1
|
Gajjar G, Huggins HP, Kim ES, Huang W, Bonnet FX, Updike DL, Keiper BD. Two eIF4E paralogs occupy separate germ granule messenger ribonucleoproteins that mediate mRNA repression and translational activation. Genetics 2025; 230:iyaf053. [PMID: 40119742 PMCID: PMC12059638 DOI: 10.1093/genetics/iyaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/24/2025] Open
Abstract
We studied translation factor eukaryotic initiation factor 4E (eIF4E) paralogs that regulate germline mRNAs. Translational control of mRNAs is essential for germ cell differentiation and embryogenesis. Messenger ribonucleoprotein complexes assemble on mRNAs in the nucleus, as they exit via perinuclear germ granules, and in the cytoplasm. Bound messenger ribonucleoproteins including eIF4E exert both positive and negative posttranscriptional regulation. In Caenorhabditiselegans, germ granules are surprisingly dynamic messenger ribonucleoprotein condensates that remodel during development. Two eIF4E paralogs (IFE-1 and IFE-3), their cognate eIF4E-interacting proteins, and polyadenylated mRNAs are present in germ granules. Affinity purification of IFE-1 and IFE-3 messenger ribonucleoproteins allowed mass spectrometry and mRNA-Seq to identify other proteins and the mRNAs that populate stable eukaryotic initiation factor 4E complexes. We find translationally repressed mRNAs (e.g. pos-1, mex-3, spn-4, etc.) enriched with IFE-3, but excluded from IFE-1. Identified mRNAs overlap substantially with mRNAs previously described to be IFE-1 dependent for translation. The findings suggest that oocytes and embryos utilize the 2 eukaryotic initiation factor 4E paralogs for opposite purposes on critically regulated germline mRNAs. Sublocalization within adult perinuclear germ granules suggests an architecture in which Vasa/GLH-1, PGL-1, and the IFEs are stratified, which may facilitate sequential remodeling of messenger ribonucleoproteins leaving the nucleus. Biochemical composition of isolated messenger ribonucleoproteins indicates opposing yet cooperative roles for the 2 eukaryotic initiation factor 4E paralogs. We propose that the IFEs accompany controlled mRNAs in the repressed or activated state during transit to the cytoplasm. Copurification of IFE-1 with IFE-3 suggests they may interact to move repressed mRNAs to ribosomes.
Collapse
Affiliation(s)
- Gita Gajjar
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, East Carolina University, Greenville, NC 27834, USA
| | - Hayden P Huggins
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, East Carolina University, Greenville, NC 27834, USA
| | - Eun Suk Kim
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, East Carolina University, Greenville, NC 27834, USA
| | - Weihua Huang
- Department of Pathology and Laboratory Medicine, Brody School of Medicine at East Carolina University, East Carolina University, Greenville, NC 27834, USA
| | - Frederic X Bonnet
- Katherine W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Dustin L Updike
- Katherine W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Brett D Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
2
|
Wu P, Vandemeulebroucke L, Cai H, Braeckman BP. The Proprotein Convertase BLI-4 Is Required for Axenic Dietary Restriction Mediated Longevity in Caenorhabditis elegans. Aging Cell 2025:e70058. [PMID: 40200707 DOI: 10.1111/acel.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
Dietary restriction (DR) is a well-established method for extending lifespan across various species, including C. elegans. Among the different DR regimens, axenic dietary restriction (ADR), in which worms are grown in a nutrient-rich sterile liquid medium, yields the most powerful lifespan extension. However, the molecular mechanisms underlying this longevity phenotype remain largely unexplored. Through a pilot screen of candidate genes, we identified the proprotein convertase BLI-4 as a crucial factor in neurons for modulating lifespan under ADR conditions. BLI-4's role appears to be specific to ADR, as it does not significantly impact longevity under other DR regimens. We further explored the involvement of different bli-4 isoforms and found that isoforms b, f, i and j redundantly contribute to the ADR-mediated lifespan extension, while the bli-4d isoform is mainly involved in development. Proteomics analysis revealed that the loss of BLI-4 function under ADR conditions specifically downregulates GOLG-2, involved in Golgi complex organization. This gene also partially mediates the longevity effects of BLI-4 under ADR conditions. Our findings highlight the importance of neuronal BLI-4 and its downstream targets in regulating lifespan extension induced by ADR in C. elegans.
Collapse
Affiliation(s)
- Ping Wu
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | - Lieselot Vandemeulebroucke
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | - Huaihan Cai
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
- Overseas Pharmaceuticals, Ltd., Huangpu District, Guangzhou, China
| | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Surya A, Bolton BM, Rothe R, Mejia-Trujillo R, Leonita A, Zhao Q, Arya A, Liu Y, Rangan R, Gorusu Y, Nguyen P, Cenik C, Sarinay Cenik E. Differential impacts of ribosomal protein haploinsufficiency on mitochondrial function. J Cell Biol 2025; 224:e202404084. [PMID: 39786340 PMCID: PMC11716151 DOI: 10.1083/jcb.202404084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/19/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025] Open
Abstract
The interplay between ribosomal protein (RP) composition and mitochondrial function is essential for energy homeostasis. Balanced RP production optimizes protein synthesis while minimizing energy costs, but its impact on mitochondrial functionality remains unclear. Here, we investigated haploinsufficiency for RP genes (rps-10, rpl-5, rpl-33, and rps-23) in Caenorhabditis elegans and corresponding reductions in human lymphoblast cells. Significant mitochondrial morphological differences, upregulation of glutathione transferases, and SKN-1-dependent oxidative stress resistance were observed across mutants. Loss of a Datasingle rps-10 copy reduced mitochondrial activity, energy levels, and oxygen consumption, mirrored by similar reductions in mitochondrial activity and energy levels in lymphoblast cells with 50% lower RPS10 transcripts. Both systems exhibited altered translation efficiency (TE) of mitochondrial electron transport chain components, suggesting a conserved mechanism to adjust mitochondrial protein synthesis under ribosomal stress. Finally, mitochondrial membrane and cytosolic RPs showed significant RNA and TE covariation in lymphoblastoid cells, highlighting the interplay between protein synthesis machinery and mitochondrial energy production.
Collapse
Affiliation(s)
- Agustian Surya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Blythe Marie Bolton
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Reed Rothe
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Amanda Leonita
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Qiuxia Zhao
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Alia Arya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Yue Liu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Rekha Rangan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Yasash Gorusu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Pamela Nguyen
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Elif Sarinay Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Ghosh A, Singh J. Translation initiation or elongation inhibition triggers contrasting effects on Caenorhabditis elegans survival during pathogen infection. mBio 2024; 15:e0248524. [PMID: 39347574 PMCID: PMC11559039 DOI: 10.1128/mbio.02485-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Diverse microbial pathogens are known to attenuate host protein synthesis. Consequently, the host mounts a defense response against protein translation inhibition, leading to increased transcript levels of immune genes. The seemingly paradoxical upregulation of immune gene transcripts in response to blocked protein synthesis suggests that the defense mechanism against translation inhibition may not universally benefit host survival. However, a comprehensive assessment of host survival on pathogens upon blockage of different stages of protein synthesis is currently lacking. Here, we investigate the impact of knockdown of various translation initiation and elongation factors on the survival of Caenorhabditis elegans exposed to Pseudomonas aeruginosa. Intriguingly, we observe opposing effects on C. elegans survival depending on whether translation initiation or elongation is inhibited. While translation initiation inhibition enhances survival, elongation inhibition decreases it. Transcriptomic studies reveal that translation initiation inhibition activates a bZIP transcription factor ZIP-2-dependent innate immune response that protects C. elegans from P. aeruginosa infection. In contrast, inhibiting translation elongation triggers both ZIP-2-dependent and ZIP-2-independent immune responses that, while effective in clearing the infection, are detrimental to the host. Thus, our findings reveal the opposing roles of translation initiation and elongation inhibition in C. elegans survival during P. aeruginosa infection, highlighting distinct transcriptional reprogramming that may underlie these differences. IMPORTANCE Several microbial pathogens target host protein synthesis machinery, potentially limiting the innate immune responses of the host. In response, hosts trigger a defensive response, elevating immune gene transcripts. This counterintuitive response can have either beneficial or harmful effects on host survival. In this study, we conduct a comprehensive analysis of the impact of knocking down various translation initiation and elongation factors on the survival of Caenorhabditis elegans exposed to Pseudomonas aeruginosa. Intriguingly, inhibiting initiation and elongation factors has contrasting effects on C. elegans survival. Inhibiting translation initiation activates immune responses that protect the host from bacterial infection, while inhibiting translation elongation induces aberrant immune responses that, although clear the infection, are detrimental to the host. Our study reveals divergent roles of translation initiation and elongation inhibition in C. elegans survival during P. aeruginosa infection and identifies differential transcriptional reprogramming that could underlie these differences.
Collapse
Affiliation(s)
- Annesha Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Jogender Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| |
Collapse
|
5
|
Dubey AA, Sarkar A, Milcz K, Szulc NA, Thapa P, Piechota M, Serwa RA, Pokrzywa W. Floxuridine supports UPS independent of germline signaling and proteostasis regulators via involvement of detoxification in C. elegans. PLoS Genet 2024; 20:e1011371. [PMID: 39083540 PMCID: PMC11318861 DOI: 10.1371/journal.pgen.1011371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 08/12/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) is critical for maintaining proteostasis, influencing stress resilience, lifespan, and thermal adaptability in organisms. In Caenorhabditis elegans, specific proteasome subunits and activators, such as RPN-6, PBS-6, and PSME-3, are associated with heat resistance, survival at cold (4°C), and enhanced longevity at moderate temperatures (15°C). Previously linked to improving proteostasis, we investigated the impact of sterility-inducing floxuridine (FUdR) on UPS functionality under proteasome dysfunction and its potential to improve cold survival. Our findings reveal that FUdR significantly enhances UPS activity and resilience during proteasome inhibition or subunit deficiency, supporting worms' normal lifespan and adaptation to cold. Importantly, FUdR effect on UPS activity occurs independently of major proteostasis regulators and does not rely on the germ cells proliferation or spermatogenesis. Instead, FUdR activates a distinct detoxification pathway that supports UPS function, with GST-24 appearing to be one of the factors contributing to the enhanced activity of the UPS upon knockdown of the SKN-1-mediated proteasome surveillance pathway. Our study highlights FUdR unique role in the UPS modulation and its crucial contribution to enhancing survival under low-temperature stress, providing new insights into its mechanisms of action and potential therapeutic applications.
