1
|
Mobeen A, Joshi S, Fatima F, Bhargav A, Arif Y, Faruq M, Ramachandran S. NF-κB signaling is the major inflammatory pathway for inducing insulin resistance. 3 Biotech 2025; 15:47. [PMID: 39845928 PMCID: PMC11747027 DOI: 10.1007/s13205-024-04202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Insulin resistance is major factor in the development of metabolic syndrome and type 2 diabetes (T2D). We extracted 430 genes from literature associated with both insulin resistance and inflammation. The highly significant pathways were Toll-like receptor signaling, PI3K-Akt signaling, cytokine-cytokine receptor interaction, pathways in cancer, TNF signaling, and NF-kappa B signaling. Among the 297 common genes in all datasets of various T2D patients' tissues including blood, muscle, liver, pancreas, and adipose tissues, 71% and 60% of these genes were differentially expressed in pancreas (GSE25724) and liver (GSE15653), respectively. A total of 169 genes contain highly conserved motifs for various transcription factors involved in immune response, thereby suggesting coordinated expression. Through co-expression analysis, we obtained three modules. The respective modules had 78, 158, and 55 genes, and TRAF2, HMGA1, and RGS5 as hub genes. Further, we used the BioNSi pathways simulation tool and identified the following five KEGG pathways perturbed in four or more tissues, namely Toll-like receptor signaling pathway, RIG-1-like receptor signaling pathway, pathways in cancer, NF-kappa B signaling pathway, and insulin resistance pathway. The genes NFKBIA and IKBKB are common to all these five pathways. In addition, using the NF-κB computational activation model, we identified that the reversal of NF-κB constitutive activation through overexpression of NFKB1 (P50 homodimer), PPARG, PIAS3 could reduce insulin resistance by almost half of its original value. To conclude, co-expression studies, gene expression network simulation, and NF-κB computational modeling substantiate the causal role of NF-κB pathway in insulin resistance. These results taken together with other published evidence suggests that the TNF-TRAF2-IKBKB-NF-κB axis could be explored as a potential target in combination with available metabolic targets in the management of insulin resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04202-4.
Collapse
Affiliation(s)
- Ahmed Mobeen
- CSIR Institute of Genomics & Integrative Biology, Sukhdev Vihar, New Delhi, 110025 India
| | - Sweta Joshi
- Department of Food Technology, SIST, Jamia Hamdard, New Delhi, 110062 India
| | - Firdaus Fatima
- CSIR Institute of Genomics & Integrative Biology, Sukhdev Vihar, New Delhi, 110025 India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Anasuya Bhargav
- CSIR Institute of Genomics & Integrative Biology, Sukhdev Vihar, New Delhi, 110025 India
| | - Yusra Arif
- Centre of Bioinformatics, Institute of Inter Disciplinary Studies, Allahabad University, Allahabad, Uttar Pradesh 211002 India
| | - Mohammed Faruq
- CSIR Institute of Genomics & Integrative Biology, Sukhdev Vihar, New Delhi, 110025 India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Srinivasan Ramachandran
- CSIR Institute of Genomics & Integrative Biology, Sukhdev Vihar, New Delhi, 110025 India
- Manav Rachna International Institute of Research and Studies, Sector 43, Delhi–Surajkund Road, Faridabad, Haryana 121004 India
| |
Collapse
|
2
|
Hu P, Li K, Peng X, Kan Y, Li H, Zhu Y, Wang Z, Li Z, Liu HY, Cai D. Nuclear Receptor PPARα as a Therapeutic Target in Diseases Associated with Lipid Metabolism Disorders. Nutrients 2023; 15:4772. [PMID: 38004166 PMCID: PMC10674366 DOI: 10.3390/nu15224772] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Lipid metabolic diseases have substantial morbidity and mortality rates, posing a significant threat to human health. PPARα, a member of the peroxisome proliferator-activated receptors (PPARs), plays a crucial role in lipid metabolism and immune regulation. Recent studies have increasingly recognized the pivotal involvement of PPARα in diverse pathological conditions. This comprehensive review aims to elucidate the multifaceted role of PPARα in metabolic diseases including liver diseases, diabetes-related diseases, age-related diseases, and cancers, shedding light on the underlying molecular mechanisms and some regulatory effects of natural/synthetic ligands of PPARα. By summarizing the latest research findings on PPARα, we aim to provide a foundation for the possible therapeutic exploitation of PPARα in lipid metabolic diseases.
Collapse
Affiliation(s)
- Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Xiaoxu Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Yufei Kan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Hao Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Yanli Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Ziyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Zhaojian Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| |
Collapse
|
3
|
Ramatchandirin B, Pearah A, He L. Regulation of Liver Glucose and Lipid Metabolism by Transcriptional Factors and Coactivators. Life (Basel) 2023; 13:life13020515. [PMID: 36836874 PMCID: PMC9962321 DOI: 10.3390/life13020515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) worldwide is on the rise and NAFLD is becoming the most common cause of chronic liver disease. In the USA, NAFLD affects over 30% of the population, with similar occurrence rates reported from Europe and Asia. This is due to the global increase in obesity and type 2 diabetes mellitus (T2DM) because patients with obesity and T2DM commonly have NAFLD, and patients with NAFLD are often obese and have T2DM with insulin resistance and dyslipidemia as well as hypertriglyceridemia. Excessive accumulation of triglycerides is a hallmark of NAFLD and NAFLD is now recognized as the liver disease component of metabolic syndrome. Liver glucose and lipid metabolisms are intertwined and carbon flux can be used to generate glucose or lipids; therefore, in this review we discuss the important transcription factors and coactivators that regulate glucose and lipid metabolism.
