1
|
Younge N, Patel RM. Probiotics and the Risk of Infection. Clin Perinatol 2025; 52:87-100. [PMID: 39892956 PMCID: PMC11789005 DOI: 10.1016/j.clp.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Probiotic use has increased in preterm infants and may reduce the risk of necrotizing enterocolitis. Probiotic-associated infection is a concern for infants receiving probiotic supplementation in the neonatal intensive care unit, as highlighted by a recent case and subsequent action by the United States Food and Drug Administration. Based on reports to date, invasive infection is an infrequent but known risk of probiotic supplementation. In this article, we discuss the epidemiology and pathophysiology of invasive infection in preterm infants, review the benefits and risks of probiotic as regulations and available products continue to evolve.
Collapse
Affiliation(s)
- Noelle Younge
- Department of Pediatrics, Duke University, 2400 Pratt Street, DUMC Box 2739, Durham, NC 27705, USA
| | - Ravi M Patel
- Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Arthur M. Blank Hospital, 2220 North Druid Hills Road NE, CL.06323, Atlanta, GA 30329, USA.
| |
Collapse
|
2
|
Provitera L, Tomaselli A, Algieri F, Tripodi M, Raffaeli G, Amodeo I, Raymo L, Bronzoni CV, Fumagalli M, Garrido F, Cavallaro G. Gut Microbiota-Derived Metabolites and Their Role in the Pathogenesis of Necrotizing Enterocolitis in Preterm Infants: A Narrative Review. Metabolites 2024; 14:570. [PMID: 39590806 PMCID: PMC11596930 DOI: 10.3390/metabo14110570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease that occurs predominantly in premature infants and is characterized by the inflammation and necrosis of the intestine, showing high morbidity and mortality rates. Despite decades of research efforts, a specific treatment is currently lacking, and preventive strategies are the mainstays of care. This review aims to help understand the complex interplay between gut microbiota and their metabolites in NEC pathogenesis. In particular, we focused on how these factors can influence gut health, immune responses, and intestinal barrier integrity. Discussion: Current research has increasingly focused on the role of the gut microbiota and their metabolites in NEC pathogenesis, thanks to their involvement in modulating gut health, immune responses, and intestinal barrier integrity. Conclusions: A deeper understanding of the interplay between gut microbiota and their metabolites is essential for developing personalized strategies to prevent NEC. By targeting these microbial interactions, new therapeutic approaches may emerge that offer improved outcomes for preterm infants at a high risk of NEC.
Collapse
Affiliation(s)
- Livia Provitera
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.T.); (M.T.); (G.R.); (I.A.); (L.R.); (C.V.B.); (M.F.); (G.C.)
| | - Andrea Tomaselli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.T.); (M.T.); (G.R.); (I.A.); (L.R.); (C.V.B.); (M.F.); (G.C.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Francesca Algieri
- Research and Development Unit, Postbiotica S.R.L., 20123 Milan, Italy;
| | - Matteo Tripodi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.T.); (M.T.); (G.R.); (I.A.); (L.R.); (C.V.B.); (M.F.); (G.C.)
| | - Genny Raffaeli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.T.); (M.T.); (G.R.); (I.A.); (L.R.); (C.V.B.); (M.F.); (G.C.)
| | - Ilaria Amodeo
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.T.); (M.T.); (G.R.); (I.A.); (L.R.); (C.V.B.); (M.F.); (G.C.)
| | - Ludovica Raymo
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.T.); (M.T.); (G.R.); (I.A.); (L.R.); (C.V.B.); (M.F.); (G.C.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Carolina Vittoria Bronzoni
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.T.); (M.T.); (G.R.); (I.A.); (L.R.); (C.V.B.); (M.F.); (G.C.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Monica Fumagalli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.T.); (M.T.); (G.R.); (I.A.); (L.R.); (C.V.B.); (M.F.); (G.C.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Felipe Garrido
- Department of Pediatrics, Clínica Universidad de Navarra, 28027 Madrid, Spain;
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.T.); (M.T.); (G.R.); (I.A.); (L.R.); (C.V.B.); (M.F.); (G.C.)
| |
Collapse
|
3
|
Piccioni A, Spagnuolo F, Candelli M, Voza A, Covino M, Gasbarrini A, Franceschi F. The Gut Microbiome in Sepsis: From Dysbiosis to Personalized Therapy. J Clin Med 2024; 13:6082. [PMID: 39458032 PMCID: PMC11508704 DOI: 10.3390/jcm13206082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Sepsis is a complex clinical syndrome characterized by an uncontrolled inflammatory response to an infection that may result in septic shock and death. Recent research has revealed a crucial link between sepsis and alterations in the gut microbiota, showing that the microbiome could serve an essential function in its pathogenesis and prognosis. In sepsis, the gut microbiota undergoes significant dysbiosis, transitioning from a beneficial commensal flora to a predominance of pathobionts. This transformation can lead to a dysfunction of the intestinal barrier, compromising the host's immune response, which contributes to the severity of the disease. The gut microbiota is an intricate system of protozoa, fungi, bacteria, and viruses that are essential for maintaining immunity and metabolic balance. In sepsis, there is a reduction in microbial heterogeneity and a predominance of pathogenic bacteria, such as proteobacteria, which can exacerbate inflammation and negatively influence clinical outcomes. Microbial compounds, such as short-chain fatty acids (SCFAs), perform a crucial task in modulating the inflammatory response and maintaining intestinal barrier function. However, the role of other microbiota components, such as viruses and fungi, in sepsis remains unclear. Innovative therapeutic strategies aim to modulate the gut microbiota to improve the management of sepsis. These include selective digestive decontamination (SDD), probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT), all of which have shown potential, although variable, results. The future of sepsis management could benefit greatly from personalized treatment based on the microbiota. Rapid and easy-to-implement tests to assess microbiome profiles and metabolites associated with sepsis could revolutionize the disease's diagnosis and management. These approaches could not only improve patient prognosis but also reduce dependence on antibiotic therapies and promote more targeted and sustainable treatment strategies. Nevertheless, there is still limited clarity regarding the ideal composition of the microbiota, which should be further characterized in the near future. Similarly, the benefits of therapeutic approaches should be validated through additional studies.
Collapse
Affiliation(s)
- Andrea Piccioni
- Department of Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (M.C.); (M.C.); (F.F.)
| | - Fabio Spagnuolo
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Marcello Candelli
- Department of Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (M.C.); (M.C.); (F.F.)
| | - Antonio Voza
- Department of Emergency Medicine, IRCCS-Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | - Marcello Covino
- Department of Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (M.C.); (M.C.); (F.F.)
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Medical and Surgical Science Department, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (M.C.); (M.C.); (F.F.)
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
4
|
Mahmoudi F, Jalayeri MHT, Montaseri A, MohamedKhosroshahi L, Baradaran B. Microbial natural compounds and secondary metabolites as Immunomodulators: A review. Int J Biol Macromol 2024; 278:134778. [PMID: 39153680 DOI: 10.1016/j.ijbiomac.2024.134778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Immunomodulatory therapies are beneficial strategies for the improvement of immune system function. Today, due to the increasing prevalence of immune disorders, cancer, and new viral diseases, there is a greater need to introduce immunomodulatory compounds with more efficiency and fewer side effects. Microbial derivatives are fertile and attractive grounds for discovering lots of novel compounds with various medical properties. The discovery of many natural compounds derived from bacterial sources, such as secondary metabolites with promising immunomodulating activities, represents the importance of this topic in drug discovery and emphasizes the necessity for a coherent source of study in this area. Considering this need, in this review, we aim to focus on the current information about the immunomodulatory effects of bacterial secondary metabolites and natural immunomodulators derived from microorganisms.
Collapse
Affiliation(s)
- Fariba Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hadi Tajik Jalayeri
- Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital Golestan University of Medical Sciences, Gorgan, Iran
| | - Azadeh Montaseri
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Leila MohamedKhosroshahi
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Dang DX, Choi SY, Choi YJ, Lee JH, Castex M, Chevaux E, Saornil D, de Laguna FB, Jimenez G, Kim IH. Probiotic, Paraprobiotic, and Hydrolyzed Yeast Mixture Supplementation Has Comparable Effects to Zinc Oxide in Improving Growth Performance and Ameliorating Post-weaning Diarrhea in Weaned Piglets. Probiotics Antimicrob Proteins 2024; 16:249-258. [PMID: 36630002 DOI: 10.1007/s12602-022-10008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 01/12/2023]
Abstract
A total of 150 21-day-old weaned piglets [(Yorkshire × Landrace) × Duroc] were randomly assigned to 3 groups (CON, TRT1, TRT2) to evaluate the effects of dietary supplementation of probiotic, paraprobiotic, and hydrolyzed yeast mixture (PPY) on growth performance, nutrient digestibility, fecal bacterial counts, fecal calprotectin contents, and diarrhea rate in a 42-day experiment (phase 1: days 1-14; phase 2: days 15-42). There were 10 replicate pens per treatment with 5 pigs per pen (three gilts and two barrows). Pigs in CON were only provided with a basal diet. Pigs in TRT1 were provided with a basal diet + 3000 mg/kg zinc oxide during phase 1 and a basal diet during phase 2. Pigs in TRT2 were provided with a basal diet + 200 mg/kg probiotic (Saccharomyces cerevisiae boulardii) + 800 mg/kg paraprobiotic (inactivated yeast strains of Saccharomyces cerevisiae and Cyberlindnera jadinii) + 10 g/kg hydrolyzed yeast mixture during phase 1, and a basal diet + 100 mg/kg probiotic + 400 mg/kg paraprobiotic mixture during phase 2. Pigs in TRT1 and TRT2 were significantly heavier at day 14 and 42 than CON pigs. Growth rate during days 1-14, 15-42, and 1-42 and feed efficiency during days 1-14 were similarly affected by treatment while feed efficiency was significantly higher for TRT2 pigs between 15-42 and 1-42 days. Moreover, nitrogen and energy digestibility in both TRT1 and TRT2 were higher than that in CON. During experimental periods, diarrhea rate in TRT1 and TRT2 was lower than that in CON. Therefore, we demonstrated that PPY supplementation had comparable effects as ZnO in improving growth performance and nutrient digestibility as well as ameliorating post-weaning diarrhea in weaned piglets.