Collapse
Affiliation(s)
- Abhishek Anil Dubey
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Anwesha Sarkar
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Karolina Milcz
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Natalia A. Szulc
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Pankaj Thapa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Małgorzata Piechota
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Malik Y, Goncalves Silva I, Diazgranados RR, Selman C, Alic N, Tullet JM. Timing of TORC1 inhibition dictates Pol III involvement in Caenorhabditis elegans longevity. Life Sci Alliance 2024; 7:e202402735. [PMID: 38740431 PMCID: PMC11091362 DOI: 10.26508/lsa.202402735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Organismal growth and lifespan are inextricably linked. Target of Rapamycin (TOR) signalling regulates protein production for growth and development, but if reduced, extends lifespan across species. Reduction in the enzyme RNA polymerase III, which transcribes tRNAs and 5S rRNA, also extends longevity. Here, we identify a temporal genetic relationship between TOR and Pol III in Caenorhabditis elegans, showing that they collaborate to regulate progeny production and lifespan. Interestingly, the lifespan interaction between Pol III and TOR is only revealed when TOR signaling is reduced, specifically in adulthood, demonstrating the importance of timing to control TOR regulated developmental versus adult programs. In addition, we show that Pol III acts in C. elegans muscle to promote both longevity and healthspan and that reducing Pol III even in late adulthood is sufficient to extend lifespan. This demonstrates the importance of Pol III for lifespan and age-related health in adult C. elegans.
Collapse
Affiliation(s)
- Yasir Malik
- Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury, Kent
| | - Isabel Goncalves Silva
- Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury, Kent
| | | | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland
| | - Nazif Alic
- UCL Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, London, UK
| | - Jennifer Ma Tullet
- Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury, Kent
| |
Collapse
|
7
|
Mir DA, Ma Z, Horrocks J, Rogers A. Stress-Induced Eukaryotic Translational Regulatory Mechanisms. JOURNAL OF CLINICAL AND MEDICAL SCIENCES 2024; 8:1000277. [PMID: 39364184 PMCID: PMC11448810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The eukaryotic protein synthesis process entails intricate stages governed by diverse mechanisms to tightly regulate translation. Translational regulation during stress is pivotal for maintaining cellular homeostasis, ensuring the accurate expression of essential proteins is important for survival. This selective translational control mechanism is integral to cellular adaptation and resilience under adverse conditions. This review manuscript explores various mechanisms involved in selective translational regulation, focusing on mRNA-specific and global regulatory processes. Key aspects of translational control include translation initiation, which is often a rate-limiting step, and involves the formation of the eIF4F complex and recruitment of mRNA to ribosomes. Regulation of translation initiation factors, such as eIF4E, eIF4E2, and eIF2, through phosphorylation and interactions with binding proteins, modulates translation efficiency under stress conditions. This review also highlights the control of translation initiation through factors like the eIF4F complex and the ternary complex and also underscores the importance of eIF2α phosphorylation in stress granule formation and cellular stress responses. Additionally, the impact of amino acid deprivation, mTOR signaling, and ribosome biogenesis on translation regulation and cellular adaptation to stress is also discussed. Understanding the intricate mechanisms of translational regulation during stress provides insights into cellular adaptation mechanisms and potential therapeutic targets for various diseases, offering valuable avenues for addressing conditions associated with dysregulated protein synthesis.
Collapse
Affiliation(s)
- Dilawar Ahmad Mir
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Zhengxin Ma
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Jordan Horrocks
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Aric Rogers
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| |
Collapse
|
8
|
Mir DA, Cox M, Horrocks J, Ma Z, Rogers A. Roles of Progranulin and FRamides in Neural Versus Non-Neural Tissues on Dietary Restriction-Related Longevity and Proteostasis in C. elegans. JOURNAL OF CLINICAL AND MEDICAL SCIENCES 2024; 8:276. [PMID: 39323482 PMCID: PMC11423770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Dietary Restriction (DR) mitigates loss of proteostasis associated with aging that underlies neurodegenerative conditions including Alzheimer's disease and related dementias. Previously, we observed increased translational efficiency of certain FMRFamide-Like neuro-Peptide (FLP) genes and the neuroprotective growth factor progranulin gene prgn-1 under dietary restriction in C. elegans. Here, we tested the effects of flp-5, flp-14, flp-15 and pgrn-1 on lifespan and proteostasis under both standard and dietary restriction conditions. We also tested and distinguished function based on their expression in either neuronal or non-neuronal tissue. Lowering the expression of pgrn-1 and flp genes selectively in neural tissue showed no difference in survival under normal feeding conditions nor under DR in two out of three experiments performed. Reduced expression of flp-14 in non-neuronal tissue showed decreased lifespan that was not specific to DR. With respect to proteostasis, a genetic model of DR from mutation of the eat-2 gene that showed increased thermotolerance compared to fully fed wild type animals demonstrated no change in thermotolerance in response to knockdown of pgrn-1 or flp genes. Finally, we tested effects on motility in a neural-specific model of proteotoxicity and found that neuronal knockdown of pgrn-1 and flp genes improved motility in early life regardless of diet. However, knocking these genes down in non-neuronal tissue had variable results. RNAi targeting flp-14 increased motility by day seven of adulthood regardless of diet. Interestingly, non-neuronal RNAi of pgrn-1 decreased motility under standard feeding conditions while DR increased motility for this gene knockdown by day seven (early mid-life). Results show that pgrn-1, flp-5, flp-14, and flp-15 do not have major roles in diet-related changes in longevity or whole-body proteostasis. However, reduced expression of these genes in neurons increases motility early in life in a neural-specific model of proteotoxicity, whereas knockdown of non-neuronal expression mostly increases motility in mid-life under the same conditions.
Collapse
Affiliation(s)
- Dilawar Ahmad Mir
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Matthew Cox
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Jordan Horrocks
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Zhengxin Ma
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Aric Rogers
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| |
Collapse
|
9
|
Gajjar G, Huggins HP, Kim ES, Huang W, Bonnet FX, Updike DL, Keiper BD. Two germ granule eIF4E isoforms reside in different mRNPs to hand off C elegans mRNAs from translational repression to activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595216. [PMID: 38826235 PMCID: PMC11142241 DOI: 10.1101/2024.05.24.595216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
We studied the function of translation factor eIF4E isoforms in regulating mRNAs in germ cell granules/condensates. Translational control of mRNAs plays an essential role in germ cell gene regulation. Messenger ribonucleoprotein (mRNP) complexes assemble on mRNAs as they move from the nucleus into perinuclear germ granules to exert both positive and negative post-transcriptional regulation in the cytoplasm. In C. elegans , germ granules are surprisingly dynamic mRNP condensates that remodel during development. Two eIF4E isoforms (called IFE-1 and IFE-3), eIF4E-Interacting Proteins (4EIPs), RBPs, DEAD-box helicases, polyadenylated mRNAs, Argonautes and miRNAs all occupy positions in germ granules. Affinity purification of IFE-1 and IFE-3 allowed mass spectrometry and mRNA-Seq to identify the proteins and mRNAs that populate stable eIF4E mRNPs. We find translationally controlled mRNAs (e.g. pos-1, mex-3, spn-4, etc.) enriched in IFE-3 mRNPs, but excluded from IFE-1 mRNPs. These mRNAs also require IFE-1 for efficient translation. The findings support a model in which oocytes and embryos utilize the two eIF4Es for opposite purposes on critically regulated germline mRNAs. Careful colocalization of the eIF4Es with other germ granule components suggests an architecture in which GLH-1, PGL-1 and the IFEs are stratified to facilitate sequential interactions for mRNAs. Biochemical characterization demonstrates opposing yet cooperative roles for IFE-3 and IFE-1 to hand-off of translationally controlled mRNAs from the repressed to the activated state, respectively. The model involves eIF4E mRNPs shuttling mRNAs through nuclear pore-associated granules/condensates to cytoplasmic ribosomes.
Collapse
|
10
|
Mir DA, Ma Z, Horrocks J, Rogers AN. Stress-induced Eukaryotic Translational Regulatory Mechanisms. ARXIV 2024:arXiv:2405.01664v1. [PMID: 38745702 PMCID: PMC11092689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The eukaryotic protein synthesis process entails intricate stages governed by diverse mechanisms to tightly regulate translation. Translational regulation during stress is pivotal for maintaining cellular homeostasis, ensuring the accurate expression of essential proteins crucial for survival. This selective translational control mechanism is integral to cellular adaptation and resilience under adverse conditions. This review manuscript explores various mechanisms involved in selective translational regulation, focusing on mRNA-specific and global regulatory processes. Key aspects of translational control include translation initiation, which is often a rate-limiting step, and involves the formation of the eIF4F complex and recruitment of mRNA to ribosomes. Regulation of translation initiation factors, such as eIF4E, eIF4E2, and eIF2, through phosphorylation and interactions with binding proteins, modulates translation efficiency under stress conditions. This review also highlights the control of translation initiation through factors like the eIF4F complex and the ternary complex and also underscores the importance of eIF2α phosphorylation in stress granule formation and cellular stress responses. Additionally, the impact of amino acid deprivation, mTOR signaling, and ribosome biogenesis on translation regulation and cellular adaptation to stress is also discussed. Understanding the intricate mechanisms of translational regulation during stress provides insights into cellular adaptation mechanisms and potential therapeutic targets for various diseases, offering valuable avenues for addressing conditions associated with dysregulated protein synthesis.
Collapse
Affiliation(s)
- Dilawar Ahmad Mir
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| | - Zhengxin Ma
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| | - Jordan Horrocks
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| | - Aric N Rogers
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| |
Collapse
|
11
|
Surya A, Bolton BM, Rothe R, Mejia-Trujillo R, Zhao Q, Leonita A, Liu Y, Rangan R, Gorusu Y, Nguyen P, Cenik C, Cenik ES. Cytosolic Ribosomal Protein Haploinsufficiency affects Mitochondrial Morphology and Respiration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589775. [PMID: 38659761 PMCID: PMC11042305 DOI: 10.1101/2024.04.16.589775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The interplay between ribosomal protein composition and mitochondrial function is essential for sustaining energy homeostasis. Precise stoichiometric production of ribosomal proteins is crucial to maximize protein synthesis efficiency while reducing the energy costs to the cell. However, the impact of this balance on mitochondrial ATP generation, morphology and function remains unclear. Particularly, the loss of a single copy ribosomal protein gene is observed in Mendelian disorders like Diamond Blackfan Anemia and is common in somatic tumors, yet the implications of this imbalance on mitochondrial function and energy dynamics are still unclear. In this study, we investigated the impact of haploinsufficiency for four ribosomal protein genes implicated in ribosomopathy disorders (rps-10, rpl-5, rpl-33, rps-23) in Caenorhabditis elegans and corresponding reductions in human lymphoblast cells. Our findings uncover significant, albeit variably penetrant, mitochondrial morphological differences across these mutants, alongside an upregulation of glutathione transferases, and SKN-1 dependent increase in oxidative stress resistance, indicative of increased ROS production. Specifically, loss of a single copy of rps-10 in C. elegans led to decreased mitochondrial activity, characterized by lower energy levels and reduced oxygen consumption. A similar reduction in mitochondrial activity and energy levels was observed in human leukemia cells with a 50% reduction in RPS10 transcript levels. Importantly, we also observed alterations in the translation efficiency of nuclear and mitochondrial electron transport chain components in response to reductions in ribosomal protein genes' expression in both C. elegans and human cells. This suggests a conserved mechanism whereby the synthesis of components vital for mitochondrial function are adjusted in the face of compromised ribosomal machinery. Finally, mitochondrial membrane and cytosolic ribosomal components exhibited significant covariation at the RNA and translation efficiency level in lymphoblastoid cells across a diverse group of individuals, emphasizing the interplay between the protein synthesis machinery and mitochondrial energy production. By uncovering the impact of ribosomal protein haploinsufficiency on the translation efficiency of electron transport chain components, mitochondrial physiology, and the adaptive stress responses, we provide evidence for an evolutionarily conserved strategy to safeguard cellular functionality under genetic stress.
