1
|
Chen L, Jiang H, Licinio J, Wu H. Brain O-GlcNAcylation: Bridging physiological functions, disease mechanisms, and therapeutic applications. Mol Psychiatry 2025; 30:2754-2772. [PMID: 40033044 PMCID: PMC12092303 DOI: 10.1038/s41380-025-02943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
O-GlcNAcylation, a dynamic post-translational modification occurring on serine or threonine residues of numerous proteins, plays a pivotal role in various cellular processes, including gene regulation, metabolism, and stress response. Abundant in the brain, O-GlcNAcylation intricately governs neurodevelopment, synaptic assembly, and neuronal functions. Recent investigations have established a correlation between the dysregulation of brain O-GlcNAcylation and a broad spectrum of neurological disorders and injuries, spanning neurodevelopmental, neurodegenerative, and psychiatric conditions, as well as injuries to the central nervous system (CNS). Manipulating O-GlcNAcylation has demonstrated neuroprotective properties against these afflictions. This review delineates the roles and mechanisms of O-GlcNAcylation in the CNS under both physiological and pathological circumstances, with a focus on its neuroprotective effects in neurological disorders and injuries. We discuss the involvement of O-GlcNAcylation in key processes such as neurogenesis, synaptic plasticity, and energy metabolism, as well as its implications in conditions like Alzheimer's disease, Parkinson's disease, and ischemic stroke. Additionally, we explore prospective therapeutic approaches for CNS disorders and injuries by targeting O-GlcNAcylation, highlighting recent clinical developments and future research directions. This comprehensive overview aims to provide insights into the potential of O-GlcNAcylation as a therapeutic target and guide future investigations in this promising field.
Collapse
Affiliation(s)
- Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Huihui Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Julio Licinio
- Department of Psychiatry, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
2
|
Dong Y, Lam SM, Li Y, Li MD, Shui G. The circadian clock at the intersection of metabolism and aging - emerging roles of metabolites. J Genet Genomics 2025:S1673-8527(25)00123-7. [PMID: 40306487 DOI: 10.1016/j.jgg.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
The circadian clock is a highly hierarchical network of endogenous pacemakers that primarily maintains and directs oscillations through transcriptional and translational feedback loops, which modulates an approximately 24-hour cycle of endocrine and metabolic rhythms within cells and tissues. While circadian clocks regulate metabolic processes and related physiology, emerging evidence indicates that metabolism and circadian rhythm are intimately intertwined. In this review, we highlight the concept of metabolites, including lipids and other polar metabolites generated from intestinal microbial metabolism and nutrient intake, as circadian pacemakers that drive changes in circadian rhythms, which in turn influence metabolism and aging. Furthermore, we discuss the roles of functional metabolites as circadian pacemakers, paving a new direction on potential intervention targets of circadian disruption, pathological aging, as well as metabolic diseases that are clinically important.
Collapse
Affiliation(s)
- Yue Dong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; LipidALL Technologies Company Limited, Changzhou, Jiangsu 213022, China
| | - Yan Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China.
| | - Min-Dian Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, MOE Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China.
| |
Collapse
|
3
|
Knier AS, Olivier-Van Stichelen S. O-GlcNAcylation in Endocrinology: The Sweet Link. Endocrinology 2025; 166:bqaf072. [PMID: 40209111 PMCID: PMC12013285 DOI: 10.1210/endocr/bqaf072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/21/2025] [Accepted: 04/09/2025] [Indexed: 04/12/2025]
Abstract
O-GlcNAcylation is a dynamic posttranslational modification that involves the addition of N-acetylglucosamine (GlcNAc) to the serine and threonine residues of proteins. Over the past 4 decades, this modification has become increasingly recognized as having a critical influence in the field of endocrinology. The carefully controlled hormonal input for regulating sleep, mood, response to stress, growth, development, and metabolism are often associated with O-GlcNAc-dependent signaling. As protein O-GlcNAcylation patterns are heavily dependent on environmental glucose concentrations, hormone-secreting cells sense the changes in local environmental glucose concentrations and adjust hormone secretion accordingly. This ability of cells to sense nutritional cues and fine-tune hormonal production is particularly relevant toward maintaining a functional and responsive endocrine system, therefore emphasizing the importance of O-GlcNAc in the scope and application of endocrinology. This review examines how O-GlcNAcylation participates in hormonal homeostasis in different endocrine tissues and systems, from the pineal gland to the placenta, and underscores the significance of O-GlcNAc in the field of endocrinology.
Collapse
Affiliation(s)
- Adam Salm Knier
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Stephanie Olivier-Van Stichelen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
4
|
Hunter AL, Bechtold DA. The metabolic significance of peripheral tissue clocks. Commun Biol 2025; 8:497. [PMID: 40140664 PMCID: PMC11947457 DOI: 10.1038/s42003-025-07932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
The circadian clock is a transcriptional-translational feedback loop which oscillates in virtually all nucleated cells of the body. In the decades since its discovery, it has become evident that the molecular clockwork is inextricably linked to energy metabolism. Given the frequency with which metabolic dysfunction and clock disruption co-occur, understanding why and how clock and metabolic processes are reciprocally coupled will have important implications for supporting human health and wellbeing. Here, we discuss the relevance of molecular clock function in metabolic tissues and explore its role not only as a driver of day-night variation in gene expression, but as a key mechanism for maintaining metabolic homeostasis in the face of fluctuating energy supply and demand.
Collapse
Affiliation(s)
- A Louise Hunter
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
- Diabetes, Endocrinology & Metabolism Centre, Oxford Road Campus, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK.
| | - David A Bechtold
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
5
|
Wang J, Jiang N, Liu F, Wang C, Zhou W. Uncovering the intricacies of O-GlcNAc modification in cognitive impairment: New insights from regulation to therapeutic targeting. Pharmacol Ther 2025; 266:108761. [PMID: 39603350 DOI: 10.1016/j.pharmthera.2024.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) represents a post-translational modification that occurs on serine or threonine residues on various proteins. This conserved modification interacts with vital cellular pathways. Although O-GlcNAc is widely distributed throughout the body, it is particularly enriched in the brain, where most proteins are O-GlcNAcylated. Recent studies have established a causal link between O-GlcNAc regulation in the brain and alterations in neurophysiological function. Alterations in O-GlcNAc levels in the brain are associated with the pathogenesis of several neurogenic diseases that can lead to cognitive impairment. Remarkably, manipulation of O-GlcNAc levels demonstrated a protective effect on cognitive function. Although the precise molecular mechanism of O-GlcNAc modification in the nervous system remains elusive, its regulation is fundamental to multiple neural and cognitive functions, fluctuating levels during normal and pathological cognitive processes. In this review, we highlight the significant functional importance of O-GlcNAc modification in pathological cognitive impairments and the potential application of O-GlcNAc as a promising target for the intervention or amelioration of cognitive impairments.
Collapse
Affiliation(s)
- Jianhui Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Ning Jiang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Feng Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Chenran Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China.
| |
Collapse
|
6
|
Mao W, Ge X, Chen Q, Li JD. Epigenetic Mechanisms in the Transcriptional Regulation of Circadian Rhythm in Mammals. BIOLOGY 2025; 14:42. [PMID: 39857273 PMCID: PMC11762092 DOI: 10.3390/biology14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025]
Abstract
Almost all organisms, from the simplest bacteria to advanced mammals, havea near 24 h circadian rhythm. Circadian rhythms are highly conserved across different life forms and are regulated by circadian genes as well as by related transcription factors. Transcription factors are fundamental to circadian rhythms, influencing gene expression, behavior in plants and animals, and human diseases. This review examines the foundational research on transcriptional regulation of circadian rhythms, emphasizing histone modifications, chromatin remodeling, and Pol II pausing control. These studies have enhanced our understanding of transcriptional regulation within biological circadian rhythms and the importance of circadian biology in human health. Finally, we summarize the progress and challenges in these three areas of regulation to move the field forward.
Collapse
Affiliation(s)
- Wei Mao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, China; (W.M.); (X.G.)
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Xingnan Ge
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, China; (W.M.); (X.G.)
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Qianping Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, China; (W.M.); (X.G.)
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Jia-Da Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
7
|
Hui Y, Zhong Y, Kuang L, Xu J, Hao Y, Cao J, Zheng T. O-GlcNAcylation of circadian clock protein Bmal1 impairs cognitive function in diabetic mice. EMBO J 2024; 43:5667-5689. [PMID: 39375536 PMCID: PMC11574178 DOI: 10.1038/s44318-024-00263-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
Neuronal damage in the hippocampus induced by high glucose has been shown to promote the onset and development of cognitive impairment in diabetes, but the underlying molecular mechanism remains unclear. Guided by single-cell RNA sequencing, we here report that high glucose increases O-GlcNAcylation of Bmal1 in hippocampal neurons. This glycosylation promotes the binding of Clock to Bmal1, resulting in the expression of transcription factor Bhlhe41 and its target Dnajb4. Upregulated Dnajb4 in turn leads to ubiquitination and degradation of the mitochondrial Na + /Ca2+ exchanger NCLX, thereby inducing mitochondrial calcium overload that causes neuronal damage and cognitive impairment in mice. Notably, Bhlhe41 downregulation or treatment with a short peptide that specifically blocks O-GlcNAcylation of Bmal1 on Ser424 mitigated these adverse effects in diabetic mouse models. These data highlight the crucial role of O-GlcNAcylation in circadian clock gene expression and may facilitate the design of targeted therapies for diabetes-associated cognitive impairment.
Collapse
Affiliation(s)
- Ya Hui
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, 541199, Guilin, Guangxi, P. R. China
- Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, 541199, Guilin, Guangxi, P. R. China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, 541199, Guilin, Guangxi, P. R. China
| | - Yuanmei Zhong
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, 541199, Guilin, Guangxi, P. R. China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, 541199, Guilin, Guangxi, P. R. China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 541199, Guilin, Guangxi, P. R. China
| | - Liuyu Kuang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, 541199, Guilin, Guangxi, P. R. China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 541199, Guilin, Guangxi, P. R. China
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, 541199, Guilin, Guangxi, P. R. China
| | - Jingxi Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, 541199, Guilin, Guangxi, P. R. China
- Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, 541199, Guilin, Guangxi, P. R. China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, 541199, Guilin, Guangxi, P. R. China
| | - Yuqi Hao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, 541199, Guilin, Guangxi, P. R. China
- Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, 541199, Guilin, Guangxi, P. R. China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, 541199, Guilin, Guangxi, P. R. China
| | - Jingxue Cao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, 541199, Guilin, Guangxi, P. R. China
- Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, 541199, Guilin, Guangxi, P. R. China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 541199, Guilin, Guangxi, P. R. China
| | - Tianpeng Zheng
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, 541199, Guilin, Guangxi, P. R. China.
- Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, 541199, Guilin, Guangxi, P. R. China.
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, 541199, Guilin, Guangxi, P. R. China.
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, 541199, Guilin, Guangxi, P. R. China.
| |
Collapse
|
8
|
You C, Shen F, Yang P, Cui J, Ren Q, Liu M, Hu Y, Li B, Ye L, Shi Y. O-GlcNAcylation mediates Wnt-stimulated bone formation by rewiring aerobic glycolysis. EMBO Rep 2024; 25:4465-4487. [PMID: 39256595 PMCID: PMC11467389 DOI: 10.1038/s44319-024-00237-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Wnt signaling is an important target for anabolic therapies in osteoporosis. A sclerostin-neutralizing antibody (Scl-Ab), that blocks the Wnt signaling inhibitor (sclerostin), has been shown to promote bone mass in animal models and clinical studies. However, the cellular mechanisms by which Wnt signaling promotes osteogenesis remain to be further investigated. O-GlcNAcylation, a dynamic post-translational modification of proteins, controls multiple critical biological processes including transcription, translation, and cell fate determination. Here, we report that Wnt3a either induces O-GlcNAcylation rapidly via the Ca2+-PKA-Gfat1 axis, or increases it in a Wnt-β-catenin-dependent manner following prolonged stimulation. Importantly, we find O-GlcNAcylation indispensable for osteoblastogenesis both in vivo and in vitro. Genetic ablation of O-GlcNAcylation in the osteoblast-lineage diminishes bone formation and delays bone fracture healing in response to Wnt stimulation in vivo. Mechanistically, Wnt3a induces O-GlcNAcylation at Serine 174 of PDK1 to stabilize the protein, resulting in increased glycolysis and osteogenesis. These findings highlight O-GlcNAcylation as an important mechanism regulating Wnt-induced glucose metabolism and bone anabolism.
Collapse
Affiliation(s)
- Chengjia You
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangyuan Shen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Puying Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingyao Cui
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiaoyue Ren
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Moyu Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujie Hu
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boer Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Yu Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Duan CY, Li Y, Zhi HY, Tian Y, Huang ZY, Chen SP, Zhang Y, Liu Q, Zhou L, Jiang XG, Ullah K, Guo Q, Liu ZH, Xu Y, Han JH, Hou J, O'Connor DP, Xu G. E3 ubiquitin ligase UBR5 modulates circadian rhythm by facilitating the ubiquitination and degradation of the key clock transcription factor BMAL1. Acta Pharmacol Sin 2024; 45:1793-1808. [PMID: 38740904 PMCID: PMC11336169 DOI: 10.1038/s41401-024-01290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
The circadian clock is the inner rhythm of life activities and is controlled by a self-sustained and endogenous molecular clock, which maintains a ~ 24 h internal oscillation. As the core element of the circadian clock, BMAL1 is susceptible to degradation through the ubiquitin-proteasome system (UPS). Nevertheless, scant information is available regarding the UPS enzymes that intricately modulate both the stability and transcriptional activity of BMAL1, affecting the cellular circadian rhythm. In this work, we identify and validate UBR5 as a new E3 ubiquitin ligase that interacts with BMAL1 by using affinity purification, mass spectrometry, and biochemical experiments. UBR5 overexpression induced BMAL1 ubiquitination, leading to diminished stability and reduced protein level of BMAL1, thereby attenuating its transcriptional activity. Consistent with this, UBR5 knockdown increases the BMAL1 protein. Domain mapping discloses that the C-terminus of BMAL1 interacts with the N-terminal domains of UBR5. Similarly, cell-line-based experiments discover that HYD, the UBR5 homolog in Drosophila, could interact with and downregulate CYCLE, the BMAL1 homolog in Drosophila. PER2-luciferase bioluminescence real-time reporting assay in a mammalian cell line and behavioral experiments in Drosophila reveal that UBR5 or hyd knockdown significantly reduces the period of the circadian clock. Therefore, our work discovers a new ubiquitin ligase UBR5 that regulates BMAL1 stability and circadian rhythm and elucidates the underlying molecular mechanism. This work provides an additional layer of complexity to the regulatory network of the circadian clock at the post-translational modification level, offering potential insights into the modulation of the dysregulated circadian rhythm.
Collapse
Affiliation(s)
- Chun-Yan Duan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin 2, D02 YN77, Dublin, Ireland
| | - Yue Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Hao-Yu Zhi
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Yao Tian
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Zheng-Yun Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, 215123, China
| | - Su-Ping Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Yang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Qing Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Xiao-Gang Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Kifayat Ullah
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Qing Guo
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou, 215123, China
| | - Zhao-Hui Liu
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou, 215123, China
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, 215123, China
| | - Jun-Hai Han
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Jiajie Hou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Darran P O'Connor
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin 2, D02 YN77, Dublin, Ireland
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
10
|
Park J, Kim DY, Oh ES, Han IO. Light-Dependent Circadian Rhythm Governs O-GlcNAc Cycling to Influence Cognitive Function in Adult Zebrafish. J Pineal Res 2024; 76:e13001. [PMID: 39092800 DOI: 10.1111/jpi.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
This study explores the 24-h rhythmic cycle of protein O-GlcNAcylation within the brain and highlights its crucial role in regulating the circadian cycle and neuronal function based on zebrafish as an animal model. In our experiments, disruption of the circadian rhythm, achieved through inversion of the light-dark cycle or daytime melatonin treatment, not only impaired the rhythmic changes of O-GlcNAcylation along with altering expression patterns of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in zebrafish brain but also significantly impeded learning and memory function. In particular, circadian disruption affected rhythmic expression of protein O-GlcNAcylation and OGT in the nuclear fraction. Notably, the circadian cycle induces rhythmic alterations in O-GlcNAcylation of H2B histone protein that correspond to changes in H3 trimethylation. Disruption of the cycle interfered with these periodic histone code alterations. Pharmacological inhibition of OGT with OSMI-1 disrupted the wake-sleep patterns of zebrafish without affecting expression of circadian rhythm-regulating genes. OSMI-1 inhibited the expression of c-fos, bdnf, and calm1, key genes associated with brain function and synaptic plasticity, and decreased the binding of O-GlcNAcylated H2B and OGT to promoter regions of these genes. The collective findings support the potential involvement of circadian cycling of the O-GlcNAc histone code in regulating synaptic plasticity and brain function. Overall, data from this study provide evidence that protein O-GlcNAcylation serves as a pivotal posttranslational mechanism integrating circadian signals and neuronal function to regulate rhythmic physiology.
Collapse
Affiliation(s)
- Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea
| | - Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea
| | - Eok-Soo Oh
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea
| |
Collapse
|
11
|
Peng F, Lu J, Su K, Liu X, Luo H, He B, Wang C, Zhang X, An F, Lv D, Luo Y, Su Q, Jiang T, Deng Z, He B, Xu L, Guo T, Xiang J, Gu C, Wang L, Xu G, Xu Y, Li M, Kelley KW, Cui B, Liu Q. Oncogenic fatty acid oxidation senses circadian disruption in sleep-deficiency-enhanced tumorigenesis. Cell Metab 2024; 36:1598-1618.e11. [PMID: 38772364 DOI: 10.1016/j.cmet.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
Circadian disruption predicts poor cancer prognosis, yet how circadian disruption is sensed in sleep-deficiency (SD)-enhanced tumorigenesis remains obscure. Here, we show fatty acid oxidation (FAO) as a circadian sensor relaying from clock disruption to oncogenic metabolic signal in SD-enhanced lung tumorigenesis. Both unbiased transcriptomic and metabolomic analyses reveal that FAO senses SD-induced circadian disruption, as illustrated by continuously increased palmitoyl-coenzyme A (PA-CoA) catalyzed by long-chain fatty acyl-CoA synthetase 1 (ACSL1). Mechanistically, SD-dysregulated CLOCK hypertransactivates ACSL1 to produce PA-CoA, which facilitates CLOCK-Cys194 S-palmitoylation in a ZDHHC5-dependent manner. This positive transcription-palmitoylation feedback loop prevents ubiquitin-proteasomal degradation of CLOCK, causing FAO-sensed circadian disruption to maintain SD-enhanced cancer stemness. Intriguingly, timed β-endorphin resets rhythmic Clock and Acsl1 expression to alleviate SD-enhanced tumorigenesis. Sleep quality and serum β-endorphin are negatively associated with both cancer development and CLOCK/ACSL1 expression in patients with cancer, suggesting dawn-supplemented β-endorphin as a potential chronotherapeutic strategy for SD-related cancer.
Collapse
Affiliation(s)
- Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Jinxin Lu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Keyu Su
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China; State Key Laboratory of Oncology in South China, Psychobehavioral Cancer Research Center, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xinyu Liu
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning, China
| | - Huandong Luo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Bin He
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Fan An
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Dekang Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Yuanyuan Luo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China; Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning, China
| | - Qitong Su
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Tonghui Jiang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Ziqian Deng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Bin He
- State Key Laboratory of Oncology in South China, Psychobehavioral Cancer Research Center, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Lingzhi Xu
- Department of Oncology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Tao Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jin Xiang
- State Key Laboratory of Oncology in South China, Psychobehavioral Cancer Research Center, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chundong Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ling Wang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Guowang Xu
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning, China
| | - Ying Xu
- Cambridge-Soochow University Genomic Resource Center, Soochow University, Suzhou, Jiangsu, China
| | - Mindian Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Keith W Kelley
- Department of Pathology, College of Medicine and Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China; State Key Laboratory of Oncology in South China, Psychobehavioral Cancer Research Center, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China; State Key Laboratory of Oncology in South China, Psychobehavioral Cancer Research Center, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Bass J. Interorgan rhythmicity as a feature of healthful metabolism. Cell Metab 2024; 36:655-669. [PMID: 38335957 PMCID: PMC10990795 DOI: 10.1016/j.cmet.2024.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
The finding that animals with circadian gene mutations exhibit diet-induced obesity and metabolic syndrome with hypoinsulinemia revealed a distinct role for the clock in the brain and peripheral tissues. Obesogenic diets disrupt rhythmic sleep/wake patterns, feeding behavior, and transcriptional networks, showing that metabolic signals reciprocally control the clock. Providing access to high-fat diet only during the sleep phase (light period) in mice accelerates weight gain, whereas isocaloric time-restricted feeding during the active period enhances energy expenditure due to circadian induction of adipose thermogenesis. This perspective focuses on advances and unanswered questions in understanding the interorgan circadian control of healthful metabolism.
