1
|
Walker EM, Pearson GL, Lawlor N, Stendahl AM, Lietzke A, Sidarala V, Zhu J, Stromer T, Reck EC, Li J, Levi-D’Ancona E, Pasmooij MB, Hubers DL, Renberg A, Mohamed K, Parekh VS, Zhang IX, Thompson B, Zhang D, Ware SA, Haataja L, Qi N, Parker SCJ, Arvan P, Yin L, Kaufman BA, Satin LS, Sussel L, Stitzel ML, Soleimanpour SA. Retrograde mitochondrial signaling governs the identity and maturity of metabolic tissues. Science 2025; 388:eadf2034. [PMID: 39913641 PMCID: PMC11985298 DOI: 10.1126/science.adf2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 09/13/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
Mitochondrial damage is a hallmark of metabolic diseases, including diabetes, yet the consequences of compromised mitochondria in metabolic tissues are often unclear. In this work, we report that dysfunctional mitochondrial quality control engages a retrograde (mitonuclear) signaling program that impairs cellular identity and maturity in β cells, hepatocytes, and brown adipocytes. Targeted deficiency throughout the mitochondrial quality control pathway, including genome integrity, dynamics, or turnover, impaired the oxidative phosphorylation machinery, activating the mitochondrial integrated stress response, eliciting chromatin remodeling, and promoting cellular immaturity rather than apoptosis to yield metabolic dysfunction. Pharmacologic blockade of the integrated stress response in vivo restored β cell identity after the loss of mitochondrial quality control. Targeting mitochondrial retrograde signaling may therefore be promising in the treatment or prevention of metabolic disorders.
Collapse
Affiliation(s)
- Emily M. Walker
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Gemma L. Pearson
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nathan Lawlor
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Ava M. Stendahl
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Anne Lietzke
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Vaibhav Sidarala
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jie Zhu
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Tracy Stromer
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Emma C. Reck
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jin Li
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Elena Levi-D’Ancona
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mabelle B. Pasmooij
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Dre L. Hubers
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Aaron Renberg
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kawthar Mohamed
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Vishal S. Parekh
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Irina X. Zhang
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin Thompson
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sarah A. Ware
- Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nathan Qi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Stephen C. J. Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Brett A. Kaufman
- Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Leslie S. Satin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael L. Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Scott A. Soleimanpour
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Bener MB, Slepchenko BM, Inaba M. Detection of dedifferentiated stem cells in Drosophila testis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641800. [PMID: 40093072 PMCID: PMC11908254 DOI: 10.1101/2025.03.06.641800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Tissue homeostasis relies on the stable maintenance of the stem cell pool throughout an organism's lifespan. Dedifferentiation, a process in which partially or terminally differentiated cells revert to a stem cell state, has been observed in a wide range of stem cell systems, and it has been implicated in the mechanisms for stem cell maintenance. Dedifferentiated stem cells are morphologically indistinguishable from original stem cells, making them challenging to identify. Therefore, whether dedifferentiated stem cells have any distinguishable characteristics compared with original stem cells is poorly understood. The Drosophila testis provides a well-established model to study dedifferentiation. While our previous live imaging analyses have identified dedifferentiation events constantly occurring at steady state, existing genetic marking methods fail to detect most of the dedifferentiated stem cells and thus significantly underestimate the frequency of dedifferentiation events. Here, we established a genetic tool with improved sensitivity and used live imaging and mathematical modeling to evaluate the system. Our findings indicate that the specificity of lineage-specific promoters is critical for successfully identifying dedifferentiated stem cells.
Collapse
Affiliation(s)
- Muhammed Burak Bener
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06030
| | - Boris M. Slepchenko
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06030
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06030
| |
Collapse
|
3
|
Tu JJ, Ye C, Teng XY, Zang YY, Sun XY, Chen S, Chen J, Shi YS. Osmosensor TMEM63B facilitates insulin secretion in pancreatic β-cells. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2833-3. [PMID: 39985646 DOI: 10.1007/s11427-024-2833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/30/2024] [Indexed: 02/24/2025]
Abstract
Elevated glucose metabolism triggers two primary processes that lead to β-cell depolarization and insulin secretion: the closure of ATP-sensitive K+ channels via ATP-dependent mechanisms and the activation of mechanosensitive channels (MSCs) due to cell swelling. However, the identity of these MSCs remains unclear. In this study, we found that TMEM63B is a stretch-activated cation channel (SAC) crucial for regulating insulin secretion in response to elevated glucose levels. TMEM63B is abundantly expressed in β-cells, and its deletion impairs insulin secretion triggered by high glucose. High glucose levels typically increase Ca2+ influx and firing frequency in β-cells, a response largely eliminated when TMEM63B is deleted. Mechanistically, glucose metabolism induces cell swelling and activates TMEM63B, which, in turn, leads to β-cell depolarization and insulin secretion. In conclusion, our findings demonstrate that TMEM63B is an SAC essential for regulating insulin secretion in response to elevated glucose levels.
Collapse
Affiliation(s)
- Jing-Jing Tu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, 519031, China
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, Nanjing, 210032, China
| | - Chang Ye
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, Nanjing, 210032, China
| | - Xiao-Yu Teng
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, 519031, China
| | - Yan-Yu Zang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, Nanjing, 210032, China
| | - Xiao-Ye Sun
- Department of Hepatology and Gastroenterology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Shuai Chen
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, Nanjing, 210032, China.
| | - Jiang Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Yun Stone Shi
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, 519031, China.
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, Nanjing, 210032, China.
| |
Collapse
|
4
|
Jacques K, Coles BLK, van der Kooy D. Pancreatic stem cells originate during the pancreatic progenitor developmental stage. Front Cell Dev Biol 2025; 13:1521411. [PMID: 40040790 PMCID: PMC11876382 DOI: 10.3389/fcell.2025.1521411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/22/2025] [Indexed: 03/06/2025] Open
Abstract
Previously isolated adult pancreatic precursors called pancreatic multipotent progenitors (which make both pancreatic endocrine and exocrine cell types) originate from the Pancreatic Duodenal Homeobox 1 (PDX1) pancreatic developmental lineage. The embryonic time point at which adult pancreatic multipotent progenitor cells emerge has not been established. We have employed the use of two models: a human embryonic stem cell (hESC) to beta-cell cytokine-induced differentiation protocol and a mouse lineage tracing model during early development to isolate clonal pancreatic spheres. The results show that insulin-positive clonal spheres can be isolated as early as the pancreatic endoderm stage as well as the pancreatic progenitor stage during the hESC to beta-cell lineage differentiation model and that they can be isolated only as early as the pancreatic progenitor stage during mouse embryogenesis. Further, pancreatic clonal sphere-forming cells isolated from the pancreatic progenitor stage in embryonic mice display multipotentiality, and those isolated at a later gestational age demonstrate self-renewal ability. These findings suggest that pancreatic precursors isolated from mouse embryonic time points have stem cell properties and that the pancreatic progenitor stage in hESC development may be the optimal time to capture and expand these stem cells and make large numbers of beta cells.
Collapse
Affiliation(s)
- Krystal Jacques
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Brenda L. K. Coles
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Derek van der Kooy
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Ducote MP, Cothern CR, Batdorf HM, Fontenot MS, Martin TM, Iftesum M, Gartia MR, Noland RC, Burk DH, Ghosh S, Burke SJ. Pancreatic expression of CPT1A is essential for whole body glucose homeostasis by supporting glucose-stimulated insulin secretion. J Biol Chem 2025; 301:108187. [PMID: 39814231 PMCID: PMC11849070 DOI: 10.1016/j.jbc.2025.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
Pancreatic islet β-cells express the Cpt1a gene, which encodes the enzyme carnitine palmitoyltransferase 1A (CPT1A), an enzyme that facilitates entry of long-chain fatty acids into the mitochondria. Because fatty acids are required for glucose-stimulated insulin secretion, we tested the hypothesis that CPT1A is essential to support islet β-cell function and mass. In this study, we describe genetic deletion of Cpt1a in pancreatic tissue (Cpt1aPdx1-/-) using C57BL/6J mice. Islet morphology, β-cell transcription factor abundance, islet ATP levels, glucose transporter 2 abundance, and expression of the dedifferentiation marker ALDH1A3 were analyzed by immunofluorescent staining. Glucose and insulin tolerance were assessed to investigate the metabolic status of genetic reductions in Cpt1a. Glucose-stimulated insulin secretion was evaluated in vivo and in isolated islets ex vivo by perifusion. Pancreatic deletion of Cpt1a reduced glucose tolerance but did not alter insulin sensitivity. Glucose-stimulated insulin secretion was reduced both in vivo and in islets isolated from Cpt1aPdx1-/- mice relative to control islets. Pancreatic islets from Cpt1aPdx1-/- mice displayed elevations in ALDH1A3, a marker of dedifferentiation, but no reduction in nuclear abundance of the β-cell transcription factors MafA and Nkx6.1 or the GLUT2 glucose transporter. However, intracellular ATP abundance was markedly decreased in islets isolated from Cpt1aPdx1-/- relative to littermate control mice. We conclude that there is an important physiological role for pancreatic CPT1A to maintain whole body glucose homeostasis by supporting glucose-stimulated insulin secretion and maintaining intracellular ATP levels in male mice.