Collapse
Affiliation(s)
- Agustian Surya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Blythe Marie Bolton
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Reed Rothe
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Raquel Mejia-Trujillo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Qiuxia Zhao
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Amanda Leonita
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Yue Liu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Rekha Rangan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Yasash Gorusu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Pamela Nguyen
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Elif Sarinay Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
12
|
Jonak K, Suppanz I, Bender J, Chacinska A, Warscheid B, Topf U. Ageing-dependent thiol oxidation reveals early oxidation of proteins with core proteostasis functions. Life Sci Alliance 2024; 7:e202302300. [PMID: 38383455 PMCID: PMC10881836 DOI: 10.26508/lsa.202302300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
Oxidative post-translational modifications of protein thiols are well recognized as a readily occurring alteration of proteins, which can modify their function and thus control cellular processes. The development of techniques enabling the site-specific assessment of protein thiol oxidation on a proteome-wide scale significantly expanded the number of known oxidation-sensitive protein thiols. However, lacking behind are large-scale data on the redox state of proteins during ageing, a physiological process accompanied by increased levels of endogenous oxidants. Here, we present the landscape of protein thiol oxidation in chronologically aged wild-type Saccharomyces cerevisiae in a time-dependent manner. Our data determine early-oxidation targets in key biological processes governing the de novo production of proteins, protein folding, and degradation, and indicate a hierarchy of cellular responses affected by a reversible redox modification. Comparison with existing datasets in yeast, nematode, fruit fly, and mouse reveals the evolutionary conservation of these oxidation targets. To facilitate accessibility, we integrated the cross-species comparison into the newly developed OxiAge Database.
Collapse
Affiliation(s)
- Katarzyna Jonak
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ida Suppanz
- CIBSS Centre for Integrative Biological Signalling Research, University of Freiburg, Freiburg, Germany
| | - Julian Bender
- Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Bettina Warscheid
- CIBSS Centre for Integrative Biological Signalling Research, University of Freiburg, Freiburg, Germany
- Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ulrike Topf
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
13
|
Snow S, Mir D, Ma Z, Horrocks J, Cox M, Ruzga M, Sayed H, Rogers AN. Neuronal CBP-1 is required for enhanced body muscle proteostasis in response to reduced translation downstream of mTOR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585263. [PMID: 38559178 PMCID: PMC10980069 DOI: 10.1101/2024.03.15.585263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background The ability to maintain muscle function decreases with age and loss of proteostatic function. Diet, drugs, and genetic interventions that restrict nutrients or nutrient signaling help preserve long-term muscle function and slow age-related decline. Previously, it was shown that attenuating protein synthesis downstream of the mechanistic target of rapamycin (mTOR) gradually increases expression of heat shock response (HSR) genes in a manner that correlates with increased resilience to protein unfolding stress. Here, we investigate the role of specific tissues in mediating the cytoprotective effects of low translation. Methods This study uses genetic tools (transgenic C. elegans , RNA interference and gene expression analysis) as well as physiological assays (survival and paralysis assays) in order to better understand how specific tissues contribute to adaptive changes involving cellular cross-talk that enhance proteostasis under low translation conditions. Results We use the C. elegans system to show that lowering translation in neurons or the germline increases heat shock gene expression and survival under conditions of heat stress. In addition, we find that low translation in these tissues protects motility in a body muscle-specific model of proteotoxicity that results in paralysis. Low translation in neurons or germline also results in increased expression of certain muscle regulatory and structural genes, reversing reduced expression normally observed with aging in C. elegans . Enhanced resilience to protein unfolding stress requires neuronal expression of cbp-1 . Conclusion Low translation in either neurons or the germline orchestrate protective adaptation in other tissues, including body muscle.
Collapse
|
14
|
Mir DA, Cox M, Horrocks J, Ma Z, Rogers A. Roles of progranulin and FRamides in neural versus non-neural tissues on dietary restriction-related longevity and proteostasis in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579250. [PMID: 38370756 PMCID: PMC10871266 DOI: 10.1101/2024.02.06.579250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Dietary restriction (DR) mitigates loss of proteostasis associated with aging that underlies neurodegenerative conditions including Alzheimer's disease and related dementias. Previously, we observed increased translational efficiency of certain FMRFamide-like neuropeptide ( flp ) genes and the neuroprotective growth factor progranulin gene prgn-1 under dietary restriction in C. elegans . Here, we tested the effects of flp-5 , flp-14 , flp-15 and pgrn-1 on lifespan and proteostasis under both standard and dietary restriction conditions. We also tested and distinguished function based on their expression in either neuronal or non-neuronal tissue. Lowering the expression of pgrn-1 and flp genes selectively in neural tissue showed no difference in survival under normal feeding conditions nor under DR in two out of three experiments performed. Reduced expression of flp-14 in non-neuronal tissue showed decreased lifespan that was not specific to DR. With respect to proteostasis, a genetic model of DR from mutation of the eat-2 gene that showed increased thermotolerance compared to fully fed wild type animals demonstrated no change in thermotolerance in response to knockdown of pgrn-1 or flp genes. Finally, we tested effects on motility in a neural-specific model of proteotoxicity and found that neuronal knockdown of pgrn-1 and flp genes improved motility in early life regardless of diet. However, knocking these genes down in non-neuronal tissue had variable results. RNAi targeting flp-14 increased motility by day seven of adulthood regardless of diet. Interestingly, non-neuronal RNAi of pgrn-1 decreased motility under standard feeding conditions while DR increased motility for this gene knockdown by day seven (early mid-life). Results show that pgrn-1 , flp-5 , flp-14 , and flp-15 do not have major roles in diet-related changes in longevity or whole-body proteostasis. However, reduced expression of these genes in neurons increases motility early in life in a neural-specific model of proteotoxicity, whereas knockdown of non-neuronal expression mostly increases motility in mid-life under the same conditions.
Collapse
|
15
|
Huynh D, Wu CW. Identification of pararosaniline as a modifier of RNA splicing in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2023; 13:jkad241. [PMID: 37852248 PMCID: PMC10700105 DOI: 10.1093/g3journal/jkad241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Posttranscriptional splicing of premessenger RNA (mRNA) is an evolutionarily conserved eukaryotic process for producing mature mRNA that is translated into proteins. Accurate splicing is necessary for normal growth and development, and aberrant splicing is increasingly evident in various human pathologies. To study environmental factors that influence RNA splicing, we employed a fluorescent Caenorhabditis elegans in vivo splicing reporter as a biomarker for splicing fidelity to screen against the US EPA ToxCast chemical library. We identified pararosaniline hydrochloride as a strong modifier of RNA splicing. Through gene expression analysis, we found that pararosaniline activates the oxidative stress response and alters the expression of key RNA splicing regulator genes. Physiological assays show that pararosaniline is deleterious to C. elegans development, reproduction, and aging. Through a targeted RNAi screen, we found that inhibiting protein translation can reverse pararosaniline's effect on the splicing reporter and provide significant protection against long-term pararosaniline toxicity. Together, this study reveals a new chemical modifier of RNA splicing and describes translation inhibition as a genetic mechanism to provide resistance.
Collapse
Affiliation(s)
- Dylan Huynh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
16
|
Brochard T, McIntyre RL, Houtkooper RH, Seluanov A, Gorbunova V, Janssens GE. Repurposing nucleoside reverse transcriptase inhibitors (NRTIs) to slow aging. Ageing Res Rev 2023; 92:102132. [PMID: 37984625 DOI: 10.1016/j.arr.2023.102132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Repurposing drugs already approved in the clinic to be used off-label as geroprotectors, compounds that combat mechanisms of aging, are a promising way to rapidly reduce age-related disease incidence in society. Several recent studies have found that a class of drugs-nucleoside reverse transcriptase inhibitors (NRTIs)-originally developed as treatments for cancers and human immunodeficiency virus (HIV) infection, could be repurposed to slow the aging process. Interestingly, these studies propose complementary mechanisms that target multiple hallmarks of aging. At the molecular level, NRTIs repress LINE-1 elements, reducing DNA damage, benefiting the hallmark of aging of 'Genomic Instability'. At the organellar level, NRTIs inhibit mitochondrial translation, activate ATF-4, suppress cytosolic translation, and extend lifespan in worms in a manner related to the 'Loss of Proteostasis' hallmark of aging. Meanwhile, at the cellular level, NRTIs inhibit the P2X7-mediated activation of the inflammasome, reducing inflammation and improving the hallmark of aging of 'Altered Intercellular Communication'. Future development of NRTIs for human aging health will need to balance out toxic side effects with the beneficial effects, which may occur in part through hormesis.
Collapse
Affiliation(s)
- Thomas Brochard
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Gressler AE, Leng H, Zinecker H, Simon AK. Proteostasis in T cell aging. Semin Immunol 2023; 70:101838. [PMID: 37708826 PMCID: PMC10804938 DOI: 10.1016/j.smim.2023.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Aging leads to a decline in immune cell function, which leaves the organism vulnerable to infections and age-related multimorbidities. One major player of the adaptive immune response are T cells, and recent studies argue for a major role of disturbed proteostasis contributing to reduced function of these cells upon aging. Proteostasis refers to the state of a healthy, balanced proteome in the cell and is influenced by synthesis (translation), maintenance and quality control of proteins, as well as degradation of damaged or unwanted proteins by the proteasome, autophagy, lysosome and cytoplasmic enzymes. This review focuses on molecular processes impacting on proteostasis in T cells, and specifically functional or quantitative changes of each of these upon aging. Importantly, we describe the biological consequences of compromised proteostasis in T cells, which range from impaired T cell activation and function to enhancement of inflamm-aging by aged T cells. Finally, approaches to improve proteostasis and thus rejuvenate aged T cells through pharmacological or physical interventions are discussed.
Collapse
Affiliation(s)
- A Elisabeth Gressler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Houfu Leng
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Heidi Zinecker
- Ascenion GmbH, Am Zirkus 1, Bertold-Brecht-Platz 3, 10117 Berlin, Germany
| | - Anna Katharina Simon
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom.
| |
Collapse
|
18
|
Clay KJ, Yang Y, Clark C, Petrascheck M. Proteostasis is differentially modulated by inhibition of translation initiation or elongation. eLife 2023; 12:e76465. [PMID: 37795690 PMCID: PMC10581687 DOI: 10.7554/elife.76465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
Recent work has revealed an increasingly important role for mRNA translation in maintaining proteostasis. Here, we use chemical inhibitors targeting discrete steps of translation to compare how lowering the concentration of all or only translation initiation-dependent proteins rescues Caenorhabditis elegans from proteotoxic stress. We systematically challenge proteostasis and show that pharmacologically inhibiting translation initiation or elongation elicits a distinct protective profile. Inhibiting elongation protects from heat and proteasome dysfunction independently from HSF-1 but does not protect from age-associated protein aggregation. Conversely, inhibition of initiation protects from heat and age-associated protein aggregation and increases lifespan, dependent on hsf-1, but does not protect from proteotoxicity caused by proteasome dysfunction. Surprisingly, we find that the ability of the translation initiation machinery to control the concentration of newly synthesized proteins depends on HSF-1. Inhibition of translation initiation in wild-type animals reduces the concentration of newly synthesized proteins but increases it in hsf-1 mutants. Our findings suggest that the HSF-1 pathway is not only a downstream target of translation but also directly cooperates with the translation initiation machinery to control the concentration of newly synthesized proteins to restore proteostasis.
