1
|
Peng S, Zhu Y, Zhu J, Chen Z, Tao Y. Plasma-based untargeted metabolomics reveals potential biomarkers for screening and distinguishing of ovarian tumors. Clin Chim Acta 2025; 572:120246. [PMID: 40107594 DOI: 10.1016/j.cca.2025.120246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 03/05/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
Ovarian cancer (OC), a leading cause of gynecological cancer mortality, is frequently detected at advanced stages due to asymptomatic early progression. This study investigates plasma-based untargeted metabolomics for identifying biomarkers to screen and differentiate ovarian tumors (OT). Plasma samples from OC, benign ovarian tumors (BOT), and healthy controls (HC) were analyzed. Samples were randomized into train and test sets, with differential metabolites screened via two-tailed Student's t-test and partial least squares discriminant analysis. ROC models evaluated discriminatory capacity. Key metabolites demonstrated high predictive value: TMAO and hippuric acid distinguished OT from HC (AUC > 0.95), while linoleic acid, alpha-linolenic acid, and arachidonic acid (AUC > 0.9) further supported OT screening. Kynurenine differentiated OC from BOT (AUC = 0.808). Reduced levels of specific lysophosphatidylcholines (LPC (17:0/0:0), LPC (15:0/0:0)) also distinguished OT from HC (AUC = 0.771-0.89). These findings suggest plasma metabolomics holds promise for noninvasive biomarker discovery in OT screening and distinguishing between malignant and benign cases, though further validation of metabolite quantification is warranted prior to clinical application.
Collapse
Affiliation(s)
- Shen Peng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yiming Zhu
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Jing Zhu
- Department of Clinical Laboratory, Zhenjiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Zhongjian Chen
- Experimental Research Center, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China.
| | - Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
2
|
Wu S, Li H, Yu M, Hu X, Chao S, Yang F, Qin S. Metabolic profiling of the Chinese population with extreme longevity identifies Lysophospholipid species as potential biomarkers for the human lifespan. Maturitas 2025; 198:108379. [PMID: 40315554 DOI: 10.1016/j.maturitas.2025.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/06/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Metabolic regulation plays a crucial role in extending the healthspan and lifespan across multiple organisms, including humans. Although numerous studies have identified the characteristics of the metabolome and potential biomarkers in long-lived populations worldwide, the metabolome landscape of Chinese centenarians remains largely unknown. This study characterised the plasma metabolic profiles of Chinese centenarians and nonagenarians and identified potential biomarkers of longevity. METHODS A global untargeted metabolomics approach was used to analyze plasma samples from 65 centenarians (average age 101.72 ± 1.46 years), 53 nonagenarians (average age 98.92 ± 0.27 years), 47 older individuals (average age 64.66 ± 3.31 years), and 35 middle-aged participants (average age 33.91 ± 3.53 years) recruited from the Lishui region, an area of China well known for the longevity of its population. RESULTS The plasma metabolic profiles of centenarians and nonagenarians differed significantly from those of the two younger populations. Specifically, 211 and 114 differentially abundant metabolites (DAMs) were identified in the centenarian and nonagenarian groups, respectively. The majority of these DAMs were glycerophosphoethanolamines, glycerophosphocholines, fatty esters, fatty alcohols, fatty acyls, and fatty acids and conjugates. For example, the circulating levels of LysoPA (20:2), LysoPA (20:3), LysoPC (16:0), LysoPC (18:2), and LysoPE (20:4) were significantly lower in centenarians than in the older and middle-aged groups. A similar pattern was also observed in the nonagenarian population. Notably, the plasma levels of five DAMs - LysoPA (20:3), LysoPC (18:2), LysoPE (20:4), PG (18:0/18:1), and PG (18:1/18:2) - were significantly and continuously reduced with the ageing process. Pearson correlation analysis revealed that the reduced abundance of LysoPA (20:3), LysoPC (18:2), LysoPE (20:4), LysoPE (24:0), PG (18:0/18:1), and PG (18:1/18:2) was significantly and negatively associated with lifespan, from middle-age to centenarian. ROC analysis indicated that LysoPA (20:3), LysoPC (18:2), LysoPE (20:4), LysoPE (24:0), PG (18:0/18:1), and PG (18:1/18:2), as well as the combination of these six DAMs (AUC = 0.9074), had high predictive power for the human longevity phenotype. CONCLUSION This study elucidated the plasma metabolic landscape of centenarians and nonagenarians in China and identified several potential biomarkers for predicting human lifespan. Our findings will aid in understanding the metabolic regulation of longevity and may promote the clinical practice of gerontology in the future.
Collapse
Affiliation(s)
- Shaochang Wu
- Department of Geriatrics, Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Lishui Second People's Hospital, Lishui, China
| | - He Li
- Department of Geriatrics, Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Lishui Second People's Hospital, Lishui, China
| | - Maoqiang Yu
- Department of Geriatrics, Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Lishui Second People's Hospital, Lishui, China
| | - Xiaogang Hu
- Department of Geriatrics, Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Lishui Second People's Hospital, Lishui, China
| | - Shan Chao
- Research Center for Lin He Academician New Medicine, Institutes for Shanghai Pudong Decoding Life, Shanghai, China
| | - Fan Yang
- Department of Geriatrics, Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Lishui Second People's Hospital, Lishui, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Lu W, Zhang Z, Qiao G, Zou G, Li G. Immune Regulation and Disulfidptosis in Atherosclerosis Influence Disease Progression and Therapy. Biomedicines 2025; 13:926. [PMID: 40299531 PMCID: PMC12025079 DOI: 10.3390/biomedicines13040926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Atherosclerosis is a progressive and complex vascular pathology characterized by cellular heterogeneity, metabolic dysregulation, and chronic inflammation. Despite extensive research, the intricate molecular mechanisms underlying its development and progression remain incompletely understood. Methods: Single-cell RNA sequencing (scRNA-seq) was employed to conduct a comprehensive mapping of immune cell enrichment and interactions within atherosclerotic plaques, aiming to investigate the cellular and molecular complexities of these structures. This approach facilitated a deeper understanding of the heterogeneities present in smooth muscle cells, which were subsequently analyzed using pseudotime trajectory analysis to monitor the developmental trajectories of smooth muscle cell (SMC) subpopulations. An integrative bioinformatics approach, primarily utilizing Weighted Gene Co-expression Network Analysis (WGCNA) and machine learning techniques, identified Cathepsin C (CTSC), transforming growth factor beta-induced protein (TGFBI), and glia maturation factor-γ (GMFG) as critical biomarkers. A diagnostic risk score model was developed and rigorously tested through Receiver Operating Characteristic analysis. To illustrate the functional impact of CTSC on the regulation of plaque formation and SMC viability, both in vitro and in vivo experimental investigations were conducted. Results: An analysis revealed SMCs identified as the most prominent cellular type, exhibiting the highest density of disulfidptosis. Pseudotime trajectory analysis illuminated the dynamic activation pathways in SMCs, highlighting their significant role in plaque development and instability. Further characterization of macrophage subtypes demonstrated intercellular communication with SMCs, which exhibited specific signaling pathways, particularly between the proximal and core areas of plaques. The integrated diagnostic risk score model, which incorporates CTSC, TGFBI, and GMFG, proved to be highly accurate in distinguishing high-risk patients with elevated immune responses and systemic inflammation. Knockdown experiments of CTSC conducted in vitro revealed enhanced SMC survival rates, reduced oxidative stress, and inhibited apoptosis, while in vivo experiments confirmed a decrease in plaque burden and improvement in lipid profiles. Conclusions: This study emphasizes the significance of disulfidptosis in the development of atherosclerosis and identifies CTSC as a potential therapeutic target for stabilizing plaques by inhibiting SMC apoptosis and oxidative damage. Additionally, the risk score model serves as a valuable diagnostic tool for identifying high-risk patients and guiding precision treatment strategies.
Collapse
Affiliation(s)
| | - Zhidong Zhang
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 451460, China; (W.L.); (G.Q.); (G.Z.); (G.L.)
| | | | | | | |
Collapse
|
4
|
Yu W, Fu L, Lei G, Luo F, Yu P, Shen W, Wu Q, Yang P. Chemokine Ligands and Receptors Regulate Macrophage Polarization in Atherosclerosis: A Comprehensive Database Mining Study. CJC Open 2025; 7:310-324. [PMID: 40182401 PMCID: PMC11963153 DOI: 10.1016/j.cjco.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/18/2024] [Indexed: 04/05/2025] Open
Abstract
Background Atherosclerosis is a systemic disease involving multiple blood vessels and a major cause of cardiovascular disease. Current treatment methods (eg, statins) for atherosclerosis can reduce the risk of cardiovascular diseases effectively, but they are insufficient to completely reverse existing atherosclerosis. Macrophages play a central role in development of atherosclerosis. Chemokines, the main mediators of macrophage chemotaxis, are important in immune and inflammatory responses. The effects of chemokines on mechanisms involved in atherosclerosis are unknown. This study preliminarily investigated these effects and mechanisms via bioinformatics methods. Methods In this study, data on chemokine ligands and receptors were obtained by mining public databases (the National Center of Biotechnology Information-Gene Expression Omnibus [NCBI-GEO] database, ArrayExpress database, and single-cell RNA sequencing [scRNA-seq] database), and an extensive literature search was performed. The expression levels of chemokines in mouse tissues were analyzed via Metascape software for signalling pathway enrichment, scRNA-seq data for chemokine expression in atherosclerotic plaque progression and regression, and GEO2R data for chemokine expression during macrophage polarization. Ingenuity Pathway Analysis (IPA) software was used to analyze regulatory factors such as transcription factors and microRNAs that are significantly differentially expressed upstream of chemokines in macrophage polarization. Finally, a model of the chemokine regulation of atherosclerosis was established on the basis of these results. Results There are 5 main findings: (1) In atherosclerosis, chemokines are regulated by transcription factors and microRNAs. (2) The transcription factor STAT1 promotes the polarization of dormant (M0) macrophages into classically activated (M1) macrophages and alternative activated (M2) macrophages by regulating chemokines. The transcription factors STAT1, IRF7 and IRF1 regulate the polarization of M0 macrophages into M2a and M2b macrophages via different chemokines. For example, some transcription factors promote M1 polarization of M0 macrophages through CCL4, but M2 macrophage polarization is regulated via CCL19, CCL5 and CCR7. (3) Transcription factors can promote and inhibit, whereas miRNAs can only inhibit atherosclerosis. (4) CCL4 existed in all 5 different chemokine-regulated macrophage models, whereas CXCL3 only existed in the M2b macrophage transcriptional regulation model, indicating that CXCL3 may promote the M2b type macrophages polarization of M0 macrophages. (5) CCL5 and CCR7 can promote the M2a macrophages and M2b macrophages polarization of M0 macrophages. Conclusions Atherosclerosis can be treated by regulating chemokines and regulating the polarization of macrophages. The chemokines CCL4, CCL5, CCL8, CCL19, CXCL3, CXCL10, CXCL13, and CCR7 may play key roles in the progression and regression of atherosclerosis.
Collapse
Affiliation(s)
- Wanqian Yu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Linghua Fu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Guangtao Lei
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fan Luo
- Department of Gastroenterology, Jiangxi Provincial Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wen Shen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Li H, Han Y, Chen W, Wang Y, Xu Y, Wang T, Gong J, Li W, Zhang H, Wang J, Qiu X, Zhu T. Lysoglycerophospholipid metabolism alterations associated with ambient fine particulate matter exposure: Insights into the pro-atherosclerotic effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125646. [PMID: 39761719 DOI: 10.1016/j.envpol.2025.125646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
The biological pathways connecting ambient fine particulate matter (PM2.5)-induced initial adverse effects to the development of atherosclerotic cardiovascular diseases are not fully understood. We hypothesize that lysoglycerophospholipids (LysoGPLs) are pivotal mediators of atherosclerosis induced by exposure to PM2.5. This study investigated the changes of LysoGPLs in response to PM2.5 exposure and the mediation role of LysoGPLs in the pro-atherosclerotic effects of PM2.5 exposure. In this longitudinal panel study, 110 adults aged 50-65 years from Beijing, China, were followed between 2013 and 2015. Targeted metabolomics analyses were utilized to quantify 18 LysoGPLs from five subclasses in 579 plasma samples. Daily PM2.5 mass concentration was monitored at a station. We used linear mixed-effect models to estimate the responses of LysoGPLs to PM2.5 exposure. Subsequently, mediation analyses were conducted to investigate the mediating role of LysoGPLs in PM2.5-associated changes in non-high density lipoprotein-cholesterol (Non-HDL-C), a biomarker for pro-atherosclerotic apolipoprotein B-containing lipoproteins, and various inflammatory biomarkers, including interleukin (IL)-8, monocyte chemoattractant protein-1 (MCP-1), soluble CD40 ligand, and interferon (IFN)-γ. Short-to medium-term (1-30 days) PM2.5 exposure was associated with significant increases in six lysophosphatidic acids (LPAs), three lysoalkylphosphatidylcholines [LPC(O)s], and three lysophosphatidylglycerols (LPGs), as well as decreases in two LPAs and one lysophosphatidylserine (LysoPS), with maximus changes of 0.5-2.1%, 0.8-2.1%, 1.9-3.0%, -1.4-3.7%, and -8.0%, respectively. Furthermore, the elevated levels of LPA 18:1/18:2, LPC(O) 18:0/18:1, and LPG 16:0/16:1/18:0 significantly mediated the PM2.5-associated increase in Non-HDL-C (18-49%), IL-8 (9-24%), MCP-1 (12-26%), and IFN-γ (4-12%) over 30 days. In conclusion, short-to medium-term PM2.5 exposure was associated with altered metabolism of LysoGPLs, which mediated the PM2.5-associated pro-atherosclerotic response.