Collapse
Affiliation(s)
- Maggie P Ducote
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Caroline R Cothern
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Heidi M Batdorf
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Molly S Fontenot
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Thomas M Martin
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Maria Iftesum
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Manas R Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Robert C Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - David H Burk
- Cell Biology and Bioimaging Core, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Susan J Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA.
| |
Collapse
|
6
|
Yu F, Xie S, Wang T, Huang Y, Zhang H, Peng D, Feng Y, Yang Y, Zhang Z, Zhu Y, Meng Z, Zhang R, Li X, Yin H, Xu J, Hu C. Pancreatic β cell interleukin-22 receptor subunit alpha 1 deficiency impairs β cell function in type 2 diabetes via cytochrome b5 reductase 3. Cell Rep 2024; 43:115057. [PMID: 39675006 DOI: 10.1016/j.celrep.2024.115057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
Impaired β cell function is a hallmark of type 2 diabetes (T2D), but the underlying cellular signaling machineries that regulate β cell function remain unknown. Here, we identify that the interleukin-22 receptor subunit alpha 1 (IL-22RA1), known as a co-receptor for IL-22, is downregulated in human and mouse T2D β cells. Mice with β cell Il22ra1 knockout (Il22ra1βKO) exhibit defective insulin secretion and impaired glucose tolerance after being fed a high-fat diet (HFD) or an HFD/low dose of streptozotocin (STZ). Mechanistically, β cell IL-22RA1 deficiency inhibits cytochrome b5 reductase 3 (CYB5R3) expression via the IL-22RA1/signal transducer and activator of the transcription 3 (STAT3)/c-Jun axis, thereby impairing mitochondrial function and reducing β cell identity. Overexpression of CYB5R3 reinstates mitochondrial function, β cell identity, and insulin secretion in Il22ra1βKO mice. Moreover, the pharmacological activation of CYB5R3 with tetrahydroindenoindole restores insulin secretion in Il22ra1βKO mice, IL-22RA1-knockdown human islets, and Min6 cells. In conclusion, these findings suggest an important role of IL-22RA1 in preserving β cell function in T2D, which offers a potential therapeutic target for treating diabetes.
Collapse
Affiliation(s)
- Fan Yu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Shuting Xie
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Tongyu Wang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yeping Huang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Danfeng Peng
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yifan Feng
- Organ Transplant Center, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Yumei Yang
- Department of Endocrinology and Metabolism, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, China
| | - Zheyu Zhang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhuoxian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiaomu Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, China.
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Jie Xu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Cheng Hu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China.
| |
Collapse
|
7
|
Roychaudhuri R, West T, Bhattacharya S, Saavedra HG, Lee H, Albacarys L, Gadalla MM, Amzel M, Yang P, Snyder SH. Mammalian D-Cysteine controls insulin secretion in the pancreas. Mol Metab 2024; 90:102043. [PMID: 39368613 PMCID: PMC11536007 DOI: 10.1016/j.molmet.2024.102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND D-amino acids are being recognized as important molecules in mammals with function. This is a first identification of endogenous D-cysteine in mammalian pancreas. METHODS Using a novel stereospecific bioluminescent assay, chiral chromatography, enzyme kinetics and a transgenic mouse model we identify endogenous D-cysteine. We elucidate its function in two mice models of type 1 diabetes (STZ and NOD), and in tests of Glucose Stimulated Insulin Secretion in isolated mouse and human islets and INS-1 832/13 cell line. RESULTS AND DISCUSSION D-cysteine is synthesized by serine racemase (SR) and SR-/- mice produce 6-10 fold higher levels of insulin in the pancreas and plasma including higher glycogen and ketone bodies in the liver. The excess insulin is stored as amyloid in secretory vesicles and exosomes. In glucose stimulated insulin secretion in mouse and human islets, equimolar amount of D-cysteine showed higher inhibition of insulin secretion compared to D-serine, another closely related stereoisomer synthesized by SR. In mouse models of diabetes (Streptozotocin (STZ) and Non Obese Diabetes (NOD) and human pancreas, the diabetic state showed increased expression of D-cysteine compared to D-serine followed by increased expression of SR. SR-/- mice show decreased cAMP in the pancreas, lower DNA methyltransferase enzymatic and promoter activities followed by reduced phosphorylation of CREB (S133), resulting in decreased methylation of the Ins1 promoter. D-cysteine is efficiently metabolized by D-amino acid oxidase and transported by ASCT2 and Asc1. Dietary supplementation with methyl donors restored the high insulin levels and low DNMT enzymatic activity in SR-/- mice. CONCLUSIONS Our data show that endogenous D-cysteine in the mammalian pancreas is a regulator of insulin secretion.
Collapse
Affiliation(s)
- Robin Roychaudhuri
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Birth Defects, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Timothy West
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Soumyaroop Bhattacharya
- Department of Neonatology, University of Rochester Medical Center, Rochester, New York, NY 14642, USA
| | - Harry G Saavedra
- Centro de Investigacion en Bioingenieria, Universidad de Ingenieria y Tecnologia (UTEC), 15063 Lima, Peru
| | - Hangnoh Lee
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lauren Albacarys
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Moataz M Gadalla
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mario Amzel
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Birth Defects, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Solomon H Snyder
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
8
|
Noè R, Carrer A. Diet predisposes to pancreatic cancer through cellular nutrient sensing pathways. FEBS Lett 2024; 598:2470-2481. [PMID: 38886112 DOI: 10.1002/1873-3468.14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Pancreatic cancer is a lethal disease with limited effective treatments. A deeper understanding of its molecular mechanisms is crucial to reduce incidence and mortality. Epidemiological evidence suggests a link between diet and disease risk, though dietary recommendations for at-risk individuals remain debated. Here, we propose that cell-intrinsic nutrient sensing pathways respond to specific diet-derived cues to facilitate oncogenic transformation of pancreatic epithelial cells. This review explores how diet influences pancreatic cancer predisposition through nutrient sensing and downstream consequences for (pre-)cancer cell biology. We also examine experimental evidence connecting specific food intake to pancreatic cancer progression, highlighting nutrient sensing as a promising target for therapeutic development to mitigate disease risk.
Collapse
Affiliation(s)
- Roberta Noè
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biology, University of Padova, Padua, Italy
| | - Alessandro Carrer
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
9
|
Ishida CT, Myers SL, Kubota CS, Shao W, McGuire MR, Liu C, Ewachiw TE, Mukhopadhyay D, Ke S, Wang H, Rasheed ZA, Anders RA, Espenshade PJ. SREBP-Dependent Regulation of Lipid Homeostasis Is Required for Progression and Growth of Pancreatic Ductal Adenocarcinoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:2539-2552. [PMID: 39240063 PMCID: PMC11444119 DOI: 10.1158/2767-9764.crc-24-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/01/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Solid tumors undergo metabolic reprogramming when growth outstrips local nutrient supply. Lipids such as cholesterol and fatty acids are required for continued tumor cell proliferation, and oncogenic mutations stimulate de novo lipogenesis to support tumor growth. Sterol regulatory element-binding protein (SREBP) transcription factors control lipid homeostasis by activating genes required for lipid synthesis and uptake. SREBPs have been implicated in the progression of brain, breast, colon, liver, and prostate cancers. However, the role of the SREBP pathway and its central regulator SREBP cleavage activating protein (SCAP) in pancreatic ductal adenocarcinoma (PDAC) has not been studied in detail. Here, we demonstrated that pancreas-specific knockout of Scap has no effect on mouse pancreas development or function, allowing for examination of the role of Scap in the murine KPC model of PDAC. Notably, heterozygous loss of Scap prolonged survival in KPC mice, and homozygous loss of Scap impaired PDAC tumor progression. Using xenograft models, we showed that SCAP is required for human PDAC tumor growth. Mechanistically, chemical or genetic inhibition of the SREBP pathway prevented PDAC cell growth under low-serum conditions because of a lack of lipid supply. Highlighting its clinical importance, the SREBP pathway is broadly required across cancer cell lines, target genes are upregulated in human PDAC tumors, and increased expression of SREBP targets is associated with poor survival in patients with PDAC. Collectively, these results demonstrate that SCAP and SREBP pathway activity are required for PDAC cell and tumor growth, identifying SCAP as a potential therapeutic target for PDAC. SIGNIFICANCE Our findings demonstrate that SREBP pathway activation is a critical part of the metabolic reprogramming that occurs in PDAC development and progression. Therefore, targeting the SREBP pathway has significant therapeutic potential.
Collapse
Affiliation(s)
- Chiaki T. Ishida
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Stephanie L. Myers
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Casie S. Kubota
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Wei Shao
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Meredith R. McGuire
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Chune Liu
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Theodore E. Ewachiw
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Debaditya Mukhopadhyay
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Suqi Ke
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Hao Wang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Zeshaan A. Rasheed
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Robert A. Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Peter J. Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Giovanis Institute for Translational Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
10
|
Jiang M, Wang N, Zhang Y, Zhang J, Li Y, Yan X, Zhang H, Li C, Guan Y, Liang B, Zhang W, Wu Y. Insulin receptor isoform B is required for efficient proinsulin processing in pancreatic β cells. iScience 2024; 27:110017. [PMID: 39021804 PMCID: PMC11253548 DOI: 10.1016/j.isci.2024.110017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 07/20/2024] Open
Abstract
The insulin receptor (INSR, IR) has two isoforms, IRA and IRB, through alternative splicing. However, their distinct functions in vivo remain unclear. Here we generated β cell-specific IRB knockout (KO) mice (βIRBKO). The KO mice displayed worsened hyperinsulinemia and hyperproinsulinemia in diet-induced obesity due to impaired proinsulin processing in β cells. Mechanistically, loss of IRB suppresses eukaryotic translation initiation factor 4G1 (eIF4G1) by stabilizing the transcriptional receptor sterol-regulatory element binding protein 1 (SREBP1). Moreover, excessive autocrine proinsulin in βIRBKO mice enhances the activity of extracellular signal-regulated kinase (ERK) through the remaining IRA to further stabilize nuclear SREBP1, forming a feedback loop. Collectively, our study paves the way to dissecting the isoform-specific function of IR in vivo and highlights the important roles of IRB in insulin processing and protecting β cells from lipotoxicity in obesity.