Collapse
Affiliation(s)
- Khalyd J Clay
- Department of Molecular Medicine, Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Yongzhi Yang
- Department of Molecular Medicine, Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Christina Clark
- Department of Molecular Medicine, Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Michael Petrascheck
- Department of Molecular Medicine, Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
19
|
Vijay Kumar MJ, Morales R, Tsvetkov AS. G-quadruplexes and associated proteins in aging and Alzheimer's disease. FRONTIERS IN AGING 2023; 4:1164057. [PMID: 37323535 PMCID: PMC10267416 DOI: 10.3389/fragi.2023.1164057] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Aging is a prominent risk factor for many neurodegenerative disorders, such as Alzheimer's disease (AD). Alzheimer's disease is characterized by progressive cognitive decline, memory loss, and neuropsychiatric and behavioral symptoms, accounting for most of the reported dementia cases. This disease is now becoming a major challenge and burden on modern society, especially with the aging population. Over the last few decades, a significant understanding of the pathophysiology of AD has been gained by studying amyloid deposition, hyperphosphorylated tau, synaptic dysfunction, oxidative stress, calcium dysregulation, and neuroinflammation. This review focuses on the role of non-canonical secondary structures of DNA/RNA G-quadruplexes (G4s, G4-DNA, and G4-RNA), G4-binding proteins (G4BPs), and helicases, and their roles in aging and AD. Being critically important for cellular function, G4s are involved in the regulation of DNA and RNA processes, such as replication, transcription, translation, RNA localization, and degradation. Recent studies have also highlighted G4-DNA's roles in inducing DNA double-strand breaks that cause genomic instability and G4-RNA's participation in regulating stress granule formation. This review emphasizes the significance of G4s in aging processes and how their homeostatic imbalance may contribute to the pathophysiology of AD.
Collapse
Affiliation(s)
- M. J. Vijay Kumar
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
| | - Rodrigo Morales
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Andrey S. Tsvetkov
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- UTHealth Consortium on Aging, The University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
20
|
Kim HS, Pickering AM. Protein translation paradox: Implications in translational regulation of aging. Front Cell Dev Biol 2023; 11:1129281. [PMID: 36711035 PMCID: PMC9880214 DOI: 10.3389/fcell.2023.1129281] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Protein translation is an essential cellular process playing key roles in growth and development. Protein translation declines over the course of age in multiple animal species, including nematodes, fruit flies, mice, rats, and even humans. In all these species, protein translation transiently peaks in early adulthood with a subsequent drop over the course of age. Conversely, lifelong reductions in protein translation have been found to extend lifespan and healthspan in multiple animal models. These findings raise the protein synthesis paradox: age-related declines in protein synthesis should be detrimental, but life-long reductions in protein translation paradoxically slow down aging and prolong lifespan. This article discusses the nature of this paradox and complies an extensive body of work demonstrating protein translation as a modulator of lifespan and healthspan.
Collapse
Affiliation(s)
- Harper S. Kim
- Center for Neurodegeneration and Experimental Therapeutics (CNET), Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Medical Scientist Training Program, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew M. Pickering
- Center for Neurodegeneration and Experimental Therapeutics (CNET), Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
21
|
Winkenbach LP, Parker DM, Williams RTP, Nishimura EO. The ERM-1 membrane-binding domain directs erm-1 mRNA localization to the plasma membrane in the C. elegans embryo. Development 2022; 149:279335. [PMID: 36314842 PMCID: PMC9793419 DOI: 10.1242/dev.200930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
mRNA localization and transport are integral in regulating gene expression. In Caenorhabditis elegans embryos, the maternally inherited mRNA erm-1 (Ezrin/Radixin/Moesin) becomes concentrated in anterior blastomeres. erm-1 mRNA localizes within those blastomeres to the plasma membrane where the essential ERM-1 protein, a membrane-actin linker, is also found. We demonstrate that the localization of erm-1 mRNA to the plasma membrane is translation dependent and requires its encoded N-terminal, membrane-binding (FERM) domain. By perturbing translation through multiple methods, we found that erm-1 mRNA localization at the plasma membrane persisted only if the nascent peptide remained in complex with the translating mRNA. Indeed, re-coding the erm-1 mRNA coding sequence while preserving the encoded amino acid sequence did not disrupt erm-1 mRNA localization, corroborating that the information directing mRNA localization resides within its membrane-binding protein domain. A single-molecule inexpensive fluorescence in situ hybridization screen of 17 genes encoding similar membrane-binding domains identified three plasma membrane-localized mRNAs in the early embryo. Ten additional transcripts showed potential membrane localization later in development. These findings point to a translation-dependent pathway for localization of mRNAs encoding membrane-associated proteins.
Collapse
Affiliation(s)
- Lindsay P. Winkenbach
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Dylan M. Parker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA,Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80303, USA
| | - Robert T. P. Williams
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA,Author for correspondence ()
| |
Collapse
|
22
|
Zheng T, Luo Q, Han C, Zhou J, Gong J, Chun L, Xu XZS, Liu J. Cytoplasmic and mitochondrial aminoacyl-tRNA synthetases differentially regulate lifespan in Caenorhabditis elegans. iScience 2022; 25:105266. [PMID: 36304099 PMCID: PMC9593246 DOI: 10.1016/j.isci.2022.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 11/12/2022] Open
Abstract
Reducing the rate of translation promotes longevity in multiple organisms, representing a conserved mechanism for lifespan extension. Aminoacyl-tRNA synthetases (ARSs) catalyze the loading of amino acids to their cognate tRNAs, thereby playing an essential role in translation. Mutations in ARS genes are associated with various human diseases. However, little is known about the role of ARSs in aging, particularly whether and how these genes regulate lifespan. Here, using Caenorhabditis elegans as a model, we systematically characterized the role of all three types of ARS genes in lifespan regulation, including mitochondrial, cytoplasmic, and cyto-mito bifunctional ARS genes. We found that, as expected, RNAi knockdown of mitochondrial ARS genes extended lifespan. Surprisingly, knocking down cytoplasmic or cyto-mito bifunctional ARS genes shortened lifespan, though such treatment reduced the rate of translation. These results reveal opposing roles of mitochondrial and cytoplasmic ARSs in lifespan regulation, demonstrating that inhibiting translation may not always extend lifespan. RNAi knockdown of mitochondrial ARS genes extends lifespan via UPRmt RNAi knockdown of cytoplasmic or cyto-mito bifunctional ARS genes shortens lifespan Inhibiting translation may not always extend lifespan
Collapse
Affiliation(s)
- Tianlin Zheng
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qiang Luo
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chengxuan Han
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiejun Zhou
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jianke Gong
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lei Chun
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - X Z Shawn Xu
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianfeng Liu
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
23
|
Wagner A, Schosserer M. The epitranscriptome in ageing and stress resistance: A systematic review. Ageing Res Rev 2022; 81:101700. [PMID: 35908668 DOI: 10.1016/j.arr.2022.101700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 01/31/2023]
Abstract
Modifications of RNA, collectively called the "epitranscriptome", might provide novel biomarkers and innovative targets for interventions in geroscience but are just beginning to be studied in the context of ageing and stress resistance. RNA modifications modulate gene expression by affecting translation initiation and speed, miRNA binding, RNA stability, and RNA degradation. Nonetheless, the precise underlying molecular mechanisms and physiological consequences of most alterations of the epitranscriptome are still only poorly understood. We here systematically review different types of modifications of rRNA, tRNA and mRNA, the methodology to analyze them, current challenges in the field, and human disease associations. Furthermore, we compiled evidence for a connection between individual enzymes, which install RNA modifications, and lifespan in yeast, worm and fly. We also included resistance to different stressors and competitive fitness as search criteria for genes potentially relevant to ageing. Promising candidates identified by this approach include RCM1/NSUN5, RRP8, and F33A8.4/ZCCHC4 that introduce base methylations in rRNA, the methyltransferases DNMT2 and TRM9/ALKBH8, as well as factors involved in the thiolation or A to I editing in tRNA, and finally the m6A machinery for mRNA.
Collapse
Affiliation(s)
- Anja Wagner
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Schosserer
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
24
|
Chomyshen SC, Tabarraei H, Wu CW. Translational suppression via IFG-1/eIF4G inhibits stress-induced RNA alternative splicing in Caenorhabditis elegans. Genetics 2022; 221:iyac075. [PMID: 35536193 PMCID: PMC9252287 DOI: 10.1093/genetics/iyac075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Splicing of precursor mRNA is an essential process for dividing cells, and splicing defects have been linked to aging and various chronic diseases. Environmental stress has recently been shown to modify alternative splicing, and molecular mechanisms that influence stress-induced alternative splicing remain unclear. Using an in vivo RNA splicing reporter, we performed a genome-wide RNAi screen in Caenorhabditis elegans and found that protein translation suppression via silencing of the conserved eukaryotic initiation factor 4G (IFG-1/eIF4G) inhibits cadmium-induced alternative splicing. Transcriptome analysis of an ifg-1-deficient mutant revealed an overall decrease in intronic and intergenic reads and prevented cadmium-induced alternative splicing compared to the wild type. We found that the ifg-1 mutant up-regulates >80 RNA splicing regulatory genes controlled by the TGF-β transcription factor SMA-2. The extended lifespan of the ifg-1 mutant is partially reduced upon sma-2 depletion and completely nullified when core spliceosome genes including snr-1, snr-2, and uaf-2 are knocked down. Depletion of snr-1 and snr-2 also diminished the enhanced cadmium resistance of the ifg-1 mutant. Together, these data describe a molecular mechanism through which translation suppression inhibits stress-induced alternative splicing and demonstrate an essential role for RNA splicing in promoting longevity and stress resistance in a translation-compromised mutant.
Collapse
Affiliation(s)
- Samantha C Chomyshen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Hadi Tabarraei
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
25
|
Somers HM, Fuqua JH, Bonnet FX, Rollins JA. Quantification of tissue-specific protein translation in whole C. elegans using O-propargyl-puromycin labeling and fluorescence microscopy. CELL REPORTS METHODS 2022; 2:100203. [PMID: 35497499 PMCID: PMC9046455 DOI: 10.1016/j.crmeth.2022.100203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/01/2021] [Accepted: 03/29/2022] [Indexed: 01/23/2023]
Abstract
The regulation of gene expression via protein translation is critical for growth, development, and stress response. While puromycin-based techniques have been used to quantify protein translation in C. elegans, they have been limited to using lysate from whole worms. To achieve tissue-specific quantification of ribosome activity in intact C. elegans, we report the application of O-propargyl-puromycin in a cuticle defective mutant followed by conjugation of an azide fluorophore for detection using fluorescent confocal microscopy. We apply this technique to quantify translation in response to heat shock, cycloheximide, or knockdown of translation factors. Furthermore, we demonstrate that O-propargyl-puromycin can be used to quantify translation between tissues or within a tissue like the germline. This technique is expected to have a broad range of applications in determining how protein translation is altered in different tissues in response to stress or gene knockdowns or with age.
