1
|
Damiani V, Giuseppe GD, Gliozzo G, Ciccarelli G, Pizzinato E, Pizzo FD, Fruci D, Brunetti M, Soldovieri L, Quero G, Mari A, Alfieri S, Pontecorvi A, Giaccari A, Laurenzi VD, Mezza T. Altered BAG3-insulin colocalization is associated with impaired first phase insulin secretion in humans. Diabetes Res Clin Pract 2025:112232. [PMID: 40339705 DOI: 10.1016/j.diabres.2025.112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/28/2025] [Accepted: 05/03/2025] [Indexed: 05/10/2025]
Abstract
AIMS Alterations in first-phase insulin secretion are pivotal in the early development of T2DM. BAG3 has been implicated in regulating insulin secretion in murine models, but its role in humans remains unexplored. This study investigates BAG3 expression in human pancreatic islets and its relationship with β-cell functionality. METHODS Pancreatic tissue samples were obtained from 12 patients with no previous T2DM diagnosis enrolled for partial pancreatectomy. Patients underwent deep metabolic evaluation, including OGTT, hyperglycemic clamp and euglycemic hyperinsulinemic clamp. Immunofluorescence and confocal microscopy were used to assess BAG3-insulin colocalization and further correlated with metabolic findings, categorizing subjects into LOW and HIGH BAG3 groups. RESULTS Patients with HIGH BAG3 expression exhibited significantly impaired first-phase insulin secretion, evidenced by reduced rate sensitivity during OGTT and higher plasma glucose levels at 30 and 60 min post-glucose challenge. Islets from HIGH BAG3 patients showed increased size but no differences in insulin/glucagon ratios or insulin sensitivity, suggesting a specific disruption in the insulin secretory machinery rather than β-cell mass or insulin resistance. CONCLUSIONS BAG3 appears associated to first-phase insulin secretion in humans by influencing insulin granule exocytosis. Targeting BAG3 could represent a novel therapeutic approach to prevent or delay β-cell dysfunction and the onset of T2DM.
Collapse
Affiliation(s)
- Verena Damiani
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gianfranco Di Giuseppe
- Endocrinology and Diabetology Unit, University Hospital Agostino Gemelli, Rome, Italy; Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Giulia Gliozzo
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Gea Ciccarelli
- Endocrinology and Diabetology Unit, University Hospital Agostino Gemelli, Rome, Italy; Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Erika Pizzinato
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Telematic University of "Leonardo Da Vinci", Torrevecchia Teatina, Chieti Telematic University of "Leonardo Da Vinci", Torrevecchia Teatina, Chieti, Italy
| | - Francesco Del Pizzo
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Doriana Fruci
- Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michela Brunetti
- Endocrinology and Diabetology Unit, University Hospital Agostino Gemelli, Rome, Italy; Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Laura Soldovieri
- Endocrinology and Diabetology Unit, University Hospital Agostino Gemelli, Rome, Italy; Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Giuseppe Quero
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy; Digestive Surgery Unit, University Hospital Agostino Gemelli, Rome, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Sergio Alfieri
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy; Digestive Surgery Unit, University Hospital Agostino Gemelli, Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinology and Diabetology Unit, University Hospital Agostino Gemelli, Rome, Italy; Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Andrea Giaccari
- Endocrinology and Diabetology Unit, University Hospital Agostino Gemelli, Rome, Italy; Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy.
| | - Vincenzo De Laurenzi
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Teresa Mezza
- Endocrinology and Diabetology Unit, University Hospital Agostino Gemelli, Rome, Italy; Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
2
|
Cipriani V, Vestito L, Magavern EF, Jacobsen JOB, Arno G, Behr ER, Benson KA, Bertoli M, Bockenhauer D, Bowl MR, Burley K, Chan LF, Chinnery P, Conlon PJ, Costa MA, Davidson AE, Dawson SJ, Elhassan EAE, Flanagan SE, Futema M, Gale DP, García-Ruiz S, Corcia CG, Griffin HR, Hambleton S, Hicks AR, Houlden H, Houlston RS, Howles SA, Kleta R, Lekkerkerker I, Lin S, Liskova P, Mitchison HH, Morsy H, Mumford AD, Newman WG, Neatu R, O'Toole EA, Ong ACM, Pagnamenta AT, Rahman S, Rajan N, Robinson PN, Ryten M, Sadeghi-Alavijeh O, Sayer JA, Shovlin CL, Taylor JC, Teltsh O, Tomlinson I, Tucci A, Turnbull C, van Eerde AM, Ware JS, Watts LM, Webster AR, Westbury SK, Zheng SL, Caulfield M, Smedley D. Rare disease gene association discovery in the 100,000 Genomes Project. Nature 2025:10.1038/s41586-025-08623-w. [PMID: 40011789 DOI: 10.1038/s41586-025-08623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/10/2025] [Indexed: 02/28/2025]
Abstract
Up to 80% of rare disease patients remain undiagnosed after genomic sequencing1, with many probably involving pathogenic variants in yet to be discovered disease-gene associations. To search for such associations, we developed a rare variant gene burden analytical framework for Mendelian diseases, and applied it to protein-coding variants from whole-genome sequencing of 34,851 cases and their family members recruited to the 100,000 Genomes Project2. A total of 141 new associations were identified, including five for which independent disease-gene evidence was recently published. Following in silico triaging and clinical expert review, 69 associations were prioritized, of which 30 could be linked to existing experimental evidence. The five associations with strongest overall genetic and experimental evidence were monogenic diabetes with the known β cell regulator3,4 UNC13A, schizophrenia with GPR17, epilepsy with RBFOX3, Charcot-Marie-Tooth disease with ARPC3 and anterior segment ocular abnormalities with POMK. Further confirmation of these and other associations could lead to numerous diagnoses, highlighting the clinical impact of large-scale statistical approaches to rare disease-gene association discovery.
Collapse
Affiliation(s)
- Valentina Cipriani
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK.
- UCL Institute of Ophthalmology, University College London, London, UK.
- UCL Genetics Institute, University College London, London, UK.
| | - Letizia Vestito
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Emma F Magavern
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Julius O B Jacobsen
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College London, London, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital, London, UK
| | - Elijah R Behr
- Cardiology Section, Cardiovascular and Genomics Research Institute, School of Health & Medical Sciences, City St George's, University of London, London, UK
- Cardiology Department, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Katherine A Benson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Republic of Ireland
| | - Marta Bertoli
- Northern Genetics Centre, The Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Detlef Bockenhauer
- Paediatric Nephrology, University Hospital and Catholic University Leuven, Leuven, Belgium
- Department of Renal Medicine, University College London, London, UK
| | - Michael R Bowl
- UCL Ear Institute, University College London, London, UK
| | - Kate Burley
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Li F Chan
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Patrick Chinnery
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Peter J Conlon
- Department of Medicine, Royal College of Surgeons in Ireland and Department of Nephrology, Beaumont Hospital, Dublin, Republic of Ireland
| | - Marcos A Costa
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Alice E Davidson
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Sally J Dawson
- UCL Ear Institute, University College London, London, UK
| | - Elhussein A E Elhassan
- Department of Medicine, Royal College of Surgeons in Ireland and Department of Nephrology, Beaumont Hospital, Dublin, Republic of Ireland
| | - Sarah E Flanagan
- Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter, UK
| | - Marta Futema
- Cardiology Section, Cardiovascular and Genomics Research Institute, School of Health & Medical Sciences, City St George's, University of London, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Daniel P Gale
- Department of Renal Medicine, University College London, London, UK
| | - Sonia García-Ruiz
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Cecilia Gonzalez Corcia
- Pediatric Cardiology, CHU Sainte Justine, University of Montreal, Montreal, Quebec, Canada
- Mc Gill University, Montreal, Quebec, Canada
| | - Helen R Griffin
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Sophie Hambleton
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Amy R Hicks
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Henry Houlden
- UCL Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, London, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Sarah A Howles
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Robert Kleta
- Department of Renal Medicine, University College London, London, UK
| | | | - Siying Lin
- UCL Institute of Ophthalmology, University College London, London, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital, London, UK
| | - Petra Liskova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hannah H Mitchison
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Heba Morsy
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - Andrew D Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - William G Newman
- Division of Evolution, Infection and Genomics, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ruxandra Neatu
- Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| | - Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, QMUL, London, UK
| | - Albert C M Ong
- Kidney Genetics Group, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Alistair T Pagnamenta
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Shamima Rahman
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Neil Rajan
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Biomedical Research Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mina Ryten
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- NIHR GOSH Biomedical Research Centre, Great Ormond Street Institute of Child Health, London, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | | | - John A Sayer
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Renal Services, The Newcastle upon Tyne NHS Foundation Trust Hospitals, Newcastle upon Tyne, UK
- NIHR Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Claire L Shovlin
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jenny C Taylor
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Omri Teltsh
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Republic of Ireland
| | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford, UK
| | - Arianna Tucci
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | | | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Laura M Watts
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Foundation Trust, Oxford, UK
| | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London, London, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital, London, UK
| | | | - Sean L Zheng
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Mark Caulfield
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Damian Smedley
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
3
|
Peng X, Wang K, Chen L. Biphasic glucose-stimulated insulin secretion over decades: a journey from measurements and modeling to mechanistic insights. LIFE METABOLISM 2025; 4:loae038. [PMID: 39872989 PMCID: PMC11770817 DOI: 10.1093/lifemeta/loae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 01/30/2025]
Abstract
Glucose-stimulated insulin release from pancreatic β-cells is critical for maintaining blood glucose homeostasis. An abrupt increase in blood glucose concentration evokes a rapid and transient rise in insulin secretion followed by a prolonged, slower phase. A diminished first phase is one of the earliest indicators of β-cell dysfunction in individuals predisposed to develop type 2 diabetes. Consequently, researchers have explored the underlying mechanisms for decades, starting with plasma insulin measurements under physiological conditions and advancing to single-vesicle exocytosis measurements in individual β-cells combined with molecular manipulations. Based on a chain of evidence gathered from genetic manipulation to in vivo mouse phenotyping, a widely accepted theory posits that distinct functional insulin vesicle pools in β-cells regulate biphasic glucose-stimulated insulin secretion (GSIS) via activation of different metabolic signal pathways. Recently, we developed a high-resolution imaging technique to visualize single vesicle exocytosis from β-cells within an intact islet. Our findings reveal that β-cells within the islet exhibit heterogeneity in their secretory capabilities, which also differs from the heterogeneous Ca2+ signals observed in islet β-cells in response to glucose stimulation. Most importantly, we demonstrate that biphasic GSIS emerges from the interactions among α-, β-, and δ-cells within the islet and is driven by a small subset of hypersecretory β-cells. Finally, we propose that a shift from reductionism to holism may be required to fully understand the etiology of complex diseases such as diabetes.