Collapse
Affiliation(s)
| | - Alexia Pearah
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ling He
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD 21287, USA
- Correspondence: ; Tel.: +1-410-502-5765; Fax: +1-410-502-5779
| |
Collapse
|
4
|
Xiao J, Li X, Zhou Z, Guan S, Zhuo L, Gao B. Development of an in vitro insulin resistance dissociated model of hepatic steatosis by co-culture system. Biosci Trends 2022; 16:257-266. [PMID: 35965099 DOI: 10.5582/bst.2022.01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The evidence shows that there is an associated relationship between hepatosteatosis and insulin resistance. While some existing genetic induction animal and patient models challenge this relationship, indicating that hepatosteatosis is dissociated from insulin resistance. However, the molecular mechanisms of this dissociation remain poorly understood due to a lack of available, reliable, and simplistic setup models. Currently, we used primary rat hepatocytes (rHPCs), co-cultured with rat hepatic stellate cells (HSC-T6) or human foreskin fibroblast cells (HFF-1) in stimulation with high insulin and glucose, to develop a model of steatosis charactered as dissociated lipid accumulation from insulin resistance. Oil-Red staining significantly showed intracellular lipid accumulated in the developed model. Gene expression of sterol regulatory element-binding protein 1c (SREBP1c) and elongase of very-long-chain fatty acids 6 (ELOVL6), key genes responsible for lipogenesis, were detected and obviously increased in this model. Inversely, the insulin resistance related genes expression included phosphoenolpyruvate carboxykinase 1 (PCK1), pyruvate dehydrogenase lipoamide kinase isozyme 4 (PDK4), and glucose-6-phosphatase (G6pase) were decreased, suggesting a dissociation relationship between steatosis and insulin resistance in the developed model. As well, the drug metabolism of this developed model was investigated and showed up-regulation of cytochrome P450 3A (CYP3A) and down-regulation of cytochrome P450 2E1 (CYP2E1) and cytochrome P450 1A2 (CYP1A2). Taken together, those results demonstrate that the in vitro model of dissociated steatosis from insulin resistance was successfully created by our co-cultured cells in high insulin and glucose medium, which will be a potential model for investigating the mechanism of insulin resistance dissociated steatosis, and discovering a novel drug for its treatment.
Collapse
Affiliation(s)
- Jiangwei Xiao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China.,National Engineering Research Center for Healthcare Devices, Guangzhou, China.,Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou, China
| | - Xiang Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zongbao Zhou
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China.,National Engineering Research Center for Healthcare Devices, Guangzhou, China.,Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou, China
| | - Shuwen Guan
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China.,National Engineering Research Center for Healthcare Devices, Guangzhou, China.,Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou, China
| | - Lingjian Zhuo
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China.,National Engineering Research Center for Healthcare Devices, Guangzhou, China.,Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou, China
| |
Collapse
|
5
|
Liu HY, Hu P, Li Y, Sun MA, Qu H, Zong Q, Gu H, Chen X, Bao W, Cai D. Targeted inhibition of PPARα ameliorates CLA-induced hypercholesterolemia via hepatic cholesterol biosynthesis reprogramming. Liver Int 2022; 42:1449-1466. [PMID: 35184357 DOI: 10.1111/liv.15199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Disruption of lipid metabolism is largely linked to metabolic disorders, such as hypercholesterolemia (HCL) and liver steatosis. While cholesterol metabolic re-programmers can serve as targets for relevant interventions. Here we explored the dietary conjugated linoleic acids (CLA)-induced HCL in mice and the molecular regulation behind it. METHODS A high dose of CLA supplementation in the diet was used to induce HCL in mice and was found to cause a hyper-activated cholesterol biosynthesis programme in the liver, leading to cholesterol metabolism dysregulation. The effects of a small-molecule drug targeting PPARα, i.e., GW6471 were studied in vivo in mice fed diets with CLA supplementation for 28 days, and in primary hepatocytes derived from HCL-mice in vitro. RESULTS We demonstrate that CLA induced HCL and liver steatosis through multiple pathways. Among which was the PPARα-mediated cholesterogenesis. It was found to cooperate with SREBP2 via binding to Hmgcr and Dhcr7 (genes encoding key enzymes of the cholesterol biosynthetic pathway) and recruits the histone marks H3K27ac and H3K4me1 and cofactors. PPARα inhibition disrupts its physical association with SREBP2 by blocking cobinding of PPARα and SREBP2 to the genomic DNA response element. We showed that NR RORγ functions as an essential mediator that facilitates the interaction of PPARα and SREBP2 to modulate the cholesterol biosynthesis genes expression. CONCLUSIONS Our study unravels that the small-molecule compound GW6471 exerts an attractive therapeutic effect for CLA-induced HCL, involving multiple pathways with the "PPARα-RORγ-SREBP2" being a potential complex player in this hepatic cholesterol biosynthesis programming.
Collapse
Affiliation(s)
- Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanwei Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ming-An Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Huan Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qiufang Zong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haotian Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaobo Chen
- Centre for Environment and Sustainability, University of Surrey, Surrey, UK
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Xia H, Scholtes C, Dufour CR, Ouellet C, Ghahremani M, Giguère V. Insulin action and resistance are dependent on a GSK3β-FBXW7-ERRα transcriptional axis. Nat Commun 2022; 13:2105. [PMID: 35440636 PMCID: PMC9019090 DOI: 10.1038/s41467-022-29722-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/30/2022] [Indexed: 12/15/2022] Open
Abstract
Insulin resistance, a harbinger of the metabolic syndrome, is a state of compromised hormonal response resulting from the dysregulation of a wide range of insulin-controlled cellular processes. However, how insulin affects cellular energy metabolism via long-term transcriptional regulation and whether boosting mitochondrial function alleviates insulin resistance remains to be elucidated. Herein we reveal that insulin directly enhances the activity of the nuclear receptor ERRα via a GSK3β/FBXW7 signaling axis. Liver-specific deletion of GSK3β or FBXW7 and mice harboring mutations of ERRα phosphosites (ERRα3SA) co-targeted by GSK3β/FBXW7 result in accumulated ERRα proteins that no longer respond to fluctuating insulin levels. ERRα3SA mice display reprogrammed liver and muscle transcriptomes, resulting in compromised energy homeostasis and reduced insulin sensitivity despite improved mitochondrial function. This crossroad of insulin signaling and transcriptional control by a nuclear receptor offers a framework to better understand the complex cellular processes contributing to the development of insulin resistance.
Collapse
Affiliation(s)
- Hui Xia
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Charlotte Scholtes
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Catherine R Dufour
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Carlo Ouellet
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Majid Ghahremani
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Vincent Giguère
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada.