Collapse
Affiliation(s)
- Hannah M. Somers
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Salisbury Cove, ME 04609, USA
| | - Jeremy H. Fuqua
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Salisbury Cove, ME 04609, USA
| | - Frédéric X.A. Bonnet
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Salisbury Cove, ME 04609, USA
| | - Jarod A. Rollins
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Salisbury Cove, ME 04609, USA
| |
Collapse
|
26
|
Kumar AV, Kang T, Thakurta TG, Ng C, Rogers AN, Larsen MR, Lapierre LR. Exportin 1 modulates life span by regulating nucleolar dynamics via the autophagy protein LGG-1/GABARAP. SCIENCE ADVANCES 2022; 8:eabj1604. [PMID: 35363528 PMCID: PMC10938577 DOI: 10.1126/sciadv.abj1604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Altered nucleolar and ribosomal dynamics are key hallmarks of aging, but their regulation remains unclear. Building on the knowledge that the conserved nuclear export receptor Exportin 1 (XPO-1/XPO1) modulates proteostasis and life span, we systematically analyzed the impact of nuclear export on protein metabolism. Using transcriptomic and subcellular proteomic analyses in nematodes, we demonstrate that XPO-1 modulates the nucleocytoplasmic distribution of key proteins involved in nucleolar dynamics and ribosome function, including fibrillarin (FIB-1/FBL) and RPL-11 (RPL11). Silencing xpo-1 led to marked reduction in global translation, which was accompanied by decreased nucleolar size and lower fibrillarin levels. A targeted screen of known proteostatic mediators revealed that the autophagy protein LGG-1/GABARAP modulates nucleolar size by regulating RPL-11 levels, linking specific protein degradation to ribosome metabolism. Together, our study reveals that nucleolar size and life span are regulated by LGG-1/GABARAP via ribosome protein surveillance.
Collapse
Affiliation(s)
- Anita V. Kumar
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Taewook Kang
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tara G. Thakurta
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Celeste Ng
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Aric N. Rogers
- MDI Biological Laboratory, 159 Old Bar Harbor Rd., Salisbury Cove, ME 04672, USA
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Louis R. Lapierre
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| |
Collapse
|
27
|
Zhang WH, Koyuncu S, Vilchez D. Insights Into the Links Between Proteostasis and Aging From C. elegans. FRONTIERS IN AGING 2022; 3:854157. [PMID: 35821832 PMCID: PMC9261386 DOI: 10.3389/fragi.2022.854157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/22/2022] [Indexed: 04/20/2023]
Abstract
Protein homeostasis (proteostasis) is maintained by a tightly regulated and interconnected network of biological pathways, preventing the accumulation and aggregation of damaged or misfolded proteins. Thus, the proteostasis network is essential to ensure organism longevity and health, while proteostasis failure contributes to the development of aging and age-related diseases that involve protein aggregation. The model organism Caenorhabditis elegans has proved invaluable for the study of proteostasis in the context of aging, longevity and disease, with a number of pivotal discoveries attributable to the use of this organism. In this review, we discuss prominent findings from C. elegans across the many key aspects of the proteostasis network, within the context of aging and disease. These studies collectively highlight numerous promising therapeutic targets, which may 1 day facilitate the development of interventions to delay aging and prevent age-associated diseases.
Collapse
Affiliation(s)
- William Hongyu Zhang
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
28
|
Statzer C, Meng J, Venz R, Bland M, Robida-Stubbs S, Patel K, Petrovic D, Emsley R, Liu P, Morantte I, Haynes C, Mair WB, Longchamp A, Filipovic MR, Blackwell TK, Ewald CY. ATF-4 and hydrogen sulfide signalling mediate longevity in response to inhibition of translation or mTORC1. Nat Commun 2022; 13:967. [PMID: 35181679 PMCID: PMC8857226 DOI: 10.1038/s41467-022-28599-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Inhibition of the master growth regulator mTORC1 (mechanistic target of rapamycin complex 1) slows ageing across phyla, in part by reducing protein synthesis. Various stresses globally suppress protein synthesis through the integrated stress response (ISR), resulting in preferential translation of the transcription factor ATF-4. Here we show in C. elegans that inhibition of translation or mTORC1 increases ATF-4 expression, and that ATF-4 mediates longevity under these conditions independently of ISR signalling. ATF-4 promotes longevity by activating canonical anti-ageing mechanisms, but also by elevating expression of the transsulfuration enzyme CTH-2 to increase hydrogen sulfide (H2S) production. This H2S boost increases protein persulfidation, a protective modification of redox-reactive cysteines. The ATF-4/CTH-2/H2S pathway also mediates longevity and increased stress resistance from mTORC1 suppression. Increasing H2S levels, or enhancing mechanisms that H2S influences through persulfidation, may represent promising strategies for mobilising therapeutic benefits of the ISR, translation suppression, or mTORC1 inhibition.
Collapse
Affiliation(s)
- Cyril Statzer
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Jin Meng
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Joslin Diabetes Center, Research Division, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Richard Venz
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Monet Bland
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Joslin Diabetes Center, Research Division, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Stacey Robida-Stubbs
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Joslin Diabetes Center, Research Division, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Krina Patel
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Joslin Diabetes Center, Research Division, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Dunja Petrovic
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Raffaella Emsley
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ianessa Morantte
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Cole Haynes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - William B Mair
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Alban Longchamp
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Milos R Filipovic
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - T Keith Blackwell
- Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Joslin Diabetes Center, Research Division, Boston, MA, USA. .,Harvard Stem Cell Institute, Cambridge, MA, USA.
| | - Collin Y Ewald
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland.
| |
Collapse
|
29
|
Martinez-Miguel VE, Lujan C, Espie-Caullet T, Martinez-Martinez D, Moore S, Backes C, Gonzalez S, Galimov ER, Brown AEX, Halic M, Tomita K, Rallis C, von der Haar T, Cabreiro F, Bjedov I. Increased fidelity of protein synthesis extends lifespan. Cell Metab 2021; 33:2288-2300.e12. [PMID: 34525330 PMCID: PMC8570412 DOI: 10.1016/j.cmet.2021.08.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 05/06/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
Loss of proteostasis is a fundamental process driving aging. Proteostasis is affected by the accuracy of translation, yet the physiological consequence of having fewer protein synthesis errors during multi-cellular organismal aging is poorly understood. Our phylogenetic analysis of RPS23, a key protein in the ribosomal decoding center, uncovered a lysine residue almost universally conserved across all domains of life, which is replaced by an arginine in a small number of hyperthermophilic archaea. When introduced into eukaryotic RPS23 homologs, this mutation leads to accurate translation, as well as heat shock resistance and longer life, in yeast, worms, and flies. Furthermore, we show that anti-aging drugs such as rapamycin, Torin1, and trametinib reduce translation errors, and that rapamycin extends further organismal longevity in RPS23 hyperaccuracy mutants. This implies a unified mode of action for diverse pharmacological anti-aging therapies. These findings pave the way for identifying novel translation accuracy interventions to improve aging.
Collapse
Affiliation(s)
| | - Celia Lujan
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Tristan Espie-Caullet
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Daniel Martinez-Martinez
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Saul Moore
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Cassandra Backes
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Suam Gonzalez
- School of Health, Sport and Bioscience, University of East London, Water Lane, London E15 4LZ, UK
| | - Evgeniy R Galimov
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - André E X Brown
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Mario Halic
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Kazunori Tomita
- Centre for Genome Engineering and Maintenance, College of Health, Medicine and Life Sciences, Brunel University London, London UB8 3PH, UK
| | - Charalampos Rallis
- School of Health, Sport and Bioscience, University of East London, Water Lane, London E15 4LZ, UK
| | - Tobias von der Haar
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Filipe Cabreiro
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany.
| | - Ivana Bjedov
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK; Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
30
|
Curran SP, Lithgow GJ, Verdin E, P C. University of Southern California and buck institute nathan shock center: multidimensional models of aging. GeroScience 2021; 43:2119-2127. [PMID: 34269983 PMCID: PMC8599784 DOI: 10.1007/s11357-021-00416-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022] Open
Abstract
The USC-Buck Nathan Shock Center of Excellence in the Biology of Aging is a new and fully integrated multi-institutional center focused on training the next generation of geroscientists and providing access to cutting-edge geroscience technologies to investigators across the nation. The USC-Buck NSC is devoted to forging a deeper understanding of how and why aging processes cause disease in order to advance the translation of basic research on aging into effective preventions and therapies. Including more than 61 NIA-supported investigators, six NIA-funded research centers, four NIA T32s, and several additional aging research centers of excellence, the USC-Buck NSC constitutes one of the largest collections of leaders in geroscience research within the USA; the unique nature of the USC-Buck NSC research infrastructure ensures an integrated organization that is representative of the wide breadth of topics encompassed by the biology of aging field. By leveraging the 25-year-long relationship, current collaborations and joint administrational activities of the University of Southern California and the Buck Institute for Aging Research, the USC-Buck NSC aims to enhance and expand promising research in the biology of aging at both at the and to make a positive impact across California, the nation and throughout the world. Specialized cores provide services to all Shock Center members, as well as provide support for services to the community at large.
Collapse
Affiliation(s)
- Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, USA.
| | | | - Eric Verdin
- Buck Institute for Research On Aging, Novato, CA, USA
- UCSF Department of Medicine, San Francisco, CA, USA
| | - Cohen P
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, USA
| |
Collapse
|
31
|
Howard AC, Mir D, Snow S, Horrocks J, Sayed H, Ma Z, Rogers AN. Anabolic Function Downstream of TOR Controls Trade-offs Between Longevity and Reproduction at the Level of Specific Tissues in C. elegans. FRONTIERS IN AGING 2021; 2:725068. [PMID: 35340273 PMCID: PMC8953723 DOI: 10.3389/fragi.2021.725068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022]
Abstract
As the most energetically expensive cellular process, translation must be finely tuned to environmental conditions. Dietary restriction attenuates signaling through the nutrient sensing mTOR pathway, which reduces translation and redirects resources to preserve the soma. These responses are associated with increased lifespan but also anabolic impairment, phenotypes also observed when translation is genetically suppressed. Here, we restricted translation downstream of mTOR separately in major tissues in C. elegans to better understand their roles in systemic adaptation and whether consequences to anabolic impairment were separable from positive effects on lifespan. Lowering translation in neurons, hypodermis, or germline tissue led to increased lifespan under well-fed conditions and improved survival upon withdrawal of food, indicating that these are key tissues coordinating enhanced survival when protein synthesis is reduced. Surprisingly, lowering translation in body muscle during development shortened lifespan while accelerating and increasing reproduction, a reversal of phenotypic trade-offs associated with systemic translation suppression. Suppressing mTORC1 selectively in body muscle also increased reproduction while slowing motility during development. In nature, this may be indicative of reduced energy expenditure related to foraging, acting as a "GO!" signal for reproduction. Together, results indicate that low translation in different tissues helps direct distinct systemic adaptations and suggest that unknown endocrine signals mediate these responses. Furthermore, mTOR or translation inhibitory therapeutics that target specific tissues may achieve desired interventions to aging without loss of whole-body anabolism.