Collapse
Affiliation(s)
- Mingchao Jiang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Liaoning Provence Key Lab of Genome Engineered Animal Models, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Ning Wang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Liaoning Provence Key Lab of Genome Engineered Animal Models, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Yuqin Zhang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Liaoning Provence Key Lab of Genome Engineered Animal Models, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Jinjin Zhang
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250021, China
| | - Youwei Li
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Liaoning Provence Key Lab of Genome Engineered Animal Models, Dalian Medical University, Dalian, Liaoning 116000, China
- Haidu College, Qingdao Agricultural University, Laiyang, Shandong 265200, China
| | - Xiu Yan
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Liaoning Provence Key Lab of Genome Engineered Animal Models, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Honghao Zhang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Liaoning Provence Key Lab of Genome Engineered Animal Models, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Chengbin Li
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Weiping Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Yingjie Wu
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Liaoning Provence Key Lab of Genome Engineered Animal Models, Dalian Medical University, Dalian, Liaoning 116000, China
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250021, China
| |
Collapse
|
11
|
Fuentes ME, Lu X, Flores NM, Hausmann S, Mazur PK. Combined deletion of MEN1, ATRX and PTEN triggers development of high-grade pancreatic neuroendocrine tumors in mice. Sci Rep 2024; 14:8510. [PMID: 38609433 PMCID: PMC11014914 DOI: 10.1038/s41598-024-58874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous group of tumors that exhibit an unpredictable and broad spectrum of clinical presentations and biological aggressiveness. Surgical resection is still the only curative therapeutic option for localized PanNET, but the majority of patients are diagnosed at an advanced and metastatic stage with limited therapeutic options. Key factors limiting the development of new therapeutics are the extensive heterogeneity of PanNETs and the lack of appropriate clinically relevant models. In that context, genomic sequencing of human PanNETs revealed recurrent mutations and structural alterations in several tumor suppressors. Here, we demonstrated that combined loss of MEN1, ATRX, and PTEN, tumor suppressors commonly mutated in human PanNETs, triggers the development of high-grade pancreatic neuroendocrine tumors in mice. Histopathological evaluation and gene expression analyses of the developed tumors confirm the presence of PanNET hallmarks and significant overlap in gene expression patterns found in human disease. Thus, we postulate that the presented novel genetically defined mouse model is the first clinically relevant immunocompetent high-grade PanNET mouse model.
Collapse
Affiliation(s)
- Mary Esmeralda Fuentes
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Xiaoyin Lu
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Natasha M Flores
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Simone Hausmann
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Pawel K Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Ding L, Sun Y, Liang Y, Zhang J, Fu Z, Ren C, Li P, Liu W, Xiao R, Wang H, Zhang Z, Yue X, Li C, Wu Z, Feng Y, Liang X, Ma C, Gao L. Beta-Cell Tipe1 Orchestrates Insulin Secretion and Cell Proliferation by Promoting Gαs/cAMP Signaling via USP5. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304940. [PMID: 38417114 PMCID: PMC11040358 DOI: 10.1002/advs.202304940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/09/2024] [Indexed: 03/01/2024]
Abstract
Inadequate β-cell mass and insulin secretion are essential for the development of type 2 diabetes (T2D). TNF-α-induced protein 8-like 1 (Tipe1) plays a crucial role in multiple diseases, however, a specific role in T2D pathogenesis remains largely unexplored. Herein, Tipe1 as a key regulator in T2D, contributing to the maintenance of β cell homeostasis is identified. The results show that the β-cell-specific knockout of Tipe1 (termed Ins2-Tipe1BKO) aggravated diabetic phenotypes in db/db mice or in mice with high-fat diet-induced diabetes. Notably, Tipe1 improves β cell mass and function, a process that depends on Gαs, the α subunit of the G-stimulating protein. Mechanistically, Tipe1 inhibited the K48-linked ubiquitination degradation of Gαs by recruiting the deubiquitinase USP5. Consequently, Gαs or cAMP agonists almost completely restored the dysfunction of β cells observed in Ins2-Tipe1BKO mice. The findings characterize Tipe1 as a regulator of β cell function through the Gαs/cAMP pathway, suggesting that Tipe1 may emerge as a novel target for T2D intervention.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Yang Sun
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Yan Liang
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Jie Zhang
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Zhendong Fu
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Caiyue Ren
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Pengfei Li
- Department of EndocrinologyYucheng People's HospitalDezhouShandong251200P. R. China
| | - Wen Liu
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Rong Xiao
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Hao Wang
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Zhaoying Zhang
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Xuetian Yue
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Histology and EmbryologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Yuemin Feng
- Department of GastroenterologyShengLi Hospital of Shandong First Medical UniversityJinanShandong250012P. R. China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| |
Collapse
|
13
|
Ding WX, Ma X, Kim S, Wang S, Ni HM. Recent insights about autophagy in pancreatitis. EGASTROENTEROLOGY 2024; 2:e100057. [PMID: 38770349 PMCID: PMC11104508 DOI: 10.1136/egastro-2023-100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Acute pancreatitis is a common inflammatory gastrointestinal disease without any successful treatment. Pancreatic exocrine acinar cells have high rates of protein synthesis to produce and secrete large amounts of digestive enzymes. When the regulation of organelle and protein homeostasis is disrupted, it can lead to endoplasmic reticulum (ER) stress, damage to the mitochondria and improper intracellular trypsinogen activation, ultimately resulting in acinar cell damage and the onset of pancreatitis. To balance the homeostasis of organelles and adapt to protect themselves from organelle stress, cells use protective mechanisms such as autophagy. In the mouse pancreas, defective basal autophagy disrupts ER homoeostasis, leading to ER stress and trypsinogen activation, resulting in spontaneous pancreatitis. In this review, we discuss the regulation of autophagy and its physiological role in maintaining acinar cell homeostasis and function. We also summarise the current understanding of the mechanisms and the role of defective autophagy at multiple stages in experimental pancreatitis induced by cerulein or alcohol.
Collapse
Affiliation(s)
- Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sydney Kim
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
14
|
Zheng C, Wang J, Wang J, Zhang Q, Liang T. Cell of Origin of Pancreatic cancer: Novel Findings and Current Understanding. Pancreas 2024; 53:e288-e297. [PMID: 38277420 PMCID: PMC11882172 DOI: 10.1097/mpa.0000000000002301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/08/2023] [Indexed: 01/28/2024]
Abstract
ABSTRACT Pancreatic ductal adenocarcinoma (PDAC) stands as one of the most lethal diseases globally, boasting a grim 5-year survival prognosis. The origin cell and the molecular signaling pathways that drive PDAC progression are not entirely understood. This review comprehensively outlines the categorization of PDAC and its precursor lesions, expounds on the creation and utility of genetically engineered mouse models used in PDAC research, compiles a roster of commonly used markers for pancreatic progenitors, duct cells, and acinar cells, and briefly addresses the mechanisms involved in the progression of PDAC. We acknowledge the value of precise markers and suitable tracing tools to discern the cell of origin, as it can facilitate the creation of more effective models for PDAC exploration. These conclusions shed light on our existing understanding of foundational genetically engineered mouse models and focus on the origin and development of PDAC.
Collapse
Affiliation(s)
- Chenlei Zheng
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
| | - Jianing Wang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
| | - Junli Wang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
| | - Qi Zhang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province
- Zhejiang University Cancer Center, Hangzhou, China
| | - Tingbo Liang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province
- Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
15
|
Roy RV, Means N, Rao G, Asfa S, Madka V, Dey A, Zhang Y, Choudhury M, Fung KM, Dhanasekaran DN, Friedman JE, Crawford HC, Rao CV, Bhattacharya R, Mukherjee P. Pancreatic Ubap2 deletion regulates glucose tolerance, inflammation, and protection from cerulein-induced pancreatitis. Cancer Lett 2023; 578:216455. [PMID: 37865160 PMCID: PMC10897936 DOI: 10.1016/j.canlet.2023.216455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Ubiquitin-binding associated protein 2 (UBAP2) is reported to promote macropinocytosis and pancreatic adenocarcinoma (PDAC) growth, however, its role in normal pancreatic function remains unknown. We addressed this knowledge gap by generating UBAP2 knockout (U2KO) mice under a pancreas-specific Cre recombinase (Pdx1-Cre). Pancreatic architecture remained intact in U2KO animals, but they demonstrated slight glucose intolerance compared to controls. Upon cerulein challenge to induce pancreatitis, U2KO animals had reduced levels of several pancreatitis-relevant cytokines, amylase and lipase in the serum, reduced tissue damage, and lessened neutrophil infiltration into the pancreatic tissue. Mechanistically, cerulein-challenged U2KO animals revealed reduced NF-κB activation compared to controls. In vitro promoter binding studies confirmed the reduction of NF-κB binding to its target molecules supporting UBAP2 as a new regulator of inflammation in pancreatitis and may be exploited as a therapeutic target in future to inhibit pancreatitis.