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, H3G 1Y6, Canada.
| |
Collapse
|
7
|
Huang X, Fan M, Huang W. Pleiotropic roles of FXR in liver and colorectal cancers. Mol Cell Endocrinol 2022; 543:111543. [PMID: 34995680 PMCID: PMC8818033 DOI: 10.1016/j.mce.2021.111543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/01/2022]
Abstract
Nuclear receptor farnesoid X receptor (FXR) is generally considered a cell protector of enterohepatic tissues and a suppressor of liver cancer and colorectal carcinoma (CRC). Loss or reduction of FXR expression occurs during carcinogenesis, and the FXR level is inversely associated with the aggressive behaviors of the malignancy. Global deletion of FXR and tissue-specific deletion of FXR display distinct effects on tumorigenesis. Epigenetic silencing and inflammatory context are two main contributors to impaired FXR expression and activity. FXR exerts its antitumorigenic function via the following mechanisms: 1) FXR regulates multiple metabolic processes, notably bile acid homeostasis; 2) FXR antagonizes hepatic and enteric inflammation; 3) FXR impedes aberrant activation of some cancer-related pathways; and 4) FXR downregulates a number of oncogenes while upregulating some tumor suppressor genes. Restoring FXR functions via its agonists provides a therapeutic approach for patients with liver cancer and CRC. However, an in-depth understanding of the species-specific pharmacological effects is a prerequisite for assessing the clinical safety and efficacy of FXR agonists in human cancer treatment.
Collapse
Affiliation(s)
- Xiongfei Huang
- Department of Pathology and Institute of Oncology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350004, PR China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, 350108, PR China.
| | - Mingjie Fan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
8
|
Jackson TW, Ryherd GL, Scheibly CM, Sasser AL, Guillette TC, Belcher SM. Gestational Cd Exposure in the CD-1 Mouse Induces Sex-Specific Hepatic Insulin Insensitivity, Obesity, and Metabolic Syndrome in Adult Female Offspring. Toxicol Sci 2021; 178:264-280. [PMID: 33259630 DOI: 10.1093/toxsci/kfaa154] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There is compelling evidence that developmental exposure to toxic metals increases risk for obesity and obesity-related morbidity including cardiovascular disease and type 2 diabetes. To explore the hypothesis that developmental Cd exposure increases risk of obesity later in life, male, and female CD-1 mice were maternally exposed to 500 ppb CdCl2 in drinking water during a human gestational equivalent period (gestational day 0-postnatal day 10 [GD0-PND10]). Hallmark indicators of metabolic disruption, hepatic steatosis, and metabolic syndrome were evaluated prior to birth through adulthood. Maternal blood Cd levels were similar to those observed in human pregnancy cohorts, and Cd was undetected in adult offspring. There were no observed impacts of exposure on dams or pregnancy-related outcomes. Results of glucose and insulin tolerance testing revealed that Cd exposure impaired offspring glucose homeostasis on PND42. Exposure-related increases in circulating triglycerides and hepatic steatosis were apparent only in females. By PND120, Cd-exposed females were 30% heavier with 700% more perigonadal fat than unexposed control females. There was no evidence of dyslipidemia, steatosis, increased weight gain, nor increased adiposity in Cd-exposed male offspring. Hepatic transcriptome analysis on PND1, PND21, and PND42 revealed evidence for female-specific increases in oxidative stress and mitochondrial dysfunction with significant early disruption of retinoic acid signaling and altered insulin receptor signaling consistent with hepatic insulin sensitivity in adult females. The observed steatosis and metabolic syndrome-like phenotypes resulting from exposure to 500 ppb CdCl2 during the pre- and perinatal period of development equivalent to human gestation indicate that Cd acts developmentally as a sex-specific delayed obesogen.
Collapse
Affiliation(s)
- Thomas W Jackson
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| | - Garret L Ryherd
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| | - Chris M Scheibly
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| | - Aubrey L Sasser
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| | - T C Guillette
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| | - Scott M Belcher
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
9
|
Lillich FF, Imig JD, Proschak E. Multi-Target Approaches in Metabolic Syndrome. Front Pharmacol 2021; 11:554961. [PMID: 33776749 PMCID: PMC7994619 DOI: 10.3389/fphar.2020.554961] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome (MetS) is a highly prevalent disease cluster worldwide. It requires polypharmacological treatment of the single conditions including type II diabetes, hypertension, and dyslipidemia, as well as the associated comorbidities. The complex treatment regimens with various drugs lead to drug-drug interactions and inadequate patient adherence, resulting in poor management of the disease. Multi-target approaches aim at reducing the polypharmacology and improving the efficacy. This review summarizes the medicinal chemistry efforts to develop multi-target ligands for MetS. Different combinations of pharmacological targets in context of in vivo efficacy and future perspective for multi-target drugs in MetS are discussed.
Collapse
Affiliation(s)
- Felix F. Lillich
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Frankfurt, Germany
| | - John D. Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Frankfurt, Germany
| |
Collapse
|
10
|
Li X, Wang H. Multiple organs involved in the pathogenesis of non-alcoholic fatty liver disease. Cell Biosci 2020; 10:140. [PMID: 33372630 PMCID: PMC7720519 DOI: 10.1186/s13578-020-00507-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/27/2020] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the leading cause of chronic liver disease worldwide and the anticipated health burden is huge. There are limited therapeutic approaches for NAFLD now. It’s imperative to get a better understanding of the disease pathogenesis if new treatments are to be discovered. As the hepatic manifestation of metabolic syndrome, this disease involves complex interactions between different organs and regulatory pathways. It’s increasingly clear that brain, gut and adipose tissue all contribute to NAFLD pathogenesis and development, in view of their roles in energy homeostasis. In the present review, we try to summarize currently available data regarding NAFLD pathogenesis and to lay a particular emphasis on the inter-organ crosstalk evidence.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China. .,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, China.
| |
Collapse
|
11
|
Cai D, Li Y, Zhang K, Zhou B, Guo F, Holm L, Liu HY. Co-option of PPARα in the regulation of lipogenesis and fatty acid oxidation in CLA-induced hepatic steatosis. J Cell Physiol 2020; 236:4387-4402. [PMID: 33184849 DOI: 10.1002/jcp.30157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 11/06/2022]
Abstract
Nonalcoholic-fatty-liver-disease (NAFLD) is the result of imbalances in hepatic lipid partitioning and is linked to dietary factors. We demonstrate that conjugated linoleic acid (CLA) when given to mice as a dietary supplement, induced an enlarged liver, hepatic steatosis, and increased plasma levels of fatty acid (FA), alanine transaminase, and triglycerides. The progression of NAFLD and insulin resistance was reversed by GW6471 a small-molecule antagonist of peroxisome proliferator-activated receptor α (PPARα). Transcriptional profiling of livers revealed that the genes involved in FA oxidation and lipogenesis as two core gene programs controlled by PPARα in response to CLA and GW6471 including Acaca and Acads. Bioinformatic analysis of PPARα ChIP-seq data set and ChIP-qPCR showed that GW6471 blocks PPARα binding to Acaca and Acads and abolishes the PPARα-mediated local histone modifications of H3K27ac and H3K4me1 in CLA-treated hepatocytes. Thus, our findings reveal a dual role of PPARα in the regulation of lipid homeostasis and highlight its druggable nature in NAFLD.