Collapse
Affiliation(s)
- Amber C. Howard
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, ME, United States
- Department of Natural Sciences, Middle Georgia State University, Cochran, GA, United States
| | - Dilawar Mir
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, ME, United States
| | - Santina Snow
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, ME, United States
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Jordan Horrocks
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, ME, United States
| | - Hussein Sayed
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, ME, United States
| | - Zhengxin Ma
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, ME, United States
| | - Aric N. Rogers
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, ME, United States
| |
Collapse
|
32
|
Derisbourg MJ, Wester LE, Baddi R, Denzel MS. Mutagenesis screen uncovers lifespan extension through integrated stress response inhibition without reduced mRNA translation. Nat Commun 2021; 12:1678. [PMID: 33723245 PMCID: PMC7960713 DOI: 10.1038/s41467-021-21743-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Protein homeostasis is modulated by stress response pathways and its deficiency is a hallmark of aging. The integrated stress response (ISR) is a conserved stress-signaling pathway that tunes mRNA translation via phosphorylation of the translation initiation factor eIF2. ISR activation and translation initiation are finely balanced by eIF2 kinases and by the eIF2 guanine nucleotide exchange factor eIF2B. However, the role of the ISR during aging remains poorly understood. Using a genomic mutagenesis screen for longevity in Caenorhabditis elegans, we define a role of eIF2 modulation in aging. By inhibiting the ISR, dominant mutations in eIF2B enhance protein homeostasis and increase lifespan. Consistently, full ISR inhibition using phosphorylation-defective eIF2α or pharmacological ISR inhibition prolong lifespan. Lifespan extension through impeding the ISR occurs without a reduction in overall protein synthesis. Instead, we observe changes in the translational efficiency of a subset of mRNAs, of which the putative kinase kin-35 is required for lifespan extension. Evidently, lifespan is limited by the ISR and its inhibition may provide an intervention in aging.
Collapse
Affiliation(s)
| | - Laura E Wester
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ruth Baddi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Martin S Denzel
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- CECAD - Cluster of Excellence, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
33
|
Ho JJD, Man JHS, Schatz JH, Marsden PA. Translational remodeling by RNA-binding proteins and noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1647. [PMID: 33694288 DOI: 10.1002/wrna.1647] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
Responsible for generating the proteome that controls phenotype, translation is the ultimate convergence point for myriad upstream signals that influence gene expression. System-wide adaptive translational reprogramming has recently emerged as a pillar of cellular adaptation. As classic regulators of mRNA stability and translation efficiency, foundational studies established the concept of collaboration and competition between RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) on individual mRNAs. Fresh conceptual innovations now highlight stress-activated, evolutionarily conserved RBP networks and ncRNAs that increase the translation efficiency of populations of transcripts encoding proteins that participate in a common cellular process. The discovery of post-transcriptional functions for long noncoding RNAs (lncRNAs) was particularly intriguing given their cell-type-specificity and historical definition as nuclear-functioning epigenetic regulators. The convergence of RBPs, lncRNAs, and microRNAs on functionally related mRNAs to enable adaptive protein synthesis is a newer biological paradigm that highlights their role as "translatome (protein output) remodelers" and reinvigorates the paradigm of "RNA operons." Together, these concepts modernize our understanding of cellular stress adaptation and strategies for therapeutic development. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- J J David Ho
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jeffrey H S Man
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Respirology, University Health Network, Latner Thoracic Research Laboratories, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Philip A Marsden
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Cavinato M, Madreiter-Sokolowski CT, Büttner S, Schosserer M, Zwerschke W, Wedel S, Grillari J, Graier WF, Jansen-Dürr P. Targeting cellular senescence based on interorganelle communication, multilevel proteostasis, and metabolic control. FEBS J 2020; 288:3834-3854. [PMID: 33200494 PMCID: PMC7611050 DOI: 10.1111/febs.15631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Cellular senescence, a stable cell division arrest caused by severe damage and stress, is a hallmark of aging in vertebrates including humans. With progressing age, senescent cells accumulate in a variety of mammalian tissues, where they contribute to tissue aging, identifying cellular senescence as a major target to delay or prevent aging. There is an increasing demand for the discovery of new classes of small molecules that would either avoid or postpone cellular senescence by selectively eliminating senescent cells from the body (i.e., ‘senolytics’) or inactivating/switching damage‐inducing properties of senescent cells (i.e., ‘senostatics/senomorphics’), such as the senescence‐associated secretory phenotype. Whereas compounds with senolytic or senostatic activity have already been described, their efficacy and specificity has not been fully established for clinical use yet. Here, we review mechanisms of senescence that are related to mitochondria and their interorganelle communication, and the involvement of proteostasis networks and metabolic control in the senescent phenotype. These cellular functions are associated with cellular senescence in in vitro and in vivo models but have not been fully exploited for the search of new compounds to counteract senescence yet. Therefore, we explore possibilities to target these mechanisms as new opportunities to selectively eliminate and/or disable senescent cells with the aim of tissue rejuvenation. We assume that this research will provide new compounds from the chemical space which act as mimetics of caloric restriction, modulators of calcium signaling and mitochondrial physiology, or as proteostasis optimizers, bearing the potential to counteract cellular senescence, thereby allowing healthy aging.
Collapse
Affiliation(s)
- Maria Cavinato
- Institute for Biomedical Aging Research, Leopold-Franzens Universität Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens Universität Innsbruck, Austria
| | - Corina T Madreiter-Sokolowski
- Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Austria.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Markus Schosserer
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Austria
| | - Werner Zwerschke
- Institute for Biomedical Aging Research, Leopold-Franzens Universität Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens Universität Innsbruck, Austria
| | - Sophia Wedel
- Institute for Biomedical Aging Research, Leopold-Franzens Universität Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens Universität Innsbruck, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Austria.,BioTechMed Graz, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, Leopold-Franzens Universität Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens Universität Innsbruck, Austria
| |
Collapse
|
35
|
Heissenberger C, Rollins JA, Krammer TL, Nagelreiter F, Stocker I, Wacheul L, Shpylovyi A, Tav K, Snow S, Grillari J, Rogers AN, Lafontaine DLJ, Schosserer M. The ribosomal RNA m 5C methyltransferase NSUN-1 modulates healthspan and oogenesis in Caenorhabditis elegans. eLife 2020; 9:56205. [PMID: 33289480 PMCID: PMC7746234 DOI: 10.7554/elife.56205] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Our knowledge about the repertoire of ribosomal RNA modifications and the enzymes responsible for installing them is constantly expanding. Previously, we reported that NSUN-5 is responsible for depositing m5C at position C2381 on the 26S rRNA in Caenorhabditis elegans. Here, we show that NSUN-1 is writing the second known 26S rRNA m5C at position C2982. Depletion of nsun-1 or nsun-5 improved thermotolerance and slightly increased locomotion at midlife, however, only soma-specific knockdown of nsun-1 extended lifespan. Moreover, soma-specific knockdown of nsun-1 reduced body size and impaired fecundity, suggesting non-cell-autonomous effects. While ribosome biogenesis and global protein synthesis were unaffected by nsun-1 depletion, translation of specific mRNAs was remodeled leading to reduced production of collagens, loss of structural integrity of the cuticle, and impaired barrier function. We conclude that loss of a single enzyme required for rRNA methylation has profound and highly specific effects on organismal development and physiology.
Collapse
Affiliation(s)
- Clemens Heissenberger
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | | | - Teresa L Krammer
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Fabian Nagelreiter
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Isabella Stocker
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Charleroi, Belgium
| | - Anton Shpylovyi
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Koray Tav
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Santina Snow
- MDI Biological Laboratory, Bar Harbor, United States
| | - Johannes Grillari
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria.,Ludwig Boltzmann Institute of Experimental and Clinical Traumatology, Vienna, Austria
| | - Aric N Rogers
- MDI Biological Laboratory, Bar Harbor, United States
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Charleroi, Belgium
| | - Markus Schosserer
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria.,MDI Biological Laboratory, Bar Harbor, United States
| |
Collapse
|
36
|
Carolina de Souza-Guerreiro T, Meng X, Dacheux E, Firczuk H, McCarthy J. Translational control of gene expression noise and its relationship to ageing in yeast. FEBS J 2020; 288:2278-2293. [PMID: 33090724 DOI: 10.1111/febs.15594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
Gene expression noise influences organism evolution and fitness but is poorly understood. There is increasing evidence that the functional roles of components of the translation machinery influence noise intensity. In addition, modulation of the activities of at least some of these same components affects the replicative lifespan of a broad spectrum of organisms. In a novel comparative approach, we modulate the activities of the translation initiation factors eIFG1 and eIF4G2, both of which are involved in the process of recruiting ribosomal 43S preinitiation complexes to the 5' end of eukaryotic mRNAs. We show that tagging of the cell wall using a fluorescent dye allows us to follow gene expression noise as different yeast strains progress through successive cycles of replicative ageing. This procedure reveals a relationship between global protein synthesis rate and gene expression noise (cell-to-cell heterogeneity), which is accompanied by a parallel correlation between gene expression noise and the replicative age of mother cells. An alternative approach, based on microfluidics, confirms the interdependence between protein synthesis rate, gene expression noise and ageing. We additionally show that it is important to characterize the influence of the design of the microfluidic device on the nutritional state of the cells during such experiments. Analysis of the noise data derived from flow cytometry and fluorescence microscopy measurements indicates that both the intrinsic and the extrinsic noise components increase as a function of ageing.
Collapse
Affiliation(s)
| | - Xiang Meng
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| | - Estelle Dacheux
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| | - Helena Firczuk
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| | - John McCarthy
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
37
|
Translational control in the naked mole-rat as a model highly resistant to cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188455. [PMID: 33148499 DOI: 10.1016/j.bbcan.2020.188455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Dysregulation of mRNA translation is involved in the onset and progression of different types of cancer. To gain insight into novel genetic strategies to avoid this malady, we reviewed the available genomic, transcriptomic, and proteomic data about the translational machinery from the naked-mole rat (NMR) Heterocephalus glaber, a new model of study that exhibits high resistance to cancer. The principal features that might confer cancer resistance are 28S rRNA fragmentation, RPL26 and eIF4G overexpression, global downregulation of mTOR pathway, specific amino acid residues in RAPTOR (P908) and RICTOR (V1695), and the absence of 4E-BP3. These features are not only associated with cancer but also might couple longevity and adaptation to hypoxia. We propose that the regulation of translation is among the strategies endowing NMR cancer resistance.
