rehabilitation programs exist and should ideally consider nutritional health impacts since the nutritional status of COPD patients is often compromised. However, little is known about the role of dietary counseling in COPD management. RESEARCH QUESTION Does providing tailored dietary advice to adult patients with COPD improve outcomes? STUDY DESIGN AND METHODS We conducted a systematic review. The following electronic databases and registrars were used: MEDLINE, EMBASE, Web of Science, CINAHL, Cochrane Library, and ClinicalTrials.gov. The original search was conducted in June 2021 with an updated search conducted on February 21, 2024. Validity and bias assessments were completed. RESULTS We selected 14 articles for inclusion. Multiple outcomes were considered including functional, body composition, nutritional intake, cost analyses, quality of life, and others. The most common measured outcomes were quality of life and the 6 min walk test. A number of interventions were used with most interventions being interdisciplinary pulmonary rehabilitation packages where nutrition counseling was one component. A number of interventions showed positive results but there tended to be inconsistency. INTERPRETATION Evidence shows that various interventions appear to improve outcomes, but it is difficult to determine if improvements are due to nutritional intervention specifically or a rehabilitation program as a whole. More specific randomized controlled trials should be completed regarding tailored nutritional counseling and therapy in adults with COPD to determine the benefits attributable to nutritional interventions.
Collapse
Affiliation(s)
- Kylie Bell
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Respiratory Research Centre (RRC), University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Josh Lawson
- Respiratory Research Centre (RRC), University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Canadian Centre for Rural and Agricultural Health (CCRAH), University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Erika Penz
- Respiratory Research Centre (RRC), University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Allison Cammer
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Respiratory Research Centre (RRC), University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
9
|
Li M, Zhao L, Hu C, Li Y, Yang Y, Zhang X, Li Q, Ma A, Cai J. Improvement of Lung Function by Micronutrient Supplementation in Patients with COPD: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:1028. [PMID: 38613061 PMCID: PMC11013492 DOI: 10.3390/nu16071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND A healthy, well-balanced diet plays an essential role in respiratory diseases. Since micronutrient deficiency is relatively common in patients with chronic obstructive pulmonary disease (COPD), micronutrient supplementation might have the beneficial health effects in those patients. This systematic review and meta-analysis aimed to demonstrate the impact of micronutrient supplementation on the lung function of patients with COPD. METHODS The PubMed, Cochrane Library, and Web of Science databases were searched from their corresponding creation until February 2024. Search terms included 'chronic obstructive pulmonary disease', 'COPD', 'micronutrients', 'dietary supplements', 'vitamins', 'minerals', and 'randomized controlled trials'. Meta-analysis was performed to evaluate the effects of micronutrient supplementation alone or complex on lung function in patients with COPD. RESULTS A total of 43 RCTs fulfilled the inclusion criteria of this study. Meta-analysis revealed that vitamin D supplementation could significantly improve FEV1% (WMDdifferences between baseline and post-intervention (de): 6.39, 95% CI: 4.59, 8.18, p < 0.01; WMDpost-intervention indicators (af): 7.55, 95% CI: 5.86, 9.24, p < 0.01) and FEV1/FVC% (WMDde: 6.88, 95%CI: 2.11, 11.65, WMDaf: 7.64, 95% CI: 3.18, 12.10, p < 0.001), decrease the odds of acute exacerbations, and improve the level of T-cell subsets, including CD3+%, CD4+%, CD8+%, and CD4+/CD8+% (all p < 0.01). The effects of compound nutrients intervention were effective in improving FEV1% (WMDde: 8.38, 95%CI: 1.89, 14.87, WMDaf: 7.07, 95%CI: -0.34, 14.48) and FEV1/FVC% (WMDde: 7.58, 95% CI: 4.86, 10.29, WMDaf: 6.00, 95% CI: 3.19, 8.81). However, vitamin C and vitamin E supplementation alone had no significant effects on lung function (p > 0.05). CONCLUSIONS Micronutrient supplementation, such as vitamin D alone and compound nutrients, has improved effect on the lung function of patients with COPD. Therefore, proper supplementation with micronutrients would be beneficial to stabilize the condition and restore ventilation function for COPD patients.
Collapse
Affiliation(s)
- Mingxin Li
- School of Public Health, Qingdao University, Qingdao 266000, China; (M.L.); (L.Z.); (C.H.); (Y.Y.); (A.M.)
| | - Liangjie Zhao
- School of Public Health, Qingdao University, Qingdao 266000, China; (M.L.); (L.Z.); (C.H.); (Y.Y.); (A.M.)
| | - Chenchen Hu
- School of Public Health, Qingdao University, Qingdao 266000, China; (M.L.); (L.Z.); (C.H.); (Y.Y.); (A.M.)
| | - Yue Li
- Endemic and Parasitic Diseases Prevention and Control Division, Binzhou Centre for Disease Prevention and Control, Binzhou 256600, China;
| | - Yang Yang
- School of Public Health, Qingdao University, Qingdao 266000, China; (M.L.); (L.Z.); (C.H.); (Y.Y.); (A.M.)
- Institute of Nutrition and Health, Qingdao University, Qingdao 266000, China
| | - Xiaoqi Zhang
- Department of Respiratory, Weifang No. 2 People’s Hospital, Weifang 261000, China; (X.Z.); (Q.L.)
| | - Quanguo Li
- Department of Respiratory, Weifang No. 2 People’s Hospital, Weifang 261000, China; (X.Z.); (Q.L.)
| | - Aiguo Ma
- School of Public Health, Qingdao University, Qingdao 266000, China; (M.L.); (L.Z.); (C.H.); (Y.Y.); (A.M.)
- Institute of Nutrition and Health, Qingdao University, Qingdao 266000, China
| | - Jing Cai
- School of Public Health, Qingdao University, Qingdao 266000, China; (M.L.); (L.Z.); (C.H.); (Y.Y.); (A.M.)
| |
Collapse
|
10
|
Pemau RC, González-Palacios P, Kerr KW. How quality of life is measured in studies of nutritional intervention: a systematic review. Health Qual Life Outcomes 2024; 22:9. [PMID: 38267976 PMCID: PMC10809546 DOI: 10.1186/s12955-024-02229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Nutrition care can positively affect multiple aspects of patient's health; outcomes are commonly evaluated on the basis of their impact on a patient's (i) illness-specific conditions and (ii) health-related quality of life (HRQoL). Our systematic review examined how HRQoL was measured in studies of nutritional interventions. To help future researchers select appropriate Quality of Life Questionnaires (QoLQ), we identified commonly-used instruments and their uses across populations in different regions, of different ages, and with different diseases. METHODS We searched EMCare, EMBASE, and Medline databases for studies that had HRQoL and nutrition intervention terms in the title, the abstract, or the MeSH term classifications "quality of life" and any of "nutrition therapy", "diet therapy", or "dietary supplements" and identified 1,113 studies for possible inclusion.We then reviewed titles, abstracts, and full texts to identify studies for final inclusion. RESULTS Our review of titles, abstracts, and full texts resulted in the inclusion of 116 relevant studies in our final analysis. Our review identified 14 general and 25 disease-specific QoLQ. The most-used general QoLQ were the Short-Form 36-Item Health Survey (SF-36) in 27 studies and EuroQol 5-Dimension, (EQ-5D) in 26 studies. The European Organization for Research and Treatment of Cancer Quality of life Questionnaire (EORTC-QLQ), a cancer-specific QoLQ, was the most frequently used disease-specific QoLQ (28 studies). Disease-specific QoLQ were also identified for nutrition-related diseases such as diabetes, obesity, and dysphagia. Sixteen studies used multiple QoLQ, of which eight studies included both general and disease-specific measures of HRQoL. The most studied diseases were cancer (36 studies) and malnutrition (24 studies). There were few studies focused on specific age-group populations, with only 38 studies (33%) focused on adults 65 years and older and only 4 studies focused on pediatric patients. Regional variation in QoLQ use was observed, with EQ-5D used more frequently in Europe and SF-36 more commonly used in North America. CONCLUSIONS Use of QoLQ to measure HRQoL is well established in the literature; both general and disease-specific instruments are now available for use. We advise further studies to examine potential benefits of using both general and disease-specific QoLQ to better understand the impact of nutritional interventions on HRQoL.