Collapse
Affiliation(s)
- Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yanwei Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kexin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bo Zhou
- Institute of Digestive Disease, Zhengzhou University, Zhengzhou, China
| | - Feilong Guo
- Department of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Lena Holm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Dong B, Zhou Y, Wang W, Scott J, Kim K, Sun Z, Guo Q, Lu Y, Gonzales NM, Wu H, Hartig SM, York RB, Yang F, Moore DD. Vitamin D Receptor Activation in Liver Macrophages Ameliorates Hepatic Inflammation, Steatosis, and Insulin Resistance in Mice. Hepatology 2020; 71:1559-1574. [PMID: 31506976 DOI: 10.1002/hep.30937] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Obesity-induced chronic inflammation is a key component in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) and insulin resistance. Increased secretion of proinflammatory cytokines by macrophages in metabolic tissues promotes disease progression. In the diet-induced obesity (DIO) mouse model, activation of liver resident macrophages, or Kupffer cells (KCs), drives inflammatory responses, which recruits circulating macrophages and promotes fatty liver development, and ultimately contributes to impaired hepatic insulin sensitivity. Hepatic macrophages express the highest level of vitamin D receptors (VDRs) among nonparenchymal cells, whereas VDR expression is very low in hepatocytes. VDR activation exerts anti-inflammatory effects in immune cells. APPROACH AND RESULTS Here we found that VDR activation exhibits strong anti-inflammatory effects in mouse hepatic macrophages, including those isolated from DIO livers, and mice with genetic loss of Vdr developed spontaneous hepatic inflammation at 6 months of age. Under the chronic inflammation conditions of the DIO model, VDR activation by the vitamin D analog calcipotriol reduced liver inflammation and hepatic steatosis, significantly improving insulin sensitivity. The hyperinsulinemic euglycemic clamp revealed that VDR activation greatly increased the glucose infusion rate, while hepatic glucose production was remarkably decreased. Glucose uptake in muscle and adipose did not show similar effects, suggesting that improved hepatic insulin sensitivity is the primary contributor to the beneficial effects of VDR activation. Finally, specifically ablating liver macrophages by treatment with clodronate liposomes largely abolished the beneficial metabolic effects of calcipotriol, confirming that VDR activation in liver macrophages is required for the antidiabetic effect. CONCLUSIONS Activation of liver macrophage VDRs by vitamin D ligands ameliorates liver inflammation, steatosis and insulin resistance. Our results suggest therapeutic paradigms for treatment of NAFLD and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Bingning Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Ying Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX.,Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX
| | - Wei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Jessica Scott
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX.,Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX
| | - KangHo Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Zhen Sun
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Qi Guo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Yang Lu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Naomi M Gonzales
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Sean M Hartig
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Robert Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Feng Yang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
13
|
Xia H, Dufour CR, Giguère V. ERRα as a Bridge Between Transcription and Function: Role in Liver Metabolism and Disease. Front Endocrinol (Lausanne) 2019; 10:206. [PMID: 31024446 PMCID: PMC6459935 DOI: 10.3389/fendo.2019.00206] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/13/2019] [Indexed: 01/01/2023] Open
Abstract
As transcriptional factors, nuclear receptors (NRs) function as major regulators of gene expression. In particular, dysregulation of NR activity has been shown to significantly alter metabolic homeostasis in various contexts leading to metabolic disorders and cancers. The orphan estrogen-related receptor (ERR) subfamily of NRs, comprised of ERRα, ERRβ, and ERRγ, for which a natural ligand has yet to be identified, are known as central regulators of energy metabolism. If AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) can be viewed as sensors of the metabolic needs of a cell and responding acutely via post-translational control of proteins, then the ERRs can be regarded as downstream effectors of metabolism via transcriptional regulation of genes for a long-term and sustained adaptive response. In this review, we will focus on recent findings centered on the transcriptional roles played by ERRα in hepatocytes. Modulation of ERRα activity in both in vitro and in vivo models via genetic or pharmacological manipulation coupled with chromatin-immunoprecipitation (ChIP)-on-chip and ChIP-sequencing (ChIP-seq) studies have been fundamental in delineating the direct roles of ERRα in the control of hepatic gene expression. These studies have identified crucial roles for ERRα in lipid and carbohydrate metabolism as well as in mitochondrial function under both physiological and pathological conditions. The regulation of ERRα expression and activity via ligand-independent modes of action including coregulator binding, post-translational modifications (PTMs) and control of protein stability will be discussed in the context that may serve as valuable tools to modulate ERRα function as new therapeutic avenues for the treatment of hepatic metabolic dysfunction and related diseases.