Collapse
|
38
|
Abstract
The emergence of genome-wide analyses to interrogate cellular DNA, RNA, and protein content has revolutionized the study of control networks that mediate cellular homeostasis. mRNA translation represents the last step of genetic flow and primarily defines the proteome. Translational regulation is thus critical for gene expression, in particular under nutrient excess or deficiency. Until recently, it was unclear how the global effects of translational control are orchestrated by nutrient signaling pathways. An emerging concept of translational reprogramming addresses how to maintain the expression of specific proteins during nutrient stress by translation of selective mRNAs. In this review, we describe recent advances in our understanding of translational control principles; nutrient-sensing mechanisms; and their dysregulation in human diseases such as diabetes, cancer, and aging. The mechanistic understanding of translational regulation in response to different nutrient conditions may help identify potential dietary and therapeutic targets to improve human health.
Collapse
Affiliation(s)
- Xin Erica Shu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Robert V. Swanda
- Graduate Field of Biomedical and Biological Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Biomedical and Biological Sciences, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
39
|
Skariah G, Todd PK. Translational control in aging and neurodegeneration. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1628. [PMID: 32954679 DOI: 10.1002/wrna.1628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Protein metabolism plays central roles in age-related decline and neurodegeneration. While a large body of research has explored age-related changes in protein degradation, alterations in the efficiency and fidelity of protein synthesis with aging are less well understood. Age-associated changes occur in both the protein synthetic machinery (ribosomal proteins and rRNA) and within regulatory factors controlling translation. At the same time, many of the interventions that prolong lifespan do so in part by pre-emptively decreasing protein synthesis rates to allow better harmonization to age-related declines in protein catabolism. Here we review the roles of translation regulation in aging, with a specific focus on factors implicated in age-related neurodegeneration. We discuss how emerging technologies such as ribosome profiling and superior mass spectrometric approaches are illuminating age-dependent mRNA-specific changes in translation rates across tissues to reveal a critical interplay between catabolic and anabolic pathways that likely contribute to functional decline. These new findings point to nodes in posttranscriptional gene regulation that both contribute to aging and offer targets for therapy. This article is categorized under: Translation > Translation Regulation Translation > Ribosome Biogenesis Translation > Translation Mechanisms.
Collapse
Affiliation(s)
- Geena Skariah
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Ann Arbor VA Healthcare System, Department of Veterans Affairs, Ann Arbor, Michigan, USA
| |
Collapse
|
40
|
Lan J, Rollins JA, Zang X, Wu D, Zou L, Wang Z, Ye C, Wu Z, Kapahi P, Rogers AN, Chen D. Translational Regulation of Non-autonomous Mitochondrial Stress Response Promotes Longevity. Cell Rep 2020; 28:1050-1062.e6. [PMID: 31340143 PMCID: PMC6684276 DOI: 10.1016/j.celrep.2019.06.078] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/04/2019] [Accepted: 06/21/2019] [Indexed: 01/12/2023] Open
Abstract
Reduced mRNA translation delays aging, but the underlying mechanisms remain underexplored. Mutations in both DAF-2 (IGF-1 receptor) and RSKS-1 (ribosomal S6 kinase/S6K) cause synergistic lifespan extension in C. elegans. To understand the roles of translational regulation in this process, we performed polysomal profiling and identified translationally regulated ribosomal and cytochrome c (CYC-2.1) genes as key mediators of longevity. cyc-2.1 knockdown significantly extends lifespan by activating the intestinal mitochondrial unfolded protein response (UPRmt), mitochondrial fission, and AMP-activated kinase (AMPK). The germline serves as the key tissue for cyc-2.1 to regulate lifespan, and germline-specific cyc-2.1 knockdown non-autonomously activates intestinal UPRmt and AMPK. Furthermore, the RNA-binding protein GLD-1-mediated translational repression of cyc-2.1 in the germline is important for the non-autonomous activation of UPRmt and synergistic longevity of the daf-2 rsks-1 mutant. Altogether, these results illustrate a translationally regulated non-autonomous mitochondrial stress response mechanism in the modulation of lifespan by insulin-like signaling and S6K. To understand how reduced translation delays aging, Lan et al. perform translational profiling in C. elegans and propose that, in the significantly long-lived daf-2 rsks-1 mutant, serial translational regulation leads to reduced cytochrome c in the germline, which non-autonomously activates UPRmt and AMPK in the metabolic tissue to ensure longevity.
Collapse
Affiliation(s)
- Jianfeng Lan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China
| | - Jarod A Rollins
- MDI Biological Laboratory, 159 Old Bar Harbor Rd., Salisbury Cove, ME 04672, USA
| | - Xiao Zang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China
| | - Di Wu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China
| | - Lina Zou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China
| | - Zi Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China
| | - Chang Ye
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China
| | - Zixing Wu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| | - Aric N Rogers
- MDI Biological Laboratory, 159 Old Bar Harbor Rd., Salisbury Cove, ME 04672, USA.
| | - Di Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China.
| |
Collapse
|
41
|
Mołoń M, Molestak E, Kula-Maximenko M, Grela P, Tchórzewski M. Ribosomal Protein uL11 as a Regulator of Metabolic Circuits Related to Aging and Cell Cycle. Cells 2020; 9:cells9071745. [PMID: 32708309 PMCID: PMC7409069 DOI: 10.3390/cells9071745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022] Open
Abstract
Aging is a biological phenomenon common to all living organisms. It is thought that the rate of aging is influenced by diverse factors, in many cases related to the control of energy metabolism, i.e., the so-called pro-longevity effects of starvation. Translation, regarded as the main energy consumption process, lies at the center of interest, as it has a significant impact on the longevity phenomenon. It has been shown that perturbations in the translational apparatus may lead to a lower rate of aging. Therefore, the main aim of this study was to investigate aging in relation to the protein biosynthesis circuit, taking into account the uL11 ribosomal protein as a vital ribosomal element. To this end, we used set of yeast mutants with deleted single uL11A or uL11B genes and a double disruptant uL11AB mutant. We applied an integrated approach analyzing a broad range of biological parameters of yeast mutant cells, especially the longevity phenomenon, supplemented with biochemical and high throughput transcriptomic and metobolomic approaches. The analysis showed that the longevity phenomenon is not fully related to the commonly considered energy restriction effect, thus the slow-down of translation does not represent the sole source of aging. Additionally, we showed that uL11 can be classified as a moonlighting protein with extra-ribosomal function having cell-cycle regulatory potential.
Collapse
Affiliation(s)
- Mateusz Mołoń
- Department of Biochemistry and Cell Biology, University of Rzeszów, 35-601 Rzeszów, Poland
- Correspondence: (M.M.); (M.T.); Tel.: +48-17-7855407 (M.M.); +48-81-5375956 (M.T.)
| | - Eliza Molestak
- Department of Molecular Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (E.M.); (P.G.)
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Krakow, Poland;
| | - Przemysław Grela
- Department of Molecular Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (E.M.); (P.G.)
| | - Marek Tchórzewski
- Department of Molecular Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (E.M.); (P.G.)
- Correspondence: (M.M.); (M.T.); Tel.: +48-17-7855407 (M.M.); +48-81-5375956 (M.T.)
| |
Collapse
|
42
|
Li Y, Yu H, Chen C, Li S, Zhang Z, Xu H, Zhu F, Liu J, Spencer PS, Dai Z, Yang X. Proteomic Profile of Mouse Brain Aging Contributions to Mitochondrial Dysfunction, DNA Oxidative Damage, Loss of Neurotrophic Factor, and Synaptic and Ribosomal Proteins. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5408452. [PMID: 32587661 PMCID: PMC7301248 DOI: 10.1155/2020/5408452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
The deleterious effects of aging on the brain remain to be fully elucidated. In the present study, proteomic changes of young (4-month) and aged (16-month) B6129SF2/J male mouse hippocampus and cerebral cortex were investigated by using nano liquid chromatography tandem mass spectrometry (NanoLC-ESI-MS/MS) combined with tandem mass tag (TMT) labeling technology. Compared with the young animals, 390 hippocampal proteins (121 increased and 269 decreased) and 258 cortical proteins (149 increased and 109 decreased) changed significantly in the aged mouse. Bioinformatic analysis indicated that these proteins are mainly involved in mitochondrial functions (FIS1, DRP1), oxidative stress (PRDX6, GSTP1, and GSTM1), synapses (SYT12, GLUR2), ribosome (RPL4, RPS3), cytoskeletal integrity, transcriptional regulation, and GTPase function. The mitochondrial fission-related proteins FIS1 and DRP1 were significantly increased in the hippocampus and cerebral cortex of the aged mice. Further results in the hippocampus showed that ATP content was significantly reduced in aged mice. A neurotrophin brain-derived neurotrophic factor (BNDF), a protein closely related with synaptic plasticity and memory, was also significantly decreased in the hippocampus of the aged mice, with the tendency of synaptic protein markers including complexin-2, synaptophysin, GLUR2, PSD95, NMDAR2A, and NMDAR1. More interestingly, 8-hydroxydeoxyguanosine (8-OHdG), a marker of DNA oxidative damage, increased as shown by immunofluorescence staining. In summary, we demonstrated that aging is associated with systemic changes involving mitochondrial dysfunction, energy reduction, oxidative stress, loss of neurotrophic factor, synaptic proteins, and ribosomal proteins, as well as molecular deficits involved in various physiological/pathological processes.
Collapse
Affiliation(s)
- Yingchao Li
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Haitao Yu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chongyang Chen
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou, Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Hua Xu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The 3rd Affiliated Hospital of Shenzhen University, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Peter S. Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Zhongliang Dai
- The Department of Anesthesiology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| |
Collapse
|
43
|
Rudzińska M, Parodi A, Balakireva AV, Chepikova OE, Venanzi FM, Zamyatnin AA. Cellular Aging Characteristics and Their Association with Age-Related Disorders. Antioxidants (Basel) 2020; 9:antiox9020094. [PMID: 31979201 PMCID: PMC7071036 DOI: 10.3390/antiox9020094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Different molecular signaling pathways, biological processes, and intercellular communication mechanisms control longevity and are affected during cellular senescence. Recent data have suggested that organelle communication, as well as genomic and metabolic dysfunctions, contribute to this phenomenon. Oxidative stress plays a critical role by inducing structural modifications to biological molecules while affecting their function and catabolism and eventually contributing to the onset of age-related dysfunctions. In this scenario, proteins are not adequately degraded and accumulate in the cell cytoplasm as toxic aggregates, increasing cell senescence progression. In particular, carbonylation, defined as a chemical reaction that covalently and irreversibly modifies proteins with carbonyl groups, is considered to be a significant indicator of protein oxidative stress and aging. Here, we emphasize the role and dysregulation of the molecular pathways controlling cell metabolism and proteostasis, the complexity of the mechanisms that occur during aging, and their association with various age-related disorders. The last segment of the review details current knowledge on protein carbonylation as a biomarker of cellular senescence in the development of diagnostics and therapeutics for age-related dysfunctions.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Anastasia V. Balakireva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Olga E. Chepikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Franco M. Venanzi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +74956229843
| |
Collapse
|
44
|
Anisimova AS, Alexandrov AI, Makarova NE, Gladyshev VN, Dmitriev SE. Protein synthesis and quality control in aging. Aging (Albany NY) 2019; 10:4269-4288. [PMID: 30562164 PMCID: PMC6326689 DOI: 10.18632/aging.101721] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Aging is characterized by the accumulation of damage and other deleterious changes, leading to the loss of functionality and fitness. Age-related changes occur at most levels of organization of a living organism (molecular, organellar, cellular, tissue and organ). However, protein synthesis is a major biological process, and thus understanding how it changes with age is of paramount importance. Here, we discuss the relationships between lifespan, aging, protein synthesis and translational control, and expand this analysis to the various aspects of proteome behavior in organisms with age. Characterizing the consequences of changes in protein synthesis and translation fidelity, and determining whether altered translation is pathological or adaptive is necessary for understanding the aging process, as well as for developing approaches to target dysfunction in translation as a strategy for extending lifespan.