Collapse
Affiliation(s)
| | - Patricia González-Palacios
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
- Biomedical Research Institute (IBS), Granada, Spain
| | - Kirk W Kerr
- Abbott Nutrition, 2900 Easton Square Place, Columbus, OH, 43219, USA.
| |
Collapse
|
11
|
Wu W, Li Z, Wang Y, Huang C, Zhang T, Zhao H. Advances in metabolomics of chronic obstructive pulmonary disease. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:223-230. [PMID: 39171278 PMCID: PMC11332835 DOI: 10.1016/j.pccm.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Indexed: 08/23/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic lung disease with limited airflow. COPD is characterized by chronic bronchitis and emphysema, and is often accompanied by malnutrition with fatigue, muscle weakness, and an increased risk of infection. Although the pulmonary function test is used as the gold criterion for diagnosing COPD, it is unable to identify early COPD or classify the subtypes, thereby impeding early intervention and the precise diagnosis of COPD. Recent evidence suggests that metabolic dysfunction, such as changes in lipids, amino acids, glucose, nucleotides, and microbial metabolites in the lungs and intestine, have a great potential for diagnosing COPD in the early stage. However, a comprehensive summary of these metabolites and their effects on COPD is still lacking. This review summarizes the metabolites that are changed in COPD and highlights some promising early diagnostic markers and therapeutic targets. We emphasize that intensified dietary management may be among the most feasible methods to improve metabolism in the body.
Collapse
Affiliation(s)
- Wenqian Wu
- The State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Zhiwei Li
- The State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yongqiang Wang
- Department of Respiratory and Critical Care Medicine, 302 Hospital of China Guizhou Aviation Industry Group, An Shun, Guizhou 561000, China
| | - Chuan Huang
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Tiantian Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Hongmei Zhao
- The State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
12
|
Fekete M, Csípő T, Fazekas-Pongor V, Bálint M, Csizmadia Z, Tarantini S, Varga JT. The Possible Role of Food and Diet in the Quality of Life in Patients with COPD-A State-of-the-Art Review. Nutrients 2023; 15:3902. [PMID: 37764686 PMCID: PMC10536642 DOI: 10.3390/nu15183902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Diet has been described as a modifiable risk factor for the development and progression of chronic diseases, and emerging evidence increasingly points to its preventive and therapeutic role in chronic obstructive pulmonary disease (COPD). While the relationship between the underlying disease and diet is natural in conditions such as metabolic disorders, obesity, diabetes, etc., the direct effect is not so evident in chronic obstructive pulmonary disease. Poor diet quality and the development of nutrient deficiencies in respiratory diseases, including COPD, can be associated with disease-specific factors such as the exacerbation of respiratory symptoms. These symptoms can be improved by dietary interventions, leading to positive changes in the pathogenesis of the disease and the quality of life of patients. Therefore, our aim was to review the latest randomized controlled trials (RCTs) of dietary interventions in chronic respiratory patients and describe their effects on respiratory function, physical activity, systemic inflammatory parameters, and quality of life. We conducted a literature search on dietary interventions for COPD patients in the PubMed, ClinicalTrials.gov, and Cochrane Central Register of Controlled Trials (CENTRAL) databases, focusing on publications from 1 July 2018 to 1 July 2023. We used specific keywords and MESH terms, focusing on RCTs. A total of 26 articles and 1811 COPD patients were included in this review. On the basis of our findings, dietary interventions, in particular components of the Mediterranean diet such as protein, omega-3 polyunsaturated fatty acids, and vegetables, appear to have beneficial effects in patients with chronic respiratory diseases, and their application is beneficial. However, long-term follow-up studies are still needed to examine the effects of dietary interventions in this patient population.
Collapse
Affiliation(s)
- Mónika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (T.C.); (V.F.-P.); (M.B.)
| | - Tamás Csípő
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (T.C.); (V.F.-P.); (M.B.)
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (T.C.); (V.F.-P.); (M.B.)
| | - Madarász Bálint
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (T.C.); (V.F.-P.); (M.B.)
| | - Zoltán Csizmadia
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - Stefano Tarantini
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Health Promotion Sciences, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK 73104, USA
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
13
|
Tseng PT, Zeng BY, Zeng BS, Liao YC, Stubbs B, Kuo JS, Sun CK, Cheng YS, Chen YW, Chen TY, Tu YK, Lin PY, Hsu CW, Li DJ, Liang CS, Suen MW, Wu YC, Shiue YL, Su KP. Omega-3 polyunsaturated fatty acids in sarcopenia management: A network meta-analysis of randomized controlled trials. Ageing Res Rev 2023; 90:102014. [PMID: 37442370 DOI: 10.1016/j.arr.2023.102014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Sarcopenia frequently occurs with aging and leads to major adverse impacts on activities of daily living and quality of life in elderly individuals. Omega-3 polyunsaturated fatty acid (omega-3 PUFAs) supplements are considered promising therapeutic agents for sarcopenia management; however, the evidence remains inconsistent. We reviewed randomized controlled trials (RCTs) about omega-3 PUFA supplementation in patients with sarcopenia or in those at high risk for sarcopenia. Network meta-analysis (NMA) procedures were conducted using a frequentist model. The primary outcomes were (1) upper-extremity muscle strength and (2) lower-extremity physical function. The NMA of 16 RCTs showed that the high-dose (more than 2.5 g/day omega-3 PUFAs) group yielded the greatest improvement in both upper-extremity muscle strength and lower-extremity physical function [compared to placebo/standard care groups, standardized mean difference (SMD)= 1.68, 95% confidence interval (95%CI)= 0.03-3.33, and SMD= 0.73, 95%CI= 0.16-1.30, respectively], and the effects were reaffirmed in subgroup analyses of placebo-controlled RCTs or those excluding concurrent resistance training programs. None of the investigated omega-3 PUFAs supplementation was associated with significantly increased skeletal muscle mass, fat mass, or overall body weight. Our findings provide a basis for future large-scale RCTs to investigate the dose effects and clinical application of omega-3 PUFA supplementation in sarcopenia management. TRIAL REGISTRATION: The current study was approved by the Institutional Review Board of the Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (TSGHIRB No. B-109-29) and registered in PROSPERO (CRD42022347161).
Collapse
Affiliation(s)
- Ping-Tao Tseng
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung, Taiwan; Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Bing-Yan Zeng
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bing-Syuan Zeng
- Department of Internal Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Chi Liao
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Clinical Psychology Center, Asia University Hospital, Taichung, Taiwan; Center for Prevention and Treatment of Internet Addiction, Asia University, Taichung, Taiwan
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK; Faculty of Health, Social Care Medicine and Education, Anglia Ruskin University, Chelmsford, UK
| | - John S Kuo
- Neuroscience and Brain Disease Center, China Medical University,Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan; School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Shian Cheng
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home, Taiwan
| | - Yen-Wen Chen
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung, Taiwan
| | - Tien-Yu Chen
- School of Medicine, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Kang Tu
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Dian-Jeng Li
- Department of Addiction Science, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung City, Taiwan
| | - Chih-Sung Liang
- School of Medicine, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Mein-Woei Suen
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Gender Equality Education and Research Center, Asia University, Taichung, Taiwan; Department of Medical Research, Asia University Hospital, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yi-Cheng Wu
- Department of Sports Medicine, Landseed International Hospital, Taoyuan, Taiwan.
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan.
| | - Kuan-Pin Su
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan.
| |
Collapse
|
14
|
Nan Y, Zhou Y, Dai Z, Yan T, Zhong P, Zhang F, Chen Q, Peng L. Role of nutrition in patients with coexisting chronic obstructive pulmonary disease and sarcopenia. Front Nutr 2023; 10:1214684. [PMID: 37614743 PMCID: PMC10442553 DOI: 10.3389/fnut.2023.1214684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common chronic diseases in the elderly population and is characterized by persistent respiratory symptoms and airflow obstruction. During COPD progression, a variety of pulmonary and extrapulmonary complications develop, with sarcopenia being one of the most common extrapulmonary complications. Factors that contribute to the pathogenesis of coexisting COPD and sarcopenia include systemic inflammation, hypoxia, hypercapnia, oxidative stress, protein metabolic imbalance, and myocyte mitochondrial dysfunction. These factors, individually or in concert, affect muscle function, resulting in decreased muscle mass and strength. The occurrence of sarcopenia severely affects the quality of life of patients with COPD, resulting in increased readmission rates, longer hospital admission, and higher mortality. In recent years, studies have found that oral supplementation with protein, micronutrients, fat, or a combination of nutritional supplements can improve the muscle strength and physical performance of these patients; some studies have also elucidated the possible underlying mechanisms. This review aimed to elucidate the role of nutrition among patients with coexisting COPD and sarcopenia.