Collapse
Affiliation(s)
- De Xin Dang
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
| | - Si Yeong Choi
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
- Lallemand SAS, 19 Rue de Briquetiers, 31702, Blagnac, France
| | - Young Jae Choi
- Bioanalysis and Pharmacokinetics Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Jong Hwa Lee
- Bioanalysis and Pharmacokinetics Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Mathieu Castex
- Lallemand SAS, 19 Rue de Briquetiers, 31702, Blagnac, France
| | - Eric Chevaux
- Lallemand SAS, 19 Rue de Briquetiers, 31702, Blagnac, France
| | - David Saornil
- Lallemand SAS, 19 Rue de Briquetiers, 31702, Blagnac, France
| | | | | | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea.
| |
Collapse
|
6
|
Joosten K, Vermeulen M. Principles of feeding the preterm infant. Clin Nutr ESPEN 2024; 59:320-327. [PMID: 38220393 DOI: 10.1016/j.clnesp.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Koen Joosten
- Erasmus MC-Sophia Childrens's Hospital, Department of Pediatric & Neonatal Intensive Care, Rotterdam NL.
| | - Marijn Vermeulen
- Erasmus MC-Sophia Childrens's Hospital, Department of Pediatric & Neonatal Intensive Care, Rotterdam NL
| |
Collapse
|
7
|
Kolba N, Tako E. Effective alternatives for dietary interventions for necrotizing enterocolitis: a systematic review of in vivo studies. Crit Rev Food Sci Nutr 2023; 65:811-831. [PMID: 37971890 DOI: 10.1080/10408398.2023.2281623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Necrotizing enterocolitis (NEC) is a significant cause of morbidity and mortality among neonates and low birth weight children in the United States. Current treatment options, such as antibiotics and intestinal resections, often result in complications related to pediatric nutrition and development. This systematic review aimed to identify alternative dietary bioactive compounds that have shown promising outcomes in ameliorating NEC in vivo studies conducted within the past six years. Following PRISMA guidelines and registering in PROSPERO (CRD42023330617), we conducted a comprehensive search of PubMed, Scopus, and Web of Science. Our analysis included 19 studies, predominantly involving in vivo models of rats (Rattus norvegicus) and mice (Mus musculus). The findings revealed that various types of compounds have demonstrated successful amelioration of NEC symptoms. Specifically, six studies employed plant phenolics, seven utilized plant metabolites/cytotoxic chemicals, three explored the efficacy of vitamins, and three investigated the potential of whole food extracts. Importantly, all administered compounds exhibited positive effects in mitigating the disease. These results highlight the potential of natural cytotoxic chemicals derived from medicinal plants in identifying and implementing powerful alternative drugs and therapies for NEC. Such approaches have the capacity to impact multiple pathways involved in the development and progression of NEC symptoms.
Collapse
Affiliation(s)
- Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
8
|
Saeed M, Afzal Z, Afzal F, Khan RU, Elnesr SS, Alagawany M, Chen H. Use of Postbiotic as Growth Promoter in Poultry Industry: A Review of Current Knowledge and Future Prospects. Food Sci Anim Resour 2023; 43:1111-1127. [PMID: 37969321 PMCID: PMC10636223 DOI: 10.5851/kosfa.2023.e52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 11/17/2023] Open
Abstract
Health-promoting preparations of inanimate microorganisms or their components are postbiotics. Since probiotics are sensitive to heat and oxygen, postbiotics are stable during industrial processing and storage. Postbiotics boost poultry growth, feed efficiency, intestinal pathogen reduction, and health, making them acceptable drivers of sustainable poultry production. It contains many important biological properties, such as immunomodulatory, antioxidant, and anti-inflammatory responses. Postbiotics revealed promising antioxidant effects due to higher concentrations of uronic acid and due to some enzyme's production of antioxidants, e.g., superoxide dismutase, glutathione peroxidase, and nicotinamide adenine dinucleotide oxidases and peroxidases. Postbiotics improve intestinal villi, increase lactic acid production, and reduce Enterobacteriaceae and fecal pH, all of which lead to a better immune reaction and health of the gut, as well as better growth performance. P13K/AKT as a potential target pathway for postbiotics-improved intestinal barrier functions. Similarly, postbiotics reduce yolk and plasma cholesterol levels in layers and improve egg quality. It was revealed that favorable outcomes were obtained with various inclusion levels at 1 kg and 0.5 kg. According to several studies, postbiotic compounds significantly increased poultry performance. This review article presents the most recent research investigating the beneficial results of postbiotics in poultry.
Collapse
Affiliation(s)
- Muhammad Saeed
- School of Life Sciences, Jiangsu
University, Zhenjiang 212013, China
| | - Zoya Afzal
- Department of Poultry Science, Faculty of
Animal Production and Technology, The Cholistan University of Veterinary and
Animal Sciences, Bahawalpur 63100, Pakistan
| | - Fatima Afzal
- Department of Life Sciences, Sogang
University, Seoul 04107, Korea
| | - Rifat Ullah Khan
- College of Veterinary Sciences, Faculty of
Animal Husbandry and Veterinary Sciences, The University of Agriculture
Peshawar, Peshawar 25120, Pakistan
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty
of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of
Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Huayou Chen
- School of Life Sciences, Jiangsu
University, Zhenjiang 212013, China
| |
Collapse
|
9
|
Mehta JP, Ayakar S, Singhal RS. The potential of paraprobiotics and postbiotics to modulate the immune system: A Review. Microbiol Res 2023; 275:127449. [PMID: 37454427 DOI: 10.1016/j.micres.2023.127449] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Probiotics are viable microorganisms that provide beneficial health effects when consumed in adequate quantity by the host. Immunomodulation is one of the major beneficial effects of probiotics that is a result of the colonization of probiotic microorganisms in the gut, their interaction with the intestinal cells, production of various metabolites and by-products. The last few years have displayed an increasing number of studies on non-viable probiotics (paraprobiotics) and microbial by-products (postbiotics) that prove beneficial to human health by providing positive immune responses even in the inactivated form. The increasing number of research studies compare the effects of viable and non-viable probiotics, their by-products, and metabolites. This review focuses on the ability of different types of paraprobiotics and postbiotics to modulate the immune system. A majority of paraprobiotics are developed from Lactobacillus and Bifidobacterium strains. The postbiotic components that modulate the biological reactions include lipoteichoic acids, bacteriocins, short-chain fatty acids, peptidoglycan, and exopolysaccharides have been reported. We have reviewed paraprobiotics and postbiotics that are commercial as well as in research. Paraprobiotics and postbiotics can be a possible replacement for live probiotics for immunocompromised people. Paraprobiotics display an active role in maintaining T-cell mediated immunity and have been shown to treat colitis. Postbiotic components exhibit properties of pro and anti-immune, anti-tumor, anti-microbial, antioxidant, and anti-biofilm. More research is required on the efficient conversion of probiotics to paraprobiotics, the isolation and purification of different postbiotics, and stability studies during the shelf life. The majority of the articles report the effects of direct ingestion of different '-biotics' without blending in any food product.
Collapse
Affiliation(s)
- Jeet P Mehta
- Department of Biotechnology, Institute of Chemical Technology, Indian Oil Odisha Campus, Bhubaneswar, Odisha 751013, India
| | - Sonal Ayakar
- Department of Biotechnology, Institute of Chemical Technology, Indian Oil Odisha Campus, Bhubaneswar, Odisha 751013, India; Department of Biological Science, Birla Institute of Technology & Science, Pilani, K K Birla Goa Campus, Goa 403726, India.
| | - Rekha S Singhal
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, Maharashtra 400019, India
| |
Collapse
|
10
|
Lou X, Xue J, Shao R, Mo C, Wang F, Chen G. Postbiotics as potential new therapeutic agents for sepsis. BURNS & TRAUMA 2023; 11:tkad022. [PMID: 37334140 PMCID: PMC10271603 DOI: 10.1093/burnst/tkad022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/01/2023] [Indexed: 06/20/2023]
Abstract
Sepsis is the main cause of death in critically ill patients and gut microbiota dysbiosis plays a crucial role in sepsis. On the one hand, sepsis leads to the destruction of gut microbiota and induces and aggravates terminal organ dysfunction. On the other hand, the activation of pathogenic gut flora and the reduction in beneficial microbial products increase the susceptibility of the host to sepsis. Although probiotics or fecal microbiota transplantation preserve gut barrier function on multiple levels, their efficacy in sepsis with intestinal microbiota disruptions remains uncertain. Postbiotics consist of inactivated microbial cells or cell components. They possess antimicrobial, immunomodulatory, antioxidant and antiproliferative activities. Microbiota-targeted therapy strategies, such as postbiotics, may reduce the incidence of sepsis and improve the prognosis of patients with sepsis by regulating gut microbial metabolites, improving intestinal barrier integrity and changing the composition of the gut microbiota. They offer a variety of mechanisms and might even be superior to more conventional 'biotics' such as probiotics and prebiotics. In this review, we present an overview of the concept of postbiotics and summarize what is currently known about postbiotics and their prospective utility in sepsis therapy. Overall, postbiotics show promise as a viable adjunctive therapy option for sepsis.
Collapse
Affiliation(s)
- Xiran Lou
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Jinfang Xue
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Ruifei Shao
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Chunyan Mo
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Fuping Wang
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming 650034, China
| | - Guobing Chen
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming 650034, China
| |
Collapse
|
11
|
Park SJ, Sharma A, Lee HJ. Postbiotics against Obesity: Perception and Overview Based on Pre-Clinical and Clinical Studies. Int J Mol Sci 2023; 24:6414. [PMID: 37047387 PMCID: PMC10095054 DOI: 10.3390/ijms24076414] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Overweight and obesity are significant global public health concerns that are increasing in prevalence at an alarming rate. Numerous studies have demonstrated the benefits of probiotics against obesity. Postbiotics are the next generation of probiotics that include bacteria-free extracts and nonviable microorganisms that may be advantageous to the host and are being increasingly preferred over regular probiotics. However, the impact of postbiotics on obesity has not been thoroughly investigated. Therefore, the goal of this review is to gather in-depth data on the ability of postbiotics to combat obesity. Postbiotics have been reported to have significant potential in alleviating obesity. This review comprehensively discusses the anti-obesity effects of postbiotics in cellular, animal, and clinical studies. Postbiotics exert anti-obesity effects via multiple mechanisms, with the major mechanisms including increased energy expenditure, reduced adipogenesis and adipocyte differentiation, suppression of food intake, inhibition of lipid absorption, regulation of lipid metabolism, and regulation of gut dysbiosis. Future research should include further in-depth studies on strain identification, scale-up of postbiotics, identification of underlying mechanisms, and well-defined clinical studies. Postbiotics could be a promising dietary intervention for the prevention and management of obesity.