Collapse
Affiliation(s)
- Xiaohong Peng
- New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, The Beijing Laboratory of Biomedical Imaging, Peking-Tsinghua Center for Life Sciences, School of Future Technology, Peking University, Beijing 100871, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Liangyi Chen
- New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, The Beijing Laboratory of Biomedical Imaging, Peking-Tsinghua Center for Life Sciences, School of Future Technology, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| |
Collapse
|
4
|
Lian Z, Meng F, Xia X, Fang J, Tian H, Hu Q. Molecular Characterization and Expression of unc-13d in the Sex Reversal of Monopterus albus. Animals (Basel) 2025; 15:122. [PMID: 39858121 PMCID: PMC11758646 DOI: 10.3390/ani15020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Monopterus albus is a protogynous hermaphroditic fish that changes from female to male, but the underlying sex change mechanism remains as-yet unknown. In this study, we firstly cloned and characterized the sequence and protein structure of unc-13d of M. albus. We found that the genomic structure of unc-13d was different from other species. Expression was detected in the developing gonad by applying qRT-PCR and in situ hybridization. We found that the expression of unc-13d in the ovotestis was higher than in the ovary and testes. A strong signal of unc-13d was detected in oocytes and granulosa cells in the ovary and spermatogonia and primary spermatocytes in the testes. We found that the promoter methylation of unc-13d was negatively correlated with gene expression in developing gonads, especially at site 114. A dual-luciferase assay was designed and revealed that dmrt1 regulates promoter activity opposite to foxl2. In summary, during sex reversal, DNA methylation affects the binding of the transcription factor dmrt1 and foxl2 in the promoter region through methylation and demethylation interactions to regulate the expression of unc-13d during gonadal development.
Collapse
Affiliation(s)
- Zitong Lian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Z.L.); (F.M.); (X.X.); (J.F.)
| | - Fang Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Z.L.); (F.M.); (X.X.); (J.F.)
| | - Xueping Xia
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Z.L.); (F.M.); (X.X.); (J.F.)
| | - Junchao Fang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Z.L.); (F.M.); (X.X.); (J.F.)
| | - Haifeng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Z.L.); (F.M.); (X.X.); (J.F.)
| | - Qiaomu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Z.L.); (F.M.); (X.X.); (J.F.)
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
5
|
Watanabe N, Kaneko YK, Ishihara H, Shizu R, Yoshinari K, Yamaguchi M, Kimura T, Ishikawa T. Diacylglycerol kinase ζ is a positive insulin secretion regulator in pancreatic β-cell line MIN6. Biochem Biophys Res Commun 2025; 742:151109. [PMID: 39644605 DOI: 10.1016/j.bbrc.2024.151109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Some isoforms of diacylglycerol (DAG) kinase (DGK), an enzyme converting DAG into phosphatidic acid, i.e., DGKα, γ and δ, have been reportedly involved in the regulation of pancreatic β-cell function. DGKζ has also been reported to be expressed in rat pancreatic β-cells. However, its function in pancreatic β-cells remains unknown. The present study aimed to elucidate the function of DGKζ in pancreatic β-cells. The expression of DGKζ was detected in the β-cell line MIN6B and mouse pancreatic islets and in the cytoplasmic fraction from MIN6B cells. The knockdown of DGKζ with siRNA significantly decreased glucose-induced insulin secretion in MIN6B cells. The induction of DGKζ expression in MIN6CEon1 cells with a doxycycline-inducible stable expression system significantly increased glucose-induced insulin secretion. In contrast, glucose-induced insulin secretion was not changed when a kinase-dead DGKζ mutant (G356D) was overexpressed in MIN6CEon1 cells, indicating that a mechanism dependent on its kinase activity mediates the facilitatory effect of DGKζ on glucose-induced insulin secretion. Additionally, we revealed that DGKζ overexpression exhibited no effect on cell cycle of MIN6 cells. These results suggest that DGKζ plays a facilitatory role in insulin secretion in pancreatic β-cells.
Collapse
Affiliation(s)
- Naoya Watanabe
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Yukiko K Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan.
| | - Hisamitsu Ishihara
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Ryota Shizu
- Department of Molecular Biology and Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Kouichi Yoshinari
- Department of Molecular Biology and Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Momoka Yamaguchi
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Toshihide Kimura
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| |
Collapse
|
6
|
Jiménez-Sánchez C, Oberhauser L, Maechler P. Role of fatty acids in the pathogenesis of ß-cell failure and Type-2 diabetes. Atherosclerosis 2024; 398:118623. [PMID: 39389828 DOI: 10.1016/j.atherosclerosis.2024.118623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Pancreatic ß-cells are glucose sensors in charge of regulated insulin delivery to the organism, achieving glucose homeostasis and overall energy storage. The latter function promotes obesity when nutrient intake chronically exceeds daily expenditure. In case of ß-cell failure, such weight gain may pave the way for the development of Type-2 diabetes. However, the causal link between excessive body fat mass and potential degradation of ß-cells remains largely unknown and debated. Over the last decades, intensive research has been conducted on the role of lipids in the pathogenesis of ß-cells, also referred to as lipotoxicity. Among various lipid species, the usual suspects are essentially the non-esterified fatty acids (NEFA), in particular the saturated ones such as palmitate. This review describes the fundamentals and the latest advances of research on the role of fatty acids in ß-cells. This includes intracellular pathways and receptor-mediated signaling, both participating in regulated glucose-stimulated insulin secretion as well as being implicated in ß-cell dysfunction. The discussion extends to the contribution of high glucose exposure, or glucotoxicity, to ß-cell defects. Combining glucotoxicity and lipotoxicity results in the synergistic and more deleterious glucolipotoxicity effect. In recent years, alternative roles for intracellular lipids have been uncovered, pointing to a protective function in case of nutrient overload. This requires dynamic storage of NEFA as neutral lipid droplets within the ß-cell, along with active glycerolipid/NEFA cycle allowing subsequent recruitment of lipid species supporting glucose-stimulated insulin secretion. Overall, the latest studies have revealed the two faces of the same coin.
Collapse
Affiliation(s)
- Cecilia Jiménez-Sánchez
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Lucie Oberhauser
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.
| |
Collapse
|
7
|
Suckert C, Zosel C, Schaefer M. Simultaneous TIRF imaging of subplasmalemmal Ca 2+ dynamics and granule fusions in insulin-secreting INS-1 cells reveals coexistent synchronized and asynchronous release. Cell Calcium 2024; 120:102883. [PMID: 38643716 DOI: 10.1016/j.ceca.2024.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/23/2024]
Abstract
The basal and glucose-induced insulin secretion from pancreatic beta cells is a tightly regulated process that is triggered in a Ca2+-dependent fashion and further positively modulated by substances that raise intracellular levels of adenosine 3',5'-cyclic monophosphate (cAMP) or by certain antidiabetic drugs. In a previous study, we have temporally resolved the subplasmalemmal [Ca2+]i dynamics in beta cells that are characterized by trains of sharply delimited spikes, reaching peak values up to 5 µM. Applying total internal reflection fluorescence (TIRF) microscopy and synaptopHluorin to visualize fusion events of individual granules, we found that several fusion events can coincide within 50 to 150 ms. To test whether subplasmalemmal [Ca2+]i microdomains around single or clustered Ca2+ channels may cause a synchronized release of insulin-containing vesicles, we applied simultaneous dual-color TIRF microscopy and monitored Ca2+ fluctuations and exocytotic events in INS-1 cells at high frame rates. The results indicate that fusions can be triggered by subplasmalemmal Ca2+ spiking. This, however, does account for a minority of fusion events. About 90 %-95 % of fusion events either happen between Ca2+ spikes or incidentally overlap with subplasmalemmal Ca2+ spikes. We conclude that only a fraction of exocytotic events in glucose-induced and tolbutamide- or forskolin-enhanced insulin release from INS-1 cells is tightly coupled to Ca2+ microdomains around voltage-gated Ca2+ channels.
Collapse
Affiliation(s)
- Charlotte Suckert
- Leipzig University, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Härtelstraße 16-18, Leipzig 04107, Germany
| | - Carolin Zosel
- Leipzig University, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Härtelstraße 16-18, Leipzig 04107, Germany
| | - Michael Schaefer
- Leipzig University, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Härtelstraße 16-18, Leipzig 04107, Germany.
| |
Collapse
|
8
|
Peng X, Ren H, Yang L, Tong S, Zhou R, Long H, Wu Y, Wang L, Wu Y, Zhang Y, Shen J, Zhang J, Qiu G, Wang J, Han C, Zhang Y, Zhou M, Zhao Y, Xu T, Tang C, Chen Z, Liu H, Chen L. Readily releasable β cells with tight Ca 2+-exocytosis coupling dictate biphasic glucose-stimulated insulin secretion. Nat Metab 2024; 6:238-253. [PMID: 38278946 DOI: 10.1038/s42255-023-00962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/05/2023] [Indexed: 01/28/2024]
Abstract
Biphasic glucose-stimulated insulin secretion (GSIS) is essential for blood glucose regulation, but a mechanistic model incorporating the recently identified islet β cell heterogeneity remains elusive. Here, we show that insulin secretion is spatially and dynamically heterogeneous across the islet. Using a zinc-based fluorophore with spinning-disc confocal microscopy, we reveal that approximately 40% of islet cells, which we call readily releasable β cells (RRβs), are responsible for 80% of insulin exocytosis events. Although glucose up to 18.2 mM fully mobilized RRβs to release insulin synchronously (first phase), even higher glucose concentrations enhanced the sustained secretion from these cells (second phase). Release-incompetent β cells show similarities to RRβs in glucose-evoked Ca2+ transients but exhibit Ca2+-exocytosis coupling deficiency. A decreased number of RRβs and their altered secretory ability are associated with impaired GSIS progression in ob/ob mice. Our data reveal functional heterogeneity at the level of exocytosis among β cells and identify RRβs as a subpopulation of β cells that make a disproportionally large contribution to biphasic GSIS from mouse islets.