Collapse
Affiliation(s)
- Yayun Nan
- Department of Ningxia Geriatrics Medical Center, Ningxia People’s Hospital, Yinchuan, China
| | - Yuting Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Yan
- Department of Ningxia Geriatrics Medical Center, Ningxia People’s Hospital, Yinchuan, China
| | - Pingping Zhong
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fufeng Zhang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Linlin Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Beijers RJHCG, Steiner MC, Schols AMWJ. The role of diet and nutrition in the management of COPD. Eur Respir Rev 2023; 32:32/168/230003. [PMID: 37286221 DOI: 10.1183/16000617.0003-2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/27/2023] [Indexed: 06/09/2023] Open
Abstract
In 2014, the European Respiratory Society published a statement on nutritional assessment and therapy in COPD. Since then, increasing research has been performed on the role of diet and nutrition in the prevention and management of COPD. Here, we provide an overview of recent scientific advances and clinical implications. Evidence for a potential role of diet and nutrition as a risk factor in the development of COPD has been accumulating and is reflected in the dietary patterns of patients with COPD. Consuming a healthy diet should, therefore, be promoted in patients with COPD. Distinct COPD phenotypes have been identified incorporating nutritional status, ranging from cachexia and frailty to obesity. The importance of body composition assessment and the need for tailored nutritional screening instruments is further highlighted. Dietary interventions and targeted single or multi-nutrient supplementation can be beneficial when optimal timing is considered. The therapeutic window of opportunity for nutritional interventions during and recovering from an acute exacerbation and hospitalisation is underexplored.
Collapse
Affiliation(s)
- Rosanne J H C G Beijers
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Michael C Steiner
- Leicester NIHR Biomedical Research Centre - Respiratory, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
16
|
Baalbaki N, Blankestijn JM, Abdel-Aziz MI, de Backer J, Bazdar S, Beekers I, Beijers RJHCG, van den Bergh JP, Bloemsma LD, Bogaard HJ, van Bragt JJMH, van den Brink V, Charbonnier JP, Cornelissen MEB, Dagelet Y, Davies EH, van der Does AM, Downward GS, van Drunen CM, Gach D, Geelhoed JJM, Glastra J, Golebski K, Heijink IH, Holtjer JCS, Holverda S, Houweling L, Jacobs JJL, Jonker R, Kos R, Langen RCJ, van der Lee I, Leliveld A, Mohamed Hoesein FAA, Neerincx AH, Noij L, Olsson J, van de Pol M, Pouwels SD, Rolink E, Rutgers M, Șahin H, Schaminee D, Schols AMWJ, Schuurman L, Slingers G, Smeenk O, Sondermeijer B, Skipp PJ, Tamarit M, Verkouter I, Vermeulen R, de Vries R, Weersink EJM, van de Werken M, de Wit-van Wijck Y, Young S, Nossent EJ, Maitland-van der Zee AH. Precision Medicine for More Oxygen (P4O2)-Study Design and First Results of the Long COVID-19 Extension. J Pers Med 2023; 13:1060. [PMID: 37511673 PMCID: PMC10381397 DOI: 10.3390/jpm13071060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Introduction: The coronavirus disease 2019 (COVID-19) pandemic has led to the death of almost 7 million people, however, with a cumulative incidence of 0.76 billion, most people survive COVID-19. Several studies indicate that the acute phase of COVID-19 may be followed by persistent symptoms including fatigue, dyspnea, headache, musculoskeletal symptoms, and pulmonary functional-and radiological abnormalities. However, the impact of COVID-19 on long-term health outcomes remains to be elucidated. Aims: The Precision Medicine for more Oxygen (P4O2) consortium COVID-19 extension aims to identify long COVID patients that are at risk for developing chronic lung disease and furthermore, to identify treatable traits and innovative personalized therapeutic strategies for prevention and treatment. This study aims to describe the study design and first results of the P4O2 COVID-19 cohort. Methods: The P4O2 COVID-19 study is a prospective multicenter cohort study that includes nested personalized counseling intervention trial. Patients, aged 40-65 years, were recruited from outpatient post-COVID clinics from five hospitals in The Netherlands. During study visits at 3-6 and 12-18 months post-COVID-19, data from medical records, pulmonary function tests, chest computed tomography scans and biological samples were collected and questionnaires were administered. Furthermore, exposome data was collected at the patient's home and state-of-the-art imaging techniques as well as multi-omics analyses will be performed on collected data. Results: 95 long COVID patients were enrolled between May 2021 and September 2022. The current study showed persistence of clinical symptoms and signs of pulmonary function test/radiological abnormalities in post-COVID patients at 3-6 months post-COVID. The most commonly reported symptoms included respiratory symptoms (78.9%), neurological symptoms (68.4%) and fatigue (67.4%). Female sex and infection with the Delta, compared with the Beta, SARS-CoV-2 variant were significantly associated with more persisting symptom categories. Conclusions: The P4O2 COVID-19 study contributes to our understanding of the long-term health impacts of COVID-19. Furthermore, P4O2 COVID-19 can lead to the identification of different phenotypes of long COVID patients, for example those that are at risk for developing chronic lung disease. Understanding the mechanisms behind the different phenotypes and identifying these patients at an early stage can help to develop and optimize prevention and treatment strategies.
Collapse
Affiliation(s)
- Nadia Baalbaki
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health, 1105 AZ Amsterdam, The Netherlands
| | - Jelle M Blankestijn
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health, 1105 AZ Amsterdam, The Netherlands
| | - Mahmoud I Abdel-Aziz
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health, 1105 AZ Amsterdam, The Netherlands
- Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | | | - Somayeh Bazdar
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health, 1105 AZ Amsterdam, The Netherlands
| | - Inés Beekers
- ORTEC BV, Department of Health, Houtsingel 5, 2719 EA Zoetermeer, The Netherlands
| | - Rosanne J H C G Beijers
- Department of Respiratory Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, 6200 MD Maastricht, The Netherlands
| | - Joop P van den Bergh
- Department of Internal Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- Department of Internal Medicine, VieCuri Medical Center, 5912 BL Venlo, The Netherlands
| | - Lizan D Bloemsma
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health, 1105 AZ Amsterdam, The Netherlands
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - Job J M H van Bragt
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health, 1105 AZ Amsterdam, The Netherlands
| | - Vera van den Brink
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | | | - Merel E B Cornelissen
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health, 1105 AZ Amsterdam, The Netherlands
| | - Yennece Dagelet
- Breathomix B.V., Bargelaan 200, 2333 CW Leiden, The Netherlands
| | - Elin Haf Davies
- Aparito Netherlands B.V., Galileiweg 8, BioPartner 3 Building, 2333 BD Leiden, The Netherlands
| | - Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - George S Downward
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CL Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Cornelis M van Drunen
- Department of Otorhinolaryngology, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - Debbie Gach
- Department of Respiratory Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, 6200 MD Maastricht, The Netherlands
| | - J J Miranda Geelhoed
- Department of Pulmonology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jorrit Glastra
- Quantib-U, Westblaak 106, 3012 KM Rotterdam, The Netherlands
| | - Kornel Golebski
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
- Department of Otorhinolaryngology, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - Irene H Heijink
- Department of Pulmonology, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Department Pathology & Medical Biology, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Judith C S Holtjer
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | - Laura Houweling
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CL Utrecht, The Netherlands
| | - John J L Jacobs
- ORTEC BV, Department of Health, Houtsingel 5, 2719 EA Zoetermeer, The Netherlands
| | - Renée Jonker
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - Renate Kos
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health, 1105 AZ Amsterdam, The Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Ivo van der Lee
- Department of Pulmonology, Spaarne Hospital, 2134 TM Hoofddorp, The Netherlands
| | - Asabi Leliveld
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - Firdaus A A Mohamed Hoesein
- Department of Radiology, University Medical Center Utrecht and Utrecht University, 3508 GA Utrecht, The Netherlands
| | - Anne H Neerincx
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health, 1105 AZ Amsterdam, The Netherlands
| | - Lieke Noij
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health, 1105 AZ Amsterdam, The Netherlands
| | - Johan Olsson
- Smartfish AS, Oslo Science Park, Gaustadalléen 21, 0349 Oslo, Norway
| | - Marianne van de Pol
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - Simon D Pouwels
- Department of Pulmonology, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Department Pathology & Medical Biology, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Emiel Rolink
- Long Alliantie Nederland, Address Stationsplein 125, 3818 LE Amersfoort, The Netherlands
| | - Michael Rutgers
- Longfonds, Stationsplein 125, 3818 LE Amersfoort, The Netherlands
| | - Havva Șahin
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - Daphne Schaminee
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, 6200 MD Maastricht, The Netherlands
| | - Lisanne Schuurman
- Department of Respiratory Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, 6200 MD Maastricht, The Netherlands
| | - Gitte Slingers
- Breathomix B.V., Bargelaan 200, 2333 CW Leiden, The Netherlands
| | - Olie Smeenk
- Sodaq, Bussumerstraat 34, 1211 BL Hilversum, The Netherlands
| | | | - Paul J Skipp
- TopMD Precision Medicine Ltdincorporated, Southhampton SO45 3PN, UK
| | - Marisca Tamarit
- Breathomix B.V., Bargelaan 200, 2333 CW Leiden, The Netherlands
| | - Inge Verkouter
- ORTEC BV, Department of Health, Houtsingel 5, 2719 EA Zoetermeer, The Netherlands
| | - Roel Vermeulen
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Rianne de Vries
- Breathomix B.V., Bargelaan 200, 2333 CW Leiden, The Netherlands
| | - Els J M Weersink
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - Marco van de Werken
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - Yolanda de Wit-van Wijck
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health, 1105 AZ Amsterdam, The Netherlands
| | - Stewart Young
- Philips GmbH Innovative Technologies, 4646 AG Eindhoven, The Netherlands
| | - Esther J Nossent
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - Anke H Maitland-van der Zee
- Department of Pulmonary Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
17
|
Holst M, Nielsen C, Sørensen LF, Ladefoged BT, Andersen SM, Thomsen SD, Mikkelsen SL. A 1-year follow-up study in patients with idiopathic pulmonary fibrosis regarding adverse outcomes to unintended weight loss. Nutrition 2023; 108:111964. [PMID: 36682268 DOI: 10.1016/j.nut.2022.111964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 11/09/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Malnutrition in pulmonary fibrosis may influence clinical outcomes negatively. This project aimed to investigate if weight, unintended weight loss (UWL) at baseline and weight development, and signs of sarcopenia measured by the strength, assistance with the walking, rising from a chair, climbing stairs, and falls questionnaire (SARC-F) are associated with hospital admissions and mortality for idiopathic pulmonary fibrosis outpatients in ≤1 y as well as referral to pulmonary rehabilitation. METHODS At baseline, prevalence of weight and UWL were sought in a cross-sectional questionnaire study, consecutively, including 100 patients in an outpatient clinic. Medical records were sought for time from diagnosis and comorbidities. One year after inclusion weight, UWL and SARC-F were collected by phone interviews, and medical records were revisited for clinical outcomes. RESULTS Of the 100 patients, two patients died and seven were lost to follow-up. The prevalence of UWL increased within the year (10-13%), and the amount of UWL increased (9.1-11.8 kg). Patients with a UWL at baseline had a significantly higher risk of mortality (odds ratio = 29.8; P = 0.037). UWL at baseline was associated with risk of hospital admissions (odds ratio = 14.7; P = 0.009). Based on the results from SARC-F, 20.9% have signs of sarcopenia. UWL at follow-up was associated with the risk of sarcopenia by SARC-F. Patients with risk of sarcopenia and those with body mass index ≥30 kg/m2 were to a higher degree offered pulmonary rehabilitation; however, participation was low. CONCLUSIONS UWL at baseline was significantly associated with risk of hospital admissions and mortality in ≤1 y in idiopathic pulmonary fibrosis outpatients. Patients with signs of sarcopenia and body mass index ≥30 kg/m2 were most often referred to pulmonary rehabilitation.