Collapse
Affiliation(s)
- Ram Vinod Roy
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nicolas Means
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sima Asfa
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anindya Dey
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yushan Zhang
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Monalisa Choudhury
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Danny N Dhanasekaran
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Howard C Crawford
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Health System, Detroit, MI, USA
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Resham Bhattacharya
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Priyabrata Mukherjee
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
16
|
Czarnota P, Cisowski J. Be mindful of potential pitfalls when using the Cre-LoxP system in cancer research. Oncoscience 2023; 10:67-68. [PMID: 38020202 PMCID: PMC10650779 DOI: 10.18632/oncoscience.591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
| | - Jaroslaw Cisowski
- Correspondence to:Jaroslaw Cisowski, Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland email:
| |
Collapse
|
17
|
Ueki K, Nishida Y, Aoyama S, Uzawa H, Kanai A, Ito M, Ikeda K, Iida H, Miyatsuka T, Watada H. Establishment of Pancreatic β-Cell-Specific Gene Knockout System Based on CRISPR-Cas9 Technology With AAV8-Mediated gRNA Delivery. Diabetes 2023; 72:1609-1620. [PMID: 37625131 DOI: 10.2337/db23-0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
The Cre-loxP system provides valuable resources to analyze the importance of tissue-specific gene knockout (KO), including pancreatic β-cells associated with the pathogenesis of diabetes. However, it is expensive and time consuming to generate transgenic mice harboring floxed genes of interest and cross them with cell-specific Cre expression mice. We establish a βCas9 system with mice expressing Cas9 in pancreatic β-cells and adeno-associated virus 8 (AAV8)-mediated guide RNA (gRNA) delivery based on CRISPR-Cas9 technology to overcome those shortcomings. Interbreeding CAG-loxP-STOP-loxP (LSL)-Cas9 with Ins1-Cre mice generates normal glucose-tolerant βCas9 mice expressing Cas9 with fluorescent reporter EGFP specifically in β-cells. We also show significant β-cell-specific gene KO efficiency with AAV8-mediated delivery of gRNA for EGFP reporter by intraperitoneal injection in the mice. As a proof of concept, we administered AAV8 to βCas9 mice for expressing gRNA for Pdx1, a culprit gene of maturity-onset diabetes of the young 4. As reported previously, we demonstrate that those mice show glucose intolerance with transdifferentiation of Pdx1 KO β-cells into glucagon-expressing cells. We successfully generated a convenient β-cell-specific gene KO system with βCas9 mice and AAV8-mediated gRNA delivery. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Kyosei Ueki
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Yuya Nishida
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Shuhei Aoyama
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Hirotsugu Uzawa
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Akiko Kanai
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Minami Ito
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Koki Ikeda
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Hitoshi Iida
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Takeshi Miyatsuka
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| |
Collapse
|
18
|
Toren E, Kepple JD, Coutinho KV, Poole SO, Deeba IM, Pierre TH, Liu Y, Bethea MM, Hunter CS. The SSBP3 co-regulator is required for glucose homeostasis, pancreatic islet architecture, and beta-cell identity. Mol Metab 2023; 76:101785. [PMID: 37536498 PMCID: PMC10448474 DOI: 10.1016/j.molmet.2023.101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
OBJECTIVE Transcriptional complex activity drives the development and function of pancreatic islet cells to allow for proper glucose regulation. Prior studies from our lab and others highlighted that the LIM-homeodomain transcription factor (TF), Islet-1 (Isl1), and its interacting co-regulator, Ldb1, are vital effectors of developing and adult β-cells. We further found that a member of the Single Stranded DNA-Binding Protein (SSBP) co-regulator family, SSBP3, interacts with Isl1 and Ldb1 in β-cells and primary islets (mouse and human) to impact β-cell target genes MafA and Glp1R in vitro. Members of the SSBP family stabilize TF complexes by binding directly to Ldb1 and protecting the complex from ubiquitin-mediated turnover. In this study, we hypothesized that SSBP3 has critical roles in pancreatic islet cell function in vivo, similar to the Isl1::Ldb1 complex. METHODS We first developed a novel SSBP3 LoxP allele mouse line, where Cre-mediated recombination imparts a predicted early protein termination. We bred this mouse with constitutive Cre lines (Pdx1- and Pax6-driven) to recombine SSBP3 in the developing pancreas and islet (SSBP3ΔPanc and SSBP3ΔIslet), respectively. We assessed glucose tolerance and used immunofluorescence to detect changes in islet cell abundance and markers of β-cell identity and function. Using an inducible Cre system, we also deleted SSBP3 in the adult β-cell, a model termed SSBP3Δβ-cell. We measured glucose tolerance as well as glucose-stimulated insulin secretion (GSIS), both in vivo and in isolated islets in vitro. Using islets from control and SSBP3Δβ-cell we conducted RNA-Seq and compared our results to published datasets for similar β-cell specific Ldb1 and Isl1 knockouts to identify commonly regulated target genes. RESULTS SSBP3ΔPanc and SSBP3ΔIslet neonates present with hyperglycemia. SSBP3ΔIslet mice are glucose intolerant by P21 and exhibit a reduction of β-cell maturity markers MafA, Pdx1, and UCN3. We observe disruptions in islet cell architecture with an increase in glucagon+ α-cells and ghrelin+ ε-cells at P10. Inducible loss of β-cell SSBP3 in SSBP3Δβ-cell causes hyperglycemia, glucose intolerance, and reduced GSIS. Transcriptomic analysis of 14-week-old SSBP3Δβ-cell islets revealed a decrease in β-cell function gene expression (Ins, MafA, Ucn3), increased stress and dedifferentiation markers (Neurogenin-3, Aldh1a3, Gastrin), and shared differentially expressed genes between SSBP3, Ldb1, and Isl1 in adult β-cells. CONCLUSIONS SSBP3 drives proper islet identity and function, where its loss causes altered islet-cell abundance and glucose homeostasis. β-Cell SSBP3 is required for GSIS and glucose homeostasis, at least partially through shared regulation of Ldb1 and Isl1 target genes.
Collapse
Affiliation(s)
- Eliana Toren
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jessica D Kepple
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kristen V Coutinho
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Samuel O Poole
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Iztiba M Deeba
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tanya H Pierre
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yanping Liu
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Maigen M Bethea
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
19
|
Zhu X, Chen J, Wang B, Wang L, Wang J, Feng D, Yang Y, Wang O, Haddock AN, Wang Y, Ji B, Bi Y. A mouse model for high-efficient Flp-recombinase-mediated genetic manipulation in the pancreas. Pancreatology 2023; 23:736-741. [PMID: 37429756 DOI: 10.1016/j.pan.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Tissue and cell-specific gene targeting has been widely employed in biomedical research. In the pancreas, the commonly used Cre recombinase recognizes and recombines loxP sites. However, to selectively target different genes in distinct cells, a dual recombinase system is required. METHOD We developed an alternative recombination system mediated by FLPo, which recognizes frt DNA sequences for pancreatic dual recombinase-mediated genetic manipulation. An IRES-FLPo cassette was targeted between the translation stop code and 3-UTR of the mouse pdx1 gene in a Bacterial Artificial Chromosome using recombineering technology. Transgenic BAC-Pdx1-FLPo mice were developed by pronuclear injection. RESULTS Highly efficient recombination activity was observed in the pancreas by crossing the founder mice with Flp reporter mice. When the BAC-Pdx1-FLPo mice were bred with conditional FSF-KRasG12D and p53 F/F mice, pancreatic cancer developed in the compound mice. The characteristics of pancreatic cancer resembled those derived from conditional LSL-KRasG12D and p53 L/L mice controlled by pdx1-Cre. CONCLUSIONS We have generated a new transgenic mouse line expressing FLPo, which enables highly efficient pancreatic-specific gene recombination. When combined with other available Cre lines, this system can be utilized to target different genes in distinct cells for pancreatic research.
Collapse
Affiliation(s)
- Xiaohui Zhu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Jiaxiang Chen
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Bin Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Lingxiang Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Jiale Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Dongfeng Feng
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Yan Yang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Oliver Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Ashley N Haddock
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Ying Wang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Yan Bi
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
20
|
Sekiya M, Ma Y, Kainoh K, Saito K, Yamazaki D, Tsuyuzaki T, Chen W, Adi Putri PIP, Ohno H, Miyamoto T, Takeuchi Y, Murayama Y, Sugano Y, Osaki Y, Iwasaki H, Yahagi N, Suzuki H, Motomura K, Matsuzaka T, Murata K, Mizuno S, Takahashi S, Shimano H. Loss of CtBP2 may be a mechanistic link between metabolic derangements and progressive impairment of pancreatic β cell function. Cell Rep 2023; 42:112914. [PMID: 37557182 DOI: 10.1016/j.celrep.2023.112914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 07/16/2023] [Indexed: 08/11/2023] Open
Abstract
The adaptive increase in insulin secretion in early stages of obesity serves as a safeguard mechanism to maintain glucose homeostasis that cannot be sustained, and the eventual decompensation of β cells is a key event in the pathogenesis of diabetes. Here we describe a crucial system orchestrated by a transcriptional cofactor CtBP2. In cultured β cells, insulin gene expression is coactivated by CtBP2. Global genomic mapping of CtBP2 binding sites identifies a key interaction between CtBP2 and NEUROD1 through which CtBP2 decompacts chromatin in the insulin gene promoter. CtBP2 expression is diminished in pancreatic islets in multiple mouse models of obesity, as well as human obesity. Pancreatic β cell-specific CtBP2-deficient mice manifest glucose intolerance with impaired insulin secretion. Our transcriptome analysis highlights an essential role of CtBP2 in the maintenance of β cell integrity. This system provides clues to the molecular basis in obesity and may be targetable to develop therapeutic approaches.
Collapse
Affiliation(s)
- Motohiro Sekiya
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan.