Collapse
Affiliation(s)
- Xiaohong Peng
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Bioland Laboratory, Guangzhou, China
| | - Huixia Ren
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lu Yang
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shiyan Tong
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Renjie Zhou
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Haochen Long
- School of Software and Microelectronics, Peking University, Beijing, China
| | - Yunxiang Wu
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Lifen Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Yongdeng Zhang
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Jiayu Shen
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Junwei Zhang
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Guohua Qiu
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Jianyong Wang
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Chengsheng Han
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Yulin Zhang
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Mengxuan Zhou
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Yiwen Zhao
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Tao Xu
- Guangzhou National Laboratory, Guangzhou, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Chao Tang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhixing Chen
- National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Huisheng Liu
- Bioland Laboratory, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China.
| | - Liangyi Chen
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
| |
Collapse
|
9
|
Cipriani V, Vestito L, Magavern EF, Jacobsen JO, Arno G, Behr ER, Benson KA, Bertoli M, Bockenhauer D, Bowl MR, Burley K, Chan LF, Chinnery P, Conlon P, Costa M, Davidson AE, Dawson SJ, Elhassan E, Flanagan SE, Futema M, Gale DP, García-Ruiz S, Corcia CG, Griffin HR, Hambleton S, Hicks AR, Houlden H, Houlston RS, Howles SA, Kleta R, Lekkerkerker I, Lin S, Liskova P, Mitchison H, Morsy H, Mumford AD, Newman WG, Neatu R, O'Toole EA, Ong AC, Pagnamenta AT, Rahman S, Rajan N, Robinson PN, Ryten M, Sadeghi-Alavijeh O, Sayer JA, Shovlin CL, Taylor JC, Teltsh O, Tomlinson I, Tucci A, Turnbull C, van Eerde AM, Ware JS, Watts LM, Webster AR, Westbury SK, Zheng SL, Caulfield M, Smedley D. Rare disease gene association discovery from burden analysis of the 100,000 Genomes Project data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.20.23300294. [PMID: 38196618 PMCID: PMC10775325 DOI: 10.1101/2023.12.20.23300294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
To discover rare disease-gene associations, we developed a gene burden analytical framework and applied it to rare, protein-coding variants from whole genome sequencing of 35,008 cases with rare diseases and their family members recruited to the 100,000 Genomes Project (100KGP). Following in silico triaging of the results, 88 novel associations were identified including 38 with existing experimental evidence. We have published the confirmation of one of these associations, hereditary ataxia with UCHL1 , and independent confirmatory evidence has recently been published for four more. We highlight a further seven compelling associations: hypertrophic cardiomyopathy with DYSF and SLC4A3 where both genes show high/specific heart expression and existing associations to skeletal dystrophies or short QT syndrome respectively; monogenic diabetes with UNC13A with a known role in the regulation of β cells and a mouse model with impaired glucose tolerance; epilepsy with KCNQ1 where a mouse model shows seizures and the existing long QT syndrome association may be linked; early onset Parkinson's disease with RYR1 with existing links to tremor pathophysiology and a mouse model with neurological phenotypes; anterior segment ocular abnormalities associated with POMK showing expression in corneal cells and with a zebrafish model with developmental ocular abnormalities; and cystic kidney disease with COL4A3 showing high renal expression and prior evidence for a digenic or modifying role in renal disease. Confirmation of all 88 associations would lead to potential diagnoses in 456 molecularly undiagnosed cases within the 100KGP, as well as other rare disease patients worldwide, highlighting the clinical impact of a large-scale statistical approach to rare disease gene discovery.
Collapse
|
10
|
Ishihara H. Metabolism-secretion coupling in glucose-stimulated insulin secretion. Diabetol Int 2022; 13:463-470. [PMID: 35693987 PMCID: PMC9174369 DOI: 10.1007/s13340-022-00576-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/27/2022] [Indexed: 01/09/2023]
Abstract
Pancreatic β-cells in the islets of Langerhans secrete insulin in response to blood glucose levels. Precise control of the amount of insulin secreted is of critical importance for maintaining systemic carbohydrate homeostasis. It is now well established that glucose induced production of ATP from ADP and the KATP channel closure elevate cytosolic Ca2+, triggering insulin exocytosis in β-cells. However, for full activation of insulin secretion by glucose, other mechanisms besides Ca2+ elevation are needed. These mechanisms are the targets of current research and include intracellular metabolic pathways branching from glycolysis. They are metabolic pathways originating from the TCA cycle intermediates, the glycerolipid/free fatty acid cycle and the pentose phosphate pathway. Signaling effects of these pathways including degradation (removal) of protein SUMOylation, modulation of insulin vesicular energetics, and lipid modulation of exocytotic machinery may converge to fulfill insulin secretion, though the precise mechanisms have yet to be elucidated. This mini-review summarize recent advances in research on metabolic coupling mechanisms functioning in insulin secretion.
Collapse
Affiliation(s)
- Hisamitsu Ishihara
- Division of Diabetes and Metabolism, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610 Japan
| |
Collapse
|
11
|
Mizuno K, Izumi T. Munc13b stimulus-dependently accumulates on granuphilin-mediated, docked granules prior to fusion. Cell Struct Funct 2022; 47:31-41. [PMID: 35387942 PMCID: PMC10511056 DOI: 10.1247/csf.22005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/11/2022] Open
Abstract
The Rab27 effector granuphilin plays an indispensable role in stable docking of secretory granules to the plasma membrane by interacting with the complex of Munc18-1 and the fusion-incompetent, closed form of syntaxins-1~3. Although this process prevents spontaneous granule exocytosis, those docked granules actively fuse in parallel with other undocked granules after stimulation. Therefore, it is postulated that the closed form of syntaxins must be converted into the fusion-competent open form in a stimulus-dependent manner. Although Munc13 family proteins are generally thought to prime docked vesicles by facilitating conformational change in syntaxins, it is unknown which isoform acts in granuphilin-mediated, docked granule exocytosis. In the present study, we show that, although both Munc13a and Munc13b are expressed in mouse pancreatic islets and their beta-cell line MIN6, the silencing of Munc13b, but not that of Munc13a, severely affects glucose-induced insulin secretion. Furthermore, Munc13b accumulates on a subset of granules beneath the plasma membrane just prior to fusion during stimulation, whereas Munc13a is translocated to the plasma membrane where granules do not exist. When fluorescently labeled granuphilin was introduced to discriminate between molecularly docked granules and other undocked granules in living cells, Munc13b downregulation was observed to preferentially decrease the fusion of granuphilin-positive granules immobilized to the plasma membrane. These findings suggest that Munc13b promotes insulin exocytosis by clustering on molecularly docked granules in a stimulus-dependent manner.Key words: docking, insulin, live cell imaging, priming, TIRF microscopy.
Collapse
Affiliation(s)
- Kouichi Mizuno
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| |
Collapse
|
12
|
Kaneko YK, Sawatani T, Ishikawa T. Involvement of Diacylglycerol Kinase on the Regulation of Insulin Secretion in Pancreatic β-Cells during Type 2 Diabetes. YAKUGAKU ZASSHI 2022; 142:457-463. [PMID: 35491149 DOI: 10.1248/yakushi.21-00176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Depression of lipid metabolism in β-cells has been indicated to be one of the causes of impaired insulin secretion in type 2 diabetes. Diacylglycerol (DAG) is an important lipid mediator and is known to regulate insulin secretion in pancreatic β-cells. Intracellular DAG accumulation is involved in β-cell dysfunction in the pathogenesis of type 2 diabetes; thus, the regulation of intracellular DAG levels is likely important for maintaining the β-cell function. We focused on diacylglycerol kinases (DGKs), which strictly regulate intracellular DAG levels, and analyzed the function of type I DGKs (DGKα, γ), which are activated by intracellular Ca2+ and expressed in the cytoplasm, in β-cells. The suppression of the DGKα and γ expression decreased the insulin secretory response, and the decreased expression of DGKα and γ was observed in islets of diabetic model mice. In the pancreatic β-cell line MIN6, 1 μM R59949 (a type I DGK inhibitor) and 10 μM DiC8 (a cell permeable DAG analog) enhanced glucose-induced [Ca2+]i oscillation in a PKC-dependent manner, while 10 μM R59949 and 100 μM DiC8 suppressed [Ca2+]i oscillation and voltage-dependent Ca2+ channel activity in a PKC-independent manner. These results suggest that the intracellular accumulation of DAG by the loss of the DGKα and γ functions regulates insulin secretion in a dual manner depending on the degree of DAG accumulation. The regulation of the insulin secretory response through DAG metabolism by type I DGKs may change depending on the degree of progression of type 2 diabetes.
Collapse
Affiliation(s)
- Yukiko K. Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Toshiaki Sawatani
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
13
|
Wang S, Ma C. Neuronal SNARE complex assembly guided by Munc18-1 and Munc13-1. FEBS Open Bio 2022; 12:1939-1957. [PMID: 35278279 PMCID: PMC9623535 DOI: 10.1002/2211-5463.13394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 01/25/2023] Open
Abstract
Neurotransmitter release by Ca2+ -triggered synaptic vesicle exocytosis is essential for information transmission in the nervous system. The soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) syntaxin-1, SNAP-25, and synaptobrevin-2 form the SNARE complex to bring synaptic vesicles and the plasma membranes together and to catalyze membrane fusion. Munc18-1 and Munc13-1 regulate synaptic vesicle priming via orchestrating neuronal SNARE complex assembly. In this review, we summarize recent advances toward the functions and molecular mechanisms of Munc18-1 and Munc13-1 in guiding neuronal SNARE complex assembly, and discuss the functional similarities and differences between Munc18-1 and Munc13-1 in neurons and their homologs in other intracellular membrane trafficking systems.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
14
|
Deng K, Thorn P. Presynaptic-like mechanisms and the control of insulin secretion in pancreatic β-cells. Cell Calcium 2022; 104:102585. [DOI: 10.1016/j.ceca.2022.102585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/18/2022]
|
15
|
Serrano J, Meshram NN, Soundarapandian MM, Smith KR, Mason C, Brown IS, Tyrberg B, Kyriazis GA. Saccharin Stimulates Insulin Secretion Dependent on Sweet Taste Receptor-Induced Activation of PLC Signaling Axis. Biomedicines 2022; 10:biomedicines10010120. [PMID: 35052799 PMCID: PMC8773316 DOI: 10.3390/biomedicines10010120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Saccharin is a common artificial sweetener and a bona fide ligand for sweet taste receptors (STR). STR can regulate insulin secretion in beta cells, so we investigated whether saccharin can stimulate insulin secretion dependent on STR and the activation of phospholipase C (PLC) signaling. Methods: We performed in vivo and in vitro approaches in mice and cells with loss-of-function of STR signaling and specifically assessed the involvement of a PLC signaling cascade using real-time biosensors and calcium imaging. Results: We found that the ingestion of a physiological amount of saccharin can potentiate insulin secretion dependent on STR. Similar to natural sweeteners, saccharin triggers the activation of the PLC signaling cascade, leading to calcium influx and the vesicular exocytosis of insulin. The effects of saccharin also partially require transient receptor potential cation channel M5 (TRPM5) activity. Conclusions: Saccharin ingestion may transiently potentiate insulin secretion through the activation of the canonical STR signaling pathway. These physiological effects provide a framework for understanding the potential health impact of saccharin use and the contribution of STR in peripheral tissues.
Collapse
Affiliation(s)
- Joan Serrano
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (J.S.); (N.N.M.); (C.M.); (I.S.B.)
| | - Nishita N. Meshram
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (J.S.); (N.N.M.); (C.M.); (I.S.B.)
| | | | - Kathleen R. Smith
- Sanford Burnham Prebys Medical Discovery Institute, Lake Nona, FL 32827, USA; (M.M.S.); (K.R.S.)
| | - Carter Mason
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (J.S.); (N.N.M.); (C.M.); (I.S.B.)
| | - Ian S. Brown
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (J.S.); (N.N.M.); (C.M.); (I.S.B.)
| | - Björn Tyrberg
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - George A. Kyriazis
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (J.S.); (N.N.M.); (C.M.); (I.S.B.)