Collapse
Affiliation(s)
- Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
13
|
Ayodele AO, Udosen B, Oluwagbemi OO, Oladipo EK, Omotuyi I, Isewon I, Nash O, Soremekun O, Fatumo S. An in-silico analysis of OGT gene association with diabetes mellitus. BMC Res Notes 2024; 17:89. [PMID: 38539217 PMCID: PMC10976716 DOI: 10.1186/s13104-024-06744-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
O-GlcNAcylation is a nutrient-sensing post-translational modification process. This cycling process involves two primary proteins: the O-linked N-acetylglucosamine transferase (OGT) catalysing the addition, and the glycoside hydrolase OGA (O-GlcNAcase) catalysing the removal of the O-GlCNAc moiety on nucleocytoplasmic proteins. This process is necessary for various critical cellular functions. The O-linked N-acetylglucosamine transferase (OGT) gene produces the OGT protein. Several studies have shown the overexpression of this protein to have biological implications in metabolic diseases like cancer and diabetes mellitus (DM). This study retrieved 159 SNPs with clinical significance from the SNPs database. We probed the functional effects, stability profile, and evolutionary conservation of these to determine their fit for this research. We then identified 7 SNPs (G103R, N196K, Y228H, R250C, G341V, L367F, and C845S) with predicted deleterious effects across the four tools used (PhD-SNPs, SNPs&Go, PROVEAN, and PolyPhen2). Proceeding with this, we used ROBETTA, a homology modelling tool, to model the proteins with these point mutations and carried out a structural bioinformatics method- molecular docking- using the Glide model of the Schrodinger Maestro suite. We used a previously reported inhibitor of OGT, OSMI-1, as the ligand for these mutated protein models. As a result, very good binding affinities and interactions were observed between this ligand and the active site residues within 4Å of OGT. We conclude that these mutation points may be used for further downstream analysis as drug targets for treating diabetes mellitus.
Collapse
Affiliation(s)
- Abigail O Ayodele
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | - Brenda Udosen
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
| | - Olugbenga O Oluwagbemi
- Department of Computer Science and Information Technology, Faculty of Natural and Applied Sciences, Sol Plaatje University, 8301, Kimberley, South Africa
- Department of Mathematical Sciences, Stellenbosch University, 7602, Stellenbosch, South Africa
| | - Elijah K Oladipo
- Laboratory of Molecular Biology, Immunology and Bioinformatics, Department of Microbiology, Adeleke University, 232104, Ede, Nigeria
- Genomics Unit, Helix Biogen Institute, 210214, Ogbomoso, Nigeria
| | - Idowu Omotuyi
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado Ekiti, Nigeria
- Molecular Biology and Molecular Simulation Center (Mols&Sims), Ado Ekiti, Nigeria
| | - Itunuoluwa Isewon
- Computer and Information Sciences Department, Covenant University, Ota, Ogun State, Nigeria
| | - Oyekanmi Nash
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | - Opeyemi Soremekun
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
- MRC/UVRI and London School of Hygiene and Tropical Medicine London (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Segun Fatumo
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria.
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda.
- MRC/UVRI and London School of Hygiene and Tropical Medicine London (LSHTM) Uganda Research Unit, Entebbe, Uganda.
| |
Collapse
|
14
|
Zhang H, Zhou Z, Guo J. The Function, Regulation, and Mechanism of Protein Turnover in Circadian Systems in Neurospora and Other Species. Int J Mol Sci 2024; 25:2574. [PMID: 38473819 DOI: 10.3390/ijms25052574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Circadian clocks drive a large array of physiological and behavioral activities. At the molecular level, circadian clocks are composed of positive and negative elements that form core oscillators generating the basic circadian rhythms. Over the course of the circadian period, circadian negative proteins undergo progressive hyperphosphorylation and eventually degrade, and their stability is finely controlled by complex post-translational pathways, including protein modifications, genetic codon preference, protein-protein interactions, chaperon-dependent conformation maintenance, degradation, etc. The effects of phosphorylation on the stability of circadian clock proteins are crucial for precisely determining protein function and turnover, and it has been proposed that the phosphorylation of core circadian clock proteins is tightly correlated with the circadian period. Nonetheless, recent studies have challenged this view. In this review, we summarize the research progress regarding the function, regulation, and mechanism of protein stability in the circadian clock systems of multiple model organisms, with an emphasis on Neurospora crassa, in which circadian mechanisms have been extensively investigated. Elucidation of the highly complex and dynamic regulation of protein stability in circadian clock networks would greatly benefit the integrated understanding of the function, regulation, and mechanism of protein stability in a wide spectrum of other biological processes.
Collapse
Affiliation(s)
- Haoran Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zengxuan Zhou
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhu Guo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
15
|
Hu Y, Li X, Zhang J, Liu D, Lu R, Li JD. A genome-wide CRISPR screen identifies USP1 as a novel regulator of the mammalian circadian clock. FEBS J 2024; 291:445-457. [PMID: 37909373 DOI: 10.1111/febs.16990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/07/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
The circadian clock is generated by a molecular timekeeping mechanism coordinating daily oscillations of physiology and behaviors in mammals. In the mammalian circadian clockwork, basic helix-loop-helix ARNT-like protein 1 (BMAL1) is a core circadian component whose defects lead to circadian disruption and elicit behavioral arrhythmicity. To identify previously unknown regulators for circadian clocks, we searched for genes influencing BMAL1 protein level by using a CRISPR/Cas9-based genome-wide knockout library. As a result, we found that the deubiquitinase ubiquitin carboxyl-terminal hydrolase 1 (USP1) positively affects BMAL1 protein abundance. Overexpression of wild-type USP1, but not a deubiquitinase-inactive mutant USP1, upregulated BMAL1 protein level, whereas genetic ablation of USP1 downregulated BMAL1 protein level in U2OS cells. Furthermore, treatment with USP1 inhibitors led to significant downregulation of BMAL1 protein in U2OS cells as well as mouse tissues. Subsequently, genetic ablation or pharmacological inhibition of USP1 resulted in reduced mRNA levels of a panel of clock genes and disrupted circadian rhythms in U2OS cells. Mechanistically, USP1 was able to de-ubiquitinate BMAL1 and inhibit the proteasomal degradation of BMAL1. Interestingly, the expression of Usp1 was much higher than the other two deubiquitinases of BMAL1 (Usp2 and Usp9X) in the mouse heart, implying a tissue-specific function of USP1 in the regulation of BMAL1 stability. Our work thus identifies deubiquitinase USP1 as a previously unknown regulator of the mammalian circadian clock and highlights the potential of genome-wide CRISPR screens in the identification of regulators for the circadian clock.
Collapse
Affiliation(s)
- Ying Hu
- Furong Laboratory, Department of Anaesthesiology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- MOE Key Laboratory of Rare Pediatric Diseases, Changsha, China
| | - Xin Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- MOE Key Laboratory of Rare Pediatric Diseases, Changsha, China
| | - Jing Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Dengfeng Liu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Renbin Lu
- Furong Laboratory, Department of Anaesthesiology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Department of Basic Medical Sciences, Changsha Medical University, Changsha, China
- National Clinical Research Center for Geratric Disorder, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Da Li
- Furong Laboratory, Department of Anaesthesiology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- MOE Key Laboratory of Rare Pediatric Diseases, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, China
- National Clinical Research Center for Geratric Disorder, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Liu X, Cai YD, Chiu JC. Regulation of protein O-GlcNAcylation by circadian, metabolic, and cellular signals. J Biol Chem 2024; 300:105616. [PMID: 38159854 PMCID: PMC10810748 DOI: 10.1016/j.jbc.2023.105616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAcylation) is a dynamic post-translational modification that regulates thousands of proteins and almost all cellular processes. Aberrant O-GlcNAcylation has been associated with numerous diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, and type 2 diabetes. O-GlcNAcylation is highly nutrient-sensitive since it is dependent on UDP-GlcNAc, the end product of the hexosamine biosynthetic pathway (HBP). We previously observed daily rhythmicity of protein O-GlcNAcylation in a Drosophila model that is sensitive to the timing of food consumption. We showed that the circadian clock is pivotal in regulating daily O-GlcNAcylation rhythms given its control of the feeding-fasting cycle and hence nutrient availability. Interestingly, we reported that the circadian clock also modulates daily O-GlcNAcylation rhythm by regulating molecular mechanisms beyond the regulation of food consumption time. A large body of work now indicates that O-GlcNAcylation is likely a generalized cellular status effector as it responds to various cellular signals and conditions, such as ER stress, apoptosis, and infection. In this review, we summarize the metabolic regulation of protein O-GlcNAcylation through nutrient availability, HBP enzymes, and O-GlcNAc processing enzymes. We discuss the emerging roles of circadian clocks in regulating daily O-GlcNAcylation rhythm. Finally, we provide an overview of other cellular signals or conditions that impact O-GlcNAcylation. Many of these cellular pathways are themselves regulated by the clock and/or metabolism. Our review highlights the importance of maintaining optimal O-GlcNAc rhythm by restricting eating activity to the active period under physiological conditions and provides insights into potential therapeutic targets of O-GlcNAc homeostasis under pathological conditions.
Collapse
Affiliation(s)
- Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA.
| |
Collapse
|
17
|
Tanaka A, Sanada K, Miyaho K, Tachibana T, Kurokawa S, Ishii C, Noda Y, Nakajima S, Fukuda S, Mimura M, Kishimoto T, Iwanami A. The relationship between sleep, gut microbiota, and metabolome in patients with depression and anxiety: A secondary analysis of the observational study. PLoS One 2023; 18:e0296047. [PMID: 38117827 PMCID: PMC10732403 DOI: 10.1371/journal.pone.0296047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Growing attention is paid to the association between alterations in the gut microbiota and their metabolites in patients with psychiatric disorders. Our study aimed to determine how gut microbiota and metabolomes are related to the sleep quality among patients with depression and anxiety disorders by analyzing the datasets of our previous study. METHODS Samples were collected from 40 patients (depression: 32 patients [80.0%]); anxiety disorders: 8 patients [20.0%]) in this study. Gut microbiomes were analyzed using 16S rRNA gene sequencing and gut metabolomes were analyzed by a mass spectrometry approach. Based on the Pittsburgh Sleep Quality Index (PSQI), patients were categorized into two groups: the insomnia group (PSQI score ≥ 9, n = 20) and the non-insomnia group (PSQI score < 9, n = 20). RESULTS The insomnia group showed a lower alpha diversity in the Chao1 and Shannon indices than the non-insomnia group after the false discovery rate (FDR) correction. The relative abundance of genus Bacteroides showed a positive correlation with PSQI scores in the non-insomnia group. The concentrations of glucosamine and N-methylglutamate were significantly higher in the insomnia group than in the non-insomnia group. CONCLUSIONS Our findings suggest that specific taxa could affect the sleep quality among patients with depression and anxiety disorders. Further studies are needed to elucidate the impact of sleep on specific gut microbiota and metabolomes in depression and anxiety disorders.