Collapse
Affiliation(s)
- Haonan Li
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, China
| | - Yiqun Han
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, China; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Wu Chen
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, China; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Yanwen Wang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, China; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yifan Xu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, China
| | - Teng Wang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, China; School of Health Policy and Management, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, China
| | - Weiju Li
- Peking University Hospital, Peking University, Beijing, China
| | - Hongyin Zhang
- Peking University Hospital, Peking University, Beijing, China
| | - Junxia Wang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, China
| | - Xinghua Qiu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, China
| | - Tong Zhu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, China.
| |
Collapse
|
6
|
Zhou Y, Fu K, Li F, Zhang Y, Ren X, Li B, Wu S, Han J, Yang L, Zhou B. UV-aging process of titanium dioxide nanoparticles aggravates enterohepatic toxicity of bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate to zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178074. [PMID: 39674164 DOI: 10.1016/j.scitotenv.2024.178074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
The physicochemical characteristics of titanium dioxide nanoparticles (n-TiO2) may change during the aging process once discharged into aquatic environment. However, how the aging process affects their interactions with co-existing pollutants, as well as the joint toxicity has not been explored. This study investigated how UV-aging impacts n-TiO2 in aquatic environments and their interactions with bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH), focusing on their joint toxicity in adult female zebrafish. UV-aging process significantly increased the specific area and hydrophobicity of n-TiO2, promoting the adsorption of TBPH. In vivo experiments revealed that aged n-TiO2 enhanced the bioaccumulation of TBPH in the liver and intestine, worsening hepatic steatosis and intestinal barrier damage. A combined analysis of hepatic lipidomic profiling and intestinal microbiota 16S rRNA sequencing revealed that co-exposure of aged n-TiO2 and TBPH altered gut microbial composition and abundances, facilitating the circulation of lipopolysaccharides (LPS) through the gut-liver axis. Subsequentially, the elevated LPS level in the liver activated the sphingolipid metabolic pathway, resulting in severer lipid metabolism disorders and hepatotoxicity. This study found that UV-aging increases the hydrophobicity and surface area of n-TiO2, enhancing their interaction with the TBPH, which leads to greater bioaccumulation and hepatoxicity through mechanisms involving changes in gut microbiomes and sphingolipid metabolism.
Collapse
Affiliation(s)
- Yuxi Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kaiyu Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yindan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxin Ren
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingjie Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengmin Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
7
|
Shmet M, Amasha M, Khattib A, Schweitzer R, Khatib S, Hamudi J, Halabi M, Khatib S. Untargeted metabolomics reveals biomarkers for the diagnosis of coronary artery plaques as observed by coronary cardiac computed tomography. Biofactors 2025; 51:e2156. [PMID: 39878362 DOI: 10.1002/biof.2156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025]
Abstract
Atherosclerosis is a major cause of morbidity and mortality worldwide; in Israel, ischemic heart disease is the second leading cause of death for both genders aged 45 and above. Atherosclerosis involves stiffening of the arteries due to the accumulation of lipids and oxidized lipids on the blood vessel walls, triggering the development of artery plaque. Coronary artery disease (CAD) is the most common manifestation of atherosclerosis. The prevalence of CAD in the general population remains high, despite efforts to improve the identification of risk factors and preventive treatments. The discovery of new biomarkers is vital to improving the diagnosis of CAD and its risk factors. We aimed to identify novel biomarkers that could provide an early diagnosis of coronary artery atherosclerotic plaques, their type, and the percentage of stenosis. We used an untargeted metabolomics approach to identify potential biomarkers that could enable highly sensitive and specific CAD detection. The study consisted of 109 patients who underwent cardiac computed tomography angiography at the Cardiology Department of Ziv Medical Center. Fifty-four patients were diagnosed with coronary atherosclerotic plaques (CAD group), and 55 without plaques used control. Untargeted metabolomics using LC-MS/MS revealed 2560 metabolites in the patients' serum: 106 showed statistically significant upregulation in the serum of the CAD group compared with the healthy control group (p < 0.05). These metabolites belonged to the following chemical families: acyl-carnitines, cyclodipeptides, lysophosphatidylcholine, and primary bile acids. In contrast, 98 metabolites displayed statistically significant downregulation in the serum of the CAD group compared with the control group, belonging to the following chemical families: GABA amino acids and derivatives (inhibitory neurotransmitters), lipids, and secondary bile acids. Our comprehensive untargeted serum metabolomic analysis revealed biomarkers that can be used for the diagnosis of patients with CAD. Further cohort studies with a larger number of participants are needed to validate the detected biomarkers.
Collapse
Affiliation(s)
- Manar Shmet
- Natural Products and Analytical Chemistry Laboratory, MIGAL - Galilee Research Institute, Kiryat Shemona, Israel
- Department of Biotechnology, Tel-Hai College, Qiryat Shemona, Israel
| | | | - Ali Khattib
- Natural Products and Analytical Chemistry Laboratory, MIGAL - Galilee Research Institute, Kiryat Shemona, Israel
- The Rappaport Family Institute for Research in the Medical Science and Rambam Medical Center, Haifa, Israel
| | - Ron Schweitzer
- Natural Products and Analytical Chemistry Laboratory, MIGAL - Galilee Research Institute, Kiryat Shemona, Israel
| | | | | | | | - Soliman Khatib
- Natural Products and Analytical Chemistry Laboratory, MIGAL - Galilee Research Institute, Kiryat Shemona, Israel
- Department of Biotechnology, Tel-Hai College, Qiryat Shemona, Israel
| |
Collapse
|
8
|
Wang D, Song J, Wang J, Quan R. Serum metabolic alterations in chickens upon infectious bursal disease virus infection. BMC Vet Res 2024; 20:569. [PMID: 39696379 DOI: 10.1186/s12917-024-04402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Infectious bursal disease virus (IBDV) is a highly contagious immunosuppressive virus of chickens. Chickens acquire infection by the oral route under natural conditions. Although the histological and pathological changes after IBDV infection are well described, the alterations in serum metabolome have not been reported. In this study, SPF chickens were infected with attenuated IBDV (atIBDV) strain LM and very virulent IBDV (vvIBDV) strain LX, respectively. On the seventh day after oral infection, serum samples of experimental chickens were identified using ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS). The serum metabolic profiles were analyzed by multivariate statistical methods. KEGG enrichment analysis was performed to evaluate the dysregulated biological pathways. RESULTS We identified 368 significantly altered metabolites in response to both atIBDV and vvIBDV infection. The metabolic disorder of amino acid and lipid was associated with IBDV infection, especially tryptophan, glycerophospholipid, lysine, and tyrosine metabolism. The differential metabolites enriched in the four metabolic pathways were PC(20:4(5Z,8Z,11Z,14Z)/18:0), PE(16:0/18:2(9Z,12Z)), PE(16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PE(18:0/20:4(5Z,8Z,11Z,14Z)), PE(18:0/20:4(8Z,11Z,14Z,17Z)), PE(18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PE(20:3(8Z,11Z,14Z)/16:0), PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:0), PE-NMe(20:5(5Z,8Z,11Z,14Z,17Z)/18:0), PS(20:3(5Z,8Z,11Z)/18:2(9Z,12Z)), 2-aminobenzoic acid, 4-(2-aminophenyl)-2,4-dioxobutanoic acid, N-acetylserotonin, 5-hydroxyindoleacetate, indole-3-acetaldehyde, indole-3-acetate, p-coumaric acid, L-tyrosine, homovanillin, and S-glutaryldihydrolipoamide. CONCLUSION The atIBDV and vvIBDV infection causes metabolic changes in chicken serum. The differential metabolites and dysregulated metabolic pathways reflect the host response to the IBDV infection.
Collapse
Affiliation(s)
- Dan Wang
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China.
| |
Collapse
|
9
|
Khattib A, Shmet M, Levi A, Hayek T, Halabi M, Khatib S. Bioactive lipids improve serum HDL and PON1 activities in coronary artery disease patients: Ex-vivo study. Vascul Pharmacol 2024; 157:107435. [PMID: 39419293 DOI: 10.1016/j.vph.2024.107435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Atherosclerotic cardiovascular disease (CVD) remains a leading cause of vascular disease worldwide. Atherosclerosis is characterized by the accumulation of lipids and oxidized lipids on the blood vessel walls. Coronary artery disease (CAD) is the most common display of atherosclerotic CVD. OBJECTIVES We investigated the effects of the bioactive lipids as lyso-diacylglyceryltrimethylhomoserine (lyso-DGTS (20,5,0)) and its derivative oleoyl-N-trimethyl homoserine amide (oleoyl amide-MHS) on the properties and functionality of HDL and paraoxonase 1 (PON1) activities in the serum of individuals who exhibited arterial plaque as observed by coronary CT angiography (CCTA). METHODS The study included two independent groups comprising 40 patients who had undergone arterial CCTA scans at Ziv Medical Center for various medical indications. The CAD group included 20 patients with coronary artery plaques with luminal stenosis of more than 50 % in a major coronary vessel. The control group consisted of 20 healthy patients (patients without artery plaques). RESULTS Serum samples from CAD patients exhibited lower serum PON1 and cholesterol efflux activities and higher pro-inflammatory than the control group. HDL isolated from CAD patients contains elevated levels of oxidizing lipids (specifically lyso- phosphatidyl ethanolamines and lyso-phosphocholines(compared to the control. However, incubation of the CAD patients' serum with lyso-DGTS and oleoyl amide-MHS restored the antiatherogenic activities of HDL. The lipids increased serum PON1 activities, enhanced apoB-depleted serum cholesterol-efflux activity, and elevated the serum's anti-inflammatory properties. CONCLUSIONS The results of the present study suggest the potential of the bioactive lipids lyso-DGTS and oleoyl amide-MHS to attenuate atherosclerosis via the improvement of dysfunctional HDL properties and PON1 activities. Further, in-vivo experiments are needed to assess the athero-protective effect of the lipids.
Collapse
Affiliation(s)
- Ali Khattib
- Natural Products and Analytical Chemistry Laboratory, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Department of Biotechnology, Tel-Hai College, Upper Galilee, Israel; Technion Israel Institute of Technology, The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Manar Shmet
- Natural Products and Analytical Chemistry Laboratory, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Department of Biotechnology, Tel-Hai College, Upper Galilee, Israel
| | - Achinoam Levi
- Natural Products and Analytical Chemistry Laboratory, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Department of Biotechnology, Tel-Hai College, Upper Galilee, Israel
| | - Tony Hayek
- Technion Israel Institute of Technology, The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | | | - Soliman Khatib
- Natural Products and Analytical Chemistry Laboratory, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Department of Biotechnology, Tel-Hai College, Upper Galilee, Israel.
| |
Collapse
|
10
|
Amaral WZ, Kokroko N, Treangen TJ, Villapol S, Gomez-Pinilla F. Probiotic therapy modulates the brain-gut-liver microbiota axis in a mouse model of traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167483. [PMID: 39209236 PMCID: PMC11526848 DOI: 10.1016/j.bbadis.2024.167483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The interplay between gut microbiota and host health is crucial for maintaining the overall health of the body and brain, and it is even more crucial how changes in the bacterial profile can influence the aftermath of traumatic brain injury (TBI). We studied the effects of probiotic treatment after TBI to identify potential changes in hepatic lipid species relevant to brain function. Bioinformatic analysis of the gut microbiota indicated a significant increase in the Firmicutes/Bacteroidetes ratio in the probiotic-treated TBI group compared to sham and untreated TBI groups. Although strong correlations between gut bacteria and hepatic lipids were found in sham mice, TBI disrupted these links, and probiotic treatment did not fully restore them. Probiotic treatment influenced systemic glucose metabolism, suggesting altered metabolic regulation. Behavioral tests confirmed memory improvement in probiotic-treated TBI mice. While TBI reduced hippocampal mRNA expression of CaMKII and CREB, probiotics reversed these effects yet did not alter BDNF mRNA levels. Elevated pro-inflammatory markers TNF-α and IL1-β in TBI mice were not significantly affected by probiotic treatment, pointing to different mechanisms underlying the probiotic benefits. In summary, our study suggests that TBI induces dysbiosis, alters hepatic lipid profiles, and preemptive administration of Lactobacillus helveticus and Bifidobacterium longum probiotics can counter neuroplasticity deficits and memory impairment. Altogether, these findings highlight the potential of probiotics for attenuating TBI's detrimental cognitive and metabolic effects through gut microbiome modulation and hepatic lipidomic alteration, laying the groundwork for probiotics as a potential TBI therapy.