| | - Yang Ma
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Kenta Kainoh
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Kenji Saito
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Daichi Yamazaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Tomomi Tsuyuzaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Wanpei Chen
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Putu Indah Paramita Adi Putri
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Hiroshi Ohno
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Yoshinori Takeuchi
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Yuki Murayama
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Yoko Sugano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Yoshinori Osaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Hitoshi Iwasaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Naoya Yahagi
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Hiroaki Suzuki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Kaori Motomura
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan; Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| |
Collapse
|
21
|
Kaur G, Helmer RA, Martinez-Marin D, Sennoune SR, Washburn RL, Martinez-Zaguilan R, Dufour JM, Chilton BS. Helicase-like transcription factor (Hltf)-deletion activates Hmgb1-Rage axis and granzyme A-mediated killing of pancreatic β cells resulting in neonatal lethality. PLoS One 2023; 18:e0286109. [PMID: 37624843 PMCID: PMC10456192 DOI: 10.1371/journal.pone.0286109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/09/2023] [Indexed: 08/27/2023] Open
Abstract
Epigenetic mechanisms are integral to pancreatic β cell function. Promoter hypermethylation of the helicase like-transcription factor (HLTF) gene-a component of the cellular DNA damage response that contributes to genome stability-has been implicated in age-associated changes in β cells. To study HLTF, we generated global and β cell-specific (β) Hltf knockout (KO) immune competent (IC) and immune deficient (ID) Rag2-/IL2- mice. IC global and β Hltf KO mice were neonatal lethal whereas ID global and β Hltf KO newborn mice had normal survival. This focused our investigation on the effects of Rag2 interruption with common gamma chain interruption on β cell function/survival. Three-way transcriptomic (RNAseq) analyses of whole pancreata from IC and ID newborn β Hltf KO and wild type (Hltf +/+) controls combined with spatially resolved transcriptomic analysis of formalin fixed paraffin embedded tissue, immunohistochemistry and laser scanning confocal microscopy showed DNA damage caused by β Hltf KO in IC mice upregulated the Hmgb1-Rage axis and a gene signature for innate immune cells. Perforin-delivered granzyme A (GzmA) activation of DNase, Nme1, showed damaged nuclear single-stranded DNA (γH2AX immunostaining). This caspase-independent method of cell death was supported by transcriptional downregulation of Serpinc1 gene that encodes a serine protease inhibitor of GzmA. Increased transcriptional availability of complement receptors C3ar1 and C5ar1 likely invited crosstalk with Hmgb1 to amplify inflammation. This study explores the complex dialog between β cells and immune cells during development. It has implications for the initiation of type I diabetes in utero when altered gene expression that compromises genome stability invokes a localized inflammatory response.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Rebecca A. Helmer
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Dalia Martinez-Marin
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- Department of Immunology and Molecular Microbiology, Texas Tech University-Health Sciences Center, Lubbock, Texas, United States of America
| | - Souad R. Sennoune
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Rachel L. Washburn
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Raul Martinez-Zaguilan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Jannette M. Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Beverly S. Chilton
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| |
Collapse
|
22
|
Cha J, Tong X, Walker EM, Dahan T, Cochrane VA, Ashe S, Russell R, Osipovich AB, Mawla AM, Guo M, Liu JH, Loyd ZA, Huising MO, Magnuson MA, Hebrok M, Dor Y, Stein R. Species-specific roles for the MAFA and MAFB transcription factors in regulating islet β cell identity. JCI Insight 2023; 8:e166386. [PMID: 37606041 PMCID: PMC10543725 DOI: 10.1172/jci.insight.166386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/06/2023] [Indexed: 08/23/2023] Open
Abstract
Type 2 diabetes (T2D) is associated with compromised identity of insulin-producing pancreatic islet β cells, characterized by inappropriate production of other islet cell-enriched hormones. Here, we examined how hormone misexpression was influenced by the MAFA and MAFB transcription factors, closely related proteins that maintain islet cell function. Mice specifically lacking MafA in β cells demonstrated broad, population-wide changes in hormone gene expression with an overall gene signature closely resembling islet gastrin+ (Gast+) cells generated under conditions of chronic hyperglycemia and obesity. A human β cell line deficient in MAFB, but not one lacking MAFA, also produced a GAST+ gene expression pattern. In addition, GAST was detected in human T2D β cells with low levels of MAFB. Moreover, evidence is provided that human MAFB can directly repress GAST gene transcription. These results support a potentially novel, species-specific role for MafA and MAFB in maintaining adult mouse and human β cell identity, respectively. Here, we discuss the possibility that induction of Gast/GAST and other non-β cell hormones, by reduction in the levels of these transcription factors, represents a dysfunctional β cell signature.
Collapse
Affiliation(s)
- Jeeyeon Cha
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xin Tong
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Emily M. Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Tehila Dahan
- Department of Developmental Biology and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Veronica A. Cochrane
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Sudipta Ashe
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ronan Russell
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Anna B. Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alex M. Mawla
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, Davis, California, USA
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jin-hua Liu
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Zachary A. Loyd
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark O. Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, Davis, California, USA
| | - Mark A. Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
23
|
Forsythe SD, Pu T, Andrews SG, Madigan JP, Sadowski SM. Models in Pancreatic Neuroendocrine Neoplasms: Current Perspectives and Future Directions. Cancers (Basel) 2023; 15:3756. [PMID: 37568572 PMCID: PMC10416968 DOI: 10.3390/cancers15153756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (pNENs) are a heterogeneous group of tumors derived from multiple neuroendocrine origin cell subtypes. Incidence rates for pNENs have steadily risen over the last decade, and outcomes continue to vary widely due to inability to properly screen. These tumors encompass a wide range of functional and non-functional subtypes, with their rarity and slow growth making therapeutic development difficult as most clinically used therapeutics are derived from retrospective analyses. Improved molecular understanding of these cancers has increased our knowledge of the tumor biology for pNENs. Despite these advances in our understanding of pNENs, there remains a dearth of models for further investigation. In this review, we will cover the current field of pNEN models, which include established cell lines, animal models such as mice and zebrafish, and three-dimensional (3D) cell models, and compare their uses in modeling various disease aspects. While no study model is a complete representation of pNEN biology, each has advantages which allow for new scientific understanding of these rare tumors. Future efforts and advancements in technology will continue to create new options in modeling these cancers.
Collapse
Affiliation(s)
- Steven D. Forsythe
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - Tracey Pu
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Stephen G. Andrews
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - James P. Madigan
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - Samira M. Sadowski
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| |
Collapse
|
24
|
Ding L, Zhang Y, Wang Y, Wang Y, Tong Z, Li P, Chen C, Wang B, Yue X, Li C, Wu Z, Liang X, Ma C, Gao L. Zhx2 maintains islet β-cell mass and function by transcriptionally regulating Pax6. iScience 2023; 26:106871. [PMID: 37275527 PMCID: PMC10232729 DOI: 10.1016/j.isci.2023.106871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/05/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Emerging evidence shows that pancreatic β-cell function and quality are key determinants in the progression of type 2 diabetes (T2D). The transcription factor zinc finger homeobox 2 (Zhx2) is involved in proliferation and development of multiple cells. However, the exact role of Zhx2 in β-cells and T2D remains completely unknown. Here, we report that Zhx2 orchestrates β-cell mass and function by regulating paired box protein pax-6 (Pax6). We found that β-cell-specific knockout Zhx2 (Zhx2BKO) mice showed a decrease in β-cell proliferation and glucose homeostasis. Under prediabetic and diabetic conditions, we discovered glucose intolerance in both Zhx2BKO-HFD mice and Zhx2BKO-db/db mice, with reduced β-cell mass and insulin secretion. Mechanistically, we demonstrated that Zhx2 targeted the Pax6 promoter region (-1740∼-1563; -862∼-559; -251∼+75), enhanced promoter activity. Overall, Zhx2 maintains β-cell function by transcriptionally regulating Pax6, which provides a therapeutic target for diabetes intervention.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yankun Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yuzhen Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Zheng Tong
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Pengfei Li
- Department of Endocrinology, Yucheng People’s Hospital, Dezhou, Shandong 251200, P. R. China
| | - Chaojia Chen
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Bo Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xuetian Yue
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
25
|
Davidson RK, Kanojia S, Wu W, Kono T, Xu J, Osmulski M, Bone RN, Casey N, Evans-Molina C, Sims EK, Spaeth JM. The Chd4 Helicase Regulates Chromatin Accessibility and Gene Expression Critical for β-Cell Function In Vivo. Diabetes 2023; 72:746-757. [PMID: 36913741 PMCID: PMC10202766 DOI: 10.2337/db22-0939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/01/2023] [Indexed: 03/15/2023]
Abstract
The transcriptional activity of Pdx1 is modulated by a diverse array of coregulatory factors that govern chromatin accessibility, histone modifications, and nucleosome distribution. We previously identified the Chd4 subunit of the nucleosome remodeling and deacetylase complex as a Pdx1-interacting factor. To identify how loss of Chd4 impacts glucose homeostasis and gene expression programs in β-cells in vivo, we generated an inducible β-cell-specific Chd4 knockout mouse model. Removal of Chd4 from mature islet β-cells rendered mutant animals glucose intolerant, in part due to defects in insulin secretion. We observed an increased ratio of immature-to-mature insulin granules in Chd4-deficient β-cells that correlated with elevated levels of proinsulin both within isolated islets and from plasma following glucose stimulation in vivo. RNA sequencing and assay for transposase-accessible chromatin with sequencing showed that lineage-labeled Chd4-deficient β-cells have alterations in chromatin accessibility and altered expression of genes critical for β-cell function, including MafA, Slc2a2, Chga, and Chgb. Knockdown of CHD4 from a human β-cell line revealed similar defects in insulin secretion and alterations in several β-cell-enriched gene targets. These results illustrate how critical Chd4 activities are in controlling genes essential for maintaining β-cell function. ARTICLE HIGHLIGHTS Pdx1-Chd4 interactions were previously shown to be compromised in β-cells from human donors with type 2 diabetes. β-Cell-specific removal of Chd4 impairs insulin secretion and leads to glucose intolerance in mice. Expression of key β-cell functional genes and chromatin accessibility are compromised in Chd4-deficient β-cells. Chromatin remodeling activities enacted by Chd4 are essential for β-cell function under normal physiological conditions.