- Correspondence: or
| |
Collapse
|
16
|
Fan F, Wu Y, Hara M, Rizk A, Ji C, Nerad D, Tamarina N, Lou X. Dynamin deficiency causes insulin secretion failure and hyperglycemia. Proc Natl Acad Sci U S A 2021; 118:e2021764118. [PMID: 34362840 PMCID: PMC8364113 DOI: 10.1073/pnas.2021764118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β cells operate with a high rate of membrane recycling for insulin secretion, yet endocytosis in these cells is not fully understood. We investigate this process in mature mouse β cells by genetically deleting dynamin GTPase, the membrane fission machinery essential for clathrin-mediated endocytosis. Unexpectedly, the mice lacking all three dynamin genes (DNM1, DNM2, DNM3) in their β cells are viable, and their β cells still contain numerous insulin granules. Endocytosis in these β cells is severely impaired, resulting in abnormal endocytic intermediates on the plasma membrane. Although insulin granules are abundant, their release upon glucose stimulation is blunted in both the first and second phases, leading to hyperglycemia and glucose intolerance in mice. Dynamin triple deletion impairs insulin granule exocytosis and decreases intracellular Ca2+ responses and granule docking. The docking defect is correlated with reduced expression of Munc13-1 and RIM1 and reorganization of cortical F-actin in β cells. Collectively, these findings uncover the role of dynamin in dense-core vesicle endocytosis and secretory capacity. Insulin secretion deficiency in the absence of dynamin-mediated endocytosis highlights the risk of impaired membrane trafficking in endocrine failure and diabetes pathogenesis.
Collapse
Affiliation(s)
- Fan Fan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Yumei Wu
- HHMI, Yale University School of Medicine, New Haven, CT 06510
- Departments of Neuroscience and Cell Biology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Manami Hara
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Adam Rizk
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Chen Ji
- Synapses and Circuits section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892
| | - Dan Nerad
- Emergency Medicine, Carl R. Darnall Army Medical Center, Fort Hood, TX 76544
| | - Natalia Tamarina
- Department of Medicine, The Kovler Diabetes Center, University of Chicago, Chicago, IL 60637
| | - Xuelin Lou
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226;
| |
Collapse
|
17
|
Abstract
Background Insulin is stored within large dense-core granules in pancreatic beta (β)-cells and is released by Ca2+-triggered exocytosis with increasing blood glucose levels. Polarized and targeted secretion of insulin from β-cells in pancreatic islets into the vasculature has been proposed; however, the mechanisms related to cellular and molecular localization remain largely unknown. Within nerve terminals, the Ca2+-dependent release of a polarized transmitter is limited to the active zone, a highly specialized area of the presynaptic membrane. Several active zone-specific proteins have been characterized; among them, the CAST/ELKS protein family members have the ability to form large protein complexes with other active zone proteins to control the structure and function of the active zone for tight regulation of neurotransmitter release. Notably, ELKS but not CAST is also expressed in β-cells, implying that ELKS may be involved in polarized insulin secretion from β-cells. Scope of review This review provides an overview of the current findings regarding the role(s) of ELKS and other active zone proteins in β-cells and focuses on the molecular mechanism underlying ELKS regulation within polarized insulin secretion from islets. Major conclusions ELKS localizes at the vascular-facing plasma membrane of β-cells in mouse pancreatic islets. ELKS forms a potent insulin secretion complex with L-type voltage-dependent Ca2+ channels on the vascular-facing plasma membrane of β-cells, enabling polarized Ca2+ influx and first-phase insulin secretion from islets. This model provides novel insights into the functional polarity observed during insulin secretion from β-cells within islets at the molecular level. This active zone-like region formed by ELKS at the vascular side of the plasma membrane is essential for coordinating physiological insulin secretion and may be disrupted in diabetes.
Collapse
Affiliation(s)
- Mica Ohara-Imaizumi
- Department of Cellular Biochemistry, Kyorin University School of Medicine, Tokyo 181-8611, Japan.
| | - Kyota Aoyagi
- Department of Cellular Biochemistry, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
18
|
ELKS/Voltage-Dependent Ca 2+ Channel-β Subunit Module Regulates Polarized Ca 2+ Influx in Pancreatic β Cells. Cell Rep 2020; 26:1213-1226.e7. [PMID: 30699350 DOI: 10.1016/j.celrep.2018.12.106] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 10/29/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022] Open
Abstract
Pancreatic β cells secrete insulin by Ca2+-triggered exocytosis. However, there is no apparent secretory site similar to the neuronal active zones, and the cellular and molecular localization mechanism underlying polarized exocytosis remains elusive. Here, we report that ELKS, a vertebrate active zone protein, is used in β cells to regulate Ca2+ influx for insulin secretion. β cell-specific ELKS-knockout (KO) mice showed impaired glucose-stimulated first-phase insulin secretion and reduced L-type voltage-dependent Ca2+ channel (VDCC) current density. In situ Ca2+ imaging of β cells within islets expressing a membrane-bound G-CaMP8b Ca2+ sensor demonstrated initial local Ca2+ signals at the ELKS-localized vascular side of the β cell plasma membrane, which were markedly decreased in ELKS-KO β cells. Mechanistically, ELKS directly interacted with the VDCC-β subunit via the GK domain. These findings suggest that ELKS and VDCCs form a potent insulin secretion complex at the vascular side of the β cell plasma membrane for polarized Ca2+ influx and first-phase insulin secretion from pancreatic islets.
Collapse
|
19
|
Thurmond DC, Gaisano HY. Recent Insights into Beta-cell Exocytosis in Type 2 Diabetes. J Mol Biol 2020; 432:1310-1325. [PMID: 31863749 PMCID: PMC8061716 DOI: 10.1016/j.jmb.2019.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 01/26/2023]
Abstract
As one of the leading causes of morbidity and mortality worldwide, diabetes affects an estimated 422 million adults, and it is expected to continue expanding such that by 2050, 30% of the U.S. population will become diabetic within their lifetime. Out of the estimated 422 million people currently afflicted with diabetes worldwide, about 5% have type 1 diabetes (T1D), while the remaining ~95% of diabetics have type 2 diabetes (T2D). Type 1 diabetes results from the autoimmune-mediated destruction of functional β-cell mass, whereas T2D results from combinatorial defects in functional β-cell mass plus peripheral glucose uptake. Both types of diabetes are now believed to be preceded by β-cell dysfunction. T2D is increasingly associated with numerous reports of deficiencies in the exocytosis proteins that regulate insulin release from β-cells, specifically the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. SNARE protein's functionality is further regulated by a variety of accessory factors such as Sec1/Munc18 (SM), double C2-domain proteins (DOC2), and additional interacting proteins at the cell surface that influence the fidelity of insulin release. As new evidence emerges about the detailed mechanisms of exocytosis, new questions and controversies have come to light. This emerging information is also contributing to dialogue in the islet biology field focused on how to correct the defects in insulin exocytosis. Herein we present a balanced review of the role of exocytosis proteins in T2D, with thoughts on novel strategies to protect functional β-cell mass.
Collapse
Affiliation(s)
- Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, CA, USA.
| | | |
Collapse
|
20
|
Munc13 mediates klotho-inhibitable diacylglycerol-stimulated exocytotic insertion of pre-docked TRPC6 vesicles. PLoS One 2020; 15:e0229799. [PMID: 32134975 PMCID: PMC7058344 DOI: 10.1371/journal.pone.0229799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/13/2020] [Indexed: 11/29/2022] Open
Abstract
α-Klotho is a type 1 transmembrane protein that exhibits aging suppression function. The large amino-terminal extracellular domain of α-klotho is shed as soluble klotho (sKlotho) and functions as a circulating cardioprotective hormone. Diacylglycerol (DAG)-activated calcium-permeable TRPC6 channel plays a critical role in stress-induced cardiac remodeling. DAG activates TRPC6 by acting directly on the channel to increase its activity and by stimulation of channel exocytosis. sKlotho protects the heart by inhibiting DAG stimulation of TRPC6 exocytosis. How DAG stimulates TRPC6 exocytosis and thereby inhibition by sKlotho are unknown. Using a compound that directly activates TRPC6 without affecting channel exocytosis, we validate that sKlotho selectively blocks DAG stimulation of channel exocytosis. We further show that DAG stimulates exocytosis of TRPC6-containing vesicles pre-docked to the plasma membrane. Mnuc13 family proteins play important roles in the proper assembly of SNARE proteins and priming the vesicle competent for fusion. We show that DAG stimulates TRPC6 exocytosis by targeting to the C1 domain of Munc13-2. The results provide fresh insights into the molecular mechanism by which DAG regulates vesicle fusion and how sKlotho protects the heart against injury.
Collapse
|
21
|
Sawatani T, Kaneko YK, Ishikawa T. Dual effect of reduced type I diacylglycerol kinase activity on insulin secretion from MIN6 β-cells. J Pharmacol Sci 2019; 140:178-186. [PMID: 31279581 DOI: 10.1016/j.jphs.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/03/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
The role of type I diacylglycerol kinases (DGKs) in the regulation of insulin secretion was investigated in MIN6 β-cells. In intracellular Ca2+ concentration ([Ca2+]i) measurement experiments, 1 μM R59949, a type I DGK inhibitor, and 10 μM DiC8, a diacylglycerol (DAG) analog, amplified 22.2 mM glucose-induced [Ca2+]i oscillations in a protein kinase C (PKC)-dependent manner, whereas 10 μM R59949 and 100 μM DiC8 decreased [Ca2+]i independent of PKC. High concentrations of R59949 and DiC8 attenuated voltage-dependent Ca2+ channel currents. According to these results, 22.2 mM glucose-stimulated insulin secretion (GSIS) was potentiated by 1 μM R59949 but suppressed by 10 μM of the same. The DGKα inhibitor R59022 showed a similar dual effect. Conversely, DiC8 at 10 and 100 μM potentiated GSIS, although 100 μM DiC8 decreased [Ca2+]i. These results suggest that DAG accumulated through declined type I DGK activity shows a dual effect on insulin secretion depending on the degree of accumulation; a mild DAG accumulation induces a PKC-dependent stimulatory effect on insulin secretion, whereas an excessive DAG accumulation suppresses it in a PKC-independent manner, possibly via attenuation of VDCC activity.
Collapse
Affiliation(s)
- Toshiaki Sawatani
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Yukiko K Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan.