Collapse
Affiliation(s)
- Seon-Joo Park
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
12
|
Microbiota-Derived Natural Products Targeting Cancer Stem Cells: Inside the Gut Pharma Factory. Int J Mol Sci 2023; 24:ijms24054997. [PMID: 36902427 PMCID: PMC10003410 DOI: 10.3390/ijms24054997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Cancer stem cells (CSCs) have drawn much attention as important tumour-initiating cells that may also be crucial for recurrence after chemotherapy. Although the activity of CSCs in various forms of cancer is complex and yet to be fully elucidated, opportunities for therapies targeting CSCs exist. CSCs are molecularly distinct from bulk tumour cells, so they can be targeted by exploiting their signature molecular pathways. Inhibiting stemness has the potential to reduce the risk posed by CSCs by limiting or eliminating their capacity for tumorigenesis, proliferation, metastasis, and recurrence. Here, we briefly described the role of CSCs in tumour biology, the mechanisms involved in CSC therapy resistance, and the role of the gut microbiota in cancer development and treatment, to then review and discuss the current advances in the discovery of microbiota-derived natural compounds targeting CSCs. Collectively, our overview suggests that dietary intervention, toward the production of those identified microbial metabolites capable of suppressing CSC properties, is a promising approach to support standard chemotherapy.
Collapse
|
13
|
Guimarães VHD, Marinho BM, Motta-Santos D, Mendes GDRL, Santos SHS. Nutritional implications in the mechanistic link between the intestinal microbiome, renin-angiotensin system, and the development of obesity and metabolic syndrome. J Nutr Biochem 2023; 113:109252. [PMID: 36509338 DOI: 10.1016/j.jnutbio.2022.109252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/12/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Obesity and metabolic disorders represent a significant global health problem and the gut microbiota plays an important role in modulating systemic homeostasis. Recent evidence shows that microbiota and its signaling pathways may affect the whole metabolism and the Renin-Angiotensin System (RAS), which in turn seems to modify microbiota. The present review aimed to investigate nutritional implications in the mechanistic link between the intestinal microbiome, renin-angiotensin system, and the development of obesity and metabolic syndrome components. A description of metabolic changes was obtained based on relevant scientific literature. The molecular and physiological mechanisms that impact the human microbiome were addressed, including the gut microbiota associated with obesity, diabetes, and hepatic steatosis. The RAS interaction signaling and modulation were analyzed. Strategies including the use of prebiotics, symbiotics, probiotics, and biotechnology may affect the gut microbiota and its impact on human health.
Collapse
Affiliation(s)
- Victor Hugo Dantas Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Barbhara Mota Marinho
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Daisy Motta-Santos
- School of Physical Education, Physiotherapy, and Occupational Therapy - EEFFTO, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela da Rocha Lemos Mendes
- Food Engineering, Institute of Agricultural Sciences (ICA), Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil; Food Engineering, Institute of Agricultural Sciences (ICA), Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Hyseni E, Glavas Dodov M. Probiotics in dermatological and cosmetic products – application and efficiency. MAKEDONSKO FARMACEVTSKI BILTEN 2023. [DOI: 10.33320/maced.pharm.bull.2022.68.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The term “probiotics” has first been used in 1907 by Elie Metchnikoff. Since then, probiotics have been part of research not only in regards of digestive health, but also inflammatory diseases. Lately, there has been an increased interest of probiotic’s effects in skincare. The management of atopic dermatitis, acne, psoriasis, photo aging, skin cancer, intimate care, oral care, wound healing is getting harder each passing day, due to increased antibiotic resistance and other side effects of conventional therapy. Therefore, new ingredients have been investigated and probiotics have been proved to be effective in treating various skin conditions.
This review aims to evaluate the scientific evidence on topical and oral probiotics, and to evaluate the efficacy of cosmetic and dermatological products containing probiotics. Many studies have shown that skin and gut microbiome alterations have an important role in skin health. Although this is a new topic in dermatology and cosmetology, there have been some promising results in lots of research studies that the use of probiotics in cosmetic products may help improve the patient’s outcome. While oral probiotics have been shown to promote gut health, which influences the host immune system and helps treat different skin diseases, the mechanism of action of topical probiotics is not yet fully understood. Although the number of commercial probiotic cosmetic products released in the market is increasing and most of the studies have not shown any serious side effect of probiotics, further studies, in larger and heterogeneous groups are needed.
Collapse
Affiliation(s)
- Edita Hyseni
- Center of Pharmaceutical nanotechnology, Faculty of Pharmacy, Ss Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, N. Macedonia
| | - Marija Glavas Dodov
- Center of Pharmaceutical nanotechnology, Faculty of Pharmacy, Ss Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, N. Macedonia
| |
Collapse
|
15
|
Liang D, Wu F, Zhou D, Tan B, Chen T. Commercial probiotic products in public health: current status and potential limitations. Crit Rev Food Sci Nutr 2023; 64:6455-6476. [PMID: 36688290 DOI: 10.1080/10408398.2023.2169858] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Consumption of commercial probiotics for health improvement and disease treatment has increased in popularity among the public in recent years. The local shops and pharmacies are brimming with various probiotic products such as probiotic food, dietary supplement and pharmaceuticals that herald a range of health benefits, from nutraceutical benefits to pharmaceutical effects. However, although the probiotic market is expanding rapidly, there is increasing evidence challenging it. Emerging insights from microbiome research and public health demonstrate several potential limitations of the natural properties, regulatory frameworks, and market consequences of commercial probiotics. In this review, we highlight the potential safety and performance issues of the natural properties of commercial probiotics, from the genetic level to trait characteristics and probiotic properties and further to the probiotic-host interaction. Besides, the diverse regulatory frameworks and confusing probiotic guidelines worldwide have led to product consequences such as pathogenic contamination, overstated claims, inaccurate labeling and counterfeit trademarks for probiotic products. Here, we propose a plethora of available methods and strategies related to strain selection and modification, safety and efficacy assessment, and some recommendations for regulatory agencies to address these limitations to guarantee sustainability and progress in the probiotic industry and improve long-term public health and development.
Collapse
Affiliation(s)
- Dingfa Liang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- Queen Mary School, Nanchang University, Nanchang, China
| | - Fei Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Dexi Zhou
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Buzhen Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Homayouni Rad A, Pourjafar H, Mirzakhani E. A comprehensive review of the application of probiotics and postbiotics in oral health. Front Cell Infect Microbiol 2023; 13:1120995. [PMID: 36968114 PMCID: PMC10031100 DOI: 10.3389/fcimb.2023.1120995] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Oral diseases are among the most common diseases around the world that people usually suffer from during their lifetime. Tooth decay is a multifactorial disease, and the composition of oral microbiota is a critical factor in its development. Also, Streptococcus mutans is considered the most important caries-causing species. It is expected that probiotics, as they adjust the intestinal microbiota and reduce the number of pathogenic bacteria in the human intestine, can exert their health-giving effects, especially the anti-pathogenic effect, in the oral cavity, which is part of the human gastrointestinal tract. Therefore, numerous in vitro and in vivo studies have been conducted on the role of probiotics in the prevention of tooth decay. In this review, while investigating the effect of different strains of probiotics Lactobacillus and Bifidobacteria on oral diseases, including dental caries, candida yeast infections, periodontal diseases, and halitosis, we have also discussed postbiotics as novel non-living biological compounds derived from probiotics.
Collapse
Affiliation(s)
- Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- *Correspondence: Esmaeel Mirzakhani, ; Hadi Pourjafar,
| | - Esmaeel Mirzakhani
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Esmaeel Mirzakhani, ; Hadi Pourjafar,
| |
Collapse
|
17
|
Imrat, Labala RK, Behara AK, Jeyaram K. Selective extracellular secretion of small double-stranded RNA by Tetragenococcus halophilus. Funct Integr Genomics 2022; 23:10. [PMID: 36542169 DOI: 10.1007/s10142-022-00934-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Small double-stranded RNAs (dsRNAs) abundantly produced by lactic acid bacteria demonstrate immunomodulatory activity and antiviral protective immunity. However, the extracellular secretion of dsRNA from lactic acid bacteria and their compositional and functional differences compared to the intracellular dsRNA is unknown. In this study, we compared the intracellular and secreted extracellular dsRNA of the lactic acid bacteria, Tetragenococcus halophilus, commonly present in fermented foods, by growing in RNA-free and RNase-free media. We used RNA deep sequencing and in-silico analysis to annotate potential regulatory functions for the comparison. A time series sampling of T. halophilus culture demonstrated growth phase-dependent dynamics in extracellular dsRNA secretion with no major change in the intracellular dsRNA profile. The RNA deep sequencing resulted in thousands of diverse dsRNA fragments with 14-21 nucleotides in size from T. halophilus culture. Over 70% of the secreted extracellular dsRNAs were unique in their sequences compared to the intracellular dsRNAs. Furthermore, the extracellular dsRNA abundantly contains sequences that are not T. halophilus genome encoded, not detected intracellularly and showed higher hits on human transcriptome during in-silico analysis, which suggests the presence of extrachromosomal mobile regulatory elements. Further analysis showed significant enrichment of dsRNA target genes of human transcriptome on cancer pathways and transcription process, indicating the extracellular dsRNA of T. halophilus is different not only at the sequence level but also in function. Studying the bacterial extracellular dsRNA is a promising area of future research, particularly for developing postbiotic fermented functional foods and understanding the impact of commensal gut bacteria on human health.
Collapse
Affiliation(s)
- Imrat
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, 795001, Manipur, India.,Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| | - Rajendra Kumar Labala
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, 795001, Manipur, India
| | - Abhisek Kumar Behara
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, 795001, Manipur, India
| | - Kumaraswamy Jeyaram
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, 795001, Manipur, India.,IBSD Regional Centre, Tadong, Gangtok, 737102, Sikkim, India
| |
Collapse
|
18
|
Viswanathan K, Muthusamy S. Review on the current trends and future perspectives of postbiotics for developing healtheir foods. EFOOD 2022. [DOI: 10.1002/efd2.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Cerdó T, García-Santos JA, Rodríguez-Pöhnlein A, García-Ricobaraza M, Nieto-Ruíz A, G. Bermúdez M, Campoy C. Impact of Total Parenteral Nutrition on Gut Microbiota in Pediatric Population Suffering Intestinal Disorders. Nutrients 2022; 14:4691. [PMID: 36364953 PMCID: PMC9658482 DOI: 10.3390/nu14214691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023] Open
Abstract
Parenteral nutrition (PN) is a life-saving therapy providing nutritional support in patients with digestive tract complications, particularly in preterm neonates due to their gut immaturity during the first postnatal weeks. Despite this, PN can also result in several gastrointestinal complications that are the cause or consequence of gut mucosal atrophy and gut microbiota dysbiosis, which may further aggravate gastrointestinal disorders. Consequently, the use of PN presents many unique challenges, notably in terms of the potential role of the gut microbiota on the functional and clinical outcomes associated with the long-term use of PN. In this review, we synthesize the current evidence on the effects of PN on gut microbiome in infants and children suffering from diverse gastrointestinal diseases, including necrotizing enterocolitis (NEC), short bowel syndrome (SBS) and subsequent intestinal failure, liver disease and inflammatory bowel disease (IBD). Moreover, we discuss the potential use of pre-, pro- and/or synbiotics as promising therapeutic strategies to reduce the risk of severe gastrointestinal disorders and mortality. The findings discussed here highlight the need for more well-designed studies, and harmonize the methods and its interpretation, which are critical to better understand the role of the gut microbiota in PN-related diseases and the development of efficient and personalized approaches based on pro- and/or prebiotics.