Collapse
Affiliation(s)
- Arisa Tanaka
- Department of Psychiatry, Showa University Karasuyama Hospital, Tokyo, Japan
| | - Kenji Sanada
- Department of Psychiatry, Showa University Karasuyama Hospital, Tokyo, Japan
| | - Katsuma Miyaho
- Department of Psychiatry, Showa University Karasuyama Hospital, Tokyo, Japan
| | - Tomoyuki Tachibana
- Department of Psychiatry, Showa University Karasuyama Hospital, Tokyo, Japan
| | - Shunya Kurokawa
- Department of Neuropsychiatry, Keio University Hospital, Tokyo, Japan
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University Hospital, Tokyo, Japan
| | | | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University Hospital, Tokyo, Japan
| | | | - Akira Iwanami
- Department of Psychiatry, Showa University Karasuyama Hospital, Tokyo, Japan
| |
Collapse
|
18
|
Zhang Y, Yan Z, Nan N, Qin G, Sang N. Circadian rhythm disturbances involved in ozone-induced glucose metabolism disorder in mouse liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167316. [PMID: 37742977 DOI: 10.1016/j.scitotenv.2023.167316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Ozone (O3) is a key environmental factor for developing diabetes. Nevertheless, the underlying mechanisms remain unclear. This study aimed to investigate alterations of glycometabolism in mice after O3 exposure and the role of circadian rhythms in this process. C57BL/6 male mice were randomly assigned to O3 (0.5 ppm) or filtered air for four weeks (4 h/day). Then, hepatic tissues of mice were collected at 4 h intervals within 24 h after O3 exposure to test. The results showed that hepatic circadian rhythm genes oscillated abnormally, mainly at zeitgeber time (ZT)8 and ZT20 after O3 exposure. Furthermore, detection of glycometabolism (metabolites, enzymes, and genes) revealed that O3 caused change in the daily oscillations of glycometabolism. The serum glucose content decreased at ZT4 and ZT20, while hepatic glucose enhanced at ZT16 and ZT24(0). Both G6pc and Pck1, which are associated with hepatic gluconeogenesis, significantly increased at ZT20. O3 exposure disrupted glycometabolism by increasing gluconeogenesis and decreasing glycolysis in mice liver. Finally, correlation analysis showed that the association between Bmal1 and O3-induced disruption of glycometabolism was the strongest. The findings emphasized the interaction between adverse outcomes of circadian rhythms and glycometabolism following O3 exposure.
Collapse
Affiliation(s)
- Yaru Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Zhipeng Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Nan Nan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| |
Collapse
|
19
|
Ye L, Ding W, Xiao D, Jia Y, Zhao Z, Ao X, Wang J. O-GlcNAcylation: cellular physiology and therapeutic target for human diseases. MedComm (Beijing) 2023; 4:e456. [PMID: 38116061 PMCID: PMC10728774 DOI: 10.1002/mco2.456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
O-linked-β-N-acetylglucosamine (O-GlcNAcylation) is a distinctive posttranslational protein modification involving the coordinated action of O-GlcNAc transferase and O-GlcNAcase, primarily targeting serine or threonine residues in various proteins. This modification impacts protein functionality, influencing stability, protein-protein interactions, and localization. Its interaction with other modifications such as phosphorylation and ubiquitination is becoming increasingly evident. Dysregulation of O-GlcNAcylation is associated with numerous human diseases, including diabetes, nervous system degeneration, and cancers. This review extensively explores the regulatory mechanisms of O-GlcNAcylation, its effects on cellular physiology, and its role in the pathogenesis of diseases. It examines the implications of aberrant O-GlcNAcylation in diabetes and tumorigenesis, highlighting novel insights into its potential role in cardiovascular diseases. The review also discusses the interplay of O-GlcNAcylation with other protein modifications and its impact on cell growth and metabolism. By synthesizing current research, this review elucidates the multifaceted roles of O-GlcNAcylation, providing a comprehensive reference for future studies. It underscores the potential of targeting the O-GlcNAcylation cycle in developing novel therapeutic strategies for various pathologies.
Collapse
Affiliation(s)
- Lin Ye
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Wei Ding
- The Affiliated Hospital of Qingdao UniversityQingdao Medical CollegeQingdao UniversityQingdaoChina
| | - Dandan Xiao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Yi Jia
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Zhonghao Zhao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Xiang Ao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Jianxun Wang
- School of Basic MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
20
|
Furlan A, Petrus P. Brain-body communication in metabolic control. Trends Endocrinol Metab 2023; 34:813-822. [PMID: 37716877 DOI: 10.1016/j.tem.2023.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/18/2023]
Abstract
A thorough understanding of the mechanisms controlling energy homeostasis is needed to prevent and treat metabolic morbidities. While the contribution of organs such as the liver, muscle, adipose tissue, and pancreas to the regulation of energy has received wide attention, less is known about the interplay with the nervous system. Here, we highlight the role of the nervous systems in regulating metabolism beyond the classic hypothalamic endocrine signaling models and discuss the contribution of circadian rhythms, higher brain regions, and sociodemographic variables in the energy equation. We infer that interdisciplinary approaches are key to conceptually advancing the current research frontier and devising innovative therapies to prevent and treat metabolic disease.
Collapse
Affiliation(s)
- Alessandro Furlan
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden.
| | - Paul Petrus
- Department of Medicine (H7), Karolinska Institutet, Stockholm 141 86, Sweden.
| |
Collapse
|
21
|
Abstract
Glioblastoma (GBM) is the most prevalent malignant primary brain tumor, accounting for 14.2% of all diagnosed tumors and 50.1% of all malignant tumors, and the median survival time is approximately 8 months irrespective of whether a patient receives treatment without significant improvement despite expansive research (Ostrom QT, Price M, Neff C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015-2019. Neurooncology. 2022; 24(suppl 5):v1-v95.). Recently, important roles for the circadian clock in GBM tumorigenesis have been reported. Positive regulators of circadian-controlled transcription, brain and muscle ARNT-like 1 (BMAL1), and circadian locomotor output cycles kaput (CLOCK), are highly expressed also in GBM and correlated with poor patient prognosis. BMAL1 and CLOCK promote the maintenance of GBM stem cells (GSCs) and the establishment of a pro-tumorigenic tumor microenvironment (TME), suggesting that targeting the core clock proteins may augment GBM treatment. Here, we review findings that highlight the critical role the circadian clock plays in GBM biology and the strategies by which the circadian clock can be leveraged for GBM treatment in the clinic moving forward.
Collapse
Affiliation(s)
- Priscilla Chan
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeremy N Rich
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
22
|
Kim DY, Park J, Han IO. Hexosamine biosynthetic pathway and O-GlcNAc cycling of glucose metabolism in brain function and disease. Am J Physiol Cell Physiol 2023; 325:C981-C998. [PMID: 37602414 DOI: 10.1152/ajpcell.00191.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Impaired brain glucose metabolism is considered a hallmark of brain dysfunction and neurodegeneration. Disruption of the hexosamine biosynthetic pathway (HBP) and subsequent O-linked N-acetylglucosamine (O-GlcNAc) cycling has been identified as an emerging link between altered glucose metabolism and defects in the brain. Myriads of cytosolic and nuclear proteins in the nervous system are modified at serine or threonine residues with a single N-acetylglucosamine (O-GlcNAc) molecule by O-GlcNAc transferase (OGT), which can be removed by β-N-acetylglucosaminidase (O-GlcNAcase, OGA). Homeostatic regulation of O-GlcNAc cycling is important for the maintenance of normal brain activity. Although significant evidence linking dysregulated HBP metabolism and aberrant O-GlcNAc cycling to induction or progression of neuronal diseases has been obtained, the issue of whether altered O-GlcNAcylation is causal in brain pathogenesis remains uncertain. Elucidation of the specific functions and regulatory mechanisms of individual O-GlcNAcylated neuronal proteins in both normal and diseased states may facilitate the identification of novel therapeutic targets for various neuronal disorders. The information presented in this review highlights the importance of HBP/O-GlcNAcylation in the neuronal system and summarizes the roles and potential mechanisms of O-GlcNAcylated neuronal proteins in maintaining normal brain function and initiation and progression of neurological diseases.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| |
Collapse
|
23
|
Huang R, Chen J, Zhou M, Xin H, Lam SM, Jiang X, Li J, Deng F, Shui G, Zhang Z, Li MD. Multi-omics profiling reveals rhythmic liver function shaped by meal timing. Nat Commun 2023; 14:6086. [PMID: 37773240 PMCID: PMC10541894 DOI: 10.1038/s41467-023-41759-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/06/2023] [Indexed: 10/01/2023] Open
Abstract
Post-translational modifications (PTMs) couple feed-fast cycles to diurnal rhythms. However, it remains largely uncharacterized whether and how meal timing organizes diurnal rhythms beyond the transcriptome. Here, we systematically profile the daily rhythms of the proteome, four PTMs (phosphorylation, ubiquitylation, succinylation and N-glycosylation) and the lipidome in the liver from young female mice subjected to either day/sleep time-restricted feeding (DRF) or night/wake time-restricted feeding (NRF). We detect robust daily rhythms among different layers of omics with phosphorylation the most nutrient-responsive and succinylation the least. Integrative analyses reveal that clock regulation of fatty acid metabolism represents a key diurnal feature that is reset by meal timing, as indicated by the rhythmic phosphorylation of the circadian repressor PERIOD2 at Ser971 (PER2-pSer971). We confirm that PER2-pSer971 is activated by nutrient availability in vivo. Together, this dataset represents a comprehensive resource detailing the proteomic and lipidomic responses by the liver to alterations in meal timing.