Collapse
Affiliation(s)
- Aleksandra S Anisimova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexander I Alexandrov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Bach Institute of Biochemistry of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Nadezhda E Makarova
- School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia
| | - Vadim N Gladyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
45
|
Medkour Y, Mohammad K, Arlia-Ciommo A, Svistkova V, Dakik P, Mitrofanova D, Rodriguez MEL, Junio JAB, Taifour T, Escudero P, Goltsios FF, Soodbakhsh S, Maalaoui H, Simard É, Titorenko VI. Mechanisms by which PE21, an extract from the white willow Salix alba, delays chronological aging in budding yeast. Oncotarget 2019; 10:5780-5816. [PMID: 31645900 PMCID: PMC6791382 DOI: 10.18632/oncotarget.27209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023] Open
Abstract
We have recently found that PE21, an extract from the white willow Salix alba, slows chronological aging and prolongs longevity of the yeast Saccharomyces cerevisiae more efficiently than any of the previously known pharmacological interventions. Here, we investigated mechanisms through which PE21 delays yeast chronological aging and extends yeast longevity. We show that PE21 causes a remodeling of lipid metabolism in chronologically aging yeast, thereby instigating changes in the concentrations of several lipid classes. We demonstrate that such changes in the cellular lipidome initiate three mechanisms of aging delay and longevity extension. The first mechanism through which PE21 slows aging and prolongs longevity consists in its ability to decrease the intracellular concentration of free fatty acids. This postpones an age-related onset of liponecrotic cell death promoted by excessive concentrations of free fatty acids. The second mechanism of aging delay and longevity extension by PE21 consists in its ability to decrease the concentrations of triacylglycerols and to increase the concentrations of glycerophospholipids within the endoplasmic reticulum membrane. This activates the unfolded protein response system in the endoplasmic reticulum, which then decelerates an age-related decline in protein and lipid homeostasis and slows down an aging-associated deterioration of cell resistance to stress. The third mechanisms underlying aging delay and longevity extension by PE21 consists in its ability to change lipid concentrations in the mitochondrial membranes. This alters certain catabolic and anabolic processes in mitochondria, thus amending the pattern of aging-associated changes in several key aspects of mitochondrial functionality.
Collapse
Affiliation(s)
- Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | - Veronika Svistkova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Darya Mitrofanova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | - Tarek Taifour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Paola Escudero
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Fani-Fay Goltsios
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sahar Soodbakhsh
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Hana Maalaoui
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec J7A 4A5, Canada
| | | |
Collapse
|
46
|
Blackwell TK, Sewell AK, Wu Z, Han M. TOR Signaling in Caenorhabditis elegans Development, Metabolism, and Aging. Genetics 2019; 213:329-360. [PMID: 31594908 PMCID: PMC6781902 DOI: 10.1534/genetics.119.302504] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/18/2019] [Indexed: 12/30/2022] Open
Abstract
The Target of Rapamycin (TOR or mTOR) is a serine/threonine kinase that regulates growth, development, and behaviors by modulating protein synthesis, autophagy, and multiple other cellular processes in response to changes in nutrients and other cues. Over recent years, TOR has been studied intensively in mammalian cell culture and genetic systems because of its importance in growth, metabolism, cancer, and aging. Through its advantages for unbiased, and high-throughput, genetic and in vivo studies, Caenorhabditis elegans has made major contributions to our understanding of TOR biology. Genetic analyses in the worm have revealed unexpected aspects of TOR functions and regulation, and have the potential to further expand our understanding of how growth and metabolic regulation influence development. In the aging field, C. elegans has played a leading role in revealing the promise of TOR inhibition as a strategy for extending life span, and identifying mechanisms that function upstream and downstream of TOR to influence aging. Here, we review the state of the TOR field in C. elegans, and focus on what we have learned about its functions in development, metabolism, and aging. We discuss knowledge gaps, including the potential pitfalls in translating findings back and forth across organisms, but also describe how TOR is important for C. elegans biology, and how C. elegans work has developed paradigms of great importance for the broader TOR field.
Collapse
Affiliation(s)
- T Keith Blackwell
- Research Division, Joslin Diabetes Center, Department of Genetics, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts
| | - Aileen K Sewell
- Department of MCDB, University of Colorado at Boulder, and
- Howard Hughes Medical Institute, Boulder, Colorado
| | - Ziyun Wu
- Research Division, Joslin Diabetes Center, Department of Genetics, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts
| | - Min Han
- Department of MCDB, University of Colorado at Boulder, and
- Howard Hughes Medical Institute, Boulder, Colorado
| |
Collapse
|
47
|
Abstract
Despite tremendous progress in recent years, our understanding of the evolution of ageing is still incomplete. A dominant paradigm maintains that ageing evolves due to the competing energy demands of reproduction and somatic maintenance leading to slow accumulation of unrepaired cellular damage with age. However, the centrality of energy trade-offs in ageing has been increasingly challenged as studies in different organisms have uncoupled the trade-off between reproduction and longevity. An emerging theory is that ageing instead is caused by biological processes that are optimized for early-life function but become harmful when they continue to run-on unabated in late life. This idea builds on the realization that early-life regulation of gene expression can break down in late life because natural selection is too weak to optimize it. Empirical evidence increasingly supports the hypothesis that suboptimal gene expression in adulthood can result in physiological malfunction leading to organismal senescence. We argue that the current state of the art in the study of ageing contradicts the widely held view that energy trade-offs between growth, reproduction, and longevity are the universal underpinning of senescence. Future research should focus on understanding the relative contribution of energy and function trade-offs to the evolution and expression of ageing.
Collapse
Affiliation(s)
- Alexei A Maklakov
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
48
|
Aryanpur PP, Renner DM, Rodela E, Mittelmeier TM, Byrd A, Bolger TA. The DEAD-box RNA helicase Ded1 has a role in the translational response to TORC1 inhibition. Mol Biol Cell 2019; 30:2171-2184. [PMID: 31141444 PMCID: PMC6743465 DOI: 10.1091/mbc.e18-11-0702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/26/2022] Open
Abstract
Ded1 is a DEAD-box RNA helicase with essential roles in translation initiation. It binds to the eukaryotic initiation factor 4F (eIF4F) complex and promotes 48S preinitiation complex assembly and start-site scanning of 5' untranslated regions of mRNAs. Most prior studies of Ded1 cellular function were conducted in steady-state conditions during nutrient-rich growth. In this work, however, we examine its role in the translational response during target of rapamycin (TOR)C1 inhibition and identify a novel function of Ded1 as a translation repressor. We show that C-terminal mutants of DED1 are defective in down-regulating translation following TORC1 inhibition using rapamycin. Furthermore, following TORC1 inhibition, eIF4G1 normally dissociates from translation complexes and is degraded, and this process is attenuated in mutant cells. Mapping of the functional requirements for Ded1 in this translational response indicates that Ded1 enzymatic activity and interaction with eIF4G1 are required, while homo-oligomerization may be dispensable. Our results are consistent with a model wherein Ded1 stalls translation and specifically removes eIF4G1 from translation preinitiation complexes, thus removing eIF4G1 from the translating mRNA pool and leading to the codegradation of both proteins. Shared features among DED1 orthologues suggest that this role is conserved and may be implicated in pathologies such as oncogenesis.
Collapse
Affiliation(s)
- Peyman P. Aryanpur
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721
| | - David M. Renner
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721
| | - Emily Rodela
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721
| | - Telsa M. Mittelmeier
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721
| | - Aaron Byrd
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721
| | - Timothy A. Bolger
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721
| |
Collapse
|
49
|
Functional Analysis of the Ribosomal uL6 Protein of Saccharomyces cerevisiae. Cells 2019; 8:cells8070718. [PMID: 31337056 PMCID: PMC6678285 DOI: 10.3390/cells8070718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/07/2019] [Accepted: 07/12/2019] [Indexed: 11/17/2022] Open
Abstract
The genome-wide duplication event observed in eukaryotes represents an interesting biological phenomenon, extending the biological capacity of the genome at the expense of the same genetic material. For example, most ribosomal proteins in Saccharomyces cerevisiae are encoded by a pair of paralogous genes. It is thought that gene duplication may contribute to heterogeneity of the translational machinery; however, the exact biological function of this event has not been clarified. In this study, we have investigated the functional impact of one of the duplicated ribosomal proteins, uL6, on the translational apparatus together with its consequences for aging of yeast cells. Our data show that uL6 is not required for cell survival, although lack of this protein decreases the rate of growth and inhibits budding. The uL6 protein is critical for the efficient assembly of the ribosome 60S subunit, and the two uL6 isoforms most likely serve the same function, playing an important role in the adaptation of translational machinery performance to the metabolic needs of the cell. The deletion of a single uL6 gene significantly extends the lifespan but only in cells with a high metabolic rate. We conclude that the maintenance of two copies of the uL6 gene enables the cell to cope with the high demands for effective ribosome synthesis.
Collapse
|
50
|
Rollins JA, Shaffer D, Snow SS, Kapahi P, Rogers AN. Dietary restriction induces posttranscriptional regulation of longevity genes. Life Sci Alliance 2019; 2:2/4/e201800281. [PMID: 31253655 PMCID: PMC6600014 DOI: 10.26508/lsa.201800281] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Dietary restriction (DR) increases life span through adaptive changes in gene expression. To understand more about these changes, we analyzed the transcriptome and translatome of Caenorhabditis elegans subjected to DR. Transcription of muscle regulatory and structural genes increased, whereas increased expression of amino acid metabolism and neuropeptide signaling genes was controlled at the level of translation. Evaluation of posttranscriptional regulation identified putative roles for RNA-binding proteins, RNA editing, miRNA, alternative splicing, and nonsense-mediated decay in response to nutrient limitation. Using RNA interference, we discovered several differentially expressed genes that regulate life span. We also found a compensatory role for translational regulation, which offsets dampened expression of a large subset of transcriptionally down-regulated genes. Furthermore, 3' UTR editing and intron retention increase under DR and correlate with diminished translation, whereas trans-spliced genes are refractory to reduced translation efficiency compared with messages with the native 5' UTR. Finally, we find that smg-6 and smg-7, which are genes governing selection and turnover of nonsense-mediated decay targets, are required for increased life span under DR.
Collapse
Affiliation(s)
- Jarod A Rollins
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Dan Shaffer
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Santina S Snow
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Aric N Rogers
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| |
Collapse
|