Collapse
Affiliation(s)
- Mette Holst
- Center for Nutrition and Intestinal Failure, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Christina Nielsen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lotte Flink Sørensen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Sofie Meyer Andersen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Sabina Lund Mikkelsen
- Center for Nutrition and Intestinal Failure, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
18
|
Developing an Evidence and Theory Based Multimodal Integrative Intervention for the Management of Renal Cachexia: A Theory of Change. Healthcare (Basel) 2022; 10:healthcare10122344. [PMID: 36553868 PMCID: PMC9777598 DOI: 10.3390/healthcare10122344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, we aimed to develop a theoretical framework for a multimodal, integrative, exercise, anti-inflammatory and dietary counselling (MMIEAD) intervention for patients with renal cachexia with reference to how this addresses the underlying causal pathways for renal cachexia, the outcomes anticipated, and how these will be evaluated. We used a Theory of Change (ToC) approach to guide six steps. Step 1 included inputs from a workshop to obtain key stakeholder views on the potential development of a multimodal intervention for renal cachexia. Step 2 included the findings of a mixed-methods study with Health Care Practitioners (HCPs) caring for individuals with End Stage Kidney Disease (ESKD) and cachexia. Step 3 included the results from our systematic literature review on multimodal interventions for cachexia management. In step 4, we used the body of our research team's cachexia research and wider relevant research to gather evidence on the specific components of the multimodal intervention with reference to how this addresses the underlying causal pathways for renal cachexia. In steps 5 and 6 we developed and refined the ToC map in consultation with the core research team and key stakeholders which illustrates how the intervention components of MMIEAD interact to achieve the intended long-term outcomes and anticipated impact. The results of this study provide a theoretical framework for the forthcoming MMIEAD intervention for those with renal cachexia and in subsequent phases will be used to determine whether this intervention is effective. To the best of our knowledge no other multimodal intervention trials for cachexia management have reported a ToC. Therefore, this research may provide a useful framework and contribute to the ongoing development of interventions for cachexia management.
Collapse
|
19
|
Chen Z, Zha L, Ma X, Xu J, Huang D, Wu W, Chen L, Yang F, Liao W, Wang W. Serum Creatinine/Cystatin C Ratio as a Predictor of In-hospital Mortality in Patients Hospitalized with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Lung 2022; 200:609-617. [PMID: 36104573 PMCID: PMC9526688 DOI: 10.1007/s00408-022-00568-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
Abstract
Purpose
Low serum creatinine/cystatin C ratio (CCR) is associated with unfavorable characteristics in patients with chronic obstructive pulmonary disease (COPD); however, the relationship between CCR and in-hospital mortality of patients with acute exacerbation of COPD (AECOPD) is unexplored. Our objective was to assess the value of CCR for predicting in-hospital mortality of patients hospitalized with AECOPD.
Methods
Patients with AECOPD (n = 597) were retrospectively enrolled. Patient’s clinical characteristics and laboratory tests, including serum cystatin C and creatinine, were reviewed. The prediction value of CCR was evaluated using area under the receiver operating characteristic curve (AUC) values. Factors potentially impacting in-hospital mortality were investigated using univariate and multivariate logistic regression analyses.
Results
Mortality rate during hospitalization was 10.05%. CCR was lower in non-surviving vs. survived patients (41.67 vs. 61.52, P < 0.001). AUC value for CCR for in-hospital mortality prediction was 0.79 [95% confidence interval (CI) 0.73–0.85]. On multivariate logistic regression analysis, in-hospital mortality was strongly associated with CCR < 52.27 [odds ratio (OR) 6.23, 95% CI (3.00–12.92), P < 0.001], age ≥ 81 years [OR 2.97, 95% CI (1.20–7.37), P = 0.019], oxygenation index < 300 [OR 3.28, 95% CI (1.27–8.44), P = 0.014], CRP > 8 mg/L [OR 1.84, 95% CI (1.15–2.95), P = 0.012], and D-dimer > 500 ng/L [OR 5.19, 95% CI (1.51–17.79), P = 0.009].
Conclusions
CCR was significantly lower, and is a potential prognostic indicator, in patients with AECOPD who died during hospitalization.
Collapse
Affiliation(s)
- Zhixiang Chen
- Department of Respiratory and Critical Care Medicine, Wuhu Hospital of Traditional Chinese Medicine, No. 430, Jiuhua South Road, Wuhu, Anhui, China.