Collapse
Affiliation(s)
- Tomás Cerdó
- Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - José Antonio García-Santos
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
| | - Anna Rodríguez-Pöhnlein
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
| | - María García-Ricobaraza
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
| | - Ana Nieto-Ruíz
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
| | - Mercedes G. Bermúdez
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
| | - Cristina Campoy
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
- Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada’s Node, Carlos III Health Institute, Avda. Monforte de Lemos 5, 28028 Madrid, Spain
| |
Collapse
|
20
|
Ho HH, Chen CW, Yi TH, Huang YF, Kuo YW, Lin JH, Chen JF, Tsai SY, Chan LP, Liang CH. Novel application of a Co-Fermented postbiotics of TYCA06/AP-32/CP-9/collagen in the improvement of acne vulgaris-A randomized clinical study of efficacy evaluation. J Cosmet Dermatol 2022; 21:6249-6260. [PMID: 35818134 DOI: 10.1111/jocd.15228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/07/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Acne vulgaris is a chronic inflammatory skin disease. If skin lesions are not treated well in time, they can leave a permanent impact on the appearance and a negative influence on personal confidence. The common therapy for acne symptom includes antibiotics, benzoyl peroxide, and azeleic acid. However, those medications have side effects, and the long-term use should be cautious. Therefore, it is necessary to develop a safe and effective material, which is more suitable for daily use. OBJECTIVE Collagen was selected to co-ferment with three probiotic strains TYCA06/AP-32/CP-9 (TAC) due to its excellent feature on wound healing. The fermented material was added into cosmetic gel and applied on subjects' acne lesions. The antimicrobial activity against Propionibacterium acnes and anti-inflammation effect around lesion area were investigated in a 4-week clinical study. MATERIAL AND METHODS An anti-P. acnes assay, a keratinocytes HaCaT cell-based wound healing assay, and a cytokine assay on thymic stromal lymphopoietin (TSLP) and interleukin (IL)-33 were used to evaluate the function of the fermented material in vitro. The TAC/Collagen formula was further incorporated into a cosmetic gel, and the human clinical trial was carried out by applying this gel on 20 volunteers' face with acne vulgaris. The moisture score, sebum content, inflammation, porphyrins numbers, and brown spot number of whole face were observed and recorded. RESULTS The postbiotics of the TAC/Collagen displayed a good growth inhibition against P. acnes and reduced TSLP and IL-33 inflammation in vitro. This TAC/Collagen formula enhanced the wound healing in HaCaT cell culture. The result of the clinical trial showed the TAC/Collagen gel improved the moisture score and inflammation index of the skin in vivo. In addition, this TAC/Collagen gel also improved the wound healing of acne symptom in volunteers with acne vulgaris. Moreover, this TAC/Collagen gel reduced the number of the porphyrins and brown spots on facial skin. CONCLUSION These postbiotics of TAC/Collagen have beneficial effects on skin health and are able to ameliorate the redness, inflammation, and acne symptom in acne vulgaris patients.
Collapse
Affiliation(s)
| | | | | | | | - Yi-Wei Kuo
- Glac Biotech Co., Ltd., Tainan City, Taiwan
| | | | | | | | - Leong-Perng Chan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hua Liang
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
21
|
Thorakkattu P, Khanashyam AC, Shah K, Babu KS, Mundanat AS, Deliephan A, Deokar GS, Santivarangkna C, Nirmal NP. Postbiotics: Current Trends in Food and Pharmaceutical Industry. Foods 2022; 11:3094. [PMID: 36230169 PMCID: PMC9564201 DOI: 10.3390/foods11193094] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Postbiotics are non-viable bacterial products or metabolic byproducts produced by probiotic microorganisms that have biologic activity in the host. Postbiotics are functional bioactive compounds, generated in a matrix during anaerobic fermentation of organic nutrients like prebiotics, for the generation of energy in the form of adenosine triphosphate. The byproducts of this metabolic sequence are called postbiotics, these are low molecular weight soluble compounds either secreted by live microflora or released after microbial cell lysis. A few examples of widely studied postbiotics are short-chain fatty acids, microbial cell fragments, extracellular polysaccharides, cell lysates, teichoic acid, vitamins, etc. Presently, prebiotics and probiotics are the products on the market; however, postbiotics are also gaining a great deal of attention. The numerous health advantages of postbiotic components may soon lead to an increase in consumer demand for postbiotic supplements. The most recent research aspects of postbiotics in the food and pharmaceutical industries are included in this review. The review encompasses a brief introduction, classification, production technologies, characterization, biological activities, and potential applications of postbiotics.
Collapse
Affiliation(s)
- Priyamvada Thorakkattu
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506, USA
| | | | - Kartik Shah
- Sargento Foods, 305 Pine Street, Elkhart Lake, WI 53020, USA
| | - Karthik Sajith Babu
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Anjaly Shanker Mundanat
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat 131028, India
| | | | - Gitanjali S. Deokar
- Department of Quality Assurance, MET’s Institute of Pharmacy, Bhujbal Knowledge City, Nashik 422003, India
| | - Chalat Santivarangkna
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
22
|
Pereira WA, Mendonça CMN, Urquiza AV, Marteinsson VÞ, LeBlanc JG, Cotter PD, Villalobos EF, Romero J, Oliveira RPS. Use of Probiotic Bacteria and Bacteriocins as an Alternative to Antibiotics in Aquaculture. Microorganisms 2022; 10:microorganisms10091705. [PMID: 36144306 PMCID: PMC9503917 DOI: 10.3390/microorganisms10091705] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
In addition to their use in human medicine, antimicrobials are also used in food animals and aquaculture, and their use can be categorized as therapeutic against bacterial infections. The use of antimicrobials in aquaculture may involve a broad environmental application that affects a wide variety of bacteria, promoting the spread of bacterial resistance genes. Probiotics and bacteriocins, antimicrobial peptides produced by some types of lactic acid bacteria (LAB), have been successfully tested in aquatic animals as alternatives to control bacterial infections. Supplementation might have beneficial impacts on the intestinal microbiota, immune response, development, and/or weight gain, without the issues associated with antibiotic use. Thus, probiotics and bacteriocins represent feasible alternatives to antibiotics. Here, we provide an update with respect to the relevance of aquaculture in the animal protein production sector, as well as the present and future challenges generated by outbreaks and antimicrobial resistance, while highlighting the potential role of probiotics and bacteriocins to address these challenges. In addition, we conducted data analysis using a simple linear regression model to determine whether a linear relationship exists between probiotic dose added to feed and three variables of interest selected, including specific growth rate, feed conversion ratio, and lysozyme activity.
Collapse
Affiliation(s)
- Wellison Amorim Pereira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, São Paulo University, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Carlos Miguel N. Mendonça
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, São Paulo University, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | | | | | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000, Argentina
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, APC Microbiome Ireland, T12 K8AF Cork, Ireland
| | - Elías Figueroa Villalobos
- Nucleus of Research in Food Production, Faculty of Natural Resources, Catholic University of Temuco, Temuco 4780000, Chile
- Correspondence:
| | - Jaime Romero
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutricion y Tecnologia de los Alimentos (INTA), Universidad de Chile, El Libano 5524, Santiago 783090, Chile
| | - Ricardo P. S. Oliveira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, São Paulo University, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
23
|
Kewcharoen W, Srisapoome P. Potential synbiotic effects of a Bacillus mixture and chitosan on growth, immune responses and VP (AHPND) resistance in Pacific white shrimp (Litopenaeus vannamei, Boone, 1931). FISH & SHELLFISH IMMUNOLOGY 2022; 127:715-729. [PMID: 35835382 DOI: 10.1016/j.fsi.2022.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The potential synbiotic effects of a Bacillus mixture and chitosan on growth, immune responses and disease resistance against Vibrio parahaemolyticus, the causative agent of acute hepatopancreatic necrosis disease (AHPND) in Pacific white shrimp, were intensively investigated. Three effective strains of Bacillus amyloliquefaciens (A), Bacillus pumilus (P) and Bacillus subtilis (S) were mixed in pairs at a ratio of 5 × 108:5 × 108 CFU/kg diet and coated with the prebiotic chitosan (C) at a concentration of 20 mL/kg diet. Five different feed treatments were used to feed experimental shrimp for 5 weeks: control (control, no synbiotics), chitosan (coat, C) and the synbiotic treatments PAC, PSC and ASC. At week 5, the final length, final weight gain, weight gain, length, average daily gain, specific growth rate and feed conversion ratio, measured as growth parameters, were significantly upregulated in the PSC and ASC groups compared with the control and coat groups (P < 0.05). This result was consistent with the expression analysis of two growth-related genes (Rap-2a and GF-II) in the hepatopancreas and intestines of treated shrimp, as determined using qRT-PCR. The prebiotic chitosan and synbiotics PAC, PSC and ASC strongly induced significant differences in the expression of the Rap-2a and GF-II genes in the target organs compared with the expression in the control group at various time points (P < 0.05). Additionally, application of the synbiotic treatments also significantly enhanced the hepatopancreas characteristics and epithelial and intestinal wall thicknesses of the shrimp compared with the control. Interestingly, all the synbiotic treatments elevated phagocytic activity significantly at weeks 3 and 5 compared with that in the other groups. qRT-PCR analysis of immune-related genes also indicated that the prebiotic group and all synbiotic groups showed strong expression of anti-lipopolysaccharide (ALF) and prophenoloxidase (proPO) genes in the intestine. Finally, the synbiotic groups PAC, PSC and ASC exhibited stronger VPAHPND resistance at 120 h after exposure than the chitosan coat and control groups, with survival rates of 41.7 ± 11.55, 41.7 ± 0.00, 52.8 ± 5.77, 30.6 ± 15.28 and 22.2 ± 5.77%, respectively (P < 0.05). Based on the obtained information, all synbiotics were recommended for improved growth and immune responses, while ASC was the best for disease resistance against VPAHPND in Pacific white shrimp.