Collapse
Affiliation(s)
- Wellington Z Amaral
- Departments of Neurosurgery and Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Natalie Kokroko
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Sonia Villapol
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Fernando Gomez-Pinilla
- Departments of Neurosurgery and Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Guo Z, Zhang Y, Peng Z, Rao H, Yang J, Chen Z, Song W, Wan Q, Chen H, Wang M. Complement factor B, not the membrane attack complex component C9, promotes neointima formation after arterial wire injury. Atherosclerosis 2024; 399:118586. [PMID: 39500113 DOI: 10.1016/j.atherosclerosis.2024.118586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND AIMS Vascular restenosis due to neointima hyperplasia limits the long-term patency of stented arteries, resulting in angioplasty failure. The complement system has been implicated in restenosis. This study aimed to investigate the role of complement factor B (fB), an essential component of the alternative pathway of complement activation, in neointima formation. METHODS Angioplasty wire injury was conducted using 12-week-old mice deficient in fB or C9 (the main component of the membrane attacking complex, C5b-9) and littermate controls and neointima formation were assessed. Vascular smooth muscle cell (SMC) and endothelial cell (EC) proliferation and migration were examined in vitro. RESULTS fB was mainly detected in SMCs of stenotic arteries from humans and mice. Deletion of fB substantially reduced the neointima area and intima-to-media area ratio without affecting the media area at 28 days after injury. At 7 days after injury, fB deficiency decreased SMC proliferation, unaltering neointimal macrophage infiltration and EC reendothelialization. Vascular SMC-expressed fB, not the circulation-sourced fB, played an essential role in SMC proliferation and migration in vitro. fB deficient mice exhibited lower levels of the soluble form of C5b-9, however, deletion of C9 did not alter neointima formation after wire injury, consistent with the null impact of C9 deficiency on SMC proliferation in vitro. CONCLUSIONS fB promotes neointima formation following wire-induced artery injury independent of forming the membrane-attacking complex. This is attributable to fB-dependent SMC proliferation and migration without affecting EC function. Targeting fB might protect against restenosis after percutaneous coronary intervention.
Collapse
MESH Headings
- Animals
- Neointima
- Cell Proliferation
- Cell Movement
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Humans
- Mice, Knockout
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/injuries
- Mice, Inbred C57BL
- Disease Models, Animal
- Mice
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Male
- Complement Membrane Attack Complex/metabolism
- Cells, Cultured
- Vascular System Injuries/pathology
- Vascular System Injuries/genetics
- Vascular System Injuries/metabolism
Collapse
Affiliation(s)
- Ziyi Guo
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yuze Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zekun Peng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Haojie Rao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jianfeng Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zengrong Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Wenchao Song
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qing Wan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Hong Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China; Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China; National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China.
| |
Collapse
|
12
|
Liang M, Wang Q, Zhang S, Lan Q, Wang R, Tan E, Zhou L, Wang C, Wang H, Cheng Y. Polypyridiniums with Inherent Autophagy-Inducing Activity for Atherosclerosis Treatment by Intracellularly Co-Delivering Two Antioxidant Enzymes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409015. [PMID: 39328054 DOI: 10.1002/adma.202409015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/18/2024] [Indexed: 09/28/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial intima and is becoming the leading cause of morbidity and mortality worldwide. There is considerable evidence that defective autophagy and overproduction of reactive oxygen species (ROS) are closely involved in the development and progression of atherosclerosis. Here, a polymer is developed with the inherent autophagy-inducing activity to treat atherosclerosis by co-delivering antioxidant enzymes. The lead material P5c screened from a library of polypyridiniums shows robust efficacy in cytosolic protein delivery, and efficiently delivers superoxide dismutase (SOD) and catalase (CAT) into macrophages to down-regulate intracellular ROS. Moreover, P5c activates autophagy in macrophages and sufficiently inhibits foam cell formation. The P5c nanoparticle loaded with both SOD and CAT is further coated with neutrophil membranes to treat atherosclerosis in an ApoE-/- mice model. The treatment exhibits potent anti-atherosclerosis effect via activating autophagy, decreasing the infiltration of senescent cells in atherosclerotic plaques, regulating the M2 polarization of macrophages, and restoring the structure and function of splenic corpuscles. The polymer offers a multifaceted approach to combat atherosclerosis, addressing both cellular dysfunction and the need for targeted protein delivery within affected cells.
Collapse
Affiliation(s)
- Mengxiao Liang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Qian Wang
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Qi Lan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Ruijue Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Echuan Tan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Zhou
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Changping Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
13
|
Kim JD, Jain A, Fang L. Mitigating Vascular Inflammation by Mimicking AIBP Mechanisms: A New Therapeutic End for Atherosclerotic Cardiovascular Disease. Int J Mol Sci 2024; 25:10314. [PMID: 39408645 PMCID: PMC11477018 DOI: 10.3390/ijms251910314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Atherosclerosis, characterized by the accumulation of lipoproteins and lipids within the vascular wall, underlies a heart attack, stroke, and peripheral artery disease. Endothelial inflammation is the primary component driving atherosclerosis, promoting leukocyte adhesion molecule expression (e.g., E-selectin), inducing chemokine secretion, reducing the production of nitric oxide (NO), and enhancing the thrombogenic potential. While current therapies, such as statins, colchicine, anti-IL1β, and sodium-glucose cotransporter 2 (SGLT2) inhibitors, target systemic inflammation, none of them addresses endothelial cell (EC) inflammation, a critical contributor to disease progression. Targeting endothelial inflammation is clinically significant because it can mitigate the root cause of atherosclerosis, potentially preventing disease progression, while reducing the side effects associated with broader anti-inflammatory treatments. Recent studies highlight the potential of the APOA1 binding protein (AIBP) to reduce systemic inflammation in mice. Furthermore, its mechanism of action also guides the design of a potential targeted therapy against a particular inflammatory signaling pathway. This review discusses the unique advantages of repressing vascular inflammation or enhancing vascular quiescence and the associated benefits of reducing thrombosis. This approach offers a promising avenue for more effective and targeted interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Jun-Dae Kim
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
14
|
Laface C, Ricci AD, Vallarelli S, Ostuni C, Rizzo A, Ambrogio F, Centonze M, Schirizzi A, De Leonardis G, D’Alessandro R, Lotesoriere C, Giannelli G. Autotaxin-Lysophosphatidate Axis: Promoter of Cancer Development and Possible Therapeutic Implications. Int J Mol Sci 2024; 25:7737. [PMID: 39062979 PMCID: PMC11277072 DOI: 10.3390/ijms25147737] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Autotaxin (ATX) is a member of the ectonucleotide pyrophosphate/phosphodiesterase (ENPP) family; it is encoded by the ENPP2 gene. ATX is a secreted glycoprotein and catalyzes the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA is responsible for the transduction of various signal pathways through the interaction with at least six G protein-coupled receptors, LPA Receptors 1 to 6 (LPAR1-6). The ATX-LPA axis is involved in various physiological and pathological processes, such as angiogenesis, embryonic development, inflammation, fibrosis, and obesity. However, significant research also reported its connection to carcinogenesis, immune escape, metastasis, tumor microenvironment, cancer stem cells, and therapeutic resistance. Moreover, several studies suggested ATX and LPA as relevant biomarkers and/or therapeutic targets. In this review of the literature, we aimed to deepen knowledge about the role of the ATX-LPA axis as a promoter of cancer development, progression and invasion, and therapeutic resistance. Finally, we explored its potential application as a prognostic/predictive biomarker and therapeutic target for tumor treatment.
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Simona Vallarelli
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Carmela Ostuni
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Francesca Ambrogio
- Section of Dermatology and Venereology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Centonze
- Personalized Medicine Laboratory, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Annalisa Schirizzi
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Giampiero De Leonardis
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Rosalba D’Alessandro
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Claudio Lotesoriere
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| |
Collapse
|
15
|
Liu J, Ying J, Hu T. Genetic effects of inflammatory cytokines on coronary artery disease and myocardial infarction and the mediating roles of lipid traits. Postgrad Med J 2024; 100:461-468. [PMID: 38409767 DOI: 10.1093/postmj/qgae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/27/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Chronic inflammation has been connected by epidemiological evidence to coronary artery disease (CAD) along with myocardial infarction (MI). Nevertheless, it is still unclear whether reverse causality or confounders account for these connections. Our objectives are to examine the causality between inflammatory cytokines and CAD/MI as well as the potential mediating influence of lipid characteristics. METHODS We acquired instrumental variables through genome-wide association studies meta-analyses of 41 inflammatory cytokines (8293 individuals). Genetic associations with CAD (122 733 cases and 424 528 controls), MI (~61 505 cases and 577 716 controls) and five candidate lipid mediators were obtained from the corresponding genome-wide association studies. A two-step, two-sample Mendelian randomization analysis was applied, followed with comprehensive sensitivity analyses. RESULTS Genetically determined growth regulated oncogene-α was causally linked to a decreased incidence of CAD [odds ratio (OR), 0.97; 95% confidence interval (CI), 0.95-0.99; P = .007] and MI (OR, 0.95; 95% CI, 0.92-0.98; P = .002). There is suggestive evidence indicating a causal impact of macrophage inflammatory protein-1β upon CAD (OR, 1.04; 95% CI, 1.01-1.07; P = .010) and MI (OR, 1.07; 95% CI, 1.02-1.11; P = .002). Furthermore, we discovered suggestive causal connections between tumor necrosis factor-related apoptosis-inducing ligand and CAD (OR, 0.97; 95% CI, 0.95-1.00; P = .020). Two-step Mendelian randomization analysis revealed that triglycerides partially mediate the effect of growth regulated oncogene-α on CAD (proportion-mediated: 13.28%) and MI (8.05%). CONCLUSIONS We provided novel genetic evidence supporting the causality of inflammatory cytokines on CAD/MI and elucidate the mediating effect of triglycerides in the causal pathways linking inflammatory cytokines and CAD/MI.