Collapse
Affiliation(s)
- Rongfeng Huang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jianghui Chen
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Meiyu Zhou
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Haoran Xin
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- LipidALL Technologies Company Limited, Changzhou, Jiangsu Province, China
| | - Xiaoqing Jiang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jie Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fang Deng
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| | - Min-Dian Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
24
|
Laothamatas I, Rasmussen ES, Green CB, Takahashi JS. Metabolic and chemical architecture of the mammalian circadian clock. Cell Chem Biol 2023; 30:1033-1052. [PMID: 37708890 PMCID: PMC10631358 DOI: 10.1016/j.chembiol.2023.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/20/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
Circadian rhythms are endogenous periodic biological processes that occur on a daily timescale. These rhythms are generated by a transcriptional/translational feedback loop that consists of the CLOCK-BMAL1 heterodimeric transcriptional activator complex and the PER1/2-CRY1/2-CK1δ/ε repressive complex. The output pathways of this molecular feedback loop generate circadian rhythmicity in various biological processes. Among these, metabolism is a primary regulatory target of the circadian clock which can also feedback to modulate clock function. This intertwined relationship between circadian rhythms and metabolism makes circadian clock components promising therapeutic targets. Despite this, pharmacological therapeutics that target the circadian clock are relatively rare. In this review, we hope to stimulate interest in chemical chronobiology by providing a comprehensive background on the molecular mechanism of mammalian circadian rhythms and their connection to metabolism, highlighting important studies in the chemical approach to circadian research, and offering our perspectives on future developments in the field.
Collapse
Affiliation(s)
- Isara Laothamatas
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Emil Sjulstok Rasmussen
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Carla B Green
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
25
|
Jiang H, Wang X, Ma J, Xu G. The fine-tuned crosstalk between lysine acetylation and the circadian rhythm. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194958. [PMID: 37453648 DOI: 10.1016/j.bbagrm.2023.194958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Circadian rhythm is a roughly 24-h wake and sleep cycle that almost all of the organisms on the earth follow when they execute their biological functions and physiological activities. The circadian clock is mainly regulated by the transcription-translation feedback loop (TTFL), consisting of the core clock proteins, including BMAL1, CLOCK, PERs, CRYs, and a series of accessory factors. The circadian clock and the downstream gene expression are not only controlled at the transcriptional and translational levels but also precisely regulated at the post-translational modification level. Recently, it has been discovered that CLOCK exhibits lysine acetyltransferase activities and could acetylate protein substrates. Core clock proteins are also acetylated, thereby altering their biological functions in the regulation of the expression of downstream genes. Studies have revealed that many protein acetylation events exhibit oscillation behavior. However, the biological function of acetylation on circadian rhythm has only begun to explore. This review will briefly introduce the acetylation and deacetylation of the core clock proteins and summarize the proteins whose acetylation is regulated by CLOCK and circadian rhythm. Then, we will also discuss the crosstalk between lysine acetylation and the circadian clock or other post-translational modifications. Finally, we will briefly describe the possible future perspectives in the field.
Collapse
Affiliation(s)
- Honglv Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaohui Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingjing Ma
- Department of Pharmacy, Medical Center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
26
|
Li Z, Fu B, Wei A, Wu Y, Huang M, Zhang E, Cui B, Wang B, Peng H. d-Glucosamine induces circadian phase delay by promoting BMAL1 degradation through AMPK/mTOR pathway. Life Sci 2023; 325:121765. [PMID: 37169147 DOI: 10.1016/j.lfs.2023.121765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Circadian rhythms are closely linked to the metabolic network through circadian feedback regulation. The hexosamine biosynthetic pathway (HBP) is a branch of glucose metabolism that affects circadian rhythms through the O-linked N-acetylglucosamine modification (O-GlcNAcylation) of clock proteins. Here, we found out that, among the downstream metabolites regulated by d-glucosamine (GlcN) in HBP salvage pathway, only GlcN is able to induce circadian phase delay both in vitro and in vivo. Mechanistic studies indicated that the phase-shift induced by GlcN is independent of O-GlcNAcylation. Instead, GlcN selectively up-regulates p-AMPK activity, leading to the inhibition of mTOR signaling pathway, and thus down-regulation of p-BMAL1 both in human cell line and mouse tissues. Moreover, GlcN promoted BMAL1 degradation via proteasome pathway. These findings reveal a novel molecular mechanism of GlcN in regulating clock phase and suggest the therapeutic potential of GlcN as new use for an old drug in the future treatment of shift work and circadian misalignment.
Collapse
Affiliation(s)
- Zeqi Li
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Bo Fu
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Aili Wei
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yanchen Wu
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ming Huang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Enhao Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bo Cui
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Bo Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Hui Peng
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
27
|
Zhang X, Li D, Zhu J, Zheng J, Li H, He Q, Peng J, Chen S, Chen XL, Wang W. RNAPII Degradation Factor Def1 Is Required for Development, Stress Response, and Full Virulence of Magnaporthe oryzae. J Fungi (Basel) 2023; 9:jof9040467. [PMID: 37108921 PMCID: PMC10145571 DOI: 10.3390/jof9040467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The RNA polymerase II degradation factor Degradation Factor 1 (Def1) is important for DNA damage repair and plays various roles in eukaryotes; however, the biological role in plant pathogenic fungi is still unknown. In this study, we investigated the role of Def1 during the development and infection of the rice blast fungus Magnaporthe oryzae. The deletion mutant of Def1 displayed slower mycelial growth, less conidial production, and abnormal conidial morphology. The appressoria of Δdef1 was impaired in the penetration into host cells, mainly due to blocking in the utilization of conidial storages, such as glycogen and lipid droplets. The invasive growth of the Δdef1 mutant was also retarded and accompanied with the accumulation of reactive oxygen species (ROS) inside the host cells. Furthermore, compared with the wild type, Δdef1 was more sensitive to multiple stresses, such as oxidative stress, high osmotic pressure, and alkaline/acidic pH. Interestingly, we found that Def1 was modified by O-GlcNAcylation at Ser232, which was required for the stability of Def1 and its function in pathogenicity. Taken together, the O-GlcNAc modified Def1 is required for hyphae growth, conidiation, pathogenicity, and stress response in M. oryzae. This study reveals a novel regulatory mechanism of O-GlcNAc-mediated Def1 in plant pathogenic fungi.
Collapse
Affiliation(s)
- Xinrong Zhang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dong Li
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jun Zhu
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Zheng
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongye Li
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qixuan He
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jun Peng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Shen Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weixiang Wang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
28
|
Harmsen JF, van Weeghel M, Parsons R, Janssens GE, Wefers J, van Moorsel D, Hansen J, Hoeks J, Hesselink MKC, Houtkooper RH, Schrauwen P. Divergent remodeling of the skeletal muscle metabolome over 24 h between young, healthy men and older, metabolically compromised men. Cell Rep 2022; 41:111786. [PMID: 36516749 DOI: 10.1016/j.celrep.2022.111786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/28/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
24 h whole-body substrate metabolism and the circadian clock within skeletal muscle are both compromised upon metabolic disease in humans. Here, we assessed the 24 h muscle metabolome by serial muscle sampling performed under 24 h real-life conditions in young, healthy (YH) men versus older, metabolically compromised (OMC) men. We find that metabolites associated with the initial steps of glycolysis and hexosamine biosynthesis are higher in OMC men around the clock, whereas metabolites associated with glutamine-alpha-ketoglutarate, ketone, and redox metabolism are lower in OMC men. The night period shows the largest number of differently expressed metabolites. Both groups demonstrate 24 h rhythmicity in half of the metabolome, but rhythmic metabolites only partially overlap. Specific metabolites are only rhythmic in YH men (adenosine), phase shifted in OMC men (cis-aconitate, flavin adenine dinucleotide [FAD], and uridine diphosphate [UDP]), or have a reduced 24 h amplitude in OMC men (hydroxybutyrate and hippuric acid). Our data highlight the plasticity of the skeletal muscle metabolome over 24 h and large divergence across the metabolic health spectrum.
Collapse
Affiliation(s)
- Jan-Frieder Harmsen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rex Parsons
- Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Jakob Wefers
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Dirk van Moorsel
- Division of Endocrinology, Department of Internal Medicine, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Jan Hansen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands.
| |
Collapse
|
29
|
Zhou Y, Li Z, Xu M, Zhang D, Ling J, Yu P, Shen Y. O-GlycNacylation Remission Retards the Progression of Non-Alcoholic Fatty Liver Disease. Cells 2022; 11:cells11223637. [PMID: 36429065 PMCID: PMC9688300 DOI: 10.3390/cells11223637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease spectrum associated with insulin resistance (IR), from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC). O-GlcNAcylation is a posttranslational modification, regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Abnormal O-GlcNAcylation plays a key role in IR, fat deposition, inflammatory injury, fibrosis, and tumorigenesis. However, the specific mechanisms and clinical treatments of O-GlcNAcylation and NAFLD are yet to be elucidated. The modification contributes to understanding the pathogenesis and development of NAFLD, thus clarifying the protective effect of O-GlcNAcylation inhibition on liver injury. In this review, the crucial role of O-GlcNAcylation in NAFLD (from NAFL to HCC) is discussed, and the effect of therapeutics on O-GlcNAcylation and its potential mechanisms on NAFLD have been highlighted. These inferences present novel insights into the pathogenesis and treatments of NAFLD.
Collapse
Affiliation(s)
- Yicheng Zhou
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, Nanchang 330031, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Jitao Ling
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
- Correspondence: (P.Y.); (Y.S.)
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
- Correspondence: (P.Y.); (Y.S.)
| |
Collapse
|
30
|
Petersen MC, Gallop MR, Flores Ramos S, Zarrinpar A, Broussard JL, Chondronikola M, Chaix A, Klein S. Complex physiology and clinical implications of time-restricted eating. Physiol Rev 2022; 102:1991-2034. [PMID: 35834774 PMCID: PMC9423781 DOI: 10.1152/physrev.00006.2022] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
Time-restricted eating (TRE) is a dietary intervention that limits food consumption to a specific time window each day. The effect of TRE on body weight and physiological functions has been extensively studied in rodent models, which have shown considerable therapeutic effects of TRE and important interactions among time of eating, circadian biology, and metabolic homeostasis. In contrast, it is difficult to make firm conclusions regarding the effect of TRE in people because of the heterogeneity in results, TRE regimens, and study populations. In this review, we 1) provide a background of the history of meal consumption in people and the normal physiology of eating and fasting; 2) discuss the interaction between circadian molecular metabolism and TRE; 3) integrate the results of preclinical and clinical studies that evaluated the effects of TRE on body weight and physiological functions; 4) summarize other time-related dietary interventions that have been studied in people; and 4) identify current gaps in knowledge and provide a framework for future research directions.