Collapse
Affiliation(s)
- Hui Xia
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | | | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
- Medicine and Oncology, McGill University, Montréal, QC, Canada
| |
Collapse
|
14
|
Bryant JM, Blind RD. Signaling through non-membrane nuclear phosphoinositide binding proteins in human health and disease. J Lipid Res 2018; 60:299-311. [PMID: 30201631 DOI: 10.1194/jlr.r088518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/22/2018] [Indexed: 12/22/2022] Open
Abstract
Phosphoinositide membrane signaling is critical for normal physiology, playing well-known roles in diverse human pathologies. The basic mechanisms governing phosphoinositide signaling within the nucleus, however, have remained deeply enigmatic owing to their presence outside the nuclear membranes. Over 40% of nuclear phosphoinositides can exist in this non-membrane state, held soluble in the nucleoplasm by nuclear proteins that remain largely unidentified. Recently, two nuclear proteins responsible for solubilizing phosphoinositides were identified, steroidogenic factor-1 (SF-1; NR5A1) and liver receptor homolog-1 (LRH-1; NR5A2), along with two enzymes that directly remodel these phosphoinositide/protein complexes, phosphatase and tensin homolog (PTEN; MMAC) and inositol polyphosphate multikinase (IPMK; ipk2). These new footholds now permit the assignment of physiological functions for nuclear phosphoinositides in human diseases, such as endometriosis, nonalcoholic fatty liver disease/steatohepatitis, glioblastoma, and hepatocellular carcinoma. The unique nature of nuclear phosphoinositide signaling affords extraordinary clinical opportunities for new biomarkers, diagnostics, and therapeutics. Thus, phosphoinositide biology within the nucleus may represent the next generation of low-hanging fruit for new drugs, not unlike what has occurred for membrane phosphatidylinositol 3-kinase drug development. This review connects recent basic science discoveries in nuclear phosphoinositide signaling to clinical pathologies, with the hope of inspiring development of new therapies.
Collapse
Affiliation(s)
- Jamal M Bryant
- Departments of Pharmacology, Biochemistry, and Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Raymond D Blind
- Departments of Pharmacology, Biochemistry, and Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
15
|
Akinrotimi O, Riessen R, VanDuyne P, Park JE, Lee YK, Wong LJ, Zavacki AM, Schoonjans K, Anakk S. Small heterodimer partner deletion prevents hepatic steatosis and when combined with farnesoid X receptor loss protects against type 2 diabetes in mice. Hepatology 2017; 66:1854-1865. [PMID: 28586124 PMCID: PMC5696047 DOI: 10.1002/hep.29305] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/05/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
Abstract
UNLABELLED Nuclear receptors farnesoid X receptor (FXR) and small heterodimer partner (SHP) are important regulators of bile acid, lipid, and glucose homeostasis. Here, we show that global Fxr -/- Shp-/- double knockout (DKO) mice are refractory to weight gain, glucose intolerance, and hepatic steatosis when challenged with high-fat diet. DKO mice display an inherently increased capacity to burn fat and suppress de novo hepatic lipid synthesis. Moreover, DKO mice were also very active and that correlated well with the observed increase in phosphoenolpyruvate carboxykinase expression, type IA fibers, and mitochondrial function in skeletal muscle. Mechanistically, we demonstrate that liver-specific Shp deletion protects against fatty liver development by suppressing expression of peroxisome proliferator-activated receptor gamma 2 and lipid-droplet protein fat-specific protein 27 beta. CONCLUSION These data suggest that Fxr and Shp inactivation may be beneficial to combat diet-induced obesity and uncover that hepatic SHP is necessary to promote fatty liver disease. (Hepatology 2017;66:1854-1865).
Collapse
Affiliation(s)
- Oludemilade Akinrotimi
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, Il 61801
| | - Ryan Riessen
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, Il 61801
| | - Philip VanDuyne
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, Il 61801
| | - Jung Eun Park
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Yoon Kwang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030
| | - Ann M Zavacki
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, Il 61801,To whom correspondence should be addressed
| |
Collapse
|
16
|
New insight into inter-organ crosstalk contributing to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Protein Cell 2017. [PMID: 28643267 PMCID: PMC5818366 DOI: 10.1007/s13238-017-0436-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver dysfunction and a significant global health problem with substantial rise in prevalence over the last decades. It is becoming increasingly clear that NALFD is not only predominantly a hepatic manifestation of metabolic syndrome, but also involves extra-hepatic organs and regulatory pathways. Therapeutic options are limited for the treatment of NAFLD. Accordingly, a better understanding of the pathogenesis of NAFLD is critical for gaining new insight into the regulatory network of NAFLD and for identifying new targets for the prevention and treatment of NAFLD. In this review, we emphasize on the current understanding of the inter-organ crosstalk between the liver and peripheral organs that contributing to the pathogenesis of NAFLD.
Collapse
|
17
|
Preidis GA, Kim KH, Moore DD. Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance. J Clin Invest 2017; 127:1193-1201. [PMID: 28287408 DOI: 10.1172/jci88893] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nuclear receptors PPARα (encoded by NR1C1) and farnesoid X receptor (FXR, encoded by NR1H4) are activated in the liver in the fasted and fed state, respectively. PPARα activation induces fatty acid oxidation, while FXR controls bile acid homeostasis, but both nuclear receptors also regulate numerous other metabolic pathways relevant to liver energy balance. Here we review evidence that they function coordinately to control key nutrient pathways, including fatty acid oxidation and gluconeogenesis in the fasted state and lipogenesis and glycolysis in the fed state. We have also recently reported that these receptors have mutually antagonistic impacts on autophagy, which is induced by PPARα but suppressed by FXR. Secretion of multiple blood proteins is a major drain on liver energy and nutrient resources, and we present preliminary evidence that the liver secretome may be directly suppressed by PPARα, but induced by FXR. Finally, previous studies demonstrated a striking deficiency in bile acid levels in malnourished mice that is consistent with results in malnourished children. We present evidence that hepatic targets of PPARα and FXR are dysregulated in chronic undernutrition. We conclude that PPARα and FXR function coordinately to integrate liver energy balance.
Collapse
|
18
|
Papazyan R, Sun Z, Kim YH, Titchenell PM, Hill DA, Lu W, Damle M, Wan M, Zhang Y, Briggs ER, Rabinowitz JD, Lazar MA. Physiological Suppression of Lipotoxic Liver Damage by Complementary Actions of HDAC3 and SCAP/SREBP. Cell Metab 2016; 24:863-874. [PMID: 27866836 PMCID: PMC5159233 DOI: 10.1016/j.cmet.2016.10.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/22/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022]
Abstract
Liver fat accumulation precedes non-alcoholic steatohepatitis, an increasing cause of end-stage liver disease. Histone deacetylase 3 (HDAC3) is required for hepatic triglyceride homeostasis, and sterol regulatory element binding protein (SREBP) regulates the lipogenic response to feeding, but the crosstalk between these pathways is unknown. Here we show that inactivation of SREBP by hepatic deletion of SREBP cleavage activating protein (SCAP) abrogates the increase in lipogenesis caused by loss of HDAC3, but fatty acid oxidation remains defective. This combination leads to accumulation of lipid intermediates and to an energy drain that collectively cause oxidative stress, inflammation, liver damage, and, ultimately, synthetic lethality. Remarkably, this phenotype is prevented by ectopic expression of nuclear SREBP1c, revealing a surprising benefit of de novo lipogenesis and triglyceride synthesis in preventing lipotoxicity. These results demonstrate that HDAC3 and SCAP control symbiotic pathways of liver lipid metabolism that are critical for suppression of lipotoxicity.