Collapse
Affiliation(s)
- Junsong Liu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, China
- Cardiovascular Disease Clinical Medical Research Center of Ningbo, Ningbo, Zhejiang 315010, China
| | - Jiajun Ying
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, China
- Cardiovascular Disease Clinical Medical Research Center of Ningbo, Ningbo, Zhejiang 315010, China
| | - Teng Hu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, China
- Cardiovascular Disease Clinical Medical Research Center of Ningbo, Ningbo, Zhejiang 315010, China
| |
Collapse
|
16
|
Zhu Y, Wang T, Yang Y, Wang Z, Chen X, Wang L, Niu R, Sun Z, Zhang C, Luo Y, Hu Y, Gu W. Low shear stress exacerbates atherosclerosis by inducing the generation of neutrophil extracellular traps via Piezo1-mediated mechanosensation. Atherosclerosis 2024; 391:117473. [PMID: 38412763 DOI: 10.1016/j.atherosclerosis.2024.117473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a chronic lipid-driven inflammatory disease largely influenced by hemodynamics. Neutrophil extracellular trap (NET)-mediated inflammation plays an important role in atherosclerosis. However, little is known about the relationship between low shear stress (LSS) and NET generation, as well as the underlying mechanism. METHODS We induced LSS by partial ligation of the left carotid artery in high-fat diet-fed male ApoE-/- mice. To further validate the direct relationship between LSS and NET formation invitro, differentiated human promyelocytic leukemia HL-60 cells and bone marrow-derived neutrophils were suspended in fluid flow under normal or low shear stress using a parallel-plate flow chamber system. RESULTS Four weeks after surgery, ligated carotid arteries had more lipid deposition, larger plaque area, and increased NET formation than unligated arteries. Inhibition of NETosis could significantly reduce plaque formation in ApoE-/- mice. Invitro, LSS could promote NET generation directly through downregulation of Piezo1, a mechanosensitive ion channel. Downregulation of Piezol could activate neutrophils and promote NETosis in static conditions. Conversely, Yoda1-evoked activation of Piezo1 attenuated LSS-induced NETosis. Mechanistically, downregulation of Piezo1 resulted in decreased Ca2+ influx and increased histone deacetylase 2 (HDAC2), which increased reactive oxygen species levels and led to NETosis. LSS-induced NET generation also promoted apoptosis and adherence of endothelial cells. CONCLUSION LSS directly promotes NETosis through the Piezo1-HDAC2 axis in atherosclerosis progression. This study uncovers the essential role of Piezo1-mediated mechanical signaling in NET generation and plaque formation, which provides a promising therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Ying Zhu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Tian Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China; College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yan Yang
- Department of Cardiovascular Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zining Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xiaohui Chen
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Liu Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Ruyan Niu
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zixin Sun
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Chong Zhang
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Yijie Hu
- Department of Cardiovascular Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Wei Gu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
17
|
Stroope C, Nettersheim FS, Coon B, Finney AC, Schwartz MA, Ley K, Rom O, Yurdagul A. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat Metab 2024; 6:617-638. [PMID: 38532071 PMCID: PMC11055680 DOI: 10.1038/s42255-024-01015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Accumulating evidence over the past decades has revealed an intricate relationship between dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, we (1) summarize recent advances concerning the role of metabolic dysregulation during atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas with a potential new generation of cardiovascular therapeutics.
Collapse
Affiliation(s)
- Chad Stroope
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Felix Sebastian Nettersheim
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Brian Coon
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Cardiovascular Biology Research Program, OMRF, Oklahoma City, OK, USA
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Immunology Center of Georgia (IMMCG), Augusta University Immunology Center of Georgia, Augusta, GA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
18
|
Zhao L, Yang W, Ji W, Pan Q, Yang J, Cao X. Untargeted metabolomics uncovers metabolic dysregulation and tissue sensitivity in ACE2 knockout mice. Heliyon 2024; 10:e27472. [PMID: 38496880 PMCID: PMC10944221 DOI: 10.1016/j.heliyon.2024.e27472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) polymorphisms are associated with increased risk of type 2 diabetes mellitus (T2DM), obesity and dyslipidemia, which have been determined in various populations. Consistently, ACE2 knockout (ACE2 KO) mice display damaged energy metabolism in multiple tissues, especially the key metabolic tissues such as liver, skeletal muscle and epididymal white adipose tissue (eWAT) and show even more severe phenotype under high-fat diet (HFD) induced metabolic stress. However, the effects of ACE2 on global metabolomics profiling and the tissue sensitivity remain unclear. To understand how tissues independently and collectively respond to ACE2, we performed untargeted metabolomics in serum in ACE2 KO and control wild type (WT) mice both on normal diet (ND) and HFD, and in three key metabolic tissues (liver, skeletal muscle and eWAT) after HFD treatment. The results showed significant alterations in metabolic profiling in ACE2 KO mice. We identified 275 and 168 serum metabolites differing significantly between WT and ACE2 KO mice fed on ND and HFD, respectively. And the altered metabolites in the ACE2 KO group varied from 90 to 196 in liver, muscle and eWAT. The alterations in ND and HFD serum were most similar. Compared with WT mice, ACE2 KO mice showed an increase in N-phenylacetylglutamine (PAGln), methyl indole-3-acetate, 5-hydroxytryptophol, cholic acid, deoxycholic acid and 12(S)-HETE, while LPC (19:0) and LPE (16:1) decreased. Moreover, LPC (20:0), LPC (20:1) and PC (14:0e/6:0) were reduced in both ND and HFD serum, paralleling the decreases identified in HFD skeletal muscle. Interestingly, DL-tryptophan, indole and Gly-Phe decreased in both ND and HFD serum but were elevated in HFD liver of ACE2 KO mice. A low level of l-ergothioneine was observed among liver, muscle, and epididymal fat tissue of ACE2 KO mice. Pathway analysis demonstrated that different tissues exhibited different dysregulated metabolic pathways. In conclusion, these results revealed that ACE2 deficiency leads to an overall state of metabolic distress, which may provide a new insight into the underlying pathogenesis in metabolic disorders in both ACE2 KO mice and in patients with certain genetic variant of ACE2 gene.
Collapse
Affiliation(s)
| | | | - Wenyi Ji
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Qiuyue Pan
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Jinkui Yang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xi Cao
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
19
|
Hu W, Liu Y, Lian C, Lu H. Genetic insight into putative causes of xanthelasma palpebrarum: a Mendelian randomization study. Front Immunol 2024; 15:1347112. [PMID: 38601164 PMCID: PMC11004296 DOI: 10.3389/fimmu.2024.1347112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Xanthelasma palpebrarum (XP) is the most common form of cutaneous xanthoma, with a prevalence of 1.1%~4.4% in the population. However, the cause of XP remains largely unknown. In the present study, we used Mendelian randomization to assess the genetic association between plasma lipids, metabolic traits, and circulating protein with XP, leveraging summary statistics from large genome-wide association studies (GWAS). Genetically predicted plasma cholesterol and LDL-C, but not HDL-C or triglyceride, were significantly associated with XP. Metabolic traits, including BMI, fasting glucose, type 2 diabetes, systolic and diastolic blood pressure, were not significantly associated with XP. Furthermore, we found genetically predicted 12 circulating proteins were associated with XP, including FN1, NTM, FCN2, GOLM1, ICAM5, PDE5A, C5, CLEC11A, CXCL1, CCL2, CCL11, CCL13. In conclusion, this study identified plasma cholesterol, LDL-C, and 12 circulating proteins to be putative causal factors for XP, highlighting the role of plasma cholesterol and inflammatory response in XP development.
Collapse
Affiliation(s)
- Wenting Hu
- Department of Dermatology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Yaozhong Liu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Cuihong Lian
- Department of Dermatology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Haocheng Lu
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Zhao J, Yoshizumi M. A Comprehensive Retrospective Study on the Mechanisms of Cyclic Mechanical Stretch-Induced Vascular Smooth Muscle Cell Death Underlying Aortic Dissection and Potential Therapeutics for Preventing Acute Aortic Aneurysm and Associated Ruptures. Int J Mol Sci 2024; 25:2544. [PMID: 38473793 DOI: 10.3390/ijms25052544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Acute aortic dissection (AAD) and associated ruptures are the leading causes of death in cardiovascular diseases (CVDs). Hypertension is a prime risk factor for AAD. However, the molecular mechanisms underlying AAD remain poorly understood. We previously reported that cyclic mechanical stretch (CMS) leads to the death of rat aortic smooth muscle cells (RASMCs). This review focuses on the mechanisms of CMS-induced vascular smooth muscle cell (VSMC) death. Moreover, we have also discussed the potential therapeutics for preventing AAD and aneurysm ruptures.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pharmacology, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara 634-8521, Japan
| | - Masanori Yoshizumi
- Department of Pharmacology, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara 634-8521, Japan
| |
Collapse
|
21
|
Prajapati S. Advances in the Management of Diabetes and Overweight using Incretin-based Pharmacotherapies. Curr Diabetes Rev 2024; 20:e131123223544. [PMID: 37962047 DOI: 10.2174/0115733998256797231009062744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 11/15/2023]
Abstract
Throughout the previous three decades, the secretion of glucagon-like peptide-1 hormone has attracted much attention to attain possible therapy goals for the treatment of both hypoglycaemic along type II diabetes militates and overweight. The pharmaceutical generation of peptides similar to hypoglycaemia-based medicines is exemplified by agonists of the GLP- 1R (Glucagon-like peptide-1 receptors). Pharmacokinetic profiles are continuously being improved, beginning with the native hormone with a two- to three-minute quarter and progressing through growth every day with once-drug combinations. Due to contradictory data that indicate stimulation or inhibition of the Glucagon-like peptide receptor, the Glucose-dependent insulin tropic peptide receptor offers favorable effects on systemic metabolism. The recent Glp-1R (Glucagon-like peptide-1 receptor-) targeting monomolecular drugs has demonstrated therapeutic effectiveness and has stoked interest in Glucose-dependent insulin tropic polypeptide antagonism as a treatment for overweight and diabetes mellitus. These drugs have been shown to dramatically improve carbohydrates with body weight management in sick people who have obesity and type II diabetes mellitus. In this study, recent breakthroughs in compelling therapeutic interventions are discussed, and the biology and pharmacology of the glucose-like peptide are reviewed.
Collapse
Affiliation(s)
- Shatrudhan Prajapati
- Department of Pharmacy, Golgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
22
|
Semaev SS, Shakhtshneider EV, Ivanoshchuk DE, Fishman VS, Polonskaya YV, Kashtanova EV, Chernyavskiy AM, Murashov IS, Volkov AM, Ragino YI. EXPRESSION OF GENES OF BIOMOLECULES ASSOCIATED WITH THE ETIOPATHOGENESIS OF ATHEROSCLEROSIS IN ATHEROSCLEROTIC PLAQUES OF CORONARY ARTERIES. COMPLEX ISSUES OF CARDIOVASCULAR DISEASES 2023; 12:65-79. [DOI: 10.17802/2306-1278-2023-12-4s-65-79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
HighlightsThe study showed differences in the expression of a number of genes in atherosclerotic plaques of different types in patients with coronary atherosclerosis. The obtained data can become the basis for the development of test systems in order to determine the dynamics of the atherosclerotic process and detect signs of destabilization of the atherosclerotic plaque as early as possible. Aim. To study the differential expression of genes encoding molecules associated with the etiopathogenesis of atherosclerosis by the method of genome-wide RNA sequencing in stable atherosclerotic plaque of fibrous type and unstable atherosclerotic plaque of dystopic-necrotic type.Methods. The study was performed on samples of atherosclerotic plaques of patients with coronary atherosclerosis without acute coronary syndrome with stable angina pectoris of functional class II–IV (FC) at the age of 45-65 years. Tissue sampling of atherosclerotic plaques was performed intraoperatively in the presence of indications. Genome-wide RNA sequencing was performed using Illumina’s TruSeq RNA Sample Preparation Kit (Illumina, USA).Results. An increase in the level of gene expression in stable atherosclerotic plaques was noted for A2M, ADAMTS13, CSF3, CX3CL1, CXCL1, FGF2, GDF15, ICAM1, IL1A, IL1B, IL6, IL10, PDGFA, PTX3. There was an eightfold statistically significant increase in the level of CFD, CXCL16, FABP4, FLT3, IFNG, IL7, IL15, SELL, TGFA, THBD, TNNT1, VCAM1 and VEGFA gene expression (p<0,001) in unstable atherosclerotic plaques of dystrophic-necrotic type.Conclusion. The study showed differences in the expression of a number of genes in atherosclerotic plaques of different types in patients with coronary atherosclerosis. The obtained data can become the basis for the development of test systems in order to determine the dynamics of the atherosclerotic process and detect signs of destabilization of the atherosclerotic plaque as early as possible.