Collapse
Affiliation(s)
- Rebecca K. Davidson
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Sukrati Kanojia
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Wenting Wu
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Tatsuyoshi Kono
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Jerry Xu
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Meredith Osmulski
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Robert N. Bone
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Nolan Casey
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Carmella Evans-Molina
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush Veterans’ Administration Medical Center, Indianapolis, IN
| | - Emily K. Sims
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Jason M. Spaeth
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
26
|
Gaspar TB, Jesus TT, Azevedo MT, Macedo S, Soares MA, Martins RS, Leite R, Rodrigues L, Rodrigues DF, Cardoso L, Borges I, Canberk S, Gärtner F, Miranda-Alves L, Lopes JM, Soares P, Vinagre J. Generation of an Obese Diabetic Mouse Model upon Conditional Atrx Disruption. Cancers (Basel) 2023; 15:cancers15113018. [PMID: 37296979 DOI: 10.3390/cancers15113018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Atrx loss was recently ascertained as insufficient to drive pancreatic neuroendocrine tumour (PanNET) formation in mice islets. We have identified a preponderant role of Atrx in the endocrine dysfunction in a Rip-Cre;AtrxKO genetically engineered mouse model (GEMM). To validate the impact of a different Cre-driver line, we used similar methodologies and characterised the Pdx1-Cre;AtrxKO (P.AtrxKO) GEMM to search for PanNET formation and endocrine fitness disruption for a period of up to 24 months. Male and female mice presented different phenotypes. Compared to P.AtrxWT, P.AtrxHOM males were heavier during the entire study period, hyperglycaemic between 3 and 12 mo., and glucose intolerant only from 6 mo.; in contrast, P.AtrxHOM females started exhibiting increased weight gains later (after 6 mo.), but diabetes or glucose intolerance was detected by 3 mo. Overall, all studied mice were overweight or obese from early ages, which challenged the histopathological evaluation of the pancreas and liver, especially after 12 mo. Noteworthily, losing Atrx predisposed mice to an increase in intrapancreatic fatty infiltration (FI), peripancreatic fat deposition, and macrovesicular steatosis. As expected, no animal developed PanNETs. An obese diabetic GEMM of disrupted Atrx is presented as potentially useful for metabolic studies and as a putative candidate for inserting additional tumourigenic genetic events.
Collapse
Affiliation(s)
- Tiago Bordeira Gaspar
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Tito Teles Jesus
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Maria Teresa Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Sofia Macedo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Mariana Alves Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Laboratório de Endocrinologia Experimental (LEEx), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Rui Sousa Martins
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Faculty of Sciences of the University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Rúben Leite
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- School of Health (ESS), Polytechnic Institute of Porto (IPP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Lia Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Daniela Ferreira Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular and Cell Biology (IBMC), University of Porto, 4200-135 Porto, Portugal
| | - Luís Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Inês Borges
- Centro de Diagnóstico Veterinário (Cedivet), 4200-071 Porto, Portugal
| | - Sule Canberk
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Fátima Gärtner
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental (LEEx), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Manuel Lopes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
- Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| | - João Vinagre
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| |
Collapse
|
27
|
Yang K, Sun J, Zhang Z, Xiao M, Ren D, Liu SM. Reduction of mRNA m 6A associates with glucose metabolism via YTHDC1 in human and mice. Diabetes Res Clin Pract 2023; 198:110607. [PMID: 36878322 DOI: 10.1016/j.diabres.2023.110607] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
AIMS N6-methyladenosine (m6A) in mRNA is involved in glucose metabolism. Our goal is to investigate the relationship of glucose metabolism, m6A and YTH domain-containing protein 1 (YTHDC1), a binding protein to m6A, in the development of type 2 diabetes (T2D). METHODS HPLC-MS/MS and qRT-PCR were used to quantify m6A and YTHDC1 levels in white blood cells from patients with T2D and healthy individuals. MIP-CreERT and tamoxifen treatment were used to create β-cell Ythdc1 knockout mice (βKO). m6A sequencing and RNA sequencing were performed in wildtype/βKO islets and MIN6 cells to identify the differential genes. RESULTS In T2D patients, both of m6A and YTHDC1 levels were reduced and associated with fasting glucose. Deletion of Ythdc1 resulted in glucose intolerance and diabetes due to decreased insulin secretion, even though β-cell mass in βKO mice was comparable to wildtype mice. Moreover, Ythdc1 was shown to bind to SRSF3 (serine/arginine-rich splicing factor 3) and CPSF6 (cleavage and polyadenylation specific factor 6) in β-cells. CONCLUSIONS Our data suggested that YTHDC1 may regulate mRNA splicing and export by interacting with SRSF3 and CPSF6 to modulate glucose metabolism via regulating insulin secretion, implying YTHDC1 might be a novel potential target for lowing glucose.
Collapse
Affiliation(s)
- Kun Yang
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Juan Sun
- Department of Neurobiology, The University of Chicago, 5841, S. Maryland Avenue, MC 1027, Chicago, IL 60637, USA
| | - Zijie Zhang
- Department of Chemistry, The University of Chicago, 5841, S. Maryland Avenue, MC 1027, Chicago, IL 60637, USA
| | - Mengyao Xiao
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Decheng Ren
- Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC 1027, Chicago, IL 60637, USA.
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China.
| |
Collapse
|
28
|
Xue S, Lee D, Berry DC. Thermogenic adipose tissue in energy regulation and metabolic health. Front Endocrinol (Lausanne) 2023; 14:1150059. [PMID: 37020585 PMCID: PMC10067564 DOI: 10.3389/fendo.2023.1150059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
The ability to generate thermogenic fat could be a targeted therapy to thwart obesity and improve metabolic health. Brown and beige adipocytes are two types of thermogenic fat cells that regulate energy balance. Both adipocytes share common morphological, biochemical, and thermogenic properties. Yet, recent evidence suggests unique features exist between brown and beige adipocytes, such as their cellular origin and thermogenic regulatory processes. Beige adipocytes also appear highly plastic, responding to environmental stimuli and interconverting between beige and white adipocyte states. Additionally, beige adipocytes appear to be metabolically heterogenic and have substrate specificity. Nevertheless, obese and aged individuals cannot develop beige adipocytes in response to thermogenic fat-inducers, creating a key clinical hurdle to their therapeutic promise. Thus, elucidating the underlying developmental, molecular, and functional mechanisms that govern thermogenic fat cells will improve our understanding of systemic energy regulation and strive for new targeted therapies to generate thermogenic fat. This review will examine the recent advances in thermogenic fat biogenesis, molecular regulation, and the potential mechanisms for their failure.
Collapse
Affiliation(s)
| | | | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
29
|
Napolitano T, Silvano S, Ayachi C, Plaisant M, Sousa-Da-Veiga A, Fofo H, Charles B, Collombat P. Wnt Pathway in Pancreatic Development and Pathophysiology. Cells 2023; 12:cells12040565. [PMID: 36831232 PMCID: PMC9954665 DOI: 10.3390/cells12040565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
The pancreas is an abdominal gland that serves 2 vital purposes: assist food processing by secreting digestive enzymes and regulate blood glucose levels by releasing endocrine hormones. During embryonic development, this gland originates from epithelial buds located on opposite sites of the foregut endoderm. Pancreatic cell specification and maturation are coordinated by a complex interplay of extrinsic and intrinsic signaling events. In the recent years, the canonical Wnt/β-catenin pathway has emerged as an important player of pancreas organogenesis, regulating pancreatic epithelium specification, compartmentalization and expansion. Importantly, it has been suggested to regulate proliferation, survival and function of adult pancreatic cells, including insulin-secreting β-cells. This review summarizes recent work on the role of Wnt/β-catenin signaling in pancreas biology from early development to adulthood, emphasizing on its relevance for the development of new therapies for pancreatic diseases.
Collapse
Affiliation(s)
| | | | - Chaïma Ayachi
- Université Côte d’Azur, CNRS, Inserm, iBV, 06000 Nice, France
| | | | | | - Hugo Fofo
- Université Côte d’Azur, CNRS, Inserm, iBV, 06000 Nice, France
| | | | - Patrick Collombat
- DiogenX, 180 Avenue du Prado, 13008 Marseille, France
- Université Côte d’Azur, CNRS, Inserm, iBV, 06000 Nice, France
- Correspondence:
| |
Collapse
|
30
|
Wu C, Rakhshandehroo T, Wettersten HI, Campos A, von Schalscha T, Jain S, Yu Z, Tan J, Mose E, Childers BG, Lowy AM, Weis SM, Cheresh DA. Pancreatic cancer cells upregulate LPAR4 in response to isolation stress to promote an ECM-enriched niche and support tumour initiation. Nat Cell Biol 2023; 25:309-322. [PMID: 36646789 PMCID: PMC10280815 DOI: 10.1038/s41556-022-01055-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/16/2022] [Indexed: 01/18/2023]
Abstract
Defining drivers of tumour initiation can provide opportunities to control cancer progression. Here we report that lysophosphatidic acid receptor 4 (LPAR4) becomes transiently upregulated on pancreatic cancer cells exposed to environmental stress or chemotherapy where it promotes stress tolerance, drug resistance, self-renewal and tumour initiation. Pancreatic cancer cells gain LPAR4 expression in response to stress by downregulating a tumour suppressor, miR-139-5p. Even in the absence of exogenous lysophosphatidic acid, LPAR4-expressing tumour cells display an enrichment of extracellular matrix genes that are established drivers of cancer stemness. Mechanistically, upregulation of fibronectin via an LPAR4/AKT/CREB axis is indispensable for LPAR4-induced tumour initiation and stress tolerance. Moreover, ligation of this fibronectin-containing matrix via integrins α5β1 or αVβ3 can transfer stress tolerance to LPAR4-negative cells. Therefore, stress- or drug-induced LPAR4 enhances cell-autonomous production of a fibronectin-rich extracellular matrix, allowing cells to survive 'isolation stress' and compensate for the absence of stromal-derived factors by creating their own tumour-initiating niche.
Collapse
Affiliation(s)
- Chengsheng Wu
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Taha Rakhshandehroo
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | - Hiromi I Wettersten
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Alejandro Campos
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Tami von Schalscha
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Shashi Jain
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Ziqi Yu
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Jiali Tan
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Evangeline Mose
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Betzaira G Childers
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Andrew M Lowy
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Sara M Weis
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - David A Cheresh
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
31
|
Rupani DN, Thege FI, Chandra V, Rajaei H, Cowan RW, Wörmann SM, Le Roux O, Malaney P, Manning SL, Hashem J, Bailey-Lundberg J, Rhim AD, McAllister F. Adar1 deletion causes degeneration of the exocrine pancreas via Mavs-dependent interferon signaling. Development 2023; 150:dev201097. [PMID: 36458554 PMCID: PMC10110501 DOI: 10.1242/dev.201097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA-binding protein that deaminates adenosine (A) to inosine (I). A-to-I editing alters post-transcriptional RNA processing, making ADAR1 a crucial regulator of gene expression. Consequently, Adar1 has been implicated in organogenesis. To determine the role of Adar1 in pancreatic development and homeostasis, we conditionally deleted Adar1 from the murine pancreas (Ptf1aCre/+; Adar1Fl/Fl). The resulting mice had stunted growth, likely due to malabsorption associated with exocrine pancreatic insufficiency. Analyses of pancreata revealed ductal cell expansion, heightened interferon-stimulated gene expression and an increased influx of immune cells. Concurrent deletion of Adar1 and Mavs, a signaling protein implicated in the innate immune pathway, rescued the degenerative phenotype and resulted in normal pancreatic development. Taken together, our work suggests that the primary function of Adar1 in the pancreas is to prevent aberrant activation of the Mavs-mediated innate immune pathway, thereby maintaining pancreatic homeostasis.