| | - Lei Zha
- Department of Emergency and Critical Care, Conch Hospital of Anhui Medical University, No. 327, Jiuhua South Road, Wuhu, Anhui, China
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Xiao Ma
- Department of Respiratory and Critical Care Medicine, Wuhu Hospital of Traditional Chinese Medicine, No. 430, Jiuhua South Road, Wuhu, Anhui, China
| | - Jing Xu
- Department of Respiratory and Critical Care Medicine, Wuhu Hospital of Traditional Chinese Medicine, No. 430, Jiuhua South Road, Wuhu, Anhui, China
| | - Dandan Huang
- Department of Respiratory and Critical Care Medicine, Wuhu Hospital of Traditional Chinese Medicine, No. 430, Jiuhua South Road, Wuhu, Anhui, China
| | - Wenlong Wu
- Department of Respiratory and Critical Care Medicine, Wuhu Hospital of Traditional Chinese Medicine, No. 430, Jiuhua South Road, Wuhu, Anhui, China
| | - Long Chen
- Department of Respiratory and Critical Care Medicine, Wuhu Hospital of Traditional Chinese Medicine, No. 430, Jiuhua South Road, Wuhu, Anhui, China
| | - Feng Yang
- Department of Respiratory and Critical Care Medicine, Postgraduate School of Wuhu Hospital of Traditional Chinese Medicine Affiliated With Anhui University of Traditional Chinese Medicine, No. 430, Jiuhua South Road, Wuhu, Anhui, China
| | - Weiling Liao
- Department of Respiratory and Critical Care Medicine, Postgraduate School of Wuhu Hospital of Traditional Chinese Medicine Affiliated With Anhui University of Traditional Chinese Medicine, No. 430, Jiuhua South Road, Wuhu, Anhui, China
| | - Wenhua Wang
- Department of Respiratory and Critical Care Medicine, Postgraduate School of Wuhu Hospital of Traditional Chinese Medicine Affiliated With Anhui University of Traditional Chinese Medicine, No. 430, Jiuhua South Road, Wuhu, Anhui, China
| |
Collapse
|
20
|
Bernardes S, Eckert IDC, Burgel CF, Teixeira PJZ, Silva FM. Increased energy and/or protein intake improves anthropometry and muscle strength in chronic obstructive pulmonary disease patients: a systematic review with meta-analysis on randomised controlled clinical trials. Br J Nutr 2022; 129:1-18. [PMID: 35416134 DOI: 10.1017/s0007114522000976] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Compromised nutritional status is associated with a poor prognosis in chronic obstructive pulmonary disease (COPD) patients. However, the impact of nutritional support in this group of patients is controversial. The present study systematically reviewed the effect of energy and or protein supplements or food fortification on anthropometry and muscle strength of COPD patients. We searched MEDLINE (PubMed), EMBASE, Cochrane Library and Scopus for all published randomised clinical trials without language restriction up to May 2021. Three reviewers performed study selection and data extraction independently. We judged the risk of bias by RoB 2 and the certainty of evidence by the GRADE approach. We included thirty-two randomised controlled trials and compiled thirty-one of them (1414 participants) in the random-effects model meta-analyses. Interventions were energy and/or protein oral nutritional supplements or food fortification added to the diet for at least one week. Pooled analysis revealed that nutritional interventions increased body weight (muscle circumference (MD) = 1·44 kg, 95 % CI 0·81, 2·08, I2 = 73 %), lean body mass (standardised mean difference (SMD) = 0·37; 95 % CI 0·15, 0·59, I2 = 46 %), midarm muscle circumference (MD = 0·29 mm2, 95 % CI 0·02, 0·57, I2 = 0 %), triceps skinfold (MD = 1·09 mm, 95 % CI 0·01, 2·16, I2 = 0 %) and handgrip strength (SMD = 0·39, 95 % CI 0·07, 0·71, I2 = 62 %) compared with control diets. Certainty of evidence ranged from very low to low, and most studies were judged with some concerns or at high risk of bias. This meta-analysis revealed, with limited evidence, that increased protein and/or energy intake positively impacts anthropometric measures and handgrip strength of COPD patients.
Collapse
Affiliation(s)
- Simone Bernardes
- Post-Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Igor da Conceição Eckert
- Undergraduate Nutrition Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Ferri Burgel
- Nutrition Service, Santa Casa de Misericordia of Porto Alegre Hospital Complex, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo José Zimermann Teixeira
- Post-Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- Undergraduate Medicine Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- Pulmologist at Pulmonary Rehabilitation Program, Hospital Pavilhão Pereira Filho, Santa Casa de Misericordia of Porto Alegre Hospital Complex, Porto Alegre, Rio Grande do Sul, Brazil
| | - Flávia Moraes Silva
- Nutrition Department and Postgraduate Program in Nutrition Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rio Grande do Sul, Brazil
| |
Collapse
|
21
|
Cosío BG, Hernández C, Chiner E, Gimeno-Santos E, Pleguezuelos E, Seijas N, Rigau D, López-Campos JL, Soler-Cataluña JJ, Calle M, Miravitlles M, Casanova C. Spanish COPD Guidelines (GesEPOC 2021): Non-pharmacological Treatment Update. Arch Bronconeumol 2022; 58:345-351. [PMID: 35312554 DOI: 10.1016/j.arbres.2021.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/02/2022]
Abstract
In addition to recommendations for pharmacological treatment stratified for risk and phenotype, the new 2021 edition of the Spanish COPD Guidelines (GesEPOC 2021) proposes a personalized approach to treatable traits, defined as a characteristic (clinical, physiological, or biological) that can be identified by diagnostic tests or biomarkers, for which a specific treatment is available. Some treatable traits, such as malnutrition, sedentarism, emphysema or respiratory failure, can be treated with non-pharmacological therapies, and this was not covered in detail in the guidelines. This section of GesEPOC 2021 includes a narrative update with recommendations on dietary treatment, physical activity, respiratory rehabilitation, oxygen therapy, non-invasive ventilation, volume reduction, and lung transplantation. A PICO question with recommendations on the use of supplemental oxygen during exercise in COPD patients without severe hypoxemia is also included.
Collapse
Affiliation(s)
- Borja G Cosío
- Servicio de Neumología, Hospital Universitario Son Espases-IdISBa, Palma de Mallorca, España; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, España.
| | - Carme Hernández
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, España; Dispositivo Transversal de Hospitalización a Domicilio, Hospital Clinic de Barcelona, Barcelona, España
| | - Eusebi Chiner
- Servicio de Neumología, Hospital Universitario San Juan de Alicante, Alicante, España
| | - Elena Gimeno-Santos
- Servicio de Neumología, Hospital Clínico de Barcelona; Programa de enfermedades no transmisibles y medio ambiente, Instituto de Salud Global (ISGlobal) de Barcelona, Barcelona, España
| | - Eulogio Pleguezuelos
- Servicio de Medicina Física y Rehabilitación, Hospital de Mataró, Mataró (Barcelona), España
| | - Nuria Seijas
- Dispositivo Transversal de Hospitalización a Domicilio, Hospital Clinic de Barcelona, Barcelona, España
| | - David Rigau
- Centro Cochrane Iberoamericano, Barcelona, España
| | - José Luis López-Campos
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, España; Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, España
| | - Juan José Soler-Cataluña
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, España; Servicio de Neumología, Hospital Arnau de Vilanova, Valencia, España
| | - Myriam Calle
- Servicio de Neumología, Hospital Clínico San Carlos; Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, España
| | - Marc Miravitlles
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, España; Servicio de Neumología, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, España
| | - Ciro Casanova
- Servicio de Neumología-Unidad de Investigación, Hospital Universitario de La Candelaria, Universidad de La Laguna, Tenerife, España
| |
Collapse
|
22
|
Beijers RJ, van Iersel LEJ, Schuurman LT, Hageman RJJ, Simons SO, van Helvoort A, Gosker HR, Schols AM. Effect of targeted nutrient supplementation on physical activity and health-related quality of life in COPD: study protocol for the randomised controlled NUTRECOVER trial. BMJ Open 2022; 12:e059252. [PMID: 35296491 PMCID: PMC8928317 DOI: 10.1136/bmjopen-2021-059252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Physical and mental health are often affected in chronic obstructive pulmonary disease (COPD) adversely affecting disease course and quality of life. Abnormalities in whole body and cellular energy metabolism, dietary and plasma nutrient status and intestinal permeability have been well established in these patients as systemic determinants of functional decline and underexplored treatable traits. The aim of this study is to investigate the efficacy of 1 year targeted nutrient supplementation on physical activity level and health-related quality of life in patients with COPD. METHODS AND ANALYSIS This study is a single-centre randomised, placebo-controlled, double-blind trial in 166 patients with COPD recruited from multiple hospitals in the Netherlands. The intervention group will receive a multinutrient supplement, including vitamin D, tryptophan, long-chain polyunsaturated fatty acids and prebiotic dietary fibres as main components (94 kCal per daily dose). The control group will receive an isocaloric isonitrogenous placebo. Both groups will ingest one portion per day for at least 12 months and will additionally receive counselling on healthy lifestyle and medical adherence over the course of the study. Coprimary outcomes are physical activity assessed by triaxial accelerometry and health-related quality of life measured by the EuroQol-5 dimensions questionnaire. Secondary outcomes are cognitive function, psychological well-being, physical performance, patient-reported outcomes and the metabolic profile assessed by body composition, systemic inflammation, plasma nutrient levels, intestinal integrity and microbiome composition. Outcomes will be measured at baseline and after 12 months of supplementation. In case patients are hospitalised for a COPD exacerbation, a subset outcome panel will be measured during a 4-week recovery period after hospitalisation. ETHICS AND DISSEMINATION This study was approved by the local Ethics Committee of Maastricht University. Subjects will be included after written informed consent is provided. Study outcomes will be disseminated through presentations at (inter)national conferences and through peer-reviewed journals. TRIAL REGISTRATION NCT03807310.