Collapse
Affiliation(s)
- Sergey S. Semaev
- The Institute of Internal and Preventive Medicine – a branch of a Federal Publicly Funded Institution “Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences”;
“Institute of Cytology and Genetics”, Siberian Branch of the Russian Academy of Sciences
| | - Elena V. Shakhtshneider
- The Institute of Internal and Preventive Medicine – a branch of a Federal Publicly Funded Institution “Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences”;
“Institute of Cytology and Genetics”, Siberian Branch of the Russian Academy of Sciences
| | - Dinara E. Ivanoshchuk
- The Institute of Internal and Preventive Medicine – a branch of a Federal Publicly Funded Institution “Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences”;
“Institute of Cytology and Genetics”, Siberian Branch of the Russian Academy of Sciences
| | - Veniamin S. Fishman
- “Institute of Cytology and Genetics”, Siberian Branch of the Russian Academy of Sciences
| | - Yana V. Polonskaya
- The Institute of Internal and Preventive Medicine – a branch of a Federal Publicly Funded Institution “Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences”
| | - Elena V. Kashtanova
- The Institute of Internal and Preventive Medicine – a branch of a Federal Publicly Funded Institution “Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences”
| | - Alexander M. Chernyavskiy
- Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation
| | - Ivan S. Murashov
- Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation
| | - Alexander M. Volkov
- Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation
| | - Yulia I. Ragino
- The Institute of Internal and Preventive Medicine – a branch of a Federal Publicly Funded Institution “Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences”
| |
Collapse
|
23
|
He S, Wang Y, Liu Z, Zhang J, Hao X, Wang X, Zhou Z, Wang R, Zhao Y. Metabolomic signatures associated with pathological angiogenesis in moyamoya disease. Clin Transl Med 2023; 13:e1492. [PMID: 38037492 PMCID: PMC10689969 DOI: 10.1002/ctm2.1492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Affiliation(s)
- Shihao He
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yanru Wang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Ziqi Liu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Junze Zhang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiaokuan Hao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xilong Wang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zhenyu Zhou
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Rong Wang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Yuanli Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryPeking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
24
|
Li X, Li Z, Cai D, Li Y, Zhu Y, Jiao R, Lai C, Sun J, Bai W. Vitisin A, as a Type of Pyranoanthocyanin, Suppresses Inflammation by Restricting Hematopoietic Stem Cell Differentiation toward Monocytes in Bone Marrow. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15048-15063. [PMID: 37811833 DOI: 10.1021/acs.jafc.3c03119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) could be differentiated into mature myeloid and lymphoid cells, maintaining the requirements of immune cells. Atherosclerosis and ulcerative colitis (UC) drive HSPC homeostasis destruction, which triggers expansive HSPC proliferation and Ly6Chi monocyte production, contributing to aggravated inflammation. Vitisin A belongs to the anthocyanin derivatives with excellent stability and bioactivity in vitro. However, there is no report about the anti-inflammation of Vitisin A via reprogramming HSPC differentiation toward monocytes. In this study, we found that Vitisin A presents anti-inflammatory ability during the development of atherosclerosis and UC by depressing Ly6Chi monocyte production from bone marrow. This performance depended on restricted HSPC differentiation, which suggested that Vitisin A participated in monocyte generation and carried out the immunomodulation. Together, Vitisin A ameliorates inflammation during atherosclerosis and UC via the suppressed differentiation of HSPCs toward monocytes, which could be considered an ideal functional component with immunomodulatory effects.
Collapse
Affiliation(s)
- Xusheng Li
- The Sixth Affiliated Hospital, Jinan University, Dongguan 523576, P. R. China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| | - Zhenhua Li
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou 510632, P. R. China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| | - Yawen Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| | - Yuanqin Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| | - Rui Jiao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| | - Caiyong Lai
- The Sixth Affiliated Hospital, Jinan University, Dongguan 523576, P. R. China
- Department of Urology, Institute of Kidney Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510632, P. R. China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
25
|
Chattopadhyay A, Reddy ST, Fogelman AM. The multiple roles of lysophosphatidic acid in vascular disease and atherosclerosis. Curr Opin Lipidol 2023; 34:196-200. [PMID: 37497844 DOI: 10.1097/mol.0000000000000890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
PURPOSE OF REVIEW To explore the multiple roles that lysophosphatidic acid (LPA) plays in vascular disease and atherosclerosis. RECENT FINDINGS A high-fat high-cholesterol diet decreases antimicrobial activity in the small intestine, which leads to increased levels of bacterial lipopolysaccharide in the mucus of the small intestine and in plasma that increase systemic inflammation, and enhance dyslipidemia and aortic atherosclerosis. Decreasing LPA production in enterocytes reduces the impact of the diet. LPA signaling inhibits glucagon-like peptide 1 secretion, promotes atherosclerosis, increases vessel permeability and infarct volume in stroke, but protects against abdominal aortic aneurysm formation and rupture. Acting through the calpain system in lymphatic endothelial cells, LPA reduces the trafficking of anti-inflammatory Treg lymphocytes, which enhances atherosclerosis. Acting through LPA receptor 1 in cardiac lymphatic endothelial cells and fibroblasts, LPA enhances hypertrophic cardiomyopathy. SUMMARY LPA plays multiple roles in vascular disease and atherosclerosis that is cell and context dependent. In some settings LPA promotes these disease processes and in others it inhibits the disease process. Because LPA is so ubiquitous, therapeutic approaches targeting LPA must be as specific as possible for the cells and the context in which the disease process occurs.
Collapse
Affiliation(s)
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | |
Collapse
|
26
|
Jiang S, Yang H, Li M. Emerging Roles of Lysophosphatidic Acid in Macrophages and Inflammatory Diseases. Int J Mol Sci 2023; 24:12524. [PMID: 37569902 PMCID: PMC10419859 DOI: 10.3390/ijms241512524] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid that regulates physiological and pathological processes in numerous cell biological functions, including cell migration, apoptosis, and proliferation. Macrophages are found in most human tissues and have multiple physiological and pathological functions. There is growing evidence that LPA signaling plays a significant role in the physiological function of macrophages and accelerates the development of diseases caused by macrophage dysfunction and inflammation, such as inflammation-related diseases, cancer, atherosclerosis, and fibrosis. In this review, we summarize the roles of LPA in macrophages, analyze numerous macrophage- and inflammation-associated diseases triggered by LPA, and discuss LPA-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Shufan Jiang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China;
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huili Yang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China;
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China;
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
| |
Collapse
|
27
|
Koschinsky ML, Stroes ESG, Kronenberg F. Daring to dream: Targeting lipoprotein(a) as a causal and risk-enhancing factor. Pharmacol Res 2023; 194:106843. [PMID: 37406784 DOI: 10.1016/j.phrs.2023.106843] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Lipoprotein(a) [Lp(a)], a distinct lipoprotein class, has become a major focus for cardiovascular research. This review is written in light of the recent guideline and consensus statements on Lp(a) and focuses on 1) the causal association between Lp(a) and cardiovascular outcomes, 2) the potential mechanisms by which elevated Lp(a) contributes to cardiovascular diseases, 3) the metabolic insights on the production and clearance of Lp(a) and 4) the current and future therapeutic approaches to lower Lp(a) concentrations. The concentrations of Lp(a) are under strict genetic control. There exists a continuous relationship between the Lp(a) concentrations and risk for various endpoints of atherosclerotic cardiovascular disease (ASCVD). One in five people in the Caucasian population is considered to have increased Lp(a) concentrations; the prevalence of elevated Lp(a) is even higher in black populations. This makes Lp(a) a cardiovascular risk factor of major public health relevance. Besides the association between Lp(a) and myocardial infarction, the relationship with aortic valve stenosis has become a major focus of research during the last decade. Genetic studies provided strong support for a causal association between Lp(a) and cardiovascular outcomes: carriers of genetic variants associated with lifelong increased Lp(a) concentration are significantly more frequent in patients with ASCVD. This has triggered the development of drugs that can specifically lower Lp(a) concentrations: mRNA-targeting therapies such as anti-sense oligonucleotide (ASO) therapies and short interfering RNA (siRNA) therapies have opened new avenues to lower Lp(a) concentrations more than 95%. Ongoing Phase II and III clinical trials of these compounds are discussed in this review.
Collapse
Affiliation(s)
- Marlys L Koschinsky
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
28
|
Chattopadhyay A, Mukherjee P, Sulaiman D, Wang H, Girjalva V, Dorreh N, Jacobs JP, Delk S, Moolenaar WH, Navab M, Reddy ST, Fogelman AM. Role of enterocyte Enpp2 and autotaxin in regulating lipopolysaccharide levels, systemic inflammation, and atherosclerosis. J Lipid Res 2023; 64:100370. [PMID: 37059333 PMCID: PMC10200992 DOI: 10.1016/j.jlr.2023.100370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023] Open
Abstract
Conversion of lysophosphatidylcholine to lysophosphatidic acid (LPA) by autotaxin, a secreted phospholipase D, is a major pathway for producing LPA. We previously reported that feeding Ldlr-/- mice standard mouse chow supplemented with unsaturated LPA or lysophosphatidylcholine qualitatively mimicked the dyslipidemia and atherosclerosis induced by feeding a Western diet (WD). Here, we report that adding unsaturated LPA to standard mouse chow also increased the content of reactive oxygen species and oxidized phospholipids (OxPLs) in jejunum mucus. To determine the role of intestinal autotaxin, enterocyte-specific Ldlr-/-/Enpp2 KO (intestinal KO) mice were generated. In control mice, the WD increased enterocyte Enpp2 expression and raised autotaxin levels. Ex vivo, addition of OxPL to jejunum from Ldlr-/- mice on a chow diet induced expression of Enpp2. In control mice, the WD raised OxPL levels in jejunum mucus and decreased gene expression in enterocytes for a number of peptides and proteins that affect antimicrobial activity. On the WD, the control mice developed elevated levels of lipopolysaccharide in jejunum mucus and plasma, with increased dyslipidemia and increased atherosclerosis. All these changes were reduced in the intestinal KO mice. We conclude that the WD increases the formation of intestinal OxPL, which i) induce enterocyte Enpp2 and autotaxin resulting in higher enterocyte LPA levels; that ii) contribute to the formation of reactive oxygen species that help to maintain the high OxPL levels; iii) decrease intestinal antimicrobial activity; and iv) raise plasma lipopolysaccharide levels that promote systemic inflammation and enhance atherosclerosis.
Collapse
Affiliation(s)
- Arnab Chattopadhyay
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Pallavi Mukherjee
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Dawoud Sulaiman
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Huan Wang
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Victor Girjalva
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Nasrin Dorreh
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Jonathan P Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Fielding School of Public Health, University of California, Los Angeles, CA, USA; UCLA Microbiome Center, Fielding School of Public Health, University of California, Los Angeles, CA, USA; David Geffen School of Medicine at UCLA and the Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System Los Angeles, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Samuel Delk
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Wouter H Moolenaar
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mohamad Navab
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, Fielding School of Public Health, University of California, Los Angeles, CA, USA.
| | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| |
Collapse
|
29
|
Du Z, Wang Y, Li F, Sun X, Du Y, Li L, Yu H, Hu C, Sun H, Gao X, Han L, Zhang Z, Xing J, Wang L, Li J, Qin Y. Targeting Lysophosphatidic Acid Ameliorates Dyslipidemia in Familial Hypercholesterolemia. RESEARCH (WASHINGTON, D.C.) 2023; 8:0629. [PMID: 40018730 PMCID: PMC11865365 DOI: 10.34133/research.0629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 03/01/2025]
Abstract
Familial hypercholesterolemia (FH) is a lipoprotein disorder characterized by elevated plasma levels of low-density lipoprotein cholesterol (LDL-C) and an increased risk of premature atherosclerotic cardiovascular disease. Recent evidences have shown that several glycerophospholipid species were markedly altered in experimental FH animals and exhibited diverse bioactivities. Nevertheless, the glycerophospholipid profiles and their associated biological implications in human FH remain largely unknown. In this study, we sought to comprehensively delineate the glycerophospholipid phenotypes in human FH and to investigate the functional roles of key FH-altered glycerophospholipid molecules on cholesterol metabolism. Targeted analysis of 328 glycerophospholipid metabolites was used to profile the differentiated alterations in patients with homozygous FH (HoFH; n = 181), heterozygous FH (HeFH; n = 452), and non-FH hypercholesterolemia (n = 382). Our findings revealed that the glycerophospholipid phenotypes of FH and non-FH hypercholesterolemia were dominated by a spectrum of metabolites involved in the lysophosphatidic acid (LPA) metabolism. Among the LPA features, palmitoyl-LPA (16:0) showed significant association with the clinical levels of LDL-C and total cholesterol in HoFH and HeFH populations. Using functional metabolomic strategy and murine FH model, we demonstrated that supplementation with LPA 16:0 elevated the plasma levels of LDL and free/esterified cholesterol and exacerbated the atherosclerotic lesions. Conversely, inhibition of autotaxin-mediated LPA 16:0 production significantly ameliorated dyslipidemia. Mechanistically, we uncovered that LPA 16:0 could disrupt hepatic cholesterol homeostasis by impairing cholesterol excretion and inhibiting primary bile acid synthesis. In summary, our study offers novel insights into lipid metabolism in human FH and posits that targeting LPA metabolism may represent a promising therapeutic strategy for reducing cholesterol levels in the FH population.