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| |
Collapse
|
22
|
Guček A, Gandasi NR, Omar-Hmeadi M, Bakke M, Døskeland SO, Tengholm A, Barg S. Fusion pore regulation by cAMP/Epac2 controls cargo release during insulin exocytosis. eLife 2019; 8:41711. [PMID: 31099751 PMCID: PMC6557626 DOI: 10.7554/elife.41711] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/28/2019] [Indexed: 12/20/2022] Open
Abstract
Regulated exocytosis establishes a narrow fusion pore as initial aqueous connection to the extracellular space, through which small transmitter molecules such as ATP can exit. Co-release of polypeptides and hormones like insulin requires further expansion of the pore. There is evidence that pore expansion is regulated and can fail in diabetes and neurodegenerative disease. Here, we report that the cAMP-sensor Epac2 (Rap-GEF4) controls fusion pore behavior by acutely recruiting two pore-restricting proteins, amisyn and dynamin-1, to the exocytosis site in insulin-secreting beta-cells. cAMP elevation restricts and slows fusion pore expansion and peptide release, but not when Epac2 is inactivated pharmacologically or in Epac2-/- (Rapgef4-/-) mice. Consistently, overexpression of Epac2 impedes pore expansion. Widely used antidiabetic drugs (GLP-1 receptor agonists and sulfonylureas) activate this pathway and thereby paradoxically restrict hormone release. We conclude that Epac2/cAMP controls fusion pore expansion and thus the balance of hormone and transmitter release during insulin granule exocytosis. Insulin is the hormone that signals to the body to take up sugar from the blood. Specialized cells in the pancreas – known as β-cells – release insulin after a meal. Before that, insulin molecules are stored in tiny granules inside the β-cells; these granules must fuse with the cells’ surface membranes to release their contents. The first step in this process creates a narrow pore that allows small molecules, but not the larger insulin molecules, to seep out. The pore then widens to release the insulin. Since the small molecules are known to act locally in the pancreas, it is possible that this “molecular sieve” is biologically important. Yet it is not clear how the pore widens. One of the problems for people with type 2 diabetes is that they release less insulin into the bloodstream. Two kinds of drugs used to treat these patients work by stimulating β-cells to release their insulin. One way to achieve this is by raising the levels of a small molecule called cAMP, which is well known to help prepare insulin granules for release. The cAMP molecule also seems to slow the widening of the pore, and Gucek et al. have now investigated how this happens at a molecular level. By observing individual granules of human β-cells using a special microscope, Gucek et al. could watch how different drugs affect pore widening and content release. They also saw that cAMP activated a protein called Epac2, which then recruited two other proteins – amisyn and dynamin – to the small pores. These two proteins together then closed the pore, rather than expanding it to let insulin out. Type 2 diabetes patients sometimes have high levels of amisyn in their β-cells, which could explain why they do not release enough insulin. The microscopy experiments also revealed that two common anti-diabetic drugs activate Epac2 and prevent the pores from widening, thereby counteracting their positive effect on insulin release. The combined effect is likely a shift in the balance between insulin and the locally acting small molecules. These findings suggest that two common anti-diabetic drugs activate a common mechanism that may lead to unexpected outcomes, possibly even reducing how much insulin the β-cells can release. Future studies in mice and humans will have to investigate these effects in whole organisms.
Collapse
Affiliation(s)
- Alenka Guček
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Nikhil R Gandasi
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Marit Bakke
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Imai Y, Cousins RS, Liu S, Phelps BM, Promes JA. Connecting pancreatic islet lipid metabolism with insulin secretion and the development of type 2 diabetes. Ann N Y Acad Sci 2019; 1461:53-72. [PMID: 30937918 DOI: 10.1111/nyas.14037] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023]
Abstract
Obesity is the major contributing factor for the increased prevalence of type 2 diabetes (T2D) in recent years. Sustained positive influx of lipids is considered to be a precipitating factor for beta cell dysfunction and serves as a connection between obesity and T2D. Importantly, fatty acids (FA), a key building block of lipids, are a double-edged sword for beta cells. FA acutely increase glucose-stimulated insulin secretion through cell-surface receptor and intracellular pathways. However, chronic exposure to FA, combined with elevated glucose, impair the viability and function of beta cells in vitro and in animal models of obesity (glucolipotoxicity), providing an experimental basis for the propensity of beta cell demise under obesity in humans. To better understand the two-sided relationship between lipids and beta cells, we present a current view of acute and chronic handling of lipids by beta cells and implications for beta cell function and health. We also discuss an emerging role for lipid droplets (LD) in the dynamic regulation of lipid metabolism in beta cells and insulin secretion, along with a potential role for LD under nutritional stress in beta cells, and incorporate recent advancement in the field of lipid droplet biology.
Collapse
Affiliation(s)
- Yumi Imai
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
| | - Ryan S Cousins
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia
| | - Siming Liu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
| | - Brian M Phelps
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia
| | - Joseph A Promes
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
| |
Collapse
|
24
|
Profile of Dr. Tao Xu. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1310-1311. [PMID: 30421292 DOI: 10.1007/s11427-018-9381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Gandasi NR, Yin P, Omar-Hmeadi M, Ottosson Laakso E, Vikman P, Barg S. Glucose-Dependent Granule Docking Limits Insulin Secretion and Is Decreased in Human Type 2 Diabetes. Cell Metab 2018; 27:470-478.e4. [PMID: 29414688 DOI: 10.1016/j.cmet.2017.12.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/26/2017] [Accepted: 12/23/2017] [Indexed: 01/19/2023]
Abstract
Glucose-stimulated insulin secretion is biphasic, with a rapid first phase and a slowly developing sustained second phase; both are disturbed in type 2 diabetes (T2D). Biphasic secretion results from vastly different release probabilities of individual insulin granules, but the morphological and molecular basis for this is unclear. Here, we show that human insulin secretion and exocytosis critically depend on the availability of membrane-docked granules and that T2D is associated with a strong reduction in granule docking. Glucose accelerated granule docking, and this effect was absent in T2D. Newly docked granules only slowly acquired release competence; this was regulated by major signaling pathways, but not glucose. Gene expression analysis indicated that key proteins involved in granule docking are downregulated in T2D, and overexpression of these proteins increased granule docking. The findings establish granule docking as an important glucose-dependent step in human insulin secretion that is dysregulated in T2D.
Collapse
Affiliation(s)
- Nikhil R Gandasi
- Department of Medical Cell Biology, Uppsala University, BMC 571, 75123 Uppsala, Sweden
| | - Peng Yin
- Department of Medical Cell Biology, Uppsala University, BMC 571, 75123 Uppsala, Sweden
| | - Muhmmad Omar-Hmeadi
- Department of Medical Cell Biology, Uppsala University, BMC 571, 75123 Uppsala, Sweden
| | - Emilia Ottosson Laakso
- Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, 20502 Malmö, Sweden
| | - Petter Vikman
- Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, 20502 Malmö, Sweden
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, BMC 571, 75123 Uppsala, Sweden.
| |
Collapse
|
26
|
Rorsman P, Ashcroft FM. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol Rev 2018; 98:117-214. [PMID: 29212789 PMCID: PMC5866358 DOI: 10.1152/physrev.00008.2017] [Citation(s) in RCA: 519] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/30/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity, and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M Ashcroft
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Lees JA, Messa M, Sun EW, Wheeler H, Torta F, Wenk MR, De Camilli P, Reinisch KM. Lipid transport by TMEM24 at ER-plasma membrane contacts regulates pulsatile insulin secretion. Science 2017; 355:355/6326/eaah6171. [PMID: 28209843 DOI: 10.1126/science.aah6171] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/03/2017] [Indexed: 01/10/2023]
Abstract
Insulin is released by β cells in pulses regulated by calcium and phosphoinositide signaling. Here, we describe how transmembrane protein 24 (TMEM24) helps coordinate these signaling events. We showed that TMEM24 is an endoplasmic reticulum (ER)-anchored membrane protein whose reversible localization to ER-plasma membrane (PM) contacts is governed by phosphorylation and dephosphorylation in response to oscillations in cytosolic calcium. A lipid-binding module in TMEM24 transports the phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] precursor phosphatidylinositol between bilayers, allowing replenishment of PI(4,5)P2 hydrolyzed during signaling. In the absence of TMEM24, calcium oscillations are abolished, leading to a defect in triggered insulin release. Our findings implicate direct lipid transport between the ER and the PM in the control of insulin secretion, a process impaired in patients with type II diabetes.
Collapse
Affiliation(s)
- Joshua A Lees
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mirko Messa
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.,Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Elizabeth Wen Sun
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.,Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Heather Wheeler
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.,Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Federico Torta
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
| | - Pietro De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.,Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510, USA.,Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Karin M Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
28
|
Gaisano HY. Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis. Diabetes Obes Metab 2017; 19 Suppl 1:115-123. [PMID: 28880475 DOI: 10.1111/dom.13001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/23/2017] [Accepted: 05/02/2017] [Indexed: 01/22/2023]
Abstract
Initial work on the exocytotic machinery of predocked insulin secretory granules (SGs) in pancreatic β-cells mimicked the SNARE hypothesis work in neurons, which includes SM/SNARE complex and associated priming proteins, fusion clamps and Ca2+ sensors. However, β-cell SGs, unlike neuronal synaptic vesicles, exhibit a biphasic secretory response that requires additional distinct features in exocytosis including newcomer SGs that undergo minimal docking time at the plasma membrane (PM) before fusion and multi-SG (compound) fusion. These exocytotic events are mediated by Munc18/SNARE complexes distinct from that which mediates predocked SG fusion. We review some recent insights in SNARE complex assembly and the promiscuity in SM/SNARE complex formation, whereby both contribute to conferring different insulin SG fusion kinetics. Some SNARE and associated proteins play non-fusion roles, including tethering SGs to Ca2+ channels, SG recruitment from cell interior to PM, and inhibitory SNAREs that block the action of profusion SNAREs. We discuss new insights into how sub-PM cytoskeletal mesh gates SG access to the PM and the targeting of SG exocytosis to PM domains in functionally polarized β-cells within intact islets. These recent developments have major implications on devising clever SNARE replacement therapies that could restore the deficient insulin secretion in diabetic islet β-cells.
Collapse
|
29
|
Abstract
The evolutionary origin of synapses and neurons is an enigmatic subject that inspires much debate. Non-bilaterian metazoans, both with and without neurons and their closest relatives already contain many components of the molecular toolkits for synapse functions. The origin of these components and their assembly into ancient synaptic signaling machineries are particularly important in light of recent findings on the phylogeny of non-bilaterian metazoans. The evolution of synapses and neurons are often discussed only from a metazoan perspective leaving a considerable gap in our understanding. By taking an integrative approach we highlight the need to consider different, but extremely relevant phyla and to include the closest unicellular relatives of metazoans, the ichthyosporeans, filastereans and choanoflagellates, to fully understand the evolutionary origin of synapses and neurons. This approach allows for a detailed understanding of when and how the first pre- and postsynaptic signaling machineries evolved.
Collapse
Affiliation(s)
- Pawel Burkhardt
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, United Kingdom
| | - Simon G Sprecher
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
30
|
Trexler AJ, Taraska JW. Regulation of insulin exocytosis by calcium-dependent protein kinase C in beta cells. Cell Calcium 2017; 67:1-10. [PMID: 29029784 DOI: 10.1016/j.ceca.2017.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/27/2022]
Abstract
The control of insulin release from pancreatic beta cells helps ensure proper blood glucose level, which is critical for human health. Protein kinase C has been shown to be one key control mechanism for this process. After glucose stimulation, calcium influx into beta cells triggers exocytosis of insulin-containing dense-core granules and activates protein kinase C via calcium-dependent phospholipase C-mediated generation of diacylglycerol. Activated protein kinase C potentiates insulin release by enhancing the calcium sensitivity of exocytosis, likely by affecting two main pathways that could be linked: (1) the reorganization of the cortical actin network, and (2) the direct phosphorylation of critical exocytotic proteins such as munc18, SNAP25, and synaptotagmin. Here, we review what is currently known about the molecular mechanisms of protein kinase C action on each of these pathways and how these effects relate to the control of insulin release by exocytosis. We identify remaining challenges in the field and suggest how these challenges might be addressed to advance our understanding of the regulation of insulin release in health and disease.