Collapse
Affiliation(s)
- Werasan Kewcharoen
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand; Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand; Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
24
|
Duggan BM, Singh AM, Chan DY, Schertzer JD. Postbiotics engage IRF4 in adipocytes to promote sex-dependent changes in blood glucose during obesity. Physiol Rep 2022; 10:e15439. [PMID: 35993451 PMCID: PMC9393906 DOI: 10.14814/phy2.15439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
Postbiotics are microbial-derived components or metabolites that can influence host immunity and metabolism. Some postbiotics can improve blood glucose control and lower inflammation during bacterial or nutritional stress. Bacterial cell wall-derived muramyl dipeptide (MDP) is a potent insulin-sensitizing postbiotic that engages NOD2, RIPK2, and requires interferon regulatory factor 4 (IRF4) to lower inflammation and improve blood glucose. However, the sex-dependent effects of this postbiotic and the cell type required for IRF4 to cause inflammatory versus glycemic responses to MDP were unknown. Here, we measured how MDP injection altered glucose tolerance and adipose tissue inflammation during low-level endotoxemia and high fat diet (HFD)-induced obesity in male and female adipocyte-specific IRF4 knockout mice (AdipoIRF4fl/fl ) compared to WTfl/fl mice. Adipocyte IRF4 was required for the blood glucose-lowering effects of MDP during endotoxemia and HFD-induced obesity in male mice. However, MDP did not alter blood glucose in female WTfl/fl and AdipoIRF4fl/f mice during endotoxemia. Unexpectedly, female HFD-fed AdipoIRF4fl/f mice had lower blood glucose after MDP treatment compared to WTfl/fl mice. MDP lowered inflammatory gene expression in adipose tissue of HFD-fed WTfl/fl and AdipoIRF4fl/fl mice of both sexes. Therefore, MDP-mediated lowering of adipose inflammation does not require adipocyte IRF4 and was independent of sex. Together, these data show that injection of MDP, an insulin-sensitizing postbiotic, lowers adipose tissue inflammation in male and female mice, but lower adipose inflammation is not always associated with improved blood glucose. The blood glucose-lowering effect of the postbiotic MDP and dependence on adipocyte IRF4 is sex-dependent.
Collapse
Affiliation(s)
- Brittany M. Duggan
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada
- Farncombe Family Digestive Health Research InstituteMcMaster UniversityHamiltonCanada
- Centre for Metabolism, Obesity and Diabetes ResearchMcMaster UniversityHamiltonCanada
| | - Anita M. Singh
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada
- Farncombe Family Digestive Health Research InstituteMcMaster UniversityHamiltonCanada
- Centre for Metabolism, Obesity and Diabetes ResearchMcMaster UniversityHamiltonCanada
| | - Darryl Y. Chan
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada
- Farncombe Family Digestive Health Research InstituteMcMaster UniversityHamiltonCanada
- Centre for Metabolism, Obesity and Diabetes ResearchMcMaster UniversityHamiltonCanada
| | - Jonathan D. Schertzer
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada
- Farncombe Family Digestive Health Research InstituteMcMaster UniversityHamiltonCanada
- Centre for Metabolism, Obesity and Diabetes ResearchMcMaster UniversityHamiltonCanada
| |
Collapse
|
25
|
Bourebaba Y, Marycz K, Mularczyk M, Bourebaba L. Postbiotics as potential new therapeutic agents for metabolic disorders management. Biomed Pharmacother 2022; 153:113138. [PMID: 35717780 DOI: 10.1016/j.biopha.2022.113138] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 11/24/2022] Open
Abstract
The prevalence of obesity, diabetes, non-alcoholic fatty liver disease, and related metabolic disorders has been steadily increasing in the past few decades. Apart from the establishment of caloric restrictions in combination with improved physical activity, there are no effective pharmacological treatments for most metabolic disorders. Many scientific-studies have described various beneficial effects of probiotics in regulating metabolism but others questioned their effectiveness and safety. Postbiotics are defined as preparation of inanimate microorganisms, and/or their components, which determine their safety of use and confers a health benefit to the host. Additionally, unlike probiotics postbiotics do not require stringent production/storage conditions. Recently, many lines of evidence demonstrated that postbiotics may be beneficial in metabolic disorders management via several potential effects including anti-inflammatory, antibacterial, immunomodulatory, anti-carcinogenic, antioxidant, antihypertensive, anti-proliferative, and hypocholesterolaemia properties that enhance both the immune system and intestinal barrier functions by acting directly on specific tissues of the intestinal epithelium, but also on various organs or tissues. In view of the many reports that demonstrated the high biological activity and safety of postbiotics, we summarized in the present review the current findings reporting the beneficial effects of various probiotics derivatives for the management of metabolic disorders and related alterations.
Collapse
Affiliation(s)
- Yasmina Bourebaba
- Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; Department of Medicine and Epidemiology, UC Davis School of Veterinary Medicine, Davis, CA 95516, USA
| | - Malwina Mularczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland.
| |
Collapse
|
26
|
Boahen A, Than LTL, Loke YL, Chew SY. The Antibiofilm Role of Biotics Family in Vaginal Fungal Infections. Front Microbiol 2022; 13:787119. [PMID: 35694318 PMCID: PMC9179178 DOI: 10.3389/fmicb.2022.787119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/25/2022] [Indexed: 11/15/2022] Open
Abstract
“Unity in strength” is a notion that can be exploited to characterize biofilms as they bestow microbes with protection to live freely, escalate their virulence, confer high resistance to therapeutic agents, and provide active grounds for the production of biofilms after dispersal. Naturally, fungal biofilms are inherently resistant to many conventional antifungals, possibly owing to virulence factors as their ammunitions that persistently express amid planktonic transition to matured biofilm state. These ammunitions include the ability to form polymicrobial biofilms, emergence of persister cells post-antifungal treatment and acquisition of resistance genes. One of the major disorders affecting vaginal health is vulvovaginal candidiasis (VVC) and its reoccurrence is termed recurrent VVC (RVVC). It is caused by the Candida species which include Candida albicans and Candida glabrata. The aforementioned Candida species, notably C. albicans is a biofilm producing pathogen and habitually forms part of the vaginal microbiota of healthy women. Latest research has implicated the role of fungal biofilms in VVC, particularly in the setting of treatment failure and RVVC. Consequently, a plethora of studies have advocated the utilization of probiotics in addressing these infections. Specifically, the excreted or released compounds of probiotics which are also known as postbiotics are being actively researched with vast potential to be used as therapeutic options for the treatment and prevention of VVC and RVVC. These potential sources of postbiotics are harnessed due to their proven antifungal and antibiofilm. Hence, this review discusses the role of Candida biofilm formation in VVC and RVVC. In addition, we discuss the application of pro-, pre-, post-, and synbiotics either individually or in combined regimen to counteract the abovementioned problems. A clear understanding of the role of biofilms in VVC and RVVC will provide proper footing for further research in devising novel remedies for prevention and treatment of vaginal fungal infections.
Collapse
|
27
|
Saeed NK, Al-Beltagi M, Bediwy AS, El-Sawaf Y, Toema O. Gut microbiota in various childhood disorders: Implication and indications. World J Gastroenterol 2022; 28:1875-1901. [PMID: 35664966 PMCID: PMC9150060 DOI: 10.3748/wjg.v28.i18.1875] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota has a significant role in gut development, maturation, and immune system differentiation. It exerts considerable effects on the child's physical and mental development. The gut microbiota composition and structure depend on many host and microbial factors. The host factors include age, genetic pool, general health, dietary factors, medication use, the intestine's pH, peristalsis, and transit time, mucus secretions, mucous immunoglobulin, and tissue oxidation-reduction potentials. The microbial factors include nutrient availability, bacterial cooperation or antagonism, and bacterial adhesion. Each part of the gut has its microbiota due to its specific characteristics. The gut microbiota interacts with different body parts, affecting the pathogenesis of many local and systemic diseases. Dysbiosis is a common finding in many childhood disorders such as autism, failure to thrive, nutritional disorders, coeliac disease, Necrotizing Enterocolitis, helicobacter pylori infection, functional gastrointestinal disorders of childhood, inflammatory bowel diseases, and many other gastrointestinal disorders. Dysbiosis is also observed in allergic conditions like atopic dermatitis, allergic rhinitis, and asthma. Dysbiosis can also impact the development and the progression of immune disorders and cardiac disorders, including heart failure. Probiotic supplements could provide some help in managing these disorders. However, we are still in need of more studies. In this narrative review, we will shed some light on the role of microbiota in the development and management of common childhood disorders.
Collapse
Affiliation(s)
- Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Manama 12, Bahrain
- Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Busaiteen 15503, Bahrain
| | - Mohammed Al-Beltagi
- Department of Pediatrics, University Medical Center, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Adel Salah Bediwy
- Department of Chest Disease, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Yasser El-Sawaf
- Department of Tropical Medicine, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Department of Gastroenterology, University Medical Center, Arabian Gulf University, Dr. Sulaiman Al-Habib Medical Group, Manama 26671, Bahrain
| | - Osama Toema
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| |
Collapse
|
28
|
Takáčová M, Bomba A, Tóthová C, Micháľová A, Turňa H. Any Future for Faecal Microbiota Transplantation as a Novel Strategy for Gut Microbiota Modulation in Human and Veterinary Medicine? Life (Basel) 2022; 12:723. [PMID: 35629390 PMCID: PMC9146664 DOI: 10.3390/life12050723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations in the composition of the intestinal microbiome, also known as dysbiosis, are the result of many factors such as diet, antibiotics, stress, diseases, etc. There are currently several ways to modulate intestinal microbiome such as dietary modulation, the use of antimicrobials, prebiotics, probiotics, postbiotics, and synbiotics. Faecal microbiota transplantation (FMT) represents one new method of gut microbiota modulation in humans with the aim of reconstructing the intestinal microbiome of the recipient. In human medicine, this form of bacteriotherapy is successfully used in cases of recurrent Clostridium difficile infection (CDI). FMT has been known in large animal medicine for several years. In small animal medicine, the use of FMT is not part of normal practice.