Collapse
Affiliation(s)
- Romeo Papazyan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zheng Sun
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yong Hoon Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul M Titchenell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Hill
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenyun Lu
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Manashree Damle
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Min Wan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuxiang Zhang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erika R Briggs
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Ballestri S, Nascimbeni F, Romagnoli D, Baldelli E, Lonardo A. The Role of Nuclear Receptors in the Pathophysiology, Natural Course, and Drug Treatment of NAFLD in Humans. Adv Ther 2016; 33:291-319. [PMID: 26921205 DOI: 10.1007/s12325-016-0306-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) describes steatosis, nonalcoholic steatohepatitis with or without fibrosis, and hepatocellular carcinoma, namely the entire alcohol-like spectrum of liver disease though observed in the nonalcoholic, dysmetabolic, individual free of competing causes of liver disease. NAFLD, which is a major public health issue, exhibits intrahepatic triglyceride storage giving rise to lipotoxicity. Nuclear receptors (NRs) are transcriptional factors which, activated by ligands, are master regulators of metabolism and also have intricate connections with circadian control accounting for cyclical patterns in the metabolic fate of nutrients. Several transcription factors, such as peroxisome proliferator-activated receptors, liver X receptors, farnesoid X receptors, and their molecular cascades, finely regulate energetic fluxes and metabolic pathways. Dysregulation of such pathways is heavily implicated in those metabolic derangements characterizing insulin resistance and metabolic syndrome and in the histogenesis of progressive NAFLD forms. We review the role of selected NRs in NAFLD pathogenesis. Secondly, we analyze the role of NRs in the natural history of human NAFLD. Next, we discuss the results observed in humans following administration of drug agonists or antagonists of the NRs pathogenically involved in NAFLD. Finally, general principles of treatment and lines of research in human NAFLD are briefly examined.
Collapse
Affiliation(s)
| | - Fabio Nascimbeni
- NOCSAE, Outpatient Liver Clinic and Operating Unit Internal Medicine, Azienda USL Modena, Modena, Italy
- University of Modena and Reggio Emilia, Modena, Italy
| | - Dante Romagnoli
- NOCSAE, Outpatient Liver Clinic and Operating Unit Internal Medicine, Azienda USL Modena, Modena, Italy
| | | | - Amedeo Lonardo
- NOCSAE, Outpatient Liver Clinic and Operating Unit Internal Medicine, Azienda USL Modena, Modena, Italy.
| |
Collapse
|
20
|
Fu X, Dong B, Tian Y, Lefebvre P, Meng Z, Wang X, Pattou F, Han W, Wang X, Lou F, Jove R, Staels B, Moore DD, Huang W. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. J Clin Invest 2015; 125:2497-509. [PMID: 25961460 DOI: 10.1172/jci75438] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/07/2015] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes (T2D) is characterized by insulin resistance and increased hepatic glucose production, yet the molecular mechanisms underlying these abnormalities are poorly understood. MicroRNAs (miRs) are a class of small, noncoding RNAs that have been implicated in the regulation of human diseases, including T2D. miR-26a is known to play a critical role in tumorigenesis; however, its function in cellular metabolism remains unknown. Here, we determined that miR-26a regulates insulin signaling and metabolism of glucose and lipids. Compared with lean individuals, overweight humans had decreased expression of miR-26a in the liver. Moreover, miR-26 was downregulated in 2 obese mouse models compared with control animals. Global or liver-specific overexpression of miR-26a in mice fed a high-fat diet improved insulin sensitivity, decreased hepatic glucose production, and decreased fatty acid synthesis, thereby preventing obesity-induced metabolic complications. Conversely, silencing of endogenous miR-26a in conventional diet-fed mice impaired insulin sensitivity, enhanced glucose production, and increased fatty acid synthesis. miR-26a targeted several key regulators of hepatic metabolism and insulin signaling. These findings reveal miR-26a as a regulator of liver metabolism and suggest miR-26a should be further explored as a potential target for the treatment of T2D.
Collapse
|
21
|
Sanders FWB, Griffin JL. De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biol Rev Camb Philos Soc 2015; 91:452-68. [PMID: 25740151 PMCID: PMC4832395 DOI: 10.1111/brv.12178] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/07/2015] [Accepted: 01/20/2015] [Indexed: 02/06/2023]
Abstract
Hepatic de novo lipogenesis (DNL) is the biochemical process of synthesising fatty acids from acetyl‐CoA subunits that are produced from a number of different pathways within the cell, most commonly carbohydrate catabolism. In addition to glucose which most commonly supplies carbon units for DNL, fructose is also a profoundly lipogenic substrate that can drive DNL, important when considering the increasing use of fructose in corn syrup as a sweetener. In the context of disease, DNL is thought to contribute to the pathogenesis of non‐alcoholic fatty liver disease, a common condition often associated with the metabolic syndrome and consequent insulin resistance. Whether DNL plays a significant role in the pathogenesis of insulin resistance is yet to be fully elucidated, but it may be that the prevalent products of this synthetic process induce some aspect of hepatic insulin resistance.
Collapse
Affiliation(s)
- Francis W B Sanders
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K.,The Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Julian L Griffin
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K.,The Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| |
Collapse
|
22
|
Deciphering the roles of the constitutive androstane receptor in energy metabolism. Acta Pharmacol Sin 2015; 36:62-70. [PMID: 25500869 DOI: 10.1038/aps.2014.102] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/20/2014] [Indexed: 12/21/2022]
Abstract
The constitutive androstane receptor (CAR) is initially defined as a xenobiotic nuclear receptor that protects the liver from injury. Detoxification of damaging chemicals is achieved by CAR-mediated induction of drug-metabolizing enzymes and transporters. More recent research has implicated CAR in energy metabolism, suggesting a therapeutic potential for CAR in metabolic diseases, such as type 2 diabetes and obesity. A better understanding of the mechanisms by which CAR regulates energy metabolism will allow us to take advantage of its effectiveness while avoiding its side effects. This review summarizes the current progress on the regulation of CAR nuclear translocation, upstream modulators of CAR activity, and the crosstalk between CAR and other transcriptional factors, with the aim of elucidating how CAR regulates glucose and lipid metabolism.