Collapse
Affiliation(s)
- Adam J Trexler
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Justin W Taraska
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
31
|
Fan F, Matsunaga K, Wang H, Ishizaki R, Kobayashi E, Kiyonari H, Mukumoto Y, Okunishi K, Izumi T. Exophilin-8 assembles secretory granules for exocytosis in the actin cortex via interaction with RIM-BP2 and myosin-VIIa. eLife 2017; 6. [PMID: 28673385 PMCID: PMC5496739 DOI: 10.7554/elife.26174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/04/2017] [Indexed: 12/15/2022] Open
Abstract
Exophilin-8 has been reported to play a role in anchoring secretory granules within the actin cortex, due to its direct binding activities to Rab27 on the granule membrane and to F-actin and its motor protein, myosin-Va. Here, we show that exophilin-8 accumulates granules in the cortical F-actin network not by direct interaction with myosin-Va, but by indirect interaction with a specific form of myosin-VIIa through its previously unknown binding partner, RIM-BP2. RIM-BP2 also associates with exocytic machinery, Cav1.3, RIM, and Munc13-1. Disruption of the exophilin-8-RIM-BP2-myosin-VIIa complex by ablation or knockdown of each component markedly decreases both the peripheral accumulation and exocytosis of granules. Furthermore, exophilin-8-null mouse pancreatic islets lose polarized granule localization at the β-cell periphery and exhibit impaired insulin secretion. This newly identified complex acts as a physical and functional scaffold and provides a mechanism supporting a releasable pool of granules within the F-actin network beneath the plasma membrane.
Collapse
Affiliation(s)
- Fushun Fan
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Kohichi Matsunaga
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hao Wang
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Ray Ishizaki
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Eri Kobayashi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Yoshiko Mukumoto
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Katsuhide Okunishi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.,Research Program for Signal Transduction, Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research, Maebashi, Japan
| |
Collapse
|
32
|
Molecular regulation of insulin granule biogenesis and exocytosis. Biochem J 2017; 473:2737-56. [PMID: 27621482 DOI: 10.1042/bcj20160291] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/19/2016] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by hyperglycemia, insulin resistance and hyperinsulinemia in early disease stages but a relative insulin insufficiency in later stages. Insulin, a peptide hormone, is produced in and secreted from pancreatic β-cells following elevated blood glucose levels. Upon its release, insulin induces the removal of excessive exogenous glucose from the bloodstream primarily by stimulating glucose uptake into insulin-dependent tissues as well as promoting hepatic glycogenesis. Given the increasing prevalence of T2DM worldwide, elucidating the underlying mechanisms and identifying the various players involved in the synthesis and exocytosis of insulin from β-cells is of utmost importance. This review summarizes our current understanding of the route insulin takes through the cell after its synthesis in the endoplasmic reticulum as well as our knowledge of the highly elaborate network that controls insulin release from the β-cell. This network harbors potential targets for anti-diabetic drugs and is regulated by signaling cascades from several endocrine systems.
Collapse
|
33
|
Gandasi NR, Yin P, Riz M, Chibalina MV, Cortese G, Lund PE, Matveev V, Rorsman P, Sherman A, Pedersen MG, Barg S. Ca2+ channel clustering with insulin-containing granules is disturbed in type 2 diabetes. J Clin Invest 2017; 127:2353-2364. [PMID: 28481223 PMCID: PMC5451232 DOI: 10.1172/jci88491] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 03/16/2017] [Indexed: 01/27/2023] Open
Abstract
Loss of first-phase insulin secretion is an early sign of developing type 2 diabetes (T2D). Ca2+ entry through voltage-gated L-type Ca2+ channels triggers exocytosis of insulin-containing granules in pancreatic β cells and is required for the postprandial spike in insulin secretion. Using high-resolution microscopy, we have identified a subset of docked insulin granules in human β cells and rat-derived clonal insulin 1 (INS1) cells for which localized Ca2+ influx triggers exocytosis with high probability and minimal latency. This immediately releasable pool (IRP) of granules, identified both structurally and functionally, was absent in β cells from human T2D donors and in INS1 cells cultured in fatty acids that mimic the diabetic state. Upon arrival at the plasma membrane, IRP granules slowly associated with 15 to 20 L-type channels. We determined that recruitment depended on a direct interaction with the synaptic protein Munc13, because expression of the II–III loop of the channel, the C2 domain of Munc13-1, or of Munc13-1 with a mutated C2 domain all disrupted L-type channel clustering at granules and ablated fast exocytosis. Thus, rapid insulin secretion requires Munc13-mediated recruitment of L-type Ca2+ channels in close proximity to insulin granules. Loss of this organization underlies disturbed insulin secretion kinetics in T2D.
Collapse
Affiliation(s)
| | - Peng Yin
- Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Michela Riz
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Margarita V Chibalina
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Giuliana Cortese
- Department of Statistical Sciences, University of Padova, Padova, Italy
| | - Per-Eric Lund
- Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Victor Matveev
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Morten G Pedersen
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Sebastian Barg
- Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
34
|
Ferdaoussi M, MacDonald PE. Toward Connecting Metabolism to the Exocytotic Site. Trends Cell Biol 2016; 27:163-171. [PMID: 27932063 DOI: 10.1016/j.tcb.2016.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022]
Abstract
Within cells the regulated exocytosis of secretory granules controls multiple physiological functions, including endocrine hormone secretion. Release of the glucose-regulating hormone insulin from pancreatic islet β cells is critical for whole-body metabolic homeostasis. Impaired insulin secretion appears early in the progression to type 2 diabetes (T2D). Key mechanisms that control the β-cell exocytotic response, mediating the long-known but little understood metabolic amplification of insulin secretion, are becoming clearer. Recent insights indicate a convergence of metabolism-driven signals, such as lipid-derived messengers and redox-dependent deSUMOylation, at the plasma membrane to augment Ca2+-dependent insulin exocytosis. These pathways have important implications for the metabolic control of hormone secretion, for the functional compensation that occurs in obesity, and for impaired insulin secretion in diabetes.
Collapse
Affiliation(s)
- Mourad Ferdaoussi
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada T6G 2E1.
| |
Collapse
|
35
|
Du W, Zhou M, Zhao W, Cheng D, Wang L, Lu J, Song E, Feng W, Xue Y, Xu P, Xu T. HID-1 is required for homotypic fusion of immature secretory granules during maturation. eLife 2016; 5. [PMID: 27751232 PMCID: PMC5094852 DOI: 10.7554/elife.18134] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Secretory granules, also known as dense core vesicles, are generated at the trans-Golgi network and undergo several maturation steps, including homotypic fusion of immature secretory granules (ISGs) and processing of prehormones to yield active peptides. The molecular mechanisms governing secretory granule maturation are largely unknown. Here, we investigate a highly conserved protein named HID-1 in a mouse model. A conditional knockout of HID-1 in pancreatic β cells leads to glucose intolerance and a remarkable increase in the serum proinsulin/insulin ratio caused by defective proinsulin processing. Large volume three-dimensional electron microscopy and immunofluorescence imaging reveal that ISGs are much more abundant in the absence of HID-1. We further demonstrate that HID-1 deficiency prevented secretory granule maturation by blocking homotypic fusion of immature secretory granules. Our data identify a novel player during the early maturation of immature secretory granules.
Collapse
Affiliation(s)
- Wen Du
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Maoge Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dongwan Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lifen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingze Lu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanhong Xue
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingyong Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med 2016; 48:e219. [PMID: 26964835 PMCID: PMC4892884 DOI: 10.1038/emm.2016.6] [Citation(s) in RCA: 543] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 12/11/2022] Open
Abstract
In order to ensure normal body function, the human body is dependent on a tight control of its blood glucose levels. This is accomplished by a highly sophisticated network of various hormones and neuropeptides released mainly from the brain, pancreas, liver, intestine as well as adipose and muscle tissue. Within this network, the pancreas represents a key player by secreting the blood sugar-lowering hormone insulin and its opponent glucagon. However, disturbances in the interplay of the hormones and peptides involved may lead to metabolic disorders such as type 2 diabetes mellitus (T2DM) whose prevalence, comorbidities and medical costs take on a dramatic scale. Therefore, it is of utmost importance to uncover and understand the mechanisms underlying the various interactions to improve existing anti-diabetic therapies and drugs on the one hand and to develop new therapeutic approaches on the other. This review summarizes the interplay of the pancreas with various other organs and tissues that maintain glucose homeostasis. Furthermore, anti-diabetic drugs and their impact on signaling pathways underlying the network will be discussed.
Collapse
Affiliation(s)
- Pia V Röder
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore. E-mail: or
| | - Bingbing Wu
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
| | - Yixian Liu
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
| | - Weiping Han
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore. E-mail: or
| |
Collapse
|
37
|
Man KNM, Imig C, Walter AM, Pinheiro PS, Stevens DR, Rettig J, Sørensen JB, Cooper BH, Brose N, Wojcik SM. Identification of a Munc13-sensitive step in chromaffin cell large dense-core vesicle exocytosis. eLife 2015; 4. [PMID: 26575293 PMCID: PMC4798968 DOI: 10.7554/elife.10635] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/16/2015] [Indexed: 01/16/2023] Open
Abstract
It is currently unknown whether the molecular steps of large dense-core vesicle (LDCV) docking and priming are identical to the corresponding reactions in synaptic vesicle (SV) exocytosis. Munc13s are essential for SV docking and priming, and we systematically analyzed their role in LDCV exocytosis using chromaffin cells lacking individual isoforms. We show that particularly Munc13-2 plays a fundamental role in LDCV exocytosis, but in contrast to synapses lacking Munc13s, the corresponding chromaffin cells do not exhibit a vesicle docking defect. We further demonstrate that ubMunc13-2 and Munc13-1 confer Ca(2+)-dependent LDCV priming with similar affinities, but distinct kinetics. Using a mathematical model, we identify an early LDCV priming step that is strongly dependent upon Munc13s. Our data demonstrate that the molecular steps of SV and LDCV priming are very similar while SV and LDCV docking mechanisms are distinct.
Collapse
Affiliation(s)
- Kwun Nok M Man
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | - Paulo S Pinheiro
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences and Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| | - David R Stevens
- Department of Physiology, Saarland University, Homburg, Germany
| | - Jens Rettig
- Department of Physiology, Saarland University, Homburg, Germany
| | - Jakob B Sørensen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences and Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
38
|
Perelis M, Marcheva B, Ramsey KM, Schipma MJ, Hutchison AL, Taguchi A, Peek CB, Hong H, Huang W, Omura C, Allred AL, Bradfield CA, Dinner AR, Barish GD, Bass J. Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science 2015; 350:aac4250. [PMID: 26542580 PMCID: PMC4669216 DOI: 10.1126/science.aac4250] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mammalian transcription factors CLOCK and BMAL1 are essential components of the molecular clock that coordinate behavior and metabolism with the solar cycle. Genetic or environmental perturbation of circadian cycles contributes to metabolic disorders including type 2 diabetes. To study the impact of the cell-autonomous clock on pancreatic β cell function, we examined pancreatic islets from mice with either intact or disrupted BMAL1 expression both throughout life and limited to adulthood. We found pronounced oscillation of insulin secretion that was synchronized with the expression of genes encoding secretory machinery and signaling factors that regulate insulin release. CLOCK/BMAL1 colocalized with the pancreatic transcription factor PDX1 within active enhancers distinct from those controlling rhythmic metabolic gene networks in liver. We also found that β cell clock ablation in adult mice caused severe glucose intolerance. Thus, cell type-specific enhancers underlie the circadian control of peripheral metabolism throughout life and may help to explain its dysregulation in diabetes.