Collapse
Affiliation(s)
- Rosanne Jhcg Beijers
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Lieke E J van Iersel
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Lisanne T Schuurman
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | | | - Sami O Simons
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Ardy van Helvoort
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
- Danone Nutricia Research, Utrecht, the Netherlands
| | - Harry R Gosker
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Annemie Mwj Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
23
|
Cosío BG, Hernández C, Chiner E, Gimeno-Santos E, Pleguezuelos E, Seijas N, Rigau D, López-Campos JL, Soler-Cataluña JJ, Calle M, Miravitlles M, Casanova C. [Translated article] Spanish COPD Guidelines (GesEPOC 2021): Non-pharmacological Treatment Update. ARCHIVOS DE BRONCONEUMOLOGÍA 2022. [DOI: 10.1016/j.arbres.2021.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
24
|
De Brandt J, Beijers RJHCG, Chiles J, Maddocks M, McDonald MLN, Schols AMWJ, Nyberg A. Update on the Etiology, Assessment, and Management of COPD Cachexia: Considerations for the Clinician. Int J Chron Obstruct Pulmon Dis 2022; 17:2957-2976. [PMID: 36425061 PMCID: PMC9680681 DOI: 10.2147/copd.s334228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Cachexia is a commonly observed but frequently neglected extra-pulmonary manifestation in patients with chronic obstructive pulmonary disease (COPD). Cachexia is a multifactorial syndrome characterized by severe loss of body weight, muscle, and fat, as well as increased protein catabolism. COPD cachexia places a high burden on patients (eg, increased mortality risk and disease burden, reduced exercise capacity and quality of life) and the healthcare system (eg, increased number, length, and cost of hospitalizations). The etiology of COPD cachexia involves a complex interplay of non-modifiable and modifiable factors (eg, smoking, hypoxemia, hypercapnia, physical inactivity, energy imbalance, and exacerbations). Addressing these modifiable factors is needed to prevent and treat COPD cachexia. Oral nutritional supplementation combined with exercise training should be the primary multimodal treatment approach. Adding a pharmacological agent might be considered in some, but not all, patients with COPD cachexia. Clinicians and researchers should use longitudinal measures (eg, weight loss, muscle mass loss) instead of cross-sectional measures (eg, low body mass index or fat-free mass index) where possible to evaluate patients with COPD cachexia. Lastly, in future research, more detailed phenotyping of cachectic patients to enable a better comparison of included patients between studies, prospective longitudinal studies, and more focus on the impact of exacerbations and the role of biomarkers in COPD cachexia, are highly recommended.
Collapse
Affiliation(s)
- Jana De Brandt
- Faculty of Medicine, Department of Community Medicine and Rehabilitation, Section of Physiotherapy, Umeå University, Umeå, Sweden
| | - Rosanne J H C G Beijers
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Joe Chiles
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew Maddocks
- Cicely Saunders Institute of Palliative Care, Policy and Rehabilitation, King's College London, London, UK
| | - Merry-Lynn N McDonald
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - André Nyberg
- Faculty of Medicine, Department of Community Medicine and Rehabilitation, Section of Physiotherapy, Umeå University, Umeå, Sweden
| |
Collapse
|
25
|
Huang WJ, Fan XX, Yang YH, Zeng YM, Ko CY. A review on the Role of Oral Nutritional Supplements in Chronic Obstructive Pulmonary Disease. J Nutr Health Aging 2022; 26:723-731. [PMID: 35842763 DOI: 10.1007/s12603-022-1822-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Due to the high smoking rate in developing countries and the rising aging population in high-income countries, the global prevalence of chronic obstructive pulmonary disease (COPD), estimated to be 11.7%, is increasing and is the third-leading cause of mortality. COPD is likely to be present in elderly individuals with impaired gastro-enteric functions. Gastrointestinal congestion, dyspnea, and anxiety are pathophysiological characteristics of COPD, contributing to poor appetite, reduced dietary intake, and high-energy expenditure. These factors are implicated in the progression of malnutrition in COPD patients. Malnutrition is detrimental to lung functions and is associated with an increased risk of infection, exacerbation and mortality, and a longer duration of hospitalization. Therefore, nutritional support to treat malnutrition in COPD patients is very vital. Oral nutritional supplements (ONS) may hold the key to COPD treatment. To clarify this statement, we review current evidence for ONS in COPD patients to benefit from clinical outcomes.
Collapse
Affiliation(s)
- W-J Huang
- Chih-Yuan Ko, The Second Affiliated Hospital of Fujian Medical University, No. 34, Zhongshanbei Rd, Licheng District, Quanzhou, Fujian Province, China, 362000. Tel.: +86 0595-26655200. E-mail address:
| | | | | | | | | |
Collapse
|
26
|
Baldwin C, de van der Schueren MA, Kruizenga HM, Weekes CE. Dietary advice with or without oral nutritional supplements for disease-related malnutrition in adults. Cochrane Database Syst Rev 2021; 12:CD002008. [PMID: 34931696 PMCID: PMC8691169 DOI: 10.1002/14651858.cd002008.pub5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Disease-related malnutrition has been reported in 10% to 55% of people in hospital and the community and is associated with significant health and social-care costs. Dietary advice (DA) encouraging consumption of energy- and nutrient-rich foods rather than oral nutritional supplements (ONS) may be an initial treatment. OBJECTIVES To examine evidence that DA with/without ONS in adults with disease-related malnutrition improves survival, weight, anthropometry and quality of life (QoL). SEARCH METHODS We identified relevant publications from comprehensive electronic database searches and handsearching. Last search: 01 March 2021. SELECTION CRITERIA Randomised controlled trials (RCTs) of DA with/without ONS in adults with disease-related malnutrition in any healthcare setting compared with no advice, ONS or DA alone. DATA COLLECTION AND ANALYSIS Two authors independently assessed study eligibility, risk of bias, extracted data and graded evidence. MAIN RESULTS We included 94, mostly parallel, RCTs (102 comparisons; 10,284 adults) across many conditions possibly explaining the high heterogeneity. Participants were mostly older people in hospital, residential care and the community, with limited reporting on their sex. Studies lasted from one month to 6.5 years. DA versus no advice - 24 RCTs (3523 participants) Most outcomes had low-certainty evidence. There may be little or no effect on mortality after three months, RR 0.87 (95% confidence interval (CI) 0.26 to 2.96), or at later time points. We had no three-month data, but advice may make little or no difference to hospitalisations, or days in hospital after four to six months and up to 12 months. A similar effect was seen for complications at up to three months, MD 0.00 (95% CI -0.32 to 0.32) and between four and six months. Advice may improve weight after three months, MD 0.97 kg (95% CI 0.06 to 1.87) continuing at four to six months and up to 12 months; and may result in a greater gain in fat-free mass (FFM) after 12 months, but not earlier. It may also improve global QoL at up to three months, MD 3.30 (95% CI 1.47 to 5.13), but not later. DA versus ONS - 12 RCTs (852 participants) All outcomes had low-certainty evidence. There may be little or no effect on mortality after three months, RR 0.66 (95% CI 0.34 to 1.26), or at later time points. Either intervention may make little or no difference to hospitalisations at three months, RR 0.36 (95% CI 0.04 to 3.24), but ONS may reduce hospitalisations up to six months. There was little or no difference between groups in weight change at three months, MD -0.14 kg (95% CI -2.01 to 1.74), or between four to six months. Advice (one study) may lead to better global QoL scores but only after 12 months. No study reported days in hospital, complications or FFM. DA versus DA plus ONS - 22 RCTs (1286 participants) Most outcomes had low-certainty evidence. There may be little or no effect on mortality after three months, RR 0.92 (95% CI 0.47 to 1.80) or at later time points. At three months advice may lead to fewer hospitalisations, RR 1.70 (95% CI 1.04 to 2.77), but not at up to six months. There may be little or no effect on length of hospital stay at up to three months, MD -1.07 (95% CI -4.10 to 1.97). At three months DA plus ONS may lead to fewer complications, RR 0.75 (95% CI o.56 to 0.99); greater weight gain, MD 1.15 kg (95% CI 0.42 to 1.87); and better global QoL scores, MD 0.33 (95% CI 0.09 to 0.57), but this was not seen at other time points. There was no effect on FFM at three months. DA plus ONS if required versus no advice or ONS - 31 RCTs (3308 participants) Evidence was moderate- to low-certainty. There may be little or no effect on mortality at three months, RR 0.82 (95% CI 0.58 to 1.16) or at later time points. Similarly, little or no effect on hospitalisations at three months, RR 0.83 (95% CI 0.59 to 1.15), at four to six months and up to 12 months; on days in hospital at three months, MD -0.12 (95% CI -2.48 to 2.25) or for complications at any time point. At three months, advice plus ONS probably improve weight, MD 1.25 kg (95% CI 0.73 to 1.76) and may improve FFM, 0.82 (95% CI 0.35 to 1.29), but these effects were not seen later. There may be little or no effect of either intervention on global QoL scores at three months, but advice plus ONS may improve scores at up to 12 months. DA plus ONS versus no advice or ONS - 13 RCTs (1315 participants) Evidence was low- to very low-certainty. There may be little or no effect on mortality after three months, RR 0.91 (95% CI 0.55 to 1.52) or at later time points. No study reported hospitalisations and there may be little or no effect on days in hospital after three months, MD -1.81 (95% CI -3.65 to 0.04) or six months. Advice plus ONS may lead to fewer complications up to three months, MD 0.42 (95% CI 0.20 to 0.89) (one study). Interventions may make little or no difference to weight at three months, MD 1.08 kg (95% CI -0.17 to 2.33); however, advice plus ONS may improve weight at four to six months and up to 12 months. Interventions may make little or no difference in FFM or global QoL scores at any time point. AUTHORS' CONCLUSIONS We found no evidence of an effect of any intervention on mortality. There may be weight gain with DA and with DA plus ONS in the short term, but the benefits of DA when compared with ONS are uncertain. The size and direction of effect and the length of intervention and follow-up required for benefits to emerge were inconsistent for all other outcomes. There were too few data for many outcomes to allow meaningful conclusions. Studies focusing on both patient-centred and healthcare outcomes are needed to address the questions in this review.