Collapse
|
23
|
Jiao Y, Lu Y, Li XY. Farnesoid X receptor: a master regulator of hepatic triglyceride and glucose homeostasis. Acta Pharmacol Sin 2015; 36:44-50. [PMID: 25500875 DOI: 10.1038/aps.2014.116] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/01/2014] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by the aberrant accumulation of triglycerides in hepatocytes in the absence of significant alcohol consumption, viral infection or other specific causes of liver disease. NAFLD has become a burgeoning health problem both worldwide and in China, but its pathogenesis remains poorly understood. Farnesoid X receptor (FXR), a member of the nuclear receptor (NR) superfamily, has been demonstrated to be the primary sensor for endogenous bile acids, and play a crucial role in hepatic triglyceride homeostasis. Deciphering the synergistic contributions of FXR to triglyceride metabolism is critical for discovering therapeutic agents in the treatment of NAFLD and hypertriglyceridemia.
Collapse
|
24
|
Abstract
Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5'-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH). In addition to TRH/TSH regulation by TH feedback, there is central modulation by nutritional signals, such as leptin, as well as peptides regulating appetite. The nutrient status of the cell provides feedback on TH signaling pathways through epigentic modification of histones. Integration of TH signaling with the adrenergic nervous system occurs peripherally, in liver, white fat, and BAT, but also centrally, in the hypothalamus. TR regulates cholesterol and carbohydrate metabolism through direct actions on gene expression as well as cross-talk with other nuclear receptors, including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), and bile acid signaling pathways. TH modulates hepatic insulin sensitivity, especially important for the suppression of hepatic gluconeogenesis. The role of TH in regulating metabolic pathways has led to several new therapeutic targets for metabolic disorders. Understanding the mechanisms and interactions of the various TH signaling pathways in metabolism will improve our likelihood of identifying effective and selective targets.
Collapse
|
25
|
Fenofibrate improves renal lipotoxicity through activation of AMPK-PGC-1α in db/db mice. PLoS One 2014; 9:e96147. [PMID: 24801481 PMCID: PMC4011795 DOI: 10.1371/journal.pone.0096147] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 04/04/2014] [Indexed: 11/18/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR)-α, a lipid-sensing transcriptional factor, serves an important role in lipotoxicity. We evaluated whether fenofibrate has a renoprotective effect by ameliorating lipotoxicity in the kidney. Eight-week-old male C57BLKS/J db/m control and db/db mice, divided into four groups, received fenofibrate for 12 weeks. In db/db mice, fenofibrate ameliorated albuminuria, mesangial area expansion and inflammatory cell infiltration. Fenofibrate inhibited accumulation of intra-renal free fatty acids and triglycerides related to increases in PPARα expression, phosphorylation of AMP-activated protein kinase (AMPK), and activation of Peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α)-estrogen-related receptor (ERR)-1α-phosphorylated acetyl-CoA carboxylase (pACC), and suppression of sterol regulatory element-binding protein (SREBP)-1 and carbohydrate regulatory element-binding protein (ChREBP)-1, key downstream effectors of lipid metabolism. Fenofibrate decreased the activity of phosphatidylinositol-3 kinase (PI3K)-Akt phosphorylation and FoxO3a phosphorylation in kidneys, increasing the B cell leukaemia/lymphoma 2 (BCL-2)/BCL-2-associated X protein (BAX) ratio and superoxide dismutase (SOD) 1 levels. Consequently, fenofibrate recovered from renal apoptosis and oxidative stress, as reflected by 24 hr urinary 8-isoprostane. In cultured mesangial cells, fenofibrate prevented high glucose-induced apoptosis and oxidative stress through phosphorylation of AMPK, activation of PGC-1α-ERR-1α, and suppression of SREBP-1 and ChREBP-1. Our results suggest that fenofibrate improves lipotoxicity via activation of AMPK-PGC-1α-ERR-1α-FoxO3a signaling, showing its potential as a therapeutic modality for diabetic nephropathy.
Collapse
|
26
|
Ruiz R, Jideonwo V, Ahn M, Surendran S, Tagliabracci VS, Hou Y, Gamble A, Kerner J, Irimia-Dominguez JM, Puchowicz MA, DePaoli-Roach A, Hoppel C, Roach P, Morral N. Sterol regulatory element-binding protein-1 (SREBP-1) is required to regulate glycogen synthesis and gluconeogenic gene expression in mouse liver. J Biol Chem 2014; 289:5510-7. [PMID: 24398675 DOI: 10.1074/jbc.m113.541110] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sterol regulatory element-binding protein-1 (SREBP-1) is a key transcription factor that regulates genes in the de novo lipogenesis and glycolysis pathways. The levels of SREBP-1 are significantly elevated in obese patients and in animal models of obesity and type 2 diabetes, and a vast number of studies have implicated this transcription factor as a contributor to hepatic lipid accumulation and insulin resistance. However, its role in regulating carbohydrate metabolism is poorly understood. Here we have addressed whether SREBP-1 is needed for regulating glucose homeostasis. Using RNAi and a new generation of adenoviral vector, we have silenced hepatic SREBP-1 in normal and obese mice. In normal animals, SREBP-1 deficiency increased Pck1 and reduced glycogen deposition during fed conditions, providing evidence that SREBP-1 is necessary to regulate carbohydrate metabolism during the fed state. Knocking SREBP-1 down in db/db mice resulted in a significant reduction in triglyceride accumulation, as anticipated. However, mice remained hyperglycemic, which was associated with up-regulation of gluconeogenesis gene expression as well as decreased glycolysis and glycogen synthesis gene expression. Furthermore, glycogen synthase activity and glycogen accumulation were significantly reduced. In conclusion, silencing both isoforms of SREBP-1 leads to significant changes in carbohydrate metabolism and does not improve insulin resistance despite reducing steatosis in an animal model of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Rafaela Ruiz
- From the Departments of Medical and Molecular Genetics and
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lu Y, Ma Z, Zhang Z, Xiong X, Wang X, Zhang H, Shi G, Xia X, Ning G, Li X. Yin Yang 1 promotes hepatic steatosis through repression of farnesoid X receptor in obese mice. Gut 2014; 63:170-8. [PMID: 23348961 DOI: 10.1136/gutjnl-2012-303150] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is characterised by accumulation of excessive triglycerides in the liver. Obesity is usually associated with NAFLD through an unknown mechanism. OBJECTIVE To investigate the roles of Yin Yang 1 (YY1) in the progression of obesity-associated hepatosteatosis. METHODS Expression levels of hepatic YY1 were identified by microarray analysis in high-fat-diet (HFD)-induced obese mice. Liver triglyceride metabolism was analysed in mice with YY1 overexpression and suppression. RESULTS YY1 expression was markedly upregulated in HFD-induced obese mice and NAFLD patients. Overexpression of YY1 in healthy mice promoted hepatosteatosis under high-fat dietary conditions, whereas liver-specific ablation of YY1 using adenoviral shRNA ameliorated triglyceride accumulation in obese mice. At the molecular level, YY1 suppressed farnesoid X receptor (FXR) expression through binding to the YY1 responsive element at intron 1 of the FXR gene. CONCLUSIONS These findings indicate that YY1 plays a crucial role in obesity-associated hepatosteatosis, through repression of FXR expression.