Collapse
Affiliation(s)
- Max C Petersen
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Molly R Gallop
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Stephany Flores Ramos
- Division of Gastroenterology, University of California, San Diego, La Jolla, California
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, California
- Department of Veterans Affairs San Diego Health System, La Jolla, California
| | - Josiane L Broussard
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado
| | - Maria Chondronikola
- Departments of Nutrition and Radiology, University of California, Davis, California
- Departments of Nutrition and Dietetics, Harokopio University of Athens, Kallithea, Greece
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
31
|
Liu X, Chiu JC. Nutrient-sensitive protein O-GlcNAcylation shapes daily biological rhythms. Open Biol 2022; 12:220215. [PMID: 36099933 PMCID: PMC9470261 DOI: 10.1098/rsob.220215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 11/12/2022] Open
Abstract
O-linked-N-acetylglucosaminylation (O-GlcNAcylation) is a nutrient-sensitive protein modification that alters the structure and function of a wide range of proteins involved in diverse cellular processes. Similar to phosphorylation, another protein modification that targets serine and threonine residues, O-GlcNAcylation occupancy on cellular proteins exhibits daily rhythmicity and has been shown to play critical roles in regulating daily rhythms in biology by modifying circadian clock proteins and downstream effectors. We recently reported that daily rhythm in global O-GlcNAcylation observed in Drosophila tissues is regulated via the integration of circadian and metabolic signals. Significantly, mistimed feeding, which disrupts coordination of these signals, is sufficient to dampen daily O-GlcNAcylation rhythm and is predicted to negatively impact animal biological rhythms and health span. In this review, we provide an overview of published and potential mechanisms by which metabolic and circadian signals regulate hexosamine biosynthetic pathway metabolites and enzymes, as well as O-GlcNAc processing enzymes to shape daily O-GlcNAcylation rhythms. We also discuss the significance of functional interactions between O-GlcNAcylation and other post-translational modifications in regulating biological rhythms. Finally, we highlight organ/tissue-specific cellular processes and molecular pathways that could be modulated by rhythmic O-GlcNAcylation to regulate time-of-day-specific biology.
Collapse
Affiliation(s)
- Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
- Department of Pharmacology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
| |
Collapse
|
32
|
Wu J, Liu J, Lapenta K, Desrouleaux R, Li MD, Yang X. Regulation of the urea cycle by CPS1 O-GlcNAcylation in response to dietary restriction and aging. J Mol Cell Biol 2022; 14:mjac016. [PMID: 35285892 PMCID: PMC9254885 DOI: 10.1093/jmcb/mjac016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/20/2022] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
O-linked N-acetyl-glucosamine glycosylation (O-GlcNAcylation) of intracellular proteins is a dynamic process broadly implicated in age-related disease, yet it remains uncharacterized whether and how O-GlcNAcylation contributes to the natural aging process. O-GlcNAc transferase (OGT) and the opposing enzyme O-GlcNAcase (OGA) control this nutrient-sensing protein modification in cells. Here, we show that global O-GlcNAc levels are increased in multiple tissues of aged mice. In aged liver, carbamoyl phosphate synthetase 1 (CPS1) is among the most heavily O-GlcNAcylated proteins. CPS1 O-GlcNAcylation is reversed by calorie restriction and is sensitive to genetic and pharmacological manipulations of the O-GlcNAc pathway. High glucose stimulates CPS1 O-GlcNAcylation and inhibits CPS1 activity. Liver-specific deletion of OGT potentiates CPS1 activity and renders CPS1 irresponsive to further stimulation by a prolonged fasting. Our results identify CPS1 O-GlcNAcylation as a key nutrient-sensing regulatory step in the urea cycle during aging and dietary restriction, implying a role for mitochondrial O-GlcNAcylation in nutritional regulation of longevity.
Collapse
Affiliation(s)
- Jing Wu
- Department of Comparative Medicine, Department of Cellular and Molecular Physiology, and Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiayu Liu
- Department of Comparative Medicine, Department of Cellular and Molecular Physiology, and Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kalina Lapenta
- Department of Comparative Medicine, Department of Cellular and Molecular Physiology, and Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Reina Desrouleaux
- Department of Comparative Medicine, Department of Cellular and Molecular Physiology, and Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Min-Dian Li
- Department of Comparative Medicine, Department of Cellular and Molecular Physiology, and Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaoyong Yang
- Department of Comparative Medicine, Department of Cellular and Molecular Physiology, and Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
33
|
Comparative transcriptome analysis of diurnal alterations of liver glycogen structure: A pilot study. Carbohydr Polym 2022; 295:119710. [DOI: 10.1016/j.carbpol.2022.119710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/21/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
|
34
|
Sato T, Sassone-Corsi P. Nutrition, metabolism, and epigenetics: pathways of circadian reprogramming. EMBO Rep 2022; 23:e52412. [PMID: 35412705 PMCID: PMC9066069 DOI: 10.15252/embr.202152412] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/28/2021] [Accepted: 03/30/2022] [Indexed: 01/07/2023] Open
Abstract
Food intake profoundly affects systemic physiology. A large body of evidence has indicated a link between food intake and circadian rhythms, and ~24-h cycles are deemed essential for adapting internal homeostasis to the external environment. Circadian rhythms are controlled by the biological clock, a molecular system remarkably conserved throughout evolution. The circadian clock controls the cyclic expression of numerous genes, a regulatory program common to all mammalian cells, which may lead to various metabolic and physiological disturbances if hindered. Although the circadian clock regulates multiple metabolic pathways, metabolic states also provide feedback on the molecular clock. Therefore, a remarkable feature is reprogramming by nutritional challenges, such as a high-fat diet, fasting, ketogenic diet, and caloric restriction. In addition, various factors such as energy balance, histone modifications, and nuclear receptor activity are involved in the remodeling of the clock. Herein, we review the interaction of dietary components with the circadian system and illustrate the relationships linking the molecular clock to metabolism and critical roles in the remodeling process.
Collapse
Affiliation(s)
- Tomoki Sato
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, INSERM U1233, University of California, Irvine, CA, USA
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, INSERM U1233, University of California, Irvine, CA, USA
| |
Collapse
|
35
|
Nakahata Y, Fukada Y. Molecular connections between circadian clock and health/aging. J Biochem 2022; 171:473-476. [PMID: 35383844 DOI: 10.1093/jb/mvac028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/11/2022] [Indexed: 11/14/2022] Open
Abstract
For decades, considerable efforts have been expended for solving the molecular mechanisms of disease progression. An important clue to tackle this question is the circadian clock. Recent findings have uncovered previously unknown molecular connections between circadian clock and disease incidence, consequently causing the aging process. Furthermore, "chronotherapy" is emerging as a new concept of optimizing the time of the day for drug administration according to target gene expressions in order to maximize therapeutic efficacy and minimize the side effects. This concept will help cure patients and prevent them from suffering evitable pain and side effects. This JB special issue "Molecular connections between circadian clock and health/aging" discusses how the circadian clocks link to health and aging from molecular to organismal levels.
Collapse
Affiliation(s)
- Yasukazu Nakahata
- Department of Neurobiology & Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
36
|
Abstract
Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc), a process referred to as O-GlcNAcylation, occurs on a vast variety of proteins. Mounting evidence in the past several decades has clearly demonstrated that O-GlcNAcylation is a unique and ubiquitous modification. Reminiscent of a code, protein O-GlcNAcylation functions as a crucial regulator of nearly all cellular processes studied. The primary aim of this review is to summarize the developments in our understanding of myriad protein substrates modified by O-GlcNAcylation from a systems perspective. Specifically, we provide a comprehensive survey of O-GlcNAcylation in multiple species studied, including eukaryotes (e.g., protists, fungi, plants, Caenorhabditis elegans, Drosophila melanogaster, murine, and human), prokaryotes, and some viruses. We evaluate features (e.g., structural properties and sequence motifs) of O-GlcNAc modification on proteins across species. Given that O-GlcNAcylation functions in a species-, tissue-/cell-, protein-, and site-specific manner, we discuss the functional roles of O-GlcNAcylation on human proteins. We focus particularly on several classes of relatively well-characterized human proteins (including transcription factors, protein kinases, protein phosphatases, and E3 ubiquitin-ligases), with representative O-GlcNAc site-specific functions presented. We hope the systems view of the great endeavor in the past 35 years will help demystify the O-GlcNAc code and lead to more fascinating studies in the years to come.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
37
|
Xu S, Zheng J, Xiao H, Wu R. Simultaneously Identifying and Distinguishing Glycoproteins with O-GlcNAc and O-GalNAc (the Tn Antigen) in Human Cancer Cells. Anal Chem 2022; 94:3343-3351. [PMID: 35132862 DOI: 10.1021/acs.analchem.1c05438] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycoproteins with diverse glycans are essential to human cells, and subtle differences in glycan structures may result in entirely different functions. One typical example is proteins modified with O-linked β-N-acetylglucosamine (O-GlcNAc) and O-linked α-N-acetylgalactosamine (O-GalNAc) (the Tn antigen), in which the two glycans have very similar structures and identical chemical compositions, making them extraordinarily challenging to be distinguished. Here, we developed an effective method benefiting from selective enrichment and the enzymatic specificity to simultaneously identify and distinguish glycoproteins with O-GlcNAc and O-GalNAc. Metabolic labeling was combined with bioorthogonal chemistry for enriching glycoproteins modified with O-GlcNAc and O-GalNAc. Then, the enzymatic reaction with galactose oxidase was utilized to specifically oxidize O-GalNAc, but not O-GlcNAc, generating the different tags between glycopeptides with O-GlcNAc and O-GalNAc that can be easily distinguishable by mass spectrometry (MS). Among O-GlcNAcylated proteins commonly identified in three types of human cells, those related to transcription and RNA binding are highly enriched. Cell-specific features are also revealed. Among glycoproteins exclusively in Jurkat cells, those involved in human T-lymphotropic virus type 1 (HTLV-1) infection are overrepresented, which is consistent with the cell line source and suggests that protein O-GlcNAcylation participated in the response to the virus infection. Furthermore, glycoproteins with the Tn antigen have different subcellular distributions in different cells, which may be attributed to the distinct mechanisms for the formation of protein O-GalNAcylation.