Collapse
Affiliation(s)
- Dhwani N. Rupani
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fredrik I. Thege
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vidhi Chandra
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hajar Rajaei
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert W. Cowan
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sonja M. Wörmann
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Olivereen Le Roux
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Prerna Malaney
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sara L. Manning
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jack Hashem
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer Bailey-Lundberg
- Department of Anesthesiology, Center for Perioperative Medicine, McGovern Medical School, The University of Texas Health Sciences Center, Houston, TX 77030, USA
- Center for Interventional Gastroenterology at UTHealth (iGUT), McGovern Medical School, Houston, TX 77030, USA
| | - Andrew D. Rhim
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
32
|
Legrand JMD, Hobbs RM. Defining Gene Function in Spermatogonial Stem Cells Through Conditional Knockout Approaches. Methods Mol Biol 2023; 2656:261-307. [PMID: 37249877 DOI: 10.1007/978-1-0716-3139-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mammalian male fertility is maintained throughout life by a population of self-renewing mitotic germ cells known as spermatogonial stem cells (SSCs). Much of our current understanding regarding the molecular mechanisms underlying SSC activity is derived from studies using conditional knockout mouse models. Here, we provide a guide for the selection and use of mouse strains to develop conditional knockout models for the study of SSCs, as well as their precursors and differentiation-committed progeny. We describe Cre recombinase-expressing strains, breeding strategies to generate experimental groups, and treatment regimens for inducible knockout models and provide advice for verifying and improving conditional knockout efficiency. This resource can be beneficial to those aiming to develop conditional knockout models for the study of SSC development and postnatal function.
Collapse
Affiliation(s)
- Julien M D Legrand
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Robin M Hobbs
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
33
|
Wang T, Chen X, Wang K, Ju J, Yu X, Wang S, Liu C, Wang K. Cre-loxP-mediated genetic lineage tracing: Unraveling cell fate and origin in the developing heart. Front Cardiovasc Med 2023; 10:1085629. [PMID: 36923960 PMCID: PMC10008892 DOI: 10.3389/fcvm.2023.1085629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
The Cre-loxP-mediated genetic lineage tracing system is essential for constructing the fate mapping of single-cell progeny or cell populations. Understanding the structural hierarchy of cardiac progenitor cells facilitates unraveling cell fate and origin issues in cardiac development. Several prospective Cre-loxP-based lineage-tracing systems have been used to analyze precisely the fate determination and developmental characteristics of endocardial cells (ECs), epicardial cells, and cardiomyocytes. Therefore, emerging lineage-tracing techniques advance the study of cardiovascular-related cellular plasticity. In this review, we illustrate the principles and methods of the emerging Cre-loxP-based genetic lineage tracing technology for trajectory monitoring of distinct cell lineages in the heart. The comprehensive demonstration of the differentiation process of single-cell progeny using genetic lineage tracing technology has made outstanding contributions to cardiac development and homeostasis, providing new therapeutic strategies for tissue regeneration in congenital and cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xinzhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Jie Ju
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xue Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Shaocong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Cuiyun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
34
|
Gaspar TB, Lopes JM, Soares P, Vinagre J. An update on genetically engineered mouse models of pancreatic neuroendocrine neoplasms. Endocr Relat Cancer 2022; 29:R191-R208. [PMID: 36197786 DOI: 10.1530/erc-22-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) are rare and clinically challenging entities. At the molecular level, PanNENs' genetic profile is well characterized, but there is limited knowledge regarding the contribution of the newly identified genes to tumor initiation and progression. Genetically engineered mouse models (GEMMs) are the most versatile tool for studying the plethora of genetic variations influencing PanNENs' etiopathogenesis and behavior over time. In this review, we present the state of the art of the most relevant PanNEN GEMMs available and correlate their findings with the human neoplasms' counterparts. We discuss the historic GEMMs as the most used and with higher translational utility models. GEMMs with Men1 and glucagon receptor gene germline alterations stand out as the most faithful models in recapitulating human disease; RIP-Tag models are unique models of early-onset, highly vascularized, invasive carcinomas. We also include a section of the most recent GEMMs that evaluate pathways related to cell cycle and apoptosis, Pi3k/Akt/mTOR, and Atrx/Daxx. For the latter, their tumorigenic effect is heterogeneous. In particular, for Atrx/Daxx, we will require more in-depth studies to evaluate their contribution; even though they are prevalent genetic events in PanNENs, they have low/inexistent tumorigenic capacity per se in GEMMs. Researchers planning to use GEMMs can find a road map of the main clinical features in this review, presented as a guide that summarizes the chief milestones achieved. We identify pitfalls to overcome, concerning the novel designs and standardization of results, so that future models can replicate human disease more closely.
Collapse
Affiliation(s)
- Tiago Bordeira Gaspar
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - José Manuel Lopes
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar e Universitário de São João, Porto, Portugal
| | - Paula Soares
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - João Vinagre
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
35
|
Rahrmann EP, Shorthouse D, Jassim A, Hu LP, Ortiz M, Mahler-Araujo B, Vogel P, Paez-Ribes M, Fatemi A, Hannon GJ, Iyer R, Blundon JA, Lourenço FC, Kay J, Nazarian RM, Hall BA, Zakharenko SS, Winton DJ, Zhu L, Gilbertson RJ. The NALCN channel regulates metastasis and nonmalignant cell dissemination. Nat Genet 2022; 54:1827-1838. [PMID: 36175792 PMCID: PMC9729110 DOI: 10.1038/s41588-022-01182-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023]
Abstract
We identify the sodium leak channel non-selective protein (NALCN) as a key regulator of cancer metastasis and nonmalignant cell dissemination. Among 10,022 human cancers, NALCN loss-of-function mutations were enriched in gastric and colorectal cancers. Deletion of Nalcn from gastric, intestinal or pancreatic adenocarcinomas in mice did not alter tumor incidence, but markedly increased the number of circulating tumor cells (CTCs) and metastases. Treatment of these mice with gadolinium-a NALCN channel blocker-similarly increased CTCs and metastases. Deletion of Nalcn from mice that lacked oncogenic mutations and never developed cancer caused shedding of epithelial cells into the blood at levels equivalent to those seen in tumor-bearing animals. These cells trafficked to distant organs to form normal structures including lung epithelium, and kidney glomeruli and tubules. Thus, NALCN regulates cell shedding from solid tissues independent of cancer, divorcing this process from tumorigenesis and unmasking a potential new target for antimetastatic therapies.
Collapse
Affiliation(s)
- Eric P Rahrmann
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - David Shorthouse
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Amir Jassim
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Linda P Hu
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Mariaestela Ortiz
- Molecular Pharmacology Lab, Organoid Models Research and Biology, National Cancer Institute, Leidos Biomedical Research, Frederick, MD, USA
| | - Betania Mahler-Araujo
- Wellcome-MRC Institute of Metabolic Science, Histopathology Core, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Peter Vogel
- Veterinary Pathology Core Laboratory, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Marta Paez-Ribes
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Atefeh Fatemi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Radhika Iyer
- Texas Children's Cancer and Hematology Centers, Houston, TX, USA
| | - Jay A Blundon
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Filipe C Lourenço
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Jonathan Kay
- Departments of Medicine and of Population and Quantitative Health Sciences, University of Massachusetts Medical School and UMass Memorial Medical Center, Worcester, MA, USA
| | - Rosalynn M Nazarian
- Massachusetts General Hospital, Pathology Service, Dermatopathology Unit, Boston, MA, USA
| | - Benjamin A Hall
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas J Winton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Liqin Zhu
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard J Gilbertson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
36
|
Guo WH, Guo Q, Liu YL, Yan DD, Jin L, Zhang R, Yan J, Luo XH, Yang M. Mutated lncRNA increase the risk of type 2 diabetes by promoting β cell dysfunction and insulin resistance. Cell Death Dis 2022; 13:904. [PMID: 36302749 PMCID: PMC9613878 DOI: 10.1038/s41419-022-05348-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Islet β cell dysfunction and insulin resistance are the main pathogenesis of type 2 diabetes (T2D), but the mechanism remains unclear. Here we identify a rs3819316 C > T mutation in lncRNA Reg1cp mainly expressed in islets associated with an increased risk of T2D. Analyses in 16,113 Chinese adults reveal that Mut-Reg1cp individuals had higher incidence of T2D and presented impaired insulin secretion as well as increased insulin resistance. Mice with islet β cell specific Mut-Reg1cp knock-in have more severe β cell dysfunction and insulin resistance. Mass spectrometry assay of proteins after RNA pulldown demonstrate that Mut-Reg1cp directly binds to polypyrimidine tract binding protein 1 (PTBP1), further immunofluorescence staining, western blot analysis, qPCR analysis and glucose stimulated insulin secretion test reveal that Mut-Reg1cp disrupts the stabilization of insulin mRNA by inhibiting the phosphorylation of PTBP1 in β cells. Furthermore, islet derived exosomes transfer Mut-Reg1cp into peripheral tissue, which then promote insulin resistance by inhibiting AdipoR1 translation and adiponectin signaling. Our findings identify a novel mutation in lncRNA involved in the pathogenesis of T2D, and reveal a new mechanism for the development of T2D.