Collapse
Affiliation(s)
- Yan Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, , Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jiang M, Xie W. Role of the constitutive androstane receptor in obesity and type 2 diabetes: a case study of the endobiotic function of a xenobiotic receptor. Drug Metab Rev 2013; 45:156-63. [PMID: 23330547 DOI: 10.3109/03602532.2012.743561] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The constitutive androstane receptor (CAR, NR1I3) is a member of the nuclear receptor superfamily. Initially recognized as a xenobiotic receptor, CAR has been increasingly appreciated for its endobiotic functions in influencing glucose and lipid metabolism, whose dysregulations are implicated in the most prevalent metabolic disorders, such as obesity and type 2 diabetes. Given the metabolic benefits of CAR activation, CAR may represent an attractive therapeutic target to manage obesity and type 2 diabetes. Further studies are necessary to understand the mechanisms of action of CAR in metabolic diseases and to determine the human relevance of the antidiabetic effect of CAR.
Collapse
Affiliation(s)
- Mengxi Jiang
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
29
|
Abstract
The orphan nuclear receptors (ONRs) are a vital class of transcriptional regulators belonging to the larger nuclear receptors (NRs) superfamily in higher eukaryotes. As a result of non-identification of endogenous physiological ligands for this class of NRs, they are designated as "orphans". The ONRs on receiving appropriate signals translate into specific gene regulation. Elaborate studies on the ONRs in the past two decades have revealed crucial biological functions controlled by them relating to general metabolism, immunity, organogenesis, angiogenesis, growth and development, and numerous other tissue physiologies. Over the years, many of the ONRs have been studied for their participatory role in human health and disease. Results obtained are encouraging and interesting and shows a number of ONRs does modulate several patho-physiological conditions such as cancer and diabetes. This review discusses the current status about the interplay between select ONRs in cancer and diabetes.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Orphan Nuclear Receptors Laboratory, Department of Biochemistry, St. Edmund's College, Shillong, India.
| |
Collapse
|
30
|
Sun Z, Lazar MA. Dissociating fatty liver and diabetes. Trends Endocrinol Metab 2013; 24:4-12. [PMID: 23043895 PMCID: PMC3532558 DOI: 10.1016/j.tem.2012.09.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 09/08/2012] [Accepted: 09/10/2012] [Indexed: 12/18/2022]
Abstract
Fatty liver disease is epidemiologically associated with type 2 diabetes (T2D), leading to a speculation of a reciprocal cause-effect relationship and a vicious cycle of pathology. Here, we summarize recent literature reporting dissociation of hepatosteatosis from insulin resistance in genetic mouse models and clinical studies. We highlight rhythmic flows of metabolic intermediates between hepatic lipid synthesis and glucose production in normal circadian physiology. Blocking triglyceride (TG) secretion, subcellular lipid sequestration, lipolysis deficiency, enhanced lipogenesis, gluconeogenesis defects, or inhibition of fatty acid oxidation all result in hepatosteatosis without causing hyperglycemia or insulin resistance, suggesting that the cause-effect relationship between hepatosteatosis and diabetes does not exist in all situations.
Collapse
Affiliation(s)
- Zheng Sun
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mitchell A. Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
31
|
Kuhn E, Fève B, Lombès M. [New pathophysiological mechanisms of metabolic syndrome: implication of orphan nuclear receptors?]. ANNALES D'ENDOCRINOLOGIE 2012; 73 Suppl 1:S9-S16. [PMID: 23089382 DOI: 10.1016/s0003-4266(12)70010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This review focuses on a number of new data on biology and pathophysiology of the metabolic syndrome (MetS) and the involvement of nuclear receptors that have been presented during the last Endocrine Society meeting, held in Houston in June 2012. Several studies have reported beneficial effects of various orphan nuclear receptors, including SHP (Small Heterodimeric Partner, NR0B2) and LXR (Liver X Receptor, NR1H3 and NR1H2), on various components of MetS. By using an inactivation model of SHP, David Moore has shown that SHP exerts "antidiabetic" effects but associated with hepatic steatosis development. He also showed that DLPC (dilauroyl phosphatidylcholine), an unconventional phospholipid, exhibited anti-diabetic properties through its binding to LRH-1 (Liver Receptor Homolog-1, NR5A2), a molecular partner of SHP. Interestingly, Carolyn Cummins investigated LXR α and β isoforms knock-out mice and provided experimental evidence for the detailed mechanisms involved in the deleterious metabolic effects of glucocorticoids, pointing out to the functional interaction between LXRβ, and the glucocorticoid receptor. These new and original studies open new therapeutic opportunities for the management of metabolic disorders in humans by selective modulators of these receptors.
Collapse
Affiliation(s)
- E Kuhn
- Inserm U693, 94276 le Kremlin Bicêtre, France.
| | | | | |
Collapse
|