Collapse
Affiliation(s)
- Senhan Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jiangnan Zheng
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
38
|
Mannino MP, Hart GW. The Beginner’s Guide to O-GlcNAc: From Nutrient Sensitive Pathway Regulation to Its Impact on the Immune System. Front Immunol 2022; 13:828648. [PMID: 35173739 PMCID: PMC8841346 DOI: 10.3389/fimmu.2022.828648] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/05/2022] [Indexed: 12/27/2022] Open
Abstract
The addition of N-acetyl glucosamine (GlcNAc) on the hydroxy group of serine/threonine residues is known as O-GlcNAcylation (OGN). The dynamic cycling of this monosaccharide on and off substrates occurs via O-linked β-N-acetylglucosamine transferase (OGT) and O-linked β-N-acetylglucosaminase (OGA) respectively. These enzymes are found ubiquitously in eukaryotes and genetic knock outs of the ogt gene has been found to be lethal in embryonic mice. The substrate scope of these enzymes is vast, over 15,000 proteins across 43 species have been identified with O-GlcNAc. OGN has been known to play a key role in several cellular processes such as: transcription, translation, cell signaling, nutrient sensing, immune cell development and various steps of the cell cycle. However, its dysregulation is present in various diseases: cancer, neurodegenerative diseases, diabetes. O-GlcNAc is heavily involved in cross talk with other post-translational modifications (PTM), such as phosphorylation, acetylation, and ubiquitination, by regulating each other’s cycling enzymes or directly competing addition on the same substrate. This crosstalk between PTMs can affect gene expression, protein localization, and protein stability; therefore, regulating a multitude of cell signaling pathways. In this review the roles of OGN will be discussed. The effect O-GlcNAc exerts over protein-protein interactions, the various forms of crosstalk with other PTMs, and its role as a nutrient sensor will be highlighted. A summary of how these O-GlcNAc driven processes effect the immune system will also be included.
Collapse
|
39
|
Abstract
The modern way of life has dramatically affected our biological rhythms. Circadian rhythms, which are generated by an endogenous circadian clock, are observed in a large number of physiological functions including metabolism. Proper peripheral clock synchronization by different signals including appropriate feeding/fasting cycles is essential to coordinate and temporally gate metabolic processes. In this chapter, we emphasize the importance of nutrient sensing by peripheral clocks and highlight the major role of peripheral and central clock communication to locally regulate metabolic processes and ensure optimal energy storage and expenditure. As a consequence, changes in eating behavior and/or bedtime, as occurs upon shift work and jet lag, have direct consequences on metabolism and participate in the increasing prevalence of obesity and associated metabolic diseases such as type 2 diabetes and non-alcoholic fatty liver disease. In this setting, time-restricted feeding has been suggested as an efficient approach to ameliorate metabolic parameters and control body weight.
Collapse
Affiliation(s)
- Yasmine Sebti
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Aurore Hebras
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Benoit Pourcet
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| | - Hélène Duez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| |
Collapse
|
40
|
A multidisciplinary perspective on the complex interactions between sleep, circadian, and metabolic disruption in cancer patients. Cancer Metastasis Rev 2021; 40:1055-1071. [PMID: 34958429 PMCID: PMC8825432 DOI: 10.1007/s10555-021-10010-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/08/2021] [Indexed: 01/24/2023]
Abstract
Sleep is a basic need that is frequently set aside in modern societies. This leads to profound but complex physiological maladaptations in the body commonly referred to as circadian disruption, which recently has been characterized as a carcinogenic factor and reason for poor treatment outcomes, shortened survival, and reduced quality of life in cancer patients. As sleep and circadian physiology in cancer patients spans several disciplines including nursing science, neurology, oncology, molecular biology and medical technology, there is a lack of comprehensive and integrated approaches to deal with this serious and growing issue and at best a fractionated understanding of only part of the problem among researchers within each of these segments. Here, we take a multidisciplinary approach to comprehensively review the diagnosis and impact of sleep and circadian disruption in cancer patients. We discuss recent discoveries on molecular regulation of the circadian clock in healthy and malignant cells, the neurological and endocrine pathways controlling sleep and circadian rhythmicity, and their inputs to and outputs from the organism. The benefits and drawbacks of the various technologies, devices, and instruments used to assess sleep and circadian function, as well as the known consequences of sleep disruption and how sleep can be corrected in cancer patients, will be analyzed. We will throughout the review highlight the extensive crosstalk between sleep, circadian rhythms, and metabolic pathways involved in malignancy and identify current knowledge gaps and barriers for addressing the issue of sleep and circadian disruption in cancer patients. By addressing these issues, we hope to provide a foundation for further research as well as better and more effective care for the patients in the future.
Collapse
|
41
|
Abstract
Bipolar disorder (BD) is a complex group of neuropsychiatric disorders, typically comprising both manic and depressive episodes. The underlying neuropathology of BD is not established, but a consistent feature is progressive thinning of cortical grey matter (GM) and white matter (WM) in specific pathways, due to loss of subpopulations of neurons and astrocytes, with accompanying disturbance of connectivity. Dysregulation of astrocyte homeostatic functions are implicated in BD, notably regulation of glutamate, calcium signalling, circadian rhythms and metabolism. Furthermore, the beneficial therapeutic effects of the frontline treatments for BD are due at least in part to their positive actions on astrocytes, notably lithium, valproic acid (VPA) and carbamazepine (CBZ), as well as antidepressants and antipsychotics that are used in the management of this disorder. Treatments for BD are ineffective in a large proportion of cases, and astrocytes represent new therapeutic targets that can also serve as biomarkers of illness progression and treatment responsiveness in BD.
Collapse
|
42
|
Li MD. Clock-modulated checkpoints in time-restricted eating. Trends Mol Med 2021; 28:25-35. [PMID: 34801412 DOI: 10.1016/j.molmed.2021.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
Time-restricted eating (TRE), which limits the daily meal timing to a window of 6-12 h, has been shown to reduce the risks of cardiometabolic diseases through consolidating circadian rhythms of metabolism and physiology. Recent advances indicate that canonical circadian clocks are dispensable for the actions of TRE in the liver, and that meal timing entrains circadian rhythms in peripheral tissues in a tissue-specific manner (e.g., the liver and fat are readily entrainable, whereas the heart and kidneys are resistant). Here, we propose that TRE engages clock-modulated checkpoints (CCPs) to reset circadian rhythms of tissue functions. Elucidation of CCPs would reveal the mechanistic basis of tissue responsiveness to TRE, and facilitate the use of TRE in precision medicine for cardiometabolic diseases.
Collapse
Affiliation(s)
- Min-Dian Li
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
43
|
Huynh VN, Wang S, Ouyang X, Wani WY, Johnson MS, Chacko BK, Jegga AG, Qian WJ, Chatham JC, Darley-Usmar VM, Zhang J. Defining the Dynamic Regulation of O-GlcNAc Proteome in the Mouse Cortex---the O-GlcNAcylation of Synaptic and Trafficking Proteins Related to Neurodegenerative Diseases. FRONTIERS IN AGING 2021; 2:757801. [PMID: 35822049 PMCID: PMC9261315 DOI: 10.3389/fragi.2021.757801] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/14/2021] [Indexed: 01/13/2023]
Abstract
O-linked conjugation of ß-N-acetyl-glucosamine (O-GlcNAc) to serine and threonine residues is a post-translational modification process that senses nutrient availability and cellular stress and regulates diverse biological processes that are involved in neurodegenerative diseases and provide potential targets for therapeutics development. However, very little is known of the networks involved in the brain that are responsive to changes in the O-GlcNAc proteome. Pharmacological increase of protein O-GlcNAcylation by Thiamet G (TG) has been shown to decrease tau phosphorylation and neurotoxicity, and proposed as a therapy in Alzheimer's disease (AD). However, acute TG exposure impairs learning and memory, and protein O-GlcNAcylation is increased in the aging rat brain and in Parkinson's disease (PD) brains. To define the cortical O-GlcNAc proteome that responds to TG, we injected young adult mice with either saline or TG and performed mass spectrometry analysis for detection of O-GlcNAcylated peptides. This approach identified 506 unique peptides corresponding to 278 proteins that are O-GlcNAcylated. Of the 506 unique peptides, 85 peptides are elevated by > 1.5 fold in O-GlcNAcylation levels in response to TG. Using pathway analyses, we found TG-dependent enrichment of O-GlcNAcylated synaptic proteins, trafficking, Notch/Wnt signaling, HDAC signaling, and circadian clock proteins. Significant changes in the O-GlcNAcylation of DNAJC6/AUXI, and PICALM, proteins that are risk factors for PD and/or AD respectively, were detected. We compared our study with two key prior O-GlcNAc proteome studies using mouse cerebral tissue and human AD brains. Among those identified to be increased by TG, 15 are also identified to be increased in human AD brains compared to control, including those involved in cytoskeleton, autophagy, chromatin organization and mitochondrial dysfunction. These studies provide insights regarding neurodegenerative diseases therapeutic targets.
Collapse
Affiliation(s)
- Van N Huynh
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sheng Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Xiaosen Ouyang
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Willayat Y Wani
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michelle S Johnson
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Balu K Chacko
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - John C Chatham
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor M Darley-Usmar
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department Veterans Affairs, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
44
|
Li MD, Xin H, Yuan Y, Yang X, Li H, Tian D, Zhang H, Zhang Z, Han TL, Chen Q, Duan G, Ju D, Chen K, Deng F, He W. Circadian Clock-Controlled Checkpoints in the Pathogenesis of Complex Disease. Front Genet 2021; 12:721231. [PMID: 34557221 PMCID: PMC8452875 DOI: 10.3389/fgene.2021.721231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
The circadian clock coordinates physiology, metabolism, and behavior with the 24-h cycles of environmental light. Fundamental mechanisms of how the circadian clock regulates organ physiology and metabolism have been elucidated at a rapid speed in the past two decades. Here we review circadian networks in more than six organ systems associated with complex disease, which cluster around metabolic disorders, and seek to propose critical regulatory molecules controlled by the circadian clock (named clock-controlled checkpoints) in the pathogenesis of complex disease. These include clock-controlled checkpoints such as circadian nuclear receptors in liver and muscle tissues, chemokines and adhesion molecules in the vasculature. Although the progress is encouraging, many gaps in the mechanisms remain unaddressed. Future studies should focus on devising time-dependent strategies for drug delivery and engagement in well-characterized organs such as the liver, and elucidating fundamental circadian biology in so far less characterized organ systems, including the heart, blood, peripheral neurons, and reproductive systems.