Collapse
Affiliation(s)
- Christine Baldwin
- Department of Nutritional Sciences, Facutly of Life Sciences & Medicine, King's College London, London, UK
| | - Marian Ae de van der Schueren
- Department of Nutrition, Dietetics and Lifestyle, HAN University of Applied Sciences, Nijmegen, Netherlands
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
| | - Hinke M Kruizenga
- Department of Nutrition and Dietetics, VU University Medical Center, Amsterdam, Netherlands
| | | |
Collapse
|
27
|
Burkes RM, Couper DJ, Barjaktarevic IZ, Cooper CB, Labaki WW, Han MK, Woodruff PG, Lazarus SC, Parekh TM, Paine, III R, Comellas AP, Bowler RP, Loehr LR, Putcha N, Wise RA, Brown TT, Drummond MB. Age-Dependent Associations Between 25-Hydroxy Vitamin D Levels and COPD Symptoms: Analysis of SPIROMICS. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2021; 8:277-291. [PMID: 33829714 PMCID: PMC8237982 DOI: 10.15326/jcopdf.2020.0180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Age and vitamin D levels may affect symptom burden in chronic obstructive pulmonary disease (COPD). We used the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) to determine independent associations between vitamin D levels and COPD symptoms in different age strata. METHODS Serum 25-hydroxy (OH)-vitamin D levels were modeled continuously and categorically (<20 ng/ml versus ≥20 ng/ml). Stratifying by age group (middle-age: 40-64 years old and older: >65 years old), multivariable modeling was performed to identify relationships between 25-OH-vitamin D levels and the COPD Assessment Test (CAT), the modified Medical Research Council score (mMRC), the St George's Respiratory Questionnaire (SGRQ) total and subdomain scores, the Veterans' Specific Activity Questionnaire, and the 6-minute walk test distance. RESULTS InIn the middle-aged group, each 5 ng/ml higher 25-OH-vitamin D level was independently associated with more favorable CAT score (-0.35 [-0.67 to -0.03], P=0.03), total SGRQ (-0.91 [-1.65 to -0.17]; P=0.02), and the SGRQ subdomains (Symptoms:-1.07 [-1.96 to -0.18], P=0.02; Impact: -0.77 [-1.53 to -0.003], P=0.049; Activity: -1.07 [-1.96 to -0.18], P=0.02). These associations persisted after the addition of comorbidity score, reported vitamin D supplementation, outdoor time, or season of blood draw to models. No associations were observed between 25-OH-vitamin D levels and symptom scores in the older age group. DISCUSSION When controlled for clinically relevant covariates, higher 25-OH-vitamin D levels are associated with more favorable respiratory-specific symptoms and quality-of-life assessments in middle-age but not older COPD individuals. Study of the role of vitamin D supplementation in the symptom burden of younger COPD patients is needed.
Collapse
Affiliation(s)
- Robert M. Burkes
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| | - David J. Couper
- Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| | - Igor Z. Barjaktarevic
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Christopher B. Cooper
- Departments of Medicine and Physiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Wassim W. Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Meilan K. Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Prescott G. Woodruff
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California-San Francisco, San Francisco, California, United States
| | - Stephen C. Lazarus
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California-San Francisco, San Francisco, California, United States
| | - Trisha M. Parekh
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Robert Paine, III
- Division of Pulmonary Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Alejandro P. Comellas
- Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Russell P. Bowler
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Hospital, Denver, Colorado, United States
| | - Laura R. Loehr
- Division of General Medicine and Clinical Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, Maryland, United States
| | - Robert A. Wise
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, Maryland, United States
| | - Todd T. Brown
- Division of Endocrinology and Metabolism, Johns Hopkins University, Baltimore, Maryland, United States
| | - M. Bradley Drummond
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
28
|
Zatloukal J, Brat K, Neumannova K, Volakova E, Hejduk K, Kocova E, Kudela O, Kopecky M, Plutinsky M, Koblizek V. Chronic obstructive pulmonary disease - diagnosis and management of stable disease; a personalized approach to care, using the treatable traits concept based on clinical phenotypes. Position paper of the Czech Pneumological and Phthisiological Society. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:325-356. [PMID: 33325455 DOI: 10.5507/bp.2020.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022] Open
Abstract
This position paper has been drafted by experts from the Czech national board of diseases with bronchial obstruction, of the Czech Pneumological and Phthisiological Society. The statements and recommendations are based on both the results of randomized controlled trials and data from cross-sectional and prospective real-life studies to ensure they are as close as possible to the context of daily clinical practice and the current health care system of the Czech Republic. Chronic Obstructive Pulmonary Disease (COPD) is a preventable and treatable heterogeneous syndrome with a number of pulmonary and extrapulmonary clinical features and concomitant chronic diseases. The disease is associated with significant mortality, morbidity and reduced quality of life. The main characteristics include persistent respiratory symptoms and only partially reversible airflow obstruction developing due to an abnormal inflammatory response of the lungs to noxious particles and gases. Oxidative stress, protease-antiprotease imbalance and increased numbers of pro-inflammatory cells (mainly neutrophils) are the main drivers of primarily non-infectious inflammation in COPD. Besides smoking, household air pollution, occupational exposure, low birth weight, frequent respiratory infections during childhood and also genetic factors are important risk factors of COPD development. Progressive airflow limitation and airway remodelling leads to air trapping, static and dynamic hyperinflation, gas exchange abnormalities and decreased exercise capacity. Various features of the disease are expressed unequally in individual patients, resulting in various types of disease presentation, emerging as the "clinical phenotypes" (for specific clinical characteristics) and "treatable traits" (for treatable characteristics) concept. The estimated prevalence of COPD in Czechia is around 6.7% with 3,200-3,500 deaths reported annually. The elementary requirements for diagnosis of COPD are spirometric confirmation of post-bronchodilator airflow obstruction (post-BD FEV1/VCmax <70%) and respiratory symptoms assessement (dyspnoea, exercise limitation, cough and/or sputum production. In order to establish definite COPD diagnosis, a five-step evaluation should be performed, including: 1/ inhalation risk assessment, 2/ symptoms evaluation, 3/ lung function tests, 4/ laboratory tests and 5/ imaging. At the same time, all alternative diagnoses should be excluded. For disease classification, this position paper uses both GOLD stages (1 to 4), GOLD groups (A to D) and evaluation of clinical phenotype(s). Prognosis assessment should be done in each patient. For this purpose, we recommend the use of the BODE or the CADOT index. Six elementary clinical phenotypes are recognized, including chronic bronchitis, frequent exacerbator, emphysematous, asthma/COPD overlap (ACO), bronchiectases with COPD overlap (BCO) and pulmonary cachexia. In our concept, all of these clinical phenotypes are also considered independent treatable traits. For each treatable trait, specific pharmacological and non-pharmacological therapies are defined in this document. The coincidence of two or more clinical phenotypes (i.e., treatable traits) may occur in a single individual, giving the opportunity of fully individualized, phenotype-specific treatment. Treatment of COPD should reflect the complexity and heterogeneity of the disease and be tailored to individual patients. Major goals of COPD treatment are symptom reduction and decreased exacerbation risk. Treatment strategy is divided into five strata: risk elimination, basic treatment, phenotype-specific treatment, treatment of respiratory failure and palliative care, and treatment of comorbidities. Risk elimination includes interventions against tobacco smoking and environmental/occupational exposures. Basic treatment is based on bronchodilator therapy, pulmonary rehabilitation, vaccination, care for appropriate nutrition, inhalation training, education and psychosocial support. Adequate phenotype-specific treatment varies phenotype by phenotype, including more than ten different pharmacological and non-pharmacological strategies. If more than one clinical phenotype is present, treatment strategy should follow the expression of each phenotypic label separately. In such patients, multicomponental therapeutic regimens are needed, resulting in fully individualized care. In the future, stronger measures against smoking, improvements in occupational and environmental health, early diagnosis strategies, as well as biomarker identification for patients responsive to specific treatments are warranted. New classes of treatment (inhaled PDE3/4 inhibitors, single molecule dual bronchodilators, anti-inflammatory drugs, gene editing molecules or new bronchoscopic procedures) are expected to enter the clinical practice in a very few years.