Collapse
Affiliation(s)
- Zhiyong Du
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Yu Wang
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Fan Li
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Xuechun Sun
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Yunhui Du
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Linyi Li
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Huahui Yu
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Chaowei Hu
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Haili Sun
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Xiaoqian Gao
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Lijie Han
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Zihan Zhang
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Jingci Xing
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Luya Wang
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Jianping Li
- Department of Cardiology,
Peking University First Hospital, Beijing 100034, China
| | - Yanwen Qin
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| |
Collapse
|
30
|
The Potential Importance of CXCL1 in the Physiological State and in Noncancer Diseases of the Cardiovascular System, Respiratory System and Skin. Int J Mol Sci 2022; 24:ijms24010205. [PMID: 36613652 PMCID: PMC9820720 DOI: 10.3390/ijms24010205] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
In this paper, we present a literature review of the role of CXC motif chemokine ligand 1 (CXCL1) in physiology, and in selected major non-cancer diseases of the cardiovascular system, respiratory system and skin. CXCL1, a cytokine belonging to the CXC sub-family of chemokines with CXC motif chemokine receptor 2 (CXCR2) as its main receptor, causes the migration and infiltration of neutrophils to the sites of high expression. This implicates CXCL1 in many adverse conditions associated with inflammation and the accumulation of neutrophils. The aim of this study was to describe the significance of CXCL1 in selected diseases of the cardiovascular system (atherosclerosis, atrial fibrillation, chronic ischemic heart disease, hypertension, sepsis including sepsis-associated encephalopathy and sepsis-associated acute kidney injury), the respiratory system (asthma, chronic obstructive pulmonary disease (COPD), chronic rhinosinusitis, coronavirus disease 2019 (COVID-19), influenza, lung transplantation and ischemic-reperfusion injury and tuberculosis) and the skin (wound healing, psoriasis, sunburn and xeroderma pigmentosum). Additionally, the significance of CXCL1 is described in vascular physiology, such as the effects of CXCL1 on angiogenesis and arteriogenesis.
Collapse
|
31
|
Nontargeted Metabolomic Profiling of Huo-Tan-Chu-Shi Decoction in the Treatment of Coronary Heart Disease with Phlegm-damp Syndrome. Cardiol Res Pract 2022; 2022:6532003. [PMID: 35991771 PMCID: PMC9391147 DOI: 10.1155/2022/6532003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/01/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background Considered an effective supplementary therapy, traditional Chinese medicine (TCM) has been widely applied in the treatment of coronary heart disease (CHD). In this study, we aim to investigate the effects and mechanisms of Huo-Tan-Chu-Shi decoction (HTCSD, an in-hospital TCM prescription) in the treatment of CHD with the phlegm-damp syndrome in mice by non-targeted metabolomics with liquid chromatography-mass spectrometry (LC-MS)/MS. Methods A CHD with phlegm-damp syndrome model was established with ApoE−/− mice by subcutaneous injection with isoproterenol combined with high temperature, high humidity, and a high-fat diet, and divided into the HTCSD and Tanshi groups. C57BL/6 mice were set as the control group with an ordinary environment and diet. After administration, electrocardiogram (ECG), interventricular septum thickness (IVS) and left ventricular posterior wall thickness (LVPW), serum levels of creatine phosphokinase-Mb (CK-MB), cardiac troponin T (cTnT), lactic dehydrogenase (LDH) and oxidized low-density lipoprotein (oxLDL), and myocardial histopathological changes were recorded to assess myocardial damage. LC-MS/MS was applied to demonstrate the serum metabolic profile and explore potential mechanisms. Results The obvious depressions of the ST segment and T wave presented in the ECG of Tanshi mice, while the depressions in ECG of HTCSD mice were significantly reduced. Compared with the control group, IVS, LVPW, and serum levels of CK-MB, cTnT, LDH, and oxLDL increased greatly in the Tanshi group, while these indicators decreased remarkably in the HTCSD group compared with those of the Tanshi group. Histopathology showed severe structural disorder, necrosis, and fibrosis of myocardial cells in Tanshi mice, which were alleviated in HTCSD mice. Metabonomics analysis showed obvious metabolic alterations among the experimental mice and revealed that the relevant metabolic pathways mainly included phospholipid metabolism, necroptosis, and autophagy. Conclusions HTCSD has a certain therapeutic effect in mice with CHD with phlegm-damp syndrome via reducing myocardial ischemia, hypertrophy, and fibrosis. The underlying mechanisms involve the regulation of phospholipid metabolism, necroptosis, and autophagy.
Collapse
|
32
|
Yu W, Ilyas I, Aktar N, Xu S. A review on therapeutical potential of paeonol in atherosclerosis. Front Pharmacol 2022; 13:950337. [PMID: 35991897 PMCID: PMC9385965 DOI: 10.3389/fphar.2022.950337] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
The morbidity and mortality of atherosclerotic cardiovascular disease (ASCVD) is increasing year by year. Cortex Moutan is a traditional Chinese medicinal herb that has been widely used for thousands of years to treat a wide variety of diseases in Eastern countries due to its heat-clearing and detoxifying effects. Paeonol is a bioactive monomer extracted from Cortex Moutan, which has anti-atherosclerotic effects. In this article, we reviewed the pharmacological effects of paeonol against experimental atherosclerosis, as well as its protective effects on vascular endothelial cells, smooth muscle cells, macrophages, platelets, and other important cell types. The pleiotropic effects of paeonol in atherosclerosis suggest that it can be a promising therapeutic agent for atherosclerosis and its complications. Large-scale randomized clinical trials are warranted to elucidate whether paeonol are effective in patients with ASCVD.
Collapse
Affiliation(s)
- Wei Yu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
- Anhui Renovo Pharmaceutical Co., Ltd., Hefei, Anhui, China
- *Correspondence: Wei Yu, ; Suowen Xu,
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Nasrin Aktar
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- *Correspondence: Wei Yu, ; Suowen Xu,
| |
Collapse
|
33
|
Pu L, Meng Q, Li S, Wang Y, Sun B, Liu B, Li F. Laminar shear stress alleviates monocyte adhesion and atherosclerosis development via miR-29b-3p/CX3CL1 axis regulation. J Cell Sci 2022; 135:275792. [PMID: 35735031 PMCID: PMC9450891 DOI: 10.1242/jcs.259696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
Laminar shear stress (Lss) is an important anti-atherosclerosis (anti-AS) factor, but its mechanism network is not clear. Therefore, this study aimed to identify how Lss acts against AS formation from a new perspective. In this study, we analyzed high-throughput sequencing data from static and Lss-treated human aortic and human umbilical vein endothelial cells (HAECs and HUVECs, respectively) and found that the expression of CX3CL1, which is a target gene closely related to AS development, was lower in the Lss group. Lss alleviated the inflammatory response in TNF-α (also known as TNF)-activated HAECs by regulating the miR-29b-3p/CX3CL1 axis, and this was achieved by blocking nuclear factor (NF)-κB signaling. In complementary in vivo experiments, a high-fat diet (HFD) induced inflammatory infiltration and plaque formation in the aorta, both of which were significantly reduced after injection of agomir-miRNA-29b-3p via the tail vein into HFD-fed ApoE−/− mice. In conclusion, this study reveals that the Lss-sensitive miR-29b-3p/CX3CL1 axis is an important regulatory target that affects vascular endothelial inflammation and AS development. Our study provides new insights into the prevention and treatment of AS. Summary: The laminar shear stress-sensitive miR-29b-3p/CX3CL1 axis significantly inhibits monocyte adhesion to activated human aortic endothelial cells, and alleviates local inflammation and plaque formation in ApoE−/− mice fed a high-fat diet.
Collapse
Affiliation(s)
- Luya Pu
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Qingyu Meng
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Shuai Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Yaru Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Banghao Sun
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bin Liu
- Cardiovascular Disease Center, The First Hospital of Jilin University, Changchun, China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China.,Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, China.,Key Laboratory for Health Biomedical Materials of Jilin Province, Jilin University, Changchun, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang, China.,The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
34
|
Karshovska E, Mohibullah R, Zhu M, Zahedi F, Thomas D, Magkrioti C, Geissler C, Megens RTA, Bianchini M, Nazari-Jahantigh M, Ferreirós N, Aidinis V, Schober A. ENPP2 (Endothelial Ectonucleotide Pyrophosphatase/Phosphodiesterase 2) Increases Atherosclerosis in Female and Male Mice. Arterioscler Thromb Vasc Biol 2022; 42:1023-1036. [PMID: 35708027 DOI: 10.1161/atvbaha.122.317682] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Maladapted endothelial cells (ECs) secrete ENPP2 (ectonucleotide pyrophosphatase/phosphodiesterase 2; autotaxin)-a lysophospholipase D that generates lysophosphatidic acids (LPAs). ENPP2 derived from the arterial wall promotes atherogenic monocyte adhesion induced by generating LPAs, such as arachidonoyl-LPA (LPA20:4), from oxidized lipoproteins. Here, we aimed to determine the role of endothelial ENPP2 in the production of LPAs and atherosclerosis. METHODS We quantified atherosclerosis in mice harboring loxP-flanked Enpp2 alleles crossed with Apoe-/- mice expressing tamoxifen-inducible Cre recombinase under the control of the EC-specific bone marrow X kinase promoter after 12 weeks of high-fat diet feeding. RESULTS A tamoxifen-induced EC-specific Enpp2 knockout decreased atherosclerosis, accumulation of lesional macrophages, monocyte adhesion, and expression of endothelial CXCL (C-X-C motif chemokine ligand) 1 in male and female Apoe-/- mice. In vitro, ENPP2 mediated the mildly oxidized LDL (low-density lipoprotein)-induced expression of CXCL1 in aortic ECs by generating LPA20:4, palmitoyl-LPA (LPA16:0), and oleoyl-LPA (LPA18:1). ENPP2 and its activity were detected on the endothelial surface by confocal imaging. The expression of endothelial Enpp2 established a strong correlation between the plasma levels of LPA16:0, stearoyl-LPA (LPA18:0), and LPA18:1 and plaque size and a strong negative correlation between the LPA levels and ENPP2 activity in the plasma. Moreover, endothelial Enpp2 knockout increased the weight of high-fat diet-fed male Apoe-/- mice. CONCLUSIONS We demonstrated that the expression of ENPP2 in ECs promotes atherosclerosis and endothelial inflammation in a sex-independent manner. This might be due to the generation of LPA20:4, LPA16:0, and LPA18:1 from mildly oxidized lipoproteins on the endothelial surface.
Collapse
Affiliation(s)
- Ela Karshovska
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.)
| | - Rokia Mohibullah
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.)
| | - Mengyu Zhu
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (M.Z., R.T.A.M.)
| | - Farima Zahedi
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,Now with Department of Biomedical Science and Mari Lowe Center for Comparative Oncology, University of Pennsylvania, Philadelphia (F.Z.)
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Frankfurt, Germany (D.T., N.F.).,Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt, Germany (D.T.)
| | - Christiana Magkrioti
- Division of Immunology, Biomedical Science Research, Center Alexander Fleming, Athens, Greece (C.M., V.A.)
| | - Claudia Geissler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.)
| | - Remco T A Megens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (M.Z., R.T.A.M.)
| | - Mariaelvy Bianchini
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.)
| | - Maliheh Nazari-Jahantigh
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Germany (M.N.-J., A.S.)
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Frankfurt, Germany (D.T., N.F.)
| | - Vassilis Aidinis
- Division of Immunology, Biomedical Science Research, Center Alexander Fleming, Athens, Greece (C.M., V.A.)
| | - Andreas Schober
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Germany (M.N.-J., A.S.)
| |
Collapse
|
35
|
Naruse T, Otake H, Takahashi T. Effects of a Lysophosphatidic Acid Receptor 1 Antagonist on Hypertensive Renal Injury in Dahl-Iwai Salt-Sensitive Rats. J Pharmacol Sci 2022; 149:179-188. [DOI: 10.1016/j.jphs.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/13/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
|
36
|
Koschinsky ML, Boffa MB. Oxidized phospholipid modification of lipoprotein(a): Epidemiology, biochemistry and pathophysiology. Atherosclerosis 2022; 349:92-100. [DOI: 10.1016/j.atherosclerosis.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023]
|
37
|
Van Hoose PM, Yang L, Kraemer M, Ubele M, Morris AJ, Smyth SS. Lipid phosphate phosphatase 3 in smooth muscle cells regulates angiotensin II-induced abdominal aortic aneurysm formation. Sci Rep 2022; 12:5664. [PMID: 35383201 PMCID: PMC8983654 DOI: 10.1038/s41598-022-08422-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/10/2021] [Indexed: 01/28/2023] Open
Abstract
Genetic variants that regulate lipid phosphate phosphatase 3 (LPP3) expression are risk factors for the development of atherosclerotic cardiovascular disease. LPP3 is dynamically upregulated in the context of vascular inflammation with particularly heightened expression in smooth muscle cells (SMC), however, the impact of LPP3 on vascular pathology is not fully understood. We investigated the role of LPP3 and lysophospholipid signaling in a well-defined model of pathologic aortic injury and observed Angiotensin II (Ang II) increases expression of PLPP3 in SMCs through nuclear factor kappa B (NF-κB) signaling Plpp3 global reduction (Plpp3+/-) or SMC-specific deletion (SM22-Δ) protects hyperlipidemic mice from AngII-mediated aneurysm formation. LPP3 expression regulates SMC differentiation state and lowering LPP3 levels promotes a fibroblast-like phenotype. Decreased inactivation of bioactive lysophosphatidic acid (LPA) in settings of LPP3 deficiency may underlie these phenotypes because deletion of LPA receptor 4 in mice promotes early aortic dilation and rupture in response to AngII. LPP3 expression and LPA signaling influence SMC and vessel wall responses that are important for aortic dissection and aneurysm formation. These findings could have important implications for therapeutics targeting LPA metabolism and signaling in ongoing clinical trials.