Collapse
Affiliation(s)
- Martina Takáčová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alojz Bomba
- Prebiotix s.r.o., 024 01 Kysucké Nové Mesto, Slovakia
| | - Csilla Tóthová
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alena Micháľová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Hana Turňa
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| |
Collapse
|
29
|
Rana D, Salave S, Perla A, Nadkarni A, Kohle S, Jindal AB, Mandoli A, Dwivedi P, Benival D. Bugs as Drugs: Understanding the Linkage between Gut Microbiota and Cancer Treatment Microbiome in Cancer Therapy. Curr Drug Targets 2022; 23:869-888. [PMID: 35264088 DOI: 10.2174/1389450123666220309101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The commensal microbiota is known to regulate host physiology. Dysbiosis or compromised Resilience in the microbial ecology is related to the impending risk of cancer. A potential link between cancer and microbiota is indicated by a lot of evidence. OBJECTIVE The current review explores in detail the various links leading to and /or facilitating oncogenesis, providing sound reasoning or a basis for its utilization as potential therapeutic targets. The present review emphasizes the existing knowledge of the microbiome in cancer and further elaborates on the factors like genetic modifications, effects of dietary components, and environmental agents that are considered to assess the direct and indirect effect of microbes in the process of oncogenesis and on the host's health. Strategies modulating the microbiome and novel biotherapeutics are also discussed. Pharmacomicrobiomics is one such niche accounting for the interplay between the microbiome, xenobiotic, and host responses is also looked upon. METHODS The literature search strategy for this review was conducted by following the methodology of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). The method includes the collection of data from different search engines like PubMed, ScienceDirect, SciFinder etc. to get coverage of relevant literature for accumulating appropriate information regarding microbiome, cancer, and their linkages. RESULTS These considerations are made to expand the existing literature on the role of gut microbiota on the host's health, the interaction between host and microbiota, and the reciprocal relationship between the microbiome and modified neoplastic cells. CONCLUSION Potential therapeutic implications of cancer microbiomes that are yet unexplored and have rich therapeutic dividends improving human health are discussed in detail in this review.
Collapse
Affiliation(s)
- Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Akhil Perla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Akanksha Nadkarni
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Shital Kohle
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Pradeep Dwivedi
- Department of Pharmacology, All India Institute of Medical Sciences- Jodhpur (AIIMS), 342005, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| |
Collapse
|
30
|
Amalinei C, Grigoraș A, Lozneanu L, Căruntu ID, Giușcă SE, Balan RA. The Interplay between Tumour Microenvironment Components in Malignant Melanoma. Medicina (B Aires) 2022; 58:medicina58030365. [PMID: 35334544 PMCID: PMC8953474 DOI: 10.3390/medicina58030365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma has shown an increasing incidence during the last two decades, exhibiting a large spectrum of locations and clinicopathological characteristics. Although current histopathological, biochemical, immunohistochemical, and molecular methods provide a deep insight into its biological behaviour and outcome, melanoma is still an unpredictable disease, with poor outcome. This review of the literature is aimed at updating the knowledge regarding melanoma’s clinicopathological and molecular hallmarks, including its heterogeneity and plasticity, involving cancer stem cells population. A special focus is given on the interplay between different cellular components and their secretion products in melanoma, considering its contribution to tumour progression, invasion, metastasis, recurrences, and resistance to classical therapy. Furthermore, the influences of the specific tumour microenvironment or “inflammasome”, its association with adipose tissue products, including the release of “extracellular vesicles”, and distinct microbiota are currently studied, considering their influences on diagnosis and prognosis. An insight into melanoma’s particular features may reveal new molecular pathways which may be exploited in order to develop innovative therapeutic approaches or tailored therapy.
Collapse
|
31
|
Waziri A, Bharti C, Aslam M, Jamil P, Mirza MA, Javed MN, Pottoo U, Ahmadi A, Alam MS. Probiotics for the Chemoprotective Role against the Toxic Effect of Cancer Chemotherapy. Anticancer Agents Med Chem 2022; 22:654-667. [PMID: 33992067 DOI: 10.2174/1871520621666210514000615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/10/2020] [Accepted: 01/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chemo- and radiation therapy-based clinical management of different types of cancers is associated with toxicity and several side effects. Therefore, there is always an unmet need to explore agents that reduce such risk factors. Among these, natural products have attracted much attention because of their potent antioxidant and antitumor effects. In the past, some breakthrough outcomes established that various bacteria in the human intestinal gut are bearing growth-promoting attributes and suppressing the conversion of pro-carcinogens into carcinogens. Hence probiotics integrated approaches are nowadays being explored as rationalized therapeutics in the clinical management of cancer. METHODS Here, published literature was explored to review chemoprotective roles of probiotics against toxic and side effects of chemotherapeutics. RESULTS Apart from excellent anti-cancer abilities, probiotics alleviate toxicity & side effects of chemotherapeutics, with a high degree of safety and efficiency. CONCLUSION Preclinical and clinical evidence suggests that due to the chemoprotective roles of probiotics against side effects and toxicity of chemotherapeutics, their integration in chemotherapy would be a judicious approach.
Collapse
Affiliation(s)
- Aafrin Waziri
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Delhi, India
| | - Charu Bharti
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna Road, Gurgaon, Haryana-122103, India
| | - Mohammed Aslam
- Faculty of Pharmacy, AL Hawash Private University, Homs, Syria
| | - Parween Jamil
- Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Md Noushad Javed
- Department of Pharmacy, SMAS, KR Mangalam University, Gurugram, India
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Uzma Pottoo
- Department of Food Science & Technology, School of Applied Sciences & Technology, University of Kashmir, J.K., India
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Md Sabir Alam
- NIMS Institute of Pharmacy, NIMS University, NH-11C, Delhi - Jaipur Expy, Shobha Nagar, Jaipur, Rajasthan India
- SGT College of Pharmacy, SGT University, Gurgaon-Badli Road Chandu, Budhera, Gurugram, Haryana 122505, India
| |
Collapse
|
32
|
Requena T, Pérez Martínez G. Probiotics, Prebiotics, Synbiotics, Postbiotics and Other Biotics. What's Next? COMPREHENSIVE GUT MICROBIOTA 2022:197-210. [DOI: 10.1016/b978-0-12-819265-8.00094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Reuben RC, Sarkar SL, Roy PC, Anwar A, Hossain MA, Jahid IK. Prebiotics, probiotics and postbiotics for sustainable poultry production. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1960234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rine Christopher Reuben
- Department of Microbiology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
- German Centre for Integrative Biodiversity Research (Idiv), Halle-Jena-Leipzig, Germany
| | - Shovon Lal Sarkar
- Department of Microbiology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Pravas Chandra Roy
- Department of Microbiology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | | | - M. Anwar Hossain
- Department of Microbiology, University of Dhaka and Vice Chancellor, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Iqbal Kabir Jahid
- Department of Microbiology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
34
|
|
35
|
Brdarić E, Soković Bajić S, Đokić J, Đurđić S, Ruas-Madiedo P, Stevanović M, Tolinački M, Dinić M, Mutić J, Golić N, Živković M. Protective Effect of an Exopolysaccharide Produced by Lactiplantibacillus plantarum BGAN8 Against Cadmium-Induced Toxicity in Caco-2 Cells. Front Microbiol 2021; 12:759378. [PMID: 34790183 PMCID: PMC8591446 DOI: 10.3389/fmicb.2021.759378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/01/2021] [Indexed: 01/13/2023] Open
Abstract
Cadmium (Cd) ranks seventh on the list of most significant potential threats to human health based on its suspected toxicity and the possibility of exposure to it. It has been reported that some bacterial exopolysaccharides (EPSs) have the ability to bind heavy metal ions. We therefore investigated the capacity of eight EPS-producing lactobacilli to adsorb Cd in the present study, and Lactiplantibacillus plantarum BGAN8 was chosen as the best candidate. In addition, we demonstrate that an EPS derived from BGAN8 (EPS-AN8) exhibits a high Cd-binding capacity and prevents Cd-mediated toxicity in intestinal epithelial Caco-2 cells. Simultaneous use of EPS-AN8 with Cd treatment prevents inflammation, disruption of tight-junction proteins, and oxidative stress. Our results indicate that the EPS in question has a strong potential to be used as a postbiotic in combatting the adverse effects of Cd. Moreover, we show that higher concentrations of EPS-AN8 can alleviate Cd-induced cell damage.
Collapse
Affiliation(s)
- Emilija Brdarić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Svetlana Soković Bajić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Đokić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Slađana Đurđić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Asturias, Spain
| | - Magdalena Stevanović
- Institute of Technical Sciences, Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Maja Tolinački
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Miroslav Dinić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Mutić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Nataša Golić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milica Živković
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
36
|
Haas AN, Furlaneto F, Gaio EJ, Gomes SC, Palioto DB, Castilho RM, Sanz M, Messora MR. New tendencies in non-surgical periodontal therapy. Braz Oral Res 2021; 35:e095. [PMID: 34586209 DOI: 10.1590/1807-3107bor-2021.vol35.0095] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this review was to update the evidence of new approaches to non-surgical therapy (NSPT) in the treatment of periodontitis. Preclinical and clinical studies addressing the benefits of adjunctive antimicrobial photodynamic therapy, probiotics, prebiotics/synbiotics, statins, pro-resolving mediators, omega-6 and -3, ozone, and epigenetic therapy were scrutinized and discussed. Currently, the outcomes of these nine new approaches, when compared with subgingival debridement alone, did not demonstrate a significant added clinical benefit. However, some of these new alternative interventions may have the potential to improve the outcomes of NSPT alone. Future evidence based on randomized controlled clinical trials would help clinicians and patients in the selection of different adjunctive therapies.
Collapse
Affiliation(s)
- Alex Nogueira Haas
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Flavia Furlaneto
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| | - Eduardo José Gaio
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Sabrina Carvalho Gomes
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Daniela Bazan Palioto
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| | - Rogerio Moraes Castilho
- Michigan University, School of Dentistry, Department of Periodontics and Oral Medicine, Ann Arbor, MI, USA
| | - Mariano Sanz
- Complutense University of Madrid, Etiology and Therapy of Periodontal and Peri-implant Diseases Research Group, Madrid, Spain
| | - Michel Reis Messora
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| |
Collapse
|
37
|
Hossain MI, Mizan MFR, Roy PK, Nahar S, Toushik SH, Ashrafudoulla M, Jahid IK, Lee J, Ha SD. Listeria monocytogenes biofilm inhibition on food contact surfaces by application of postbiotics from Lactobacillus curvatus B.67 and Lactobacillus plantarum M.2. Food Res Int 2021; 148:110595. [PMID: 34507740 DOI: 10.1016/j.foodres.2021.110595] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Owing to their preservative and antimicrobial effects, postbiotics (metabolic byproducts of probiotics) are promising natural components for the food industry. Therefore, the present study aimed to investigate the efficacy of postbiotics collected from isolated Lactobacillus curvatus B.67 and Lactobacillus plantarum M.2 against Listeria monocytogenes pathogens in planktonic cells, motility, and biofilm states. The analysis of the metabolite composition of the postbiotics revealed various organic acids, along with a few well-known bacteriocin-encoding genes with potential antimicrobial effects. Postbiotics maintained their residual antimicrobial activity over the pH range 1-6 but lost all activity at neutral pH (pH 7). Full antimicrobial activity (100%) was observed during heat treatment, even under the autoclaving condition.Minimum inhibitory concentration (MICs) of L. curvatus B.67 and L. plantarum M.2 against L. monocytogenes were 80 and 70 mg/mL, respectively. However, four sub-MICs of the postbiotics (1/2, 1/4, 1/8, and 1/16 MIC) were tested for inhibition efficacy against L. monocytogenes during different experiment in this study. Swimming motility, biofilm formation, and expression levels of target genes related to biofilm formation, virulence, and quorum-sensing were significantly inhibited with increasing postbiotics concentration. Postbiotics from L. plantarum M.2 exhibited a higher inhibitory effect than the postbiotics from L. curvatus B.67. Nonetheless, both these postbiotics from Lactobacillus spp. could be used as effective bio-interventions for controlling L. monocytogenes biofilm in the food industry.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Pantu Kumar Roy
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Shamsun Nahar
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Sazzad Hossen Toushik
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Md Ashrafudoulla
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Iqbal Kabir Jahid
- Department of Microbiology, Jashore University of Science and Technology, Bangladesh
| | - Jihyun Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea.