Collapse
Affiliation(s)
- Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Matthew J Schipma
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alan L Hutchison
- Medical Scientist Training Program, University of Chicago, Chicago, IL 60637, USA. Graduate Program in the Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA. James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Akihiko Taguchi
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Clara Bien Peek
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Heekyung Hong
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wenyu Huang
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chiaki Omura
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Amanda L Allred
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Aaron R Dinner
- Graduate Program in the Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA. James Franck Institute, University of Chicago, Chicago, IL 60637, USA. Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Grant D Barish
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
39
|
|
40
|
Zhao S, Poursharifi P, Mugabo Y, Levens EJ, Vivot K, Attane C, Iglesias J, Peyot ML, Joly E, Madiraju SM, Prentki M. α/β-Hydrolase domain-6 and saturated long chain monoacylglycerol regulate insulin secretion promoted by both fuel and non-fuel stimuli. Mol Metab 2015; 4:940-50. [PMID: 26909310 PMCID: PMC4731734 DOI: 10.1016/j.molmet.2015.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/21/2015] [Accepted: 09/28/2015] [Indexed: 01/15/2023] Open
Abstract
Objective α/β-Hydrolase domain-6 (ABHD6) is a newly identified monoacylglycerol (MAG) lipase. We recently reported that it negatively regulates glucose stimulated insulin secretion (GSIS) in the β cells by hydrolyzing lipolysis-derived MAG that acts as a metabolic coupling factor and signaling molecule via exocytotic regulator Munc13-1. Whether ABHD6 and MAG play a role in response to all classes of insulin secretagogues, in particular various fuel and non-fuel stimuli, is unknown. Methods Insulin secretion in response to various classes of secretagogues, exogenous MAG and pharmacological agents was measured in islets of mice deficient in ABHD6 specifically in the β cell (BKO). Islet perifusion experiments and determinations of glucose and fatty acid metabolism, cytosolic Ca2+ and MAG species levels were carried out. Results Deletion of ABHD6 potentiated insulin secretion in response to the fuels glutamine plus leucine and α-ketoisocaproate and to the non-fuel stimuli glucagon-like peptide 1, carbamylcholine and elevated KCl. Fatty acids amplified GSIS in control and BKO mice to the same extent. Exogenous 1-MAG amplified insulin secretion in response to fuel and non-fuel stimuli. MAG hydrolysis activity was greatly reduced in BKO islets without changes in total diacylglycerol and triacylglycerol lipase activity. ABHD6 deletion induced insulin secretion independently from KATP channels and did not alter the glucose induced rise in intracellular Ca2+. Perifusion studies showed elevated insulin secretion during second phase of GSIS in BKO islets that was not due to altered cytosolic Ca2+ signaling or because of changes in glucose and fatty acid metabolism. Glucose increased islet saturated long chain 1-MAG species and ABHD6 deletion caused accumulation of these 1-MAG species at both low and elevated glucose. Conclusion ABHD6 regulates insulin secretion in response to fuel stimuli at large and some non-fuel stimuli by controlling long chain saturated 1-MAG levels that synergize with other signaling pathways for secretion. ABHD6 is the major monoacylglycerol (MAG) hydrolase in pancreatic β cells. 1-MAG level is elevated in islets from β cell specific ABHD6-KO mice (BKO). BKO islets show enhanced fuel and non-fuel induced insulin secretion. ABHD6 accessible 1-MAG synergizes with other signals for insulin secretion.
Collapse
Key Words
- 1-OG, 1-oleoylglycerol
- 1-PG, 1-palmitoylglycerol
- 1-SG, 1-stearoylglycerol
- ABHD6, α/β-hydrolase domain-6
- ATGL, adipose triglyceride lipase
- BKO, β cell specific ABHD6-knockout
- Carb, carbamylcholine
- Cytosolic Ca2+
- DAG, diacylglycerol
- FFA, free fatty acid
- Flox, flox/flox
- GL/FFA, glycerolipid/ free fatty acid
- GLP1, glucagon-like peptide 1
- GPCR, G-protein coupled receptor
- GSIS, glucose stimulated insulin secretion
- HSL, hormone sensitive lipase
- Insulin secretion
- KO, knockout
- Kic, α-ketoisocaproate
- MAG, monoacylglycerol
- Monoacylglycerol
- OGTT, oral glucose tolerance test
- Pancreatic islets
- ROS, reactive oxygen species
- TG, triacylglycerol
- WT, wild type
- α/β-Hydrolase domain-6
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - S.R. Murthy Madiraju
- Corresponding author. Montreal Diabetes Research Center, CRCHUM, 900 St-Denis (Viger Tower), Rm R08-414, Montreal, QC H1W 4A4, Canada. Tel.: +1 514 890 8000x23610; fax: +1 514 412 7648.
| | - Marc Prentki
- Corresponding author. Montreal Diabetes Research Center, CRCHUM, 900 St-Denis (Viger Tower), Rm R08-412, Montreal, QC H1W 4A4, Canada. Tel.: +1 514 890 8000x23642; fax: +1 514 412 7648.
| |
Collapse
|
41
|
Han YE, Ryu SY, Park SH, Lee KH, Lee SH, Ho WK. Ca(2+) clearance by plasmalemmal NCLX, Li(+)-permeable Na(+)/Ca(2+) exchanger, is required for the sustained exocytosis in rat insulinoma INS-1 cells. Pflugers Arch 2015; 467:2461-72. [PMID: 26100674 DOI: 10.1007/s00424-015-1715-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/03/2015] [Accepted: 06/11/2015] [Indexed: 11/29/2022]
Abstract
Na(+)/Ca(2+) exchangers are key players for Ca(2+) clearance in pancreatic β-cells, but their molecular determinants and roles in insulin secretion are not fully understood. In the present study, we newly discovered that the Li(+)-permeable Na(+)/Ca(2+) exchangers (NCLX), which were known as mitochondrial Na(+)/Ca(2+) exchangers, contributed to the Na(+)-dependent Ca(2+) movement across the plasma membrane in rat INS-1 insulinoma cells. Na(+)/Ca(2+) exchange activity by NCLX was comparable to that by the Na(+)/Ca(2+) exchanger, NCX. We also confirmed the presence of NCLX proteins on the plasma membrane using immunocytochemistry and cell surface biotinylation experiments. We further investigated the role of NCLX on exocytosis function by measuring the capacitance increase in response to repetitive depolarization. Small interfering (si)RNA-mediated downregulation of NCLX did not affect the initial exocytosis, but significantly suppressed sustained exocytosis and recovery of exocytosis. XIP (NCX inhibitory peptide) or Na(+) replacement for inhibiting Na(+)-dependent Ca(2+) clearance also selectively suppressed sustained exocytosis. Consistent with the idea that sustained exocytosis requires ATP-dependent vesicle recruitment, mitochondrial function, assessed by mitochondrial membrane potential (ΔΨ), was impaired by siNCLX or XIP. However, depolarization-induced exocytosis was hardly affected by changes in intracellular Na(+) concentration, suggesting a negligible contribution of mitochondrial Na(+)/Ca(2+) exchanger. Taken together, our data indicate that Na(+)/Ca(2+) exchanger-mediated Ca(2+) clearance mediated by NCLX and NCX is crucial for optimizing mitochondrial function, which in turn contributes to vesicle recruitment for sustained exocytosis in pancreatic β-cells.
Collapse
Affiliation(s)
- Young-Eun Han
- Department of Physiology and Biomembrane Plasticity Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Shin-Young Ryu
- Department of Physiology and Biomembrane Plasticity Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Sun-Hyun Park
- Department of Physiology and Biomembrane Plasticity Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Kyu-Hee Lee
- Department of Physiology and Biomembrane Plasticity Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Suk-Ho Lee
- Department of Physiology and Biomembrane Plasticity Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Won-Kyung Ho
- Department of Physiology and Biomembrane Plasticity Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, Republic of Korea.
| |
Collapse
|
42
|
Doc2b serves as a scaffolding platform for concurrent binding of multiple Munc18 isoforms in pancreatic islet β-cells. Biochem J 2015; 464:251-8. [PMID: 25190515 DOI: 10.1042/bj20140845] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biphasic glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells involves soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor (SNARE) protein-regulated exocytosis. SNARE complex assembly further requires the regulatory proteins Munc18c, Munc18-1 and Doc2b. Munc18-1 and Munc18c are required for first- and second-phase GSIS respectively. These distinct Munc18-1 and Munc18c roles are related to their transient high-affinity binding with their cognate target (t-)SNAREs, Syntaxin 1A and Syntaxin 4 respectively. Doc2b is essential for both phases of GSIS, yet the molecular basis for this remains unresolved. Because Doc2b binds to Munc18-1 and Munc18c via its distinct C2A and C2B domains respectively, we hypothesized that Doc2b may provide a plasma membrane-localized scaffold/platform for transient docking of these Munc18 isoforms during GSIS. Towards this, macromolecular complexes composed of Munc18c, Doc2b and Munc18-1 were detected in β-cells. In vitro interaction assays indicated that Doc2b is required to bridge the interaction between Munc18c and Munc18-1 in the macromolecular complex; Munc18c and Munc18-1 failed to associate in the absence of Doc2b. Competition-based GST-Doc2b interaction assays revealed that Doc2b could simultaneously bind both Munc18-1 and Munc18c. Hence these data support a working model wherein Doc2b functions as a docking platform/scaffold for transient interactions with the multiple Munc18 isoforms operative in insulin release, promoting SNARE assembly.