Collapse
Affiliation(s)
- Wan-Hui Guo
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China
| | - Qi Guo
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008 Changsha, Hunan P.R. China
| | - Ya-Lin Liu
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China
| | - Dan-Dan Yan
- grid.16821.3c0000 0004 0368 8293Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, P.R. China
| | - Li Jin
- grid.16821.3c0000 0004 0368 8293Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, P.R. China
| | - Rong Zhang
- grid.16821.3c0000 0004 0368 8293Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, P.R. China
| | - Jing Yan
- grid.16821.3c0000 0004 0368 8293Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, P.R. China
| | - Xiang-Hang Luo
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008 Changsha, Hunan P.R. China
| | - Mi Yang
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008 Changsha, Hunan P.R. China
| |
Collapse
|
37
|
Parekh VI, Sun H, Chen M, Weinstein LS, Agarwal SK. Mice With RIP-Cre-mediated Deletion of the Long Noncoding RNA Meg3 Show Normal Pancreatic Islets and Enlarged Pituitary. J Endocr Soc 2022; 6:bvac141. [PMID: 37283960 PMCID: PMC9581224 DOI: 10.1210/jendso/bvac141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Context Maternally expressed gene 3 (MEG3) is a long noncoding RNA (lncRNA) that has been implicated as a tumor suppressor. Objective The expression of MEG3 RNA is downregulated in various human tumors, including pituitary adenoma and pancreatic islet tumors due to MEG3 gene deletion or DNA hypermethylation. Mouse models with conventional germline deletion of Meg3 have shown that Meg3 is essential for perinatal or postnatal development and survival. However, a direct role of Meg3 loss in tumorigenesis has not been shown. Methods To observe a causal relationship between Meg3 loss and tumorigenesis, we have generated a mouse model with conditional deletion of Meg3 mediated by the RIP-Cre transgene that initiated Meg3 deletion in pancreatic islet β cells and anterior pituitary. Results Meg3 loss did not lead to the development of islet tumors. Interestingly, RIP-Cre-mediated Meg3 loss led to the development of an enlarged pituitary. The genes in the Meg3 region are transcribed together as a 210 kb RNA that is processed into Meg3 and other transcripts. Whether these tandem transcripts play a functional role in the growth of pancreatic endocrine cells and pituitary cells remains to be determined. Conclusion Our mouse model shows that Meg3 loss leads to hyperplasia in the pituitary and not in pancreatic islets, thus serving as a valuable model to study pathways associated with pituitary cell proliferation and function. Future mouse models with specific inactivation of Meg3 alone or other transcripts in the Meg3 polycistron are warranted to study tissue-specific effects on initiating neoplasia and tumor development.
Collapse
Affiliation(s)
- Vaishali I Parekh
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1802, USA
| | - Hui Sun
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1802, USA
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1802, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1802, USA
| | - Sunita K Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1802, USA
| |
Collapse
|
38
|
Kfoury S, Michl P, Roth L. Modeling Obesity-Driven Pancreatic Carcinogenesis-A Review of Current In Vivo and In Vitro Models of Obesity and Pancreatic Carcinogenesis. Cells 2022; 11:3170. [PMID: 36231132 PMCID: PMC9563584 DOI: 10.3390/cells11193170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic malignancy with a 5-year survival rate below 10%, thereby exhibiting the worst prognosis of all solid tumors. Increasing incidence together with a continued lack of targeted treatment options will cause PDAC to be the second leading cause of cancer-related deaths in the western world by 2030. Obesity belongs to the predominant risk factors for pancreatic cancer. To improve our understanding of the impact of obesity on pancreatic cancer development and progression, novel laboratory techniques have been developed. In this review, we summarize current in vitro and in vivo models of PDAC and obesity as well as an overview of a variety of models to investigate obesity-driven pancreatic carcinogenesis. We start by giving an overview on different methods to cultivate adipocytes in vitro as well as various in vivo mouse models of obesity. Moreover, established murine and human PDAC cell lines as well as organoids are summarized and the genetically engineered models of PCAC compared to xenograft models are introduced. Finally, we review published in vitro and in vivo models studying the impact of obesity on PDAC, enabling us to decipher the molecular basis of obesity-driven pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Sally Kfoury
- Department of Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
| | - Patrick Michl
- Department of Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
- Department of Medicine, Internal Medicine IV, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
| | - Laura Roth
- Department of Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
39
|
Nova1 or Bim Deficiency in Pancreatic β-Cells Does Not Alter Multiple Low-Dose Streptozotocin-Induced Diabetes and Diet-Induced Obesity in Mice. Nutrients 2022; 14:nu14183866. [PMID: 36145242 PMCID: PMC9500891 DOI: 10.3390/nu14183866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
The loss of functional pancreatic β-cell mass is an important hallmark of both type 1 and type 2 diabetes. The RNA-binding protein NOVA1 is expressed in human and rodent pancreatic β-cells. Previous in vitro studies indicated that NOVA1 is necessary for glucose-stimulated insulin secretion and its deficiency-enhanced cytokine-induced apoptosis. Moreover, Bim, a proapoptotic protein, is differentially spliced and potentiates apoptosis in NOVA1-deficient β-cells in culture. We generated two novel mouse models by Cre-Lox technology lacking Nova1 (βNova1-/-) or Bim (βBim-/-) in β-cells. To test the impact of Nova1 or Bim deletion on β-cell function, mice were subjected to multiple low-dose streptozotocin (MLD-STZ)-induced diabetes or high-fat diet-induced insulin resistance. β-cell-specific Nova1 or Bim deficiency failed to affect diabetes development in response to MLD-STZ-induced β-cell dysfunction and death evidenced by unaltered blood glucose levels and pancreatic insulin content. In addition, body composition, glucose and insulin tolerance test, and pancreatic insulin content were indistinguishable between control and βNova1-/- or βBim-/- mice on a high fat diet. Thus, Nova1 or Bim deletion in β-cells does not impact on glucose homeostasis or diabetes development in mice. Together, these data argue against an in vivo role for the Nova1-Bim axis in β-cells.
Collapse
|
40
|
Sun C, Estrella JS, Whitley EM, Chau GP, Lozano G, Wasylishen AR. Mouse modeling provides insights into Daxx and Atrx tumor suppressive mechanisms in the endocrine pancreas. Dis Model Mech 2022; 15:276356. [PMID: 35976056 PMCID: PMC9438929 DOI: 10.1242/dmm.049552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Genome sequencing has revealed the importance of epigenetic regulators in tumorigenesis. The genes encoding the chromatin remodeling complex DAXX:ATRX are frequently mutated in pancreatic neuroendocrine tumors (PanNETs); however, the underlying mechanisms of how mutations contribute to tumorigenesis are only partially understood, in part because of the lack of relevant pre-clinical models. Here we used genetically engineered mouse models combined with environmental stress to evaluate the tumor suppressor functions of Daxx and Atrx in the mouse pancreas. Daxx or Atrx loss, alone or in combination with Men1 loss, do not drive nor accelerate pancreatic neuroendocrine tumorigenesis. Moreover, Daxx loss does not cooperate with environmental stresses (ionizing radiation or pancreatitis) or with the loss of other tumor suppressors (Pten or p53) to promote pancreatic neuroendocrine tumorigenesis. However, due to promiscuity of the Cre promoter used, hepatocellular carcinomas (HCC) and osteosarcomas were observed in some instances. Overall, our findings suggest that Daxx and Atrx are not robust tumor suppressors in the endocrine pancreas of mice and indicate the context of a human genome is essential for tumorigenesis.
Collapse
Affiliation(s)
- Chang Sun
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Genetics and Epigenetics Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Jeannelyn S Estrella
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Elizabeth M Whitley
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gilda P Chau
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Genetics and Epigenetics Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Amanda R Wasylishen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
41
|
Toren E, Liu Y, Bethea M, Wade A, Hunter CS. The Ldb1 transcriptional co-regulator is required for establishment and maintenance of the pancreatic endocrine lineage. FASEB J 2022; 36:e22460. [PMID: 35881062 PMCID: PMC9397370 DOI: 10.1096/fj.202200410r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Pancreatic islet cell development is regulated by transcription factors (TFs) that mediate embryonic progenitor differentiation toward mature endocrine cells. Prior studies from our lab and others showed that the islet-enriched TF, Islet-1 (Isl1), interacts with the broadly-expressed transcriptional co-regulator, Ldb1, to regulate islet cell maturation and postnhyperatal function (by embryonic day (E)18.5). However, Ldb1 is expressed in the developing pancreas prior to Isl1 expression, notably in multipotent progenitor cells (MPCs) marked by Pdx1 and endocrine progenitors (EPs) expressing Neurogenin-3 (Ngn3). MPCs give rise to the endocrine and exocrine pancreas, while Ngn3+ EPs specify pancreatic islet endocrine cells. We hypothesized that Ldb1 is required for progenitor identity in MPC and EP populations during development to impact islet appearance and function. To test this, we generated a whole-pancreas Ldb1 knockout, termed Ldb1ΔPanc , and observed severe developmental and postnatal pancreas defects including disorganized progenitor pools, a significant reduction of Ngn3-expressing EPs, Pdx1HI β-cells, and early hormone+ cells. Ldb1ΔPanc neonates presented with severe hyperglycemia, hypoinsulinemia, and drastically reduced hormone expression in islets, yet no change in total pancreas mass. This supports the endocrine-specific actions of Ldb1. Considering this, we also developed an endocrine-enriched model of Ldb1 loss, termed Ldb1ΔEndo . We observed similar dysglycemia in this model, as well as a loss of islet identity markers. Through in vitro and in vivo chromatin immunoprecipitation experiments, we found that Ldb1 occupies key Pdx1 and Ngn3 promoter domains. Our findings provide insight into novel regulation of endocrine cell differentiation that may be vital toward improving cell-based diabetes therapies.
Collapse
Affiliation(s)
- Eliana Toren
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yanping Liu
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maigen Bethea
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