| |
Collapse
|
38
|
El-Sayed A, Aleya L, Kamel M. Microbiota and epigenetics: promising therapeutic approaches? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49343-49361. [PMID: 34319520 PMCID: PMC8316543 DOI: 10.1007/s11356-021-15623-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/20/2021] [Indexed: 04/15/2023]
Abstract
The direct/indirect responsibility of the gut microbiome in disease induction in and outside the digestive tract is well studied. These results are usually from the overpopulation of certain species on the cost of others, interaction with beneficial microflora, interference with normal epigenetic control mechanisms, or suppression of the immune system. Consequently, it is theoretically possible to cure such disorders by rebalancing the microbiome inside our bodies. This can be achieved by changing the lifestyle pattern and diet or by supplementation with beneficial bacteria or their metabolites. Various approaches have been explored to manipulate the normal microbial inhabitants, including nutraceutical, supplementations with prebiotics, probiotics, postbiotics, synbiotics, and antibiotics, or through microbiome transplantation (fecal, skin, or vaginal microbiome transplantation). In the present review, the interaction between the microbiome and epigenetics and their role in disease induction is discussed. Possible future therapeutic approaches via the reestablishment of equilibrium in our internal micro-ecosystem are also highlighted.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
39
|
RAHAL ANU, KUMAR AMIT. Strategies to combat antimicrobial resistance in Indian scenario. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i2.113812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Antimicrobial resistance (AMR) is one of the major public health crisis recognised globally. Microbial infections cause significant productivity losses in animals and humans. In livestock, these microbial infections reduce the growth rates and fertility, diminish production of meat and milk, and occasionally lead to mortality, and are therefore, a major concern for animal welfare. In the dearth of alternative prophylactic measures, antibiotics remain the principal tool for their management. Once an antibiotic is used rampantly, resistance against it is inevidently seen in the microbe population and the hunt for a new drug grows. Discovery and development of a new antimicrobial drug is a time taking and expensive procedure with limited assurance of success. As a result, the past few decades have witnessed only a very few new classes of antibiotics. If the AMR can be restricted or reverted, the success rate of antimicrobial therapy can be boosted and many public health issues be avoided. All these ask for a comprehensive plan to prevent or reduce the antimicrobial resistance and economic losses to the animal husbandry sector. The present review provides an overview of AMR in India, mechanism of its occurrence and the possible roadmap to combat the emerging threat of AMR in Indian scenario.
Collapse
|
40
|
Ansari A, Bose S, You Y, Park S, Kim Y. Molecular Mechanism of Microbiota Metabolites in Preterm Birth: Pathological and Therapeutic Insights. Int J Mol Sci 2021; 22:8145. [PMID: 34360908 PMCID: PMC8347546 DOI: 10.3390/ijms22158145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Preterm birth (PTB) refers to the birth of infants before 37 weeks of gestation and is a challenging issue worldwide. Evidence reveals that PTB is a multifactorial dysregulation mediated by a complex molecular mechanism. Thus, a better understanding of the complex molecular mechanisms underlying PTB is a prerequisite to explore effective therapeutic approaches. During early pregnancy, various physiological and metabolic changes occur as a result of endocrine and immune metabolism. The microbiota controls the physiological and metabolic mechanism of the host homeostasis, and dysbiosis of maternal microbial homeostasis dysregulates the mechanistic of fetal developmental processes and directly affects the birth outcome. Accumulating evidence indicates that metabolic dysregulation in the maternal or fetal membranes stimulates the inflammatory cytokines, which may positively progress the PTB. Although labour is regarded as an inflammatory process, it is still unclear how microbial dysbiosis could regulate the molecular mechanism of PTB. In this review based on recent research, we focused on both the pathological and therapeutic contribution of microbiota-generated metabolites to PTB and the possible molecular mechanisms.
Collapse
Affiliation(s)
- AbuZar Ansari
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Mokdong Hospital, Seoul 07985, Korea; (A.A.); (Y.Y.); (S.P.)
| | - Shambhunath Bose
- Department of Bioscience, Sri Sathya Sai University for Human Excellence, Navanihal, Okali Post, Kamalapur, Kalaburagi, Karnataka 585313, India;
| | - Youngah You
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Mokdong Hospital, Seoul 07985, Korea; (A.A.); (Y.Y.); (S.P.)
| | - Sunwha Park
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Mokdong Hospital, Seoul 07985, Korea; (A.A.); (Y.Y.); (S.P.)
| | - Youngju Kim
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Mokdong Hospital, Seoul 07985, Korea; (A.A.); (Y.Y.); (S.P.)
| |
Collapse
|
41
|
Janmohammadi P, Nourmohammadi Z, Fazelian S, Mirzababaei A, Alizadeh S, Zarei M, Daneshzad E, Djafarian K. Does infant formula containing synbiotics support adequate growth in infants? A meta-analysis and systematic review of randomized controlled trials. Crit Rev Food Sci Nutr 2021; 63:707-718. [PMID: 34278844 DOI: 10.1080/10408398.2021.1952548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In recent years, several studies have shown that formulas that contain synbiotics, i.e. composed prebiotics and probiotics have been proposed to have a beneficial effect on anthropometric indices. However, the results are inconsistent thus this meta-analysis was performed to assess this effect. PubMed/MEDLINE, Web of Science, SCOPUS, and Embase were systematically searched up to May-2020. Weight gain, length gain, head circumstance gain, weight-for-age z scores, and length-for-age z scores were considered as the outcomes. Weighted mean differences (WMD) with the 95% CI were applied for estimating the combined effect size. Subgroup analysis was performed to specify the source of heterogeneity among studies. Consumption of formulas containing synbiotics did not affect growth significantly in healthy infants (weight gain (WMD = 2.06, 95% CI: - 4.08 to 8.21; p = 0.51), length gain (WMD = - 0.05, 95% CI: - 0.70 to 0.60; p = 0.88), head circumstance (WMD = - 0.28, 95% CI: - 0.66 to 0.11; p = 0.15), on weight-for-age z-scores (WMD = - 0.05, 95% CI: - 0.23 to 0.13; p = 0.57) and length-for-age z-scores (WMD = - 0.16, 95% CI: - 0.50 to 0.19; p = 0.37)). The main results indicate a non-significant increase in infant's growth following synbiotics supplementation of infant formula. Further large-scale studies are warranted to confirm present findings.
Collapse
Affiliation(s)
- Parisa Janmohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Zeinab Nourmohammadi
- Department of Cellular and molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Siavash Fazelian
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shahab Alizadeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahtab Zarei
- Department of Cellular and molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Elnaz Daneshzad
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
42
|
Abstract
Necrotizing enterocolitis (NEC) is an inflammatory disease affecting premature infants. Intestinal microbial composition may play a key role in determining which infants are predisposed to NEC and when infants are at highest risk of developing NEC. It is unclear how to optimize antibiotic therapy in preterm infants to prevent NEC and how to optimize antibiotic regimens to treat neonates with NEC. This article discusses risk factors for NEC, how dysbiosis in preterm infants plays a role in the pathogenesis of NEC, and how probiotic and antibiotic therapy may be used to prevent and/or treat NEC and its sequelae.
Collapse
Affiliation(s)
- Jennifer Duchon
- Division of Newborn Medicine, Jack and Lucy Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1000 10th Avenue, New York, NY 10019, USA
| | - Maria E Barbian
- Division of Neonatal-Perinatal Medicine, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive Northeast, 3rd Floor, Atlanta, GA 30322, USA
| | - Patricia W Denning
- Division of Neonatal-Perinatal Medicine, Emory University School of Medicine, Children's Healthcare of Atlanta, Emory University Hospital Midtown, 550 Peachtree Street, 3rd Floor MOT, Atlanta, GA 30308, USA.
| |
Collapse
|
43
|
Seghesio E, De Geyter C, Vandenplas Y. Probiotics in the Prevention and Treatment of Necrotizing Enterocolitis. Pediatr Gastroenterol Hepatol Nutr 2021; 24:245-255. [PMID: 34046327 PMCID: PMC8128781 DOI: 10.5223/pghn.2021.24.3.245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/13/2021] [Accepted: 03/24/2021] [Indexed: 12/29/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a disease with high morbidity and mortality that occurs mainly in premature born infants. The pathophysiologic mechanisms indicate that gastrointestinal dysbiosis is a major risk factor. We searched for relevant articles published in PubMed and Google Scholar in the English language up to October 2020. Articles were extracted using subject headings and keywords of interest to the topic. Interesting references in included articles were also considered. Network meta-analysis suggests the preventive efficacy of Bifidobacterium and Lactobacillus spp., but even more for mixtures of Bifidobacterium, Streptococcus, and Bifidobacterium, and Streptococcus spp. However, studies comparing face-to-face different strains are lacking. Moreover, differences in inclusion criteria, dosage strains, and primary outcomes in most trials are major obstacles to providing evidence-based conclusions. Although adverse effects have not been reported in clinical trials, case series of adverse outcomes, mainly septicemia, have been published. Consequently, systematic administration of probiotic bacteria to prevent NEC is still debated in literature. The risk-benefit ratio depends on the incidence of NEC in a neonatal intensive care unit, and evidence has shown that preventive measures excluding probiotic administration can result in a decrease in NEC.