Collapse
Affiliation(s)
- Min-Dian Li
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haoran Xin
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yinglin Yuan
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xinqing Yang
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongli Li
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dingyuan Tian
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhihui Zhang
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ting-Li Han
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dapeng Ju
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ka Chen
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Fang Deng
- Key Laboratory of Extreme Environmental Medicine, Department of Pathophysiology, College of High Altitude Military Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenyan He
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
45
|
Liu X, Blaženović I, Contreras AJ, Pham TM, Tabuloc CA, Li YH, Ji J, Fiehn O, Chiu JC. Hexosamine biosynthetic pathway and O-GlcNAc-processing enzymes regulate daily rhythms in protein O-GlcNAcylation. Nat Commun 2021; 12:4173. [PMID: 34234137 PMCID: PMC8263742 DOI: 10.1038/s41467-021-24301-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
The integration of circadian and metabolic signals is essential for maintaining robust circadian rhythms and ensuring efficient metabolism and energy use. Using Drosophila as an animal model, we show that cellular protein O-GlcNAcylation exhibits robust 24-hour rhythm and represents a key post-translational mechanism that regulates circadian physiology. We observe strong correlation between protein O-GlcNAcylation rhythms and clock-controlled feeding-fasting cycles, suggesting that O-GlcNAcylation rhythms are primarily driven by nutrient input. Interestingly, daily O-GlcNAcylation rhythms are severely dampened when we subject flies to time-restricted feeding at unnatural feeding time. This suggests the presence of clock-regulated buffering mechanisms that prevent excessive O-GlcNAcylation at non-optimal times of the day-night cycle. We show that this buffering mechanism is mediated by the expression and activity of GFAT, OGT, and OGA, which are regulated through integration of circadian and metabolic signals. Finally, we generate a mathematical model to describe the key factors that regulate daily O-GlcNAcylation rhythm.
Collapse
Affiliation(s)
- Xianhui Liu
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA USA
| | - Ivana Blaženović
- grid.27860.3b0000 0004 1936 9684West Coast Metabolomics Center, University of California, Davis, CA USA
| | - Adam J. Contreras
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA USA
| | - Thu M. Pham
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA USA
| | - Christine A. Tabuloc
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA USA
| | - Ying H. Li
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA USA
| | - Jian Ji
- grid.509509.00000 0004 7699 6596School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu China
| | - Oliver Fiehn
- grid.27860.3b0000 0004 1936 9684West Coast Metabolomics Center, University of California, Davis, CA USA
| | - Joanna C. Chiu
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA USA
| |
Collapse
|
46
|
Zhang B, Lapenta K, Wang Q, Nam JH, Chung D, Robert ME, Nathanson MH, Yang X. Trefoil factor 2 secreted from damaged hepatocytes activates hepatic stellate cells to induce fibrogenesis. J Biol Chem 2021; 297:100887. [PMID: 34146542 PMCID: PMC8267550 DOI: 10.1016/j.jbc.2021.100887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a common characteristic of chronic liver diseases. The activation of hepatic stellate cells (HSCs) plays a key role in fibrogenesis in response to liver injury, yet the mechanism by which damaged hepatocytes modulate the activation of HSCs is poorly understood. Our previous studies have established that liver-specific deletion of O-GlcNAc transferase (OGT)leads to hepatocyte necroptosis and spontaneous fibrosis. Here, we report that OGT-deficient hepatocytes secrete trefoil factor 2 (TFF2) that activates HSCs and contributes to the fibrogenic process. The expression and secretion of TFF2 are induced in OGT-deficient hepatocytes but not in WT hepatocytes. TFF2 activates the platelet-derived growth factor receptor beta signaling pathway that promotes the proliferation and migration of primary HSCs. TFF2 protein expression is elevated in mice with carbon tetrachloride-induced liver injury. These findings identify TFF2 as a novel factor that mediates intercellular signaling between hepatocytes and HSCs and suggest a role of the hepatic OGT–TFF2 axis in the process of fibrogenesis.
Collapse
Affiliation(s)
- Bichen Zhang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| | - Kalina Lapenta
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Qi Wang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| | - Jin Hyun Nam
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Dongjun Chung
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, Ohio, USA
| | - Marie E Robert
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael H Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xiaoyong Yang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA; Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
47
|
Mehta D, Krahmer J, Uhrig RG. Closing the protein gap in plant chronobiology. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1509-1522. [PMID: 33783885 DOI: 10.1111/tpj.15254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Our modern understanding of diel cell regulation in plants stems from foundational work in the late 1990s that analysed the dynamics of selected genes and mutants in Arabidopsis thaliana. The subsequent rise of transcriptomics technologies such as microarrays and RNA sequencing has substantially increased our understanding of anticipatory (circadian) and reactive (light- or dark-triggered) diel events in plants. However, it is also becoming clear that gene expression data fail to capture critical events in diel regulation that can only be explained by studying protein-level dynamics. Over the past decade, mass spectrometry technologies and quantitative proteomic workflows have significantly advanced, finally allowing scientists to characterise diel protein regulation at high throughput. Initial proteomic investigations suggest that the diel transcriptome and proteome generally lack synchrony and that the timing of daily regulatory events in plants is impacted by multiple levels of protein regulation (e.g., post-translational modifications [PTMs] and protein-protein interactions [PPIs]). Here, we highlight and summarise how the use of quantitative proteomics to elucidate diel plant cell regulation has advanced our understanding of these processes. We argue that this new understanding, coupled with the extraordinary developments in mass spectrometry technologies, demands greater focus on protein-level regulation of, and by, the circadian clock. This includes hitherto unexplored diel dynamics of protein turnover, PTMs, protein subcellular localisation and PPIs that can be masked by simple transcript- and protein-level changes. Finally, we propose new directions for how the latest advancements in quantitative proteomics can be utilised to answer outstanding questions in plant chronobiology.
Collapse
Affiliation(s)
- Devang Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Johanna Krahmer
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
48
|
Sun L, Zhang H, Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell 2021; 13:877-919. [PMID: 34050894 PMCID: PMC9243210 DOI: 10.1007/s13238-021-00846-7] [Citation(s) in RCA: 348] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic rewiring and epigenetic remodeling, which are closely linked and reciprocally regulate each other, are among the well-known cancer hallmarks. Recent evidence suggests that many metabolites serve as substrates or cofactors of chromatin-modifying enzymes as a consequence of the translocation or spatial regionalization of enzymes or metabolites. Various metabolic alterations and epigenetic modifications also reportedly drive immune escape or impede immunosurveillance within certain contexts, playing important roles in tumor progression. In this review, we focus on how metabolic reprogramming of tumor cells and immune cells reshapes epigenetic alterations, in particular the acetylation and methylation of histone proteins and DNA. We also discuss other eminent metabolic modifications such as, succinylation, hydroxybutyrylation, and lactylation, and update the current advances in metabolism- and epigenetic modification-based therapeutic prospects in cancer.
Collapse
Affiliation(s)
- Linchong Sun
- Guangzhou First People's Hospital, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, 510006, China.
| | - Huafeng Zhang
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230027, China. .,CAS Centre for Excellence in Cell and Molecular Biology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ping Gao
- Guangzhou First People's Hospital, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, 510006, China. .,School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
49
|
Phosphorylation of GAPVD1 Is Regulated by the PER Complex and Linked to GAPVD1 Degradation. Int J Mol Sci 2021; 22:ijms22073787. [PMID: 33917494 PMCID: PMC8038846 DOI: 10.3390/ijms22073787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
Repressor protein period (PER) complexes play a central role in the molecular oscillator mechanism of the mammalian circadian clock. While the main role of nuclear PER complexes is transcriptional repression, much less is known about the functions of cytoplasmic PER complexes. We found with a biochemical screen for PER2-interacting proteins that the small GTPase regulator GTPase-activating protein and VPS9 domain-containing protein 1 (GAPVD1), which has been identified previously as a component of cytoplasmic PER complexes in mice, is also a bona fide component of human PER complexes. We show that in situ GAPVD1 is closely associated with casein kinase 1 delta (CSNK1D), a kinase that regulates PER2 levels through a phosphoswitch mechanism, and that CSNK1D regulates the phosphorylation of GAPVD1. Moreover, phosphorylation determines the kinetics of GAPVD1 degradation and is controlled by PER2 and a C-terminal autoinhibitory domain in CSNK1D, indicating that the regulation of GAPVD1 phosphorylation is a novel function of cytoplasmic PER complexes and might be part of the oscillator mechanism or an output function of the circadian clock.
Collapse
|
50
|
Parnell AA, De Nobrega AK, Lyons LC. Translating around the clock: Multi-level regulation of post-transcriptional processes by the circadian clock. Cell Signal 2021; 80:109904. [PMID: 33370580 PMCID: PMC8054296 DOI: 10.1016/j.cellsig.2020.109904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
The endogenous circadian clock functions to maintain optimal physiological health through the tissue specific coordination of gene expression and synchronization between tissues of metabolic processes throughout the 24 hour day. Individuals face numerous challenges to circadian function on a daily basis resulting in significant incidences of circadian disorders in the United States and worldwide. Dysfunction of the circadian clock has been implicated in numerous diseases including cancer, diabetes, obesity, cardiovascular and hepatic abnormalities, mood disorders and neurodegenerative diseases. The circadian clock regulates molecular, metabolic and physiological processes through rhythmic gene expression via transcriptional and post-transcriptional processes. Mounting evidence indicates that post-transcriptional regulation by the circadian clock plays a crucial role in maintaining tissue specific biological rhythms. Circadian regulation affecting RNA stability and localization through RNA processing, mRNA degradation, and RNA availability for translation can result in rhythmic protein synthesis, even when the mRNA transcripts themselves do not exhibit rhythms in abundance. The circadian clock also targets the initiation and elongation steps of translation through multiple pathways. In this review, the influence of the circadian clock across the levels of post-transcriptional, translation, and post-translational modifications are examined using examples from humans to cyanobacteria demonstrating the phylogenetic conservation of circadian regulation. Lastly, we briefly discuss chronotherapies and pharmacological treatments that target circadian function. Understanding the complexity and levels through which the circadian clock regulates molecular and physiological processes is important for future advancement of therapeutic outcomes.
Collapse
Affiliation(s)
- Amber A Parnell
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|