Collapse
Affiliation(s)
- Patrick M Van Hoose
- Gill Heart and Vascular Institute, University of Kentucky, 741 South Limestone BBSRB, Rm: B347, Lexington, KY, 40536-0509, USA
| | - Liping Yang
- Gill Heart and Vascular Institute, University of Kentucky, 741 South Limestone BBSRB, Rm: B347, Lexington, KY, 40536-0509, USA
| | - Maria Kraemer
- Gill Heart and Vascular Institute, University of Kentucky, 741 South Limestone BBSRB, Rm: B347, Lexington, KY, 40536-0509, USA
| | - Margo Ubele
- Gill Heart and Vascular Institute, University of Kentucky, 741 South Limestone BBSRB, Rm: B347, Lexington, KY, 40536-0509, USA
| | - Andrew J Morris
- Gill Heart and Vascular Institute, University of Kentucky, 741 South Limestone BBSRB, Rm: B347, Lexington, KY, 40536-0509, USA
- Lexington Veterans Affair Medical Center, Lexington, KY, USA
| | - Susan S Smyth
- Gill Heart and Vascular Institute, University of Kentucky, 741 South Limestone BBSRB, Rm: B347, Lexington, KY, 40536-0509, USA.
- Lexington Veterans Affair Medical Center, Lexington, KY, USA.
| |
Collapse
|
38
|
Hoshino Y, Okuno T, Saigusa D, Kano K, Yamamoto S, Shindou H, Aoki J, Uchida K, Yokomizo T, Ito N. Lysophosphatidic acid receptor 1/3 antagonist inhibits the activation of satellite glial cells and reduces acute nociceptive responses. FASEB J 2022; 36:e22236. [PMID: 35218596 DOI: 10.1096/fj.202101678r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Lysophosphatidic acid (LPA) exerts various biological activities through six characterized G protein-coupled receptors (LPA1-6 ). While LPA-LPA1 signaling contributes toward the demyelination and retraction of C-fiber and induces neuropathic pain, the effects of LPA-LPA1 signaling on acute nociceptive pain is uncertain. This study investigated the role of LPA-LPA1 signaling in acute nociceptive pain using the formalin test. The pharmacological inhibition of the LPA-LPA1 axis significantly attenuated formalin-induced nociceptive behavior. The LPA1 mRNA was expressed in satellite glial cells (SGCs) in dorsal root ganglion (DRG) and was particularly abundant in SGCs surrounding large DRG neurons, which express neurofilament 200. Treatment with LPA1/3 receptor (LPA1/3 ) antagonist inhibited the upregulation of glial markers and inflammatory cytokines in DRG following formalin injection. The LPA1/3 antagonist also attenuated phosphorylation of extracellular signal-regulated kinase, especially in SGCs and cyclic AMP response element-binding protein in the dorsal horn following formalin injection. LPA amounts after formalin injection to the footpad were quantified by liquid chromatography/tandem mass spectrometry, and LPA levels were found to be increased in the innervated DRGs. Our results indicate that LPA produced in the innervated DRGs promotes the activation of SGCs through LPA1 , increases the sensitivity of primary neurons, and modulates pain behavior. These results facilitate our understanding of the pathology of acute nociceptive pain and demonstrate the possibility of the LPA1 on SGCs as a novel target for acute pain control.
Collapse
Affiliation(s)
- Yoko Hoshino
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan.,Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shota Yamamoto
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.,Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kanji Uchida
- Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuko Ito
- Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
39
|
Jiang H, Gong R, Wu Y. miR‑129‑5p inhibits oxidized low‑density lipoprotein‑induced A7r5 cell viability and migration by targeting HMGB1 and the PI3k/Akt signaling pathway. Exp Ther Med 2022; 23:243. [PMID: 35222720 PMCID: PMC8815026 DOI: 10.3892/etm.2022.11168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/17/2021] [Indexed: 11/28/2022] Open
Abstract
The mechanisms underlying gene therapy for the treatment of cardiovascular diseases remain to be elucidated. microRNAs (miRs) have been recognized as key regulators in vascular smooth muscle cells, which are involved in the formation of atherosclerosis. The present study aimed to explore the role of miR-129-5p in the regulation of high-mobility group box 1 protein (HMGB1) and the PI3k/Akt signaling pathway, and further explore the role of miR-129-5p in the viability and migration of A7r5 cells induced by oxidized low-density lipoprotein (ox-LDL). Cell viability, viability and migration were determined using Cell Counting Kit-8, colony formation, wound healing and Transwell assays. The expression levels of miR-129-5p and HMGB1 were detected using reverse transcription-quantitative PCR and western blotting. A dual-luciferase assay was used to confirm the association between miR-129-5p and HMGB1. RT-qPCR results in the present study demonstrated that the expression levels of miR-129-5p in A7r5 cells induced by ox-LDL were significantly decreased, compared with the control cells. Moreover, the viability and migration of A7r5 cells induced by ox-LDL were increased compared with control group. Western blot and RT-qPCR results showed that miR-129-5p decreased the expression of HMGB1 in A7r5 cells compared with control group. The present results demonstrated that miR-129-5p inhibited the viability, viability and migration of A7r5 cells induced by ox-LDL, and directly targeted HMGB1 to regulate the PI3k/Akt signaling pathway. In conclusion, miR-129-5p inhibited the PI3k/Akt signaling pathway by directly targeting HMGB1, and reduced the viability, viability and migration of A7r5 cells induced by ox-LDL.
Collapse
Affiliation(s)
- Hongfei Jiang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ren Gong
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
40
|
The Role of Chemokines in Cardiovascular Diseases and the Therapeutic Effect of Curcumin on CXCL8 and CCL2 as Pathological Chemokines in Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1328:155-170. [PMID: 34981477 DOI: 10.1007/978-3-030-73234-9_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Curcumin, as a vegetative flavonoid, has a protective and therapeutic role in various adverse states such as oxidative stress and inflammation. Remedial properties of this component have been reported in the different chronic diseases including cancers (myeloma, pancreatic, breast, colorectal), vitiligo, psoriasis, neuropathic pains, inflammatory disorders (osteoarthritis, uveitis, ulcerative colitis, Alzheimer), cardiovascular conditions, and diabetes.Cardiovascular disorders include atherosclerosis and various manifestations of atherosclerosis such as stroke, and myocardial infarction (MI) is the leading cause of mortality globally. Studies have shown varying expressions of inflammatory and non-inflammatory chemokines and chemokine receptors in cardiovascular disease, which have been highlighted first in this review. The alteration in chemokines secretion and chemokine receptors has an essential role in the pathophysiology of cardiovascular disease. Chemokines as cytokines with low molecular weight (8-12 kDa) mediate white blood cell (WBC) chemotactic reactions, vascular cell migration, and proliferation that induce endothelial dysfunction, atherogenesis, and cardiac hypertrophy.Several studies reported that curcumin could be advantageous in the attenuation of cardiovascular diseases via anti-inflammatory effects and redress of chemokine secretion and chemokine receptors. We present these studies with a focus on two chemokines: CXCL8 (IL-8) and CCL2 (chemoattractant protein 1 or MCP-1). Future research will further elucidate the precise potential of curcumin on chemokines in the adjustment of cardiovascular system activity or curcumin chemokine-based therapies.
Collapse
|
41
|
Xie F, Chen L, Jin S, Qiu F, Huang M, Kan J, Li Y, Sun X, Wang H, Du J, Li Y. Supplementation with Ginseng, Lilii Bulbus, and Poria induces alterations in the serum metabolic profile of healthy adults. Food Funct 2022; 13:9602-9609. [DOI: 10.1039/d2fo00673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preventive and therapeutic effects of herbal supplementation containing Ginseng, Lilii Bulbus, and Poria (GLP) on inflammation and oxidative stress in healthy adults have been demonstrated in our previous studies....
Collapse
|
42
|
Liu W, Hopkins AM, Hou J. The development of modulators for lysophosphatidic acid receptors: A comprehensive review. Bioorg Chem 2021; 117:105386. [PMID: 34695732 DOI: 10.1016/j.bioorg.2021.105386] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/03/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
Lysophosphatidic acids (LPAs) are bioactive phospholipids implicated in a wide range of cellular activities that regulate a diverse array of biological functions. They recognize two types of G protein-coupled receptors (LPARs): LPA1-3 receptors and LPA4-6 receptors that belong to the endothelial gene (EDG) family and non-endothelial gene family, respectively. In recent years, the LPA signaling pathway has captured an increasing amount of attention because of its involvement in various diseases, such as idiopathic pulmonary fibrosis, cancers, cardiovascular diseases and neuropathic pain, making it a promising target for drug development. While no drugs targeting LPARs have been approved by the FDA thus far, at least three antagonists have entered phase Ⅱ clinical trials for idiopathic pulmonary fibrosis (BMS-986020 and BMS-986278) and systemic sclerosis (SAR100842), and one radioligand (BMT-136088/18F-BMS-986327) has entered phase Ⅰ clinical trials for positron emission tomography (PET) imaging of idiopathic pulmonary fibrosis. This article provides an extensive review on the current status of ligand development targeting LPA receptors to modulate LPA signaling and their therapeutic potential in various diseases.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Chemistry, Lakehead University and Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON P7B 6V4, Canada
| | - Austin M Hopkins
- Department of Chemistry, Lakehead University and Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON P7B 6V4, Canada
| | - Jinqiang Hou
- Department of Chemistry, Lakehead University and Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON P7B 6V4, Canada.
| |
Collapse
|
43
|
Ntatsoulis K, Karampitsakos T, Tsitoura E, Stylianaki EA, Matralis AN, Tzouvelekis A, Antoniou K, Aidinis V. Commonalities Between ARDS, Pulmonary Fibrosis and COVID-19: The Potential of Autotaxin as a Therapeutic Target. Front Immunol 2021; 12:687397. [PMID: 34671341 PMCID: PMC8522582 DOI: 10.3389/fimmu.2021.687397] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Severe COVID-19 is characterized by acute respiratory distress syndrome (ARDS)-like hyperinflammation and endothelial dysfunction, that can lead to respiratory and multi organ failure and death. Interstitial lung diseases (ILD) and pulmonary fibrosis confer an increased risk for severe disease, while a subset of COVID-19-related ARDS surviving patients will develop a fibroproliferative response that can persist post hospitalization. Autotaxin (ATX) is a secreted lysophospholipase D, largely responsible for the extracellular production of lysophosphatidic acid (LPA), a pleiotropic signaling lysophospholipid with multiple effects in pulmonary and immune cells. In this review, we discuss the similarities of COVID-19, ARDS and ILDs, and suggest ATX as a possible pathologic link and a potential common therapeutic target.