Collapse
Affiliation(s)
- Eleonora Seghesio
- KidZ Health Castle, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Charlotte De Geyter
- KidZ Health Castle, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yvan Vandenplas
- KidZ Health Castle, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
44
|
Abstract
Probiotics/or synbiotics products for small animals do not fulfill the criteria required to qualify as a probiotic. Studies explaining modes of action are lacking. Outcome measures are inconsistent, with some trials assessing only nonspecific routine diagnostic parameters or fecal scores. Preliminary evidence shows that specific preparations are beneficial in parvovirus infections and acute hemorrhagic diarrhea syndrome in dogs and in Tritrichomonas fetus infection in cats. In dogs, inflammatory bowel disease specific probiotics can decrease clinical severity. More studies focusing on functional outcomes in dogs and cats with well-defined diseases to allow evidence-based clinical use of probiotics and synbiotics are needed.
Collapse
Affiliation(s)
- Silke Salavati Schmitz
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The Roslin Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| |
Collapse
|
45
|
Zielińska D, Łepecka A, Ołdak A, Długosz E, Kołożyn-Krajewska D. Growth and adhesion inhibition of pathogenic bacteria by live and heat-killed food-origin Lactobacillus strains or their supernatants. FEMS Microbiol Lett 2021; 368:6149457. [PMID: 33629723 DOI: 10.1093/femsle/fnab024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/23/2021] [Indexed: 12/27/2022] Open
Abstract
The study aimed to evaluate qualitatively and quantitatively the antimicrobial capacity of 10 potential probiotic Lactobacillus strains against model enteropathogens and spoilage microorganisms. The probiotic strains (live and heat-killed forms) were also assessed for their ability to inhibit adhesion of selected pathogens to Caco-2 cells. The largest inhibition zones (the diffusion method) were connected with the usage of whole bacteria cultures (WBC), also high and moderate with cell-free supernatant (CFS) and the lowest with cell-free neutralized supernatant (CNS). The highest antagonistic activity of Lactobacillus strains was observed against L. monocytogenes strains, moderate activity against Salmonella, Shigella, Escherichia coli, Pseudomonas and, the lowest against S.aureus, Bacillus and Enterococcus. The inhibition of adhesion to Caco-2 cells was very high in the case of E. coli, Salmonella and L. monocytogenes, and moderate in the case of S.aureus. On average, the inhibition effect was higher when pathogenic bacteria were treated by WBC, than heat-killed Lactobacillus. Although, in most samples, the effect was not significantly different (P> 0.05). The strains Lb. brevis O24 and Lb. rhamnosus K3 showed the biggest overall antimicrobial properties, and were most effective in adherence inhibition of investigated indicator strains. These bacteria or their metabolites can be used for the production of various foods or pharmaceutical products.
Collapse
Affiliation(s)
- Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Science - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Anna Łepecka
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Science - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Aleksandra Ołdak
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Science - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Ewa Długosz
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Science - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Danuta Kołożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Science - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
46
|
Rad AH, Abbasi A, Kafil HS, Ganbarov K. Potential Pharmaceutical and Food Applications of Postbiotics: A Review. Curr Pharm Biotechnol 2021; 21:1576-1587. [PMID: 32416671 DOI: 10.2174/1389201021666200516154833] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/22/2022]
Abstract
In recent decades, functional foods with ingredients comprising probiotics, prebiotics and postbiotics have been gaining a lot of attention from scientists. Probiotics and postbiotics are usually applied in pharmaceutical formulations and/or commercial food-based products. These bioactive agents can be associated with host eukaryotic cells and have a key role in maintaining and restoring host health. The review describes the concept of postbiotics, their quality control and potential applications in pharmaceutical formulations and commercial food-based products for health promotion, prevention of disease and complementary treatment. Despite the effectiveness of probiotic products, researchers have introduced the concept of postbiotic to optimize their beneficial effects as well as to meet the needs of consumers to provide a safe product. The finding of recent studies suggests that postbiotics might be appropriate alternative agents for live probiotic cells and can be applied in medical, veterinary and food practice to prevent and to treat some diseases, promote animal health status and develop functional foods. Presently scientific literature confirms that postbiotics, as potential alternative agents, may have superiority in terms of safety relative to their parent live cells, and due to their unique characteristics in terms of clinical, technological and economical aspects, can be applied as promising tools in the drug and food industry for developing health benefits, and therapeutic aims.
Collapse
Affiliation(s)
- Aziz H Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein S Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khudaverdi Ganbarov
- Department of Microbiology, Faculty of Biology, Baku State University, Baku, Azerbaijan
| |
Collapse
|
47
|
Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EMM, Sanders ME, Shamir R, Swann JR, Szajewska H, Vinderola G. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol 2021; 18:649-667. [PMID: 33948025 PMCID: PMC8387231 DOI: 10.1038/s41575-021-00440-6] [Citation(s) in RCA: 887] [Impact Index Per Article: 221.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
In 2019, the International Scientific Association for Probiotics and Prebiotics (ISAPP) convened a panel of experts specializing in nutrition, microbial physiology, gastroenterology, paediatrics, food science and microbiology to review the definition and scope of postbiotics. The term 'postbiotics' is increasingly found in the scientific literature and on commercial products, yet is inconsistently used and lacks a clear definition. The purpose of this panel was to consider the scientific, commercial and regulatory parameters encompassing this emerging term, propose a useful definition and thereby establish a foundation for future developments. The panel defined a postbiotic as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Effective postbiotics must contain inactivated microbial cells or cell components, with or without metabolites, that contribute to observed health benefits. The panel also discussed existing evidence of health-promoting effects of postbiotics, potential mechanisms of action, levels of evidence required to meet the stated definition, safety and implications for stakeholders. The panel determined that a definition of postbiotics is useful so that scientists, clinical triallists, industry, regulators and consumers have common ground for future activity in this area. A generally accepted definition will hopefully lead to regulatory clarity and promote innovation and the development of new postbiotic products.
Collapse
Affiliation(s)
- Seppo Salminen
- grid.1374.10000 0001 2097 1371Functional Foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| | - Maria Carmen Collado
- grid.419051.80000 0001 1945 7738Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Akihito Endo
- grid.410772.70000 0001 0807 3368Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan
| | - Colin Hill
- grid.7872.a0000000123318773School of Microbiology, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sarah Lebeer
- grid.5284.b0000 0001 0790 3681Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Eamonn M. M. Quigley
- Division of Gastroenterology and Hepatology, Lynda K and David M Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO USA
| | - Raanan Shamir
- grid.414231.10000 0004 0575 3167Institute of Pediatric Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center, Petach Tikva, Israel ,grid.12136.370000 0004 1937 0546Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan R. Swann
- grid.5491.90000 0004 1936 9297School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK ,grid.7445.20000 0001 2113 8111Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Hania Szajewska
- grid.13339.3b0000000113287408Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Gabriel Vinderola
- grid.10798.370000 0001 2172 9456Instituto de Lactología Industrial (CONICET-UNL), Faculty of Chemical Engineering, National University of Litoral, Santa Fe, Argentina
| |
Collapse
|
48
|
Homayouni Rad A, Aghebati Maleki L, Samadi Kafil H, Fathi Zavoshti H, Abbasi A. Postbiotics as Promising Tools for Cancer Adjuvant Therapy. Adv Pharm Bull 2020; 11:1-5. [PMID: 33747846 PMCID: PMC7961229 DOI: 10.34172/apb.2021.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/15/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
As many investigations have reported, there is a complicated relation between fermented foods, lactic acid bacteria (LAB), and human health. It seems that bioactive components such as prebiotics, probiotics, and postbiotics are key mediators of the complex and direct association between these factors. LAB activity in the matrix of fermented foods and improving their growth by prebiotic compounds ultimately results in the production of bioactive molecules (postbiotics), which possess specific biological and physiological properties. The term "postbiotics" refers to a complex of biological micro- and macromolecules, if consumed in adequate amounts, provides the host with different health-promoting effects. Different reports have suggested that postbiotics possess the ability to moderate the effectiveness of cancer treatment and reduce the side-effects of conventional therapies in cancer patients due to their anti-proliferative, anti-inflammatory and anti-cancer properties. Consequently, postbiotics, for their unique characteristics, have gained great scientific attention and are considered as a novel approach for adjuvant therapy in patients with cancer.
Collapse
Affiliation(s)
- Aziz Homayouni Rad
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamideh Fathi Zavoshti
- Department of Food Hygiene and Aquatics, Faculty of Veterinary Medicine, Tabriz University, Tabriz, Iran
| | - Amin Abbasi
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Hernández-Granados MJ, Franco-Robles E. Postbiotics in human health: Possible new functional ingredients? Food Res Int 2020; 137:109660. [DOI: 10.1016/j.foodres.2020.109660] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
|
50
|
Li Y, Yang S, Lun J, Gao J, Gao X, Gong Z, Wan Y, He X, Cao H. Inhibitory Effects of the Lactobacillus rhamnosus GG Effector Protein HM0539 on Inflammatory Response Through the TLR4/MyD88/NF-кB Axis. Front Immunol 2020; 11:551449. [PMID: 33123130 PMCID: PMC7573360 DOI: 10.3389/fimmu.2020.551449] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and relapsing intestinal inflammatory condition with no effective treatment. Probiotics have gained wide attention because of their outstanding advantages in intestinal health issues. In previous studies, a novel soluble protein, HM0539, which is derived from Lactobacillus rhamnosus GG (LGG), showed significant protective effects against murine colitis, but no clear precise mechanism for this effect was provided. In this study, we hypothesized that the protective function of HM0539 might be derived from its modulation of the TLR4/Myd88/NF-κB axis signaling pathway, which is a critical pathway widely involved in the modulation of inflammatory responses. To test this hypothesis, the underlying anti-inflammatory effects and associated mechanisms of HM0539 were determined both in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and in dextran sulfate sodium (DSS)-induced murine colitis. Our results showed that HM0539 inhibited the expression of cyclooxygenase-2 (COX-2) and the expression inducible nitric oxide synthase (iNOS) by down-regulating the activation of their respective promoter, and as a result this inhibited the production of prostaglandin E2 (PGE2) and nitric oxide (NO). Meanwhile, we demonstrated that HM0539 could ultimately modulate the activation of distal NF-κB by reducing the activation of TLR4 and suppressing the transduction of MyD88. However, even though the overexpression of TLR4 or MyD88 obviously reversed the effect of HM0539 on LPS-induced inflammation, HM0539 still retained some anti-inflammatory activity. Consistent with the in vitro findings, we found that HM0539 inhibited to a great extent the production of inflammatory mediators associated with the suppression of the TLR4/Myd88/NF-κB axis activation in colon tissue. In conclusion, HM0539 was shown to be a promising anti-inflammatory agent, at least in part through its down-regulation of the TLR4-MyD88 axis as well as of the downstream MyD88-dependent activated NF-κB signaling, and hence might be considered as a potential therapeutic option for IBD.
Collapse
Affiliation(s)
- Yubin Li
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaojie Yang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jingxian Lun
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jie Gao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xuefeng Gao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zelong Gong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu Wan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaolong He
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|