Collapse
|
43
|
Wuttke A. Lipid Signalling Dynamics at the β-cell Plasma Membrane. Basic Clin Pharmacol Toxicol 2015; 116:281-90. [DOI: 10.1111/bcpt.12369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/15/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Anne Wuttke
- Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
| |
Collapse
|
44
|
Li J, Cantley J, Burchfield JG, Meoli CC, Stöckli J, Whitworth PT, Pant H, Chaudhuri R, Groffen AJA, Verhage M, James DE. DOC2 isoforms play dual roles in insulin secretion and insulin-stimulated glucose uptake. Diabetologia 2014; 57:2173-82. [PMID: 25005332 DOI: 10.1007/s00125-014-3312-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/28/2014] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Glucose-stimulated insulin secretion (GSIS) and insulin-stimulated glucose uptake are processes that rely on regulated intracellular vesicle transport and vesicle fusion with the plasma membrane. DOC2A and DOC2B are calcium-sensitive proteins that were identified as key components of vesicle exocytosis in neurons. Our aim was to investigate the role of DOC2 isoforms in glucose homeostasis, insulin secretion and insulin action. METHODS DOC2 expression was measured by RT-PCR and western blotting. Body weight, glucose tolerance, insulin action and GSIS were assessed in wild-type (WT), Doc2a (-/-) (Doc2aKO), Doc2b (-/-) (Doc2bKO) and Doc2a (-/-)/Doc2b (-/-) (Doc2a/Doc2bKO) mice in vivo. In vitro GSIS and glucose uptake were assessed in isolated tissues, and exocytotic proteins measured by western blotting. GLUT4 translocation was assessed by epifluorescence microscopy. RESULTS Doc2b mRNA was detected in all tissues tested, whereas Doc2a was only detected in islets and the brain. Doc2aKO and Doc2bKO mice had minor glucose intolerance, while Doc2a/Doc2bKO mice showed pronounced glucose intolerance. GSIS was markedly impaired in Doc2a/Doc2bKO mice in vivo, and in isolated Doc2a/Doc2bKO islets in vitro. In contrast, Doc2bKO mice had only subtle defects in insulin secretion in vivo. Insulin action was impaired to a similar degree in both Doc2bKO and Doc2a/Doc2bKO mice. In vitro insulin-stimulated glucose transport and GLUT4 vesicle fusion were defective in adipocytes derived from Doc2bKO mice. Surprisingly, insulin action was not altered in muscle isolated from DOC2-null mice. CONCLUSIONS/INTERPRETATION Our study identifies a critical role for DOC2B in insulin-stimulated glucose uptake in adipocytes, and for the synergistic regulation of GSIS by DOC2A and DOC2B in beta cells.
Collapse
Affiliation(s)
- Jia Li
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gaisano HY. Here come the newcomer granules, better late than never. Trends Endocrinol Metab 2014; 25:381-8. [PMID: 24746186 DOI: 10.1016/j.tem.2014.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/06/2014] [Accepted: 03/14/2014] [Indexed: 01/03/2023]
Abstract
Exocytosis in pancreatic β-cells employs Munc18/soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes that mediate the priming and docking onto the plasma membrane (PM) of insulin granules, called predocked granules, that sit on the PM until Ca(2+) influx evokes fusion. This accounts for most of the initial peak secretory response. However, the subsequent sustained phase of glucose-stimulated insulin secretion arises from newcomer granules that have a minimal residence time at the PM before fusion. In this Opinion I discuss recent work that has begun to decipher the components of the exocytotic machinery of newcomer granules, including a Munc18/SNARE complex that is different from that mediating the fusion of predocked granules and which can potentially rescue defective insulin secretion in diabetes. These insights are applicable to other neuroendocrine cells that exhibit sustained secretion.
Collapse
Affiliation(s)
- Herbert Y Gaisano
- Department of Medicine, University of Toronto, M5S 1A8, Toronto, Canada.
| |
Collapse
|
46
|
James DJ, Martin TFJ. CAPS and Munc13: CATCHRs that SNARE Vesicles. Front Endocrinol (Lausanne) 2013; 4:187. [PMID: 24363652 PMCID: PMC3849599 DOI: 10.3389/fendo.2013.00187] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/18/2013] [Indexed: 11/13/2022] Open
Abstract
CAPS (Calcium-dependent Activator Protein for Secretion, aka CADPS) and Munc13 (Mammalian Unc-13) proteins function to prime vesicles for Ca(2+)-triggered exocytosis in neurons and neuroendocrine cells. CAPS and Munc13 proteins contain conserved C-terminal domains that promote the assembly of SNARE complexes for vesicle priming. Similarities of the C-terminal domains of CAPS/Munc13 proteins with Complex Associated with Tethering Containing Helical Rods domains in multi-subunit tethering complexes (MTCs) have been reported. MTCs coordinate multiple interactions for SNARE complex assembly at constitutive membrane fusion steps. We review aspects of these diverse tethering and priming factors to identify common operating principles.
Collapse
Affiliation(s)
- Declan J. James
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Thomas F. J. Martin
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- *Correspondence: Thomas F. J. Martin, Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA e-mail:
| |
Collapse
|
47
|
Mourad NI, Nenquin M, Henquin JC. Amplification of insulin secretion by acetylcholine or phorbol ester is independent of β-cell microfilaments and distinct from metabolic amplification. Mol Cell Endocrinol 2013; 367:11-20. [PMID: 23246352 DOI: 10.1016/j.mce.2012.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/23/2012] [Accepted: 12/04/2012] [Indexed: 11/30/2022]
Abstract
Insulin secretion (IS) triggered by β-cell [Ca(2+)](c) is amplified by metabolic and receptor-generated signals. Diacylglycerol largely mediates acetylcholine (ACh) effects through protein-kinase C and other effectors, which can be directly activated by phorbol-ester (PMA). Using mouse islets, we investigated the possible role of microfilaments in ACh/PMA-mediated amplification of IS. PMA had no steady-state impact on actin microfilaments. Although ACh slightly augmented and PMA diminished glucose- and tolbutamide-induced increases in β-cell [Ca(2+)](c), both amplified IS in control islets and after microfilament disruption (latrunculin) or stabilization (jasplakinolide). Both phases of IS were larger in response to glucose than tolbutamide, although [Ca(2+)](c) was lower. This difference in secretion, which reflects metabolic amplification, persisted in presence of ACh/PMA and was independent of microfilaments. Amplification of IS by ACh/PMA is thus distinct from metabolic amplification, but both pathways promote acquisition of release competence by insulin granules, which can access exocytotic sites without intervention of microfilaments.
Collapse
Affiliation(s)
- Nizar I Mourad
- Unit of Endocrinology and Metabolism, University of Louvain, Faculty of Medicine, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
48
|
Hasegawa K, Wakino S, Kimoto M, Minakuchi H, Fujimura K, Hosoya K, Komatsu M, Kaneko Y, Kanda T, Tokuyama H, Hayashi K, Itoh H. The hydrolase DDAH2 enhances pancreatic insulin secretion by transcriptional regulation of secretagogin through a Sirt1-dependent mechanism in mice. FASEB J 2013; 27:2301-15. [PMID: 23430976 DOI: 10.1096/fj.12-226092] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The role of dimethylarginine dimethylaminohydrolase 2 (DDAH2) in glucose metabolism is unknown. Here, we generated DDAH2 transgenic (Tg) mice. These mice had lower plasma glucose levels (60 min: 298±32 vs. 418±35 mg/dl; 120 min: 205±15 vs. 284±20 mg/dl) and higher insulin levels (15 min: 2.1±0.2 vs. 1.5±0.1 ng/ml; 30 min: 1.8±0.1 vs. 1.5±0.1 ng/ml) during intraperitoneal glucose tolerance tests when fed a high-fat diet (HFD) compared with HFD-fed wild-type (WT) mice. Glucose-stimulated insulin secretion (GSIS) was increased in Tg islets by 33%. Pancreatic asymmetrical dimethylarginine, nitric oxide, and oxidative stress levels were not correlated with improvements in insulin secretion in Tg mice. Secretagogin, an insulin vesicle docking protein, was up-regulated by 2.7-fold in Tg mice and in pancreatic MIN-6 cells overexpressing DDAH2. GSIS in MIN-6 cells was dependent on DDAH2-induced secretagogin expression. Pancreatic Sirt1, DDAH2, and secretagogin were down-regulated in HFD-fed WT mice by 70, 75, and 85%, respectively. Overexpression of Sirt1 overexpression by 3.9-fold increased DDAH2 and secretagogin expression in MIN-6 cells by 3.2- and 2.5-fold, respectively. DDAH2 overexpression improved GSIS in pancreas-specific Sirt1-deficient mice. In summary, the Sirt1/DDAH2/secretagogin pathway is a novel regulator of GSIS.
Collapse
Affiliation(s)
- Kazuhiro Hasegawa
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wuttke A, Idevall-Hagren O, Tengholm A. P2Y₁ receptor-dependent diacylglycerol signaling microdomains in β cells promote insulin secretion. FASEB J 2013; 27:1610-20. [PMID: 23299857 DOI: 10.1096/fj.12-221499] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Diacylglycerol (DAG) controls numerous cell functions by regulating the localization of C1-domain-containing proteins, including protein kinase C (PKC), but little is known about the spatiotemporal dynamics of the lipid. Here, we explored plasma membrane DAG dynamics in pancreatic β cells and determined whether DAG signaling is involved in secretagogue-induced pulsatile release of insulin. Single MIN6 cells, primary mouse β cells, and human β cells within intact islets were transfected with translocation biosensors for DAG, PKC activity, or insulin secretion and imaged with total internal reflection fluorescence microscopy. Muscarinic receptor stimulation triggered stable, homogenous DAG elevations, whereas glucose induced short-lived (7.1 ± 0.4 s) but high-amplitude elevations (up to 109 ± 10% fluorescence increase) in spatially confined membrane regions. The spiking was mimicked by membrane depolarization and suppressed after inhibition of exocytosis or of purinergic P2Y₁, but not P2X receptors, reflecting involvement of autocrine purinoceptor activation after exocytotic release of ATP. Each DAG spike caused local PKC activation with resulting dissociation of its substrate protein MARCKS from the plasma membrane. Inhibition of spiking reduced glucose-induced pulsatile insulin secretion. Thus, stimulus-specific DAG signaling patterns appear in the plasma membrane, including distinct microdomains, which have implications for the kinetic control of exocytosis and other membrane-associated processes.
Collapse
Affiliation(s)
- Anne Wuttke
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | | | | |
Collapse
|
50
|
Kasai H, Takahashi N, Tokumaru H. Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis. Physiol Rev 2012; 92:1915-64. [DOI: 10.1152/physrev.00007.2012] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamics of exocytosis are diverse and have been optimized for the functions of synapses and a wide variety of cell types. For example, the kinetics of exocytosis varies by more than five orders of magnitude between ultrafast exocytosis in synaptic vesicles and slow exocytosis in large dense-core vesicles. However, in all cases, exocytosis is mediated by the same fundamental mechanism, i.e., the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is often assumed that vesicles need to be docked at the plasma membrane and SNARE proteins must be preassembled before exocytosis is triggered. However, this model cannot account for the dynamics of exocytosis recently reported in synapses and other cells. For example, vesicles undergo exocytosis without prestimulus docking during tonic exocytosis of synaptic vesicles in the active zone. In addition, epithelial and hematopoietic cells utilize cAMP and kinases to trigger slow exocytosis of nondocked vesicles. In this review, we summarize the manner in which the diversity of exocytosis reflects the initial configurations of SNARE assembly, including trans-SNARE, binary-SNARE, unitary-SNARE, and cis-SNARE configurations. The initial SNARE configurations depend on the particular SNARE subtype (syntaxin, SNAP25, or VAMP), priming proteins (Munc18, Munc13, CAPS, complexin, or snapin), triggering proteins (synaptotagmins, Doc2, and various protein kinases), and the submembraneous cytomatrix, and they are the key to determining the kinetics of subsequent exocytosis. These distinct initial configurations will help us clarify the common SNARE assembly processes underlying exocytosis and membrane trafficking in eukaryotic cells.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Hiroshi Tokumaru
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| |
Collapse
|