Collapse
Affiliation(s)
- Jaromir Zatloukal
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Kristian Brat
- Department of Respiratory Diseases, University Hospital Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Katerina Neumannova
- Department of Physiotherapy, Faculty of Physical Culture, Palacky University Olomouc, Czech Republic
| | - Eva Volakova
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Karel Hejduk
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,National Screening Centre, Institute of Health Information and Statistics of the Czech Republic, Prague, Czech Republic
| | - Eva Kocova
- Department of Radiology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Ondrej Kudela
- Pulmonary Department, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Michal Kopecky
- Pulmonary Department, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Marek Plutinsky
- Department of Respiratory Diseases, University Hospital Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vladimir Koblizek
- Pulmonary Department, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
29
|
McKeaveney C, Maxwell P, Noble H, Reid J. A Critical Review of Multimodal Interventions for Cachexia. Adv Nutr 2020; 12:523-532. [PMID: 32970097 PMCID: PMC8262513 DOI: 10.1093/advances/nmaa111] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/18/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Currently, there are no standardized treatments for cachexia or severe wasting. There is a growing consensus advocating multimodal interventions to address the complex pathogenesis and metabolic alterations in these conditions. This review examined multimodal treatments intended to alleviate and/or stabilize cachexia and severe wasting. The objectives of this review were to 1) identify multimodal interventions for the treatment of cachexia or associated wasting syndromes in patients with a chronic illness, 2) assess the quality of these studies, and 3) assess the effectiveness of multimodal interventions. Electronic databases including PubMed, MEDLINE, EMBASE, Scopus, Web of Science, Cochrane Library, CINAHL, PEDro, OpenGrey, and clinicaltrials.org were systematically searched using both text words and MeSH (medical subject heading) terms. The literature revealed a dearth of large, well-conducted trials in this area. Fourteen trials (n = 5 cancer, n = 5 chronic obstructive pulmonary disease, n = 4 chronic kidney disease) were included in this review. A total of 1026 patients were included across all studies; sample size ranged between 21 and 138 patients. Baseline and follow-up data were collected between 6 wk and 24 mo. All demonstrated some improvement in favor of the treatment groups, in relevant measures of body composition, nutrition, biomarkers, and functionality; however, caution should be applied due to the heterogenous nature of the interventions and small sample sizes. Overall, the evidence from this review supports the role of multimodal interventions in the treatment of severe wasting. However, randomized controlled trials with a powered sample size and sufficiently lengthy interaction period are necessary to assess if multimodal interventions are effective forms of therapy for improving body composition and nutritional and physical status in patients with cachexia and wasting. The protocol for this review is registered with Prospero (ID: CRD42019124374).
Collapse
Affiliation(s)
- Clare McKeaveney
- School of Nursing and Midwifery, Medical Biology Centre, Queen's University
Belfast, Belfast, Northern Ireland
| | - Peter Maxwell
- Centre for Public Health, Queen's University Belfast, Institute of Clinical
Science, Royal Victoria Hospital, Belfast, Northern Ireland,Regional Nephrology Unit, Belfast City Hospital, Belfast Health Social Care
Trust, Belfast, Northern Ireland
| | - Helen Noble
- School of Nursing and Midwifery, Medical Biology Centre, Queen's University
Belfast, Belfast, Northern Ireland
| | | |
Collapse
|
30
|
Burge AT, Cox NS, Abramson MJ, Holland AE. Interventions for promoting physical activity in people with chronic obstructive pulmonary disease (COPD). Cochrane Database Syst Rev 2020; 4:CD012626. [PMID: 32297320 PMCID: PMC7160071 DOI: 10.1002/14651858.cd012626.pub2] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Escalating awareness of the magnitude of the challenge posed by low levels of physical activity in people with chronic obstructive pulmonary disease (COPD) highlights the need for interventions to increase physical activity participation. The widely-accepted benefits of physical activity, coupled with the increasing availability of wearable monitoring devices to objectively measure participation, has led to a dramatic rise in the number and variety of studies that aimed to improve the physical activity of people with COPD. However, little was known about the relative efficacy of interventions tested so far. OBJECTIVES In people with COPD, which interventions are effective at improving objectively-assessed physical activity? SEARCH METHODS We identified trials from the Cochrane Airways Trials Register Register, which contains records identified from bibliographic databases including the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, CINAHL, AMED, and PsycINFO. We also searched PEDro, ClinicalTrials.gov, the World Health Organization International Clinical Trials Registry Platform portal and the Australian New Zealand Clinical Trials Registry (from inception to June 2019). We checked reference lists of all primary studies and review articles for additional references, as well as respiratory journals and respiratory meeting abstracts, to identify relevant studies. SELECTION CRITERIA We included randomised controlled trials of interventions that used objective measures for the assessment of physical activity in people with COPD. Trials compared an intervention with no intervention or a sham/placebo intervention, an intervention in addition to another standard intervention common to both groups, or two different interventions. DATA COLLECTION AND ANALYSIS We used standard methods recommended by Cochrane. Subgroup analyses were possible for supervised compared to unsupervised pulmonary rehabilitation programmes in clinically-stable COPD for a range of physical activity outcomes. Secondary outcomes were health-related quality of life, exercise capacity, adverse events and adherence. Insufficient data were available to perform prespecified subgroup analyses by duration of intervention or disease severity. We undertook sensitivity analyses by removing studies that were at high or unclear risk of bias for the domains of blinding and incomplete outcome data. MAIN RESULTS We included 76 studies with 8018 participants. Most studies were funded by government bodies, although some were sponsored by equipment or drug manufacturers. Only 38 studies had physical activity as a primary outcome. A diverse range of interventions have been assessed, primarily in single studies, but improvements have not been systematically demonstrated following any particular interventions. Where improvements were demonstrated, results were confined to single studies, or data for maintained improvement were not provided. Step count was the most frequently reported outcome, but it was commonly assessed using devices with documented inaccuracy for this variable. Compared to no intervention, the mean difference (MD) in time in moderate- to vigorous-intensity physical activity (MVPA) following pulmonary rehabilitation was four minutes per day (95% confidence interval (CI) -2 to 9; 3 studies, 190 participants; low-certainty evidence). An improvement was demonstrated following high-intensity interval exercise training (6 minutes per day, 95% CI 4 to 8; 2 studies, 275 participants; moderate-certainty evidence). One study demonstrated an improvement following six months of physical activity counselling (MD 11 minutes per day, 95% CI 7 to 15; 1 study, 280 participants; moderate-certainty evidence), but we found mixed results for the addition of physical activity counselling to pulmonary rehabilitation. There was an improvement following three to four weeks of pharmacological treatment with long-acting muscarinic antagonist and long-acting beta2-agonist (LAMA/LABA) compared to placebo (MD 10 minutes per day, 95% CI 4 to 15; 2 studies, 423 participants; high-certainty evidence). These interventions also demonstrated improvements in other measures of physical activity. Other interventions included self-management strategies, nutritional supplementation, supplemental oxygen, endobronchial valve surgery, non-invasive ventilation, neuromuscular electrical stimulation and inspiratory muscle training. AUTHORS' CONCLUSIONS A diverse range of interventions have been assessed, primarily in single studies. Improvements in physical activity have not been systematically demonstrated following any particular intervention. There was limited evidence for improvement in physical activity with strategies including exercise training, physical activity counselling and pharmacological management. The optimal timing, components, duration and models for interventions are still unclear. Assessment of quality was limited by a lack of methodological detail. There was scant evidence for a continued effect over time following completion of interventions, a likely requirement for meaningful health benefits for people with COPD.
Collapse
Affiliation(s)
- Angela T Burge
- La Trobe UniversityDepartment of Physiotherapy, Podiatry and Prosthetics and Orthotics, School of Allied Health, Human Services and SportMelbourneVictoriaAustralia
- Institute for Breathing and SleepMelbourneAustralia
- Alfred HealthPhysiotherapyPO Box 315MelbourneAustraliaPrahran VIC 3181
- Monash UniversityDepartment of Allergy, Clinical Immunology and Respiratory MedicineMelbourneAustralia
| | - Narelle S Cox
- Institute for Breathing and SleepMelbourneAustralia
- Monash UniversityDepartment of Allergy, Clinical Immunology and Respiratory MedicineMelbourneAustralia
- School of Allied Health, Human Services and Sport, La Trobe UniversityDepartment of Physiotherapy, Podiatry and Prosthetics and OrthoticsMelbourneVictoriaAustralia3004
| | - Michael J Abramson
- Monash UniversitySchool of Public Health & Preventive MedicineMelbourneVictoriaAustralia3004
| | - Anne E Holland
- La Trobe UniversityDepartment of Physiotherapy, Podiatry and Prosthetics and Orthotics, School of Allied Health, Human Services and SportMelbourneVictoriaAustralia
- Institute for Breathing and SleepMelbourneAustralia
- Alfred HealthPhysiotherapyPO Box 315MelbourneAustraliaPrahran VIC 3181
- Monash UniversityDepartment of Allergy, Clinical Immunology and Respiratory MedicineMelbourneAustralia
| | | |
Collapse
|