Collapse
Affiliation(s)
- Konstantinos Ntatsoulis
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Theodoros Karampitsakos
- Department of Respiratory Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Eliza Tsitoura
- Laboratory of Molecular & Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Elli-Anna Stylianaki
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Alexios N. Matralis
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Katerina Antoniou
- Laboratory of Molecular & Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Vassilis Aidinis
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| |
Collapse
|
44
|
Márquez AB, van der Vorst EPC, Maas SL. Key Chemokine Pathways in Atherosclerosis and Their Therapeutic Potential. J Clin Med 2021; 10:3825. [PMID: 34501271 PMCID: PMC8432216 DOI: 10.3390/jcm10173825] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
The search to improve therapies to prevent or treat cardiovascular diseases (CVDs) rages on, as CVDs remain a leading cause of death worldwide. Here, the main cause of CVDs, atherosclerosis, and its prevention, take center stage. Chemokines and their receptors have long been known to play an important role in the pathophysiological development of atherosclerosis. Their role extends from the initiation to the progression, and even the potential regression of atherosclerotic lesions. These important regulators in atherosclerosis are therefore an obvious target in the development of therapeutic strategies. A plethora of preclinical studies have assessed various possibilities for targeting chemokine signaling via various approaches, including competitive ligands and microRNAs, which have shown promising results in ameliorating atherosclerosis. Developments in the field also include detailed imaging with tracers that target specific chemokine receptors. Lastly, clinical trials revealed the potential of various therapies but still require further investigation before commencing clinical use. Although there is still a lot to be learned and investigated, it is clear that chemokines and their receptors present attractive yet extremely complex therapeutic targets. Therefore, this review will serve to provide a general overview of the connection between various chemokines and their receptors with atherosclerosis. The different developments, including mouse models and clinical trials that tackle this complex interplay will also be explored.
Collapse
Affiliation(s)
- Andrea Bonnin Márquez
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Sanne L. Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
45
|
Pérez-Olivares L, Soehnlein O. Contemporary Lifestyle and Neutrophil Extracellular Traps: An Emerging Link in Atherosclerosis Disease. Cells 2021; 10:1985. [PMID: 34440753 PMCID: PMC8394440 DOI: 10.3390/cells10081985] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are networks of extracellular genetic material decorated with proteins of nuclear, granular and cytosolic origin that activated neutrophils expel under pathogenic inflammatory conditions. NETs are part of the host's innate immune defense system against invading pathogens. Interestingly, these extracellular structures can also be released in response to sterile inflammatory stimuli (e.g., shear stress, lipidic molecules, pro-thrombotic factors, aggregated platelets, or pro-inflammatory cytokines), as in atherosclerosis disease. Indeed, NETs have been identified in the intimal surface of diseased arteries under cardiovascular disease conditions, where they sustain inflammation via NET-mediated cell-adhesion mechanisms and promote cellular dysfunction and tissue damage via NET-associated cytotoxicity. This review will focus on (1) the active role of neutrophils and NETs as underestimated players of the inflammatory process during atherogenesis and lesion progression; (2) how these extracellular structures communicate with the main cell types present in the atherosclerotic lesion in the arterial wall; and (3) how these neutrophil effector functions interplay with lifestyle-derived risk factors such as an unbalanced diet, physical inactivity, smoking or lack of sleep quality, which represent major elements in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Laura Pérez-Olivares
- Center for Molecular Biology of Inflammation (ZMBE), Institute for Experimental Pathology (ExPat), Westfälische Wilhelms-Universität (WWU), 48149 Münster, Germany;
| | - Oliver Soehnlein
- Center for Molecular Biology of Inflammation (ZMBE), Institute for Experimental Pathology (ExPat), Westfälische Wilhelms-Universität (WWU), 48149 Münster, Germany;
- Department of Physiology and Pharmacology (FyFa), Karolinska Institute, 17165 Stockholm, Sweden
| |
Collapse
|
46
|
Hong N, Ye Z, Lin Y, Liu W, Xu N, Wang Y. Agomelatine prevents angiotensin II-induced endothelial and mononuclear cell adhesion. Aging (Albany NY) 2021; 13:18515-18526. [PMID: 34292876 PMCID: PMC8351686 DOI: 10.18632/aging.203299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/19/2021] [Indexed: 12/25/2022]
Abstract
Agomelatine is a non-selective melatonin receptor agonist and an atypical antidepressant with anti-inflammatory, neuroprotective, and cardioprotective effects. The renin-angiotensin system modulates blood pressure and vascular homeostasis. Angiotensin II (Ang II) and its receptor Ang II type I receptor (AT1R) are recognized as contributors to the pathogenesis of cardiovascular and cardiometabolic diseases, including diabetes, obesity, and atherosclerosis. The recruitment and attachment of monocytes to the vascular endothelium is a major event in the early stages of atherosclerosis and other cardiovascular diseases. In the present study, we demonstrate that agomelatine reduced Ang II-induced expression of AT1R while significantly inhibiting the attachment of monocytes to endothelial cells induced by Ang II and mediated by ICAM-1 and VCAM-1. Additionally, Ang II inhibited the expression of the chemokines CXCL1, MCP-1, and CCL5, which are critical in the process of immune cell recruitment and invasion. Agomelatine also suppressed the expression of TNF-α, IL-8, and IL-12, which are proinflammatory cytokines that promote endothelial dysfunction and atherogenesis. Importantly, we demonstrate that the inhibitory effect of agomelatine against the expression of adhesion molecules is mediated through the downregulation of Egr-1 signaling. Together, our findings provide evidence of a novel mechanism of agomelatine that may be practicable in the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Najiao Hong
- Department of General Medicine, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Zhirong Ye
- Department of General Medicine, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Yongjun Lin
- Department of General Medicine, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Wensen Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, Jilin, China
| | - Na Xu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, Jilin, China
| | - Yan Wang
- Department of Stomatology, Tibet Corps Hospital, Chinese People's Armed Police Forces, Lhasa 850000, Tibet Autonomous Region, China
| |
Collapse
|
47
|
Zhang J, Zhang C, Miao L, Meng Z, Gu N, Song G. Abnormal TPM2 expression is involved in regulation of atherosclerosis progression via mediating RhoA signaling in vitro. Arch Med Sci 2021; 20:1197-1208. [PMID: 39439675 PMCID: PMC11493070 DOI: 10.5114/aoms/139235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/21/2021] [Indexed: 10/25/2024] Open
Abstract
Introduction Ox-LDL (oxidized low-density lipoprotein)-induced endothelial cell injury and dysfunction of vascular smooth muscle cells play critical roles in the development of atherosclerosis (AS). Tropomyosin 2 (TPM2) has been implicated in cardiac diseases, but its critical role and regulatory mechanism in AS progression have not yet been elucidated. Material and methods The expression of TPM2 was investigated in AS tissues. Ox-LDL was used to construct an AS in vitro model based on endothelial and vascular smooth muscle cells (HAECs and VSMCs). An overexpression assay was performed to evaluate the role of TPM2 in AS. Meanwhile, the involvement of the RhoA pathway in TPM2-mediated AS progression was evaluated using narciclasine. Results Tropomyosin 2 was dramatically upregulated in both AS tissues and ox-LDL-induced HAECs. Overexpression of TPM2 attenuated ox-LDL-stimulated cell growth depression, inflammatory and adhesive responses in HAECs, as well as oxidative stress and mitochondrial dysfunction. Additionally, VSMCs, impacted by TPM2-overexpressed HAECs, showed alleviated cellular processes which were abnormally activated by ox-LDL. Furthermore, depressed activation of the RhoA pathway was found in TPM2-overexpressed HAECs and activating the signaling rescued these effects of TPM2 exerted on ox-LDL-stimulated HAECs and VSMCs. Conclusions TPM2 had an advantageous impact on ox-LDL-induced AS progression in vitro by mediating the RhoA pathway. This evidence might contribute to the therapy of AS.
Collapse
Affiliation(s)
- Jimei Zhang
- Department of Material Supply, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Chonghong Zhang
- Department of Material Purchasing, Yantai Yeda Hospital, China
| | - Li Miao
- Department of Cardiology Second Ward, Shandong Weihai Central Hospital, Weihai, Shandong, China
| | - Zimin Meng
- Department of Cardiovascular Medicine, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Ning Gu
- Department of Cardiovascular Medicine, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Guifang Song
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
48
|
Hasse S, Duchez AC, Fortin P, Boilard E, Bourgoin SG. Interplay between LPA2 and LPA3 in LPA-mediated phosphatidylserine cell surface exposure and extracellular vesicles release by erythrocytes. Biochem Pharmacol 2021; 192:114667. [PMID: 34216604 DOI: 10.1016/j.bcp.2021.114667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022]
Abstract
Evidence is growing for the role of red blood cells (RBCs) in vascular homeostasis, including thrombogenic events and inflammation. Lysophosphatidic acid (LPA) is known to induce phosphatidylserine (PS) exposure and the release of RBC Extracellular Vesicles (REVs). Using high sensitivity flow cytometry, we examined the effects and the mechanisms by which the LPA species commonly found in human plasma could activate RBCs. We report that LPA 16:0, 18:0 and 18:1, but not LPA 20:4, induced PS exposure and the release of small PS- and large PS+ REVs through LPA3 receptor signalling in RBCs. The release of large PS+ REVs required higher concentrations of LPA. RBCs were not activated by LPA 20:4. Interestingly, blockade of LPA2 enhanced LPA-mediated PS- REV release in RBCs. Furthermore, LPA receptor agonists and antagonists highlighted that LPA 20:4 inhibited LPA3-dependent PS exposure and, through the LPA2 receptor, inhibited PS- REV production. Activation of RBCs with LPA 18:1 in normal plasma stimulated the release of PS- and PS+ REVs. REVs released in response to LPA were similar to those found in the plasma of systemic lupus erythematosus patients. Our results suggest that LPA species exhibit different biological activities in RBCs through targeting LPA2 and/or LPA3 receptors.
Collapse
Affiliation(s)
- Stephan Hasse
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC G1V 4G2, Canada.
| | - Anne-Claire Duchez
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de médecine, Faculté de médecine, Université Laval, QC G1V 4G2, Canada
| | - Paul Fortin
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de médecine, Faculté de médecine, Université Laval, QC G1V 4G2, Canada.
| | - Eric Boilard
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC G1V 4G2, Canada.
| | - Sylvain G Bourgoin
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
49
|
Meduri B, Pujar GV, Durai Ananda Kumar T, Akshatha HS, Sethu AK, Singh M, Kanagarla A, Mathew B. Lysophosphatidic acid (LPA) receptor modulators: Structural features and recent development. Eur J Med Chem 2021; 222:113574. [PMID: 34126459 DOI: 10.1016/j.ejmech.2021.113574] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
Lysophosphatidic acid (LPA) activates six LPA receptors (LPAR1-6) and regulates various cellular activities such as cell proliferation, cytoprotection, and wound healing. Many studies elucidated the pathological outcomes of LPA are due to the alteration in signaling pathways, which include migration and invasion of cancer cells, fibrosis, atherosclerosis, and inflammation. Current pathophysiological research on LPA and its receptors provides a means that LPA receptors are new therapeutic targets for disorders associated with LPA. Various chemical modulators are developed and are under investigation to treat a wide range of pathological complications. This review summarizes the physiological and pathological roles of LPA signaling, development of various LPA modulators, their structural features, patents, and their clinical outcomes.
Collapse
Affiliation(s)
- Bhagyalalitha Meduri
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Gurubasavaraj Veeranna Pujar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India.
| | - T Durai Ananda Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - H S Akshatha
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Arun Kumar Sethu
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Manisha Singh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Abhinav Kanagarla
- Department of Pharmaceutical Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
50
|
Zhang X, Li M, Yin N, Zhang J. The Expression Regulation and Biological Function of Autotaxin. Cells 2021; 10:cells10040939. [PMID: 33921676 PMCID: PMC8073485 DOI: 10.3390/cells10040939] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Autotaxin (ATX) is a secreted glycoprotein and functions as a key enzyme to produce extracellular lysophosphatidic acid (LPA). LPA interacts with at least six G protein-coupled receptors, LPAR1-6, on the cell membrane to activate various signal transduction pathways through distinct G proteins, such as Gi/0, G12/13, Gq/11, and Gs. The ATX-LPA axis plays an important role in physiological and pathological processes, including embryogenesis, obesity, and inflammation. ATX is one of the top 40 most unregulated genes in metastatic cancer, and the ATX-LPA axis is involved in the development of different types of cancers, such as colorectal cancer, ovarian cancer, breast cancer, and glioblastoma. ATX expression is under multifaceted controls at the transcription, post-transcription, and secretion levels. ATX and LPA in the tumor microenvironment not only promote cell proliferation, migration, and survival, but also increase the expression of inflammation-related circuits, which results in poor outcomes for patients with cancer. Currently, ATX is regarded as a potential cancer therapeutic target, and an increasing number of ATX inhibitors have been developed. In this review, we focus on the mechanism of ATX expression regulation and the functions of ATX in cancer development.
Collapse
Affiliation(s)
| | | | | | - Junjie Zhang
- Correspondence: ; Tel.: +86-10-58802137; Fax: +86-10-58807720
| |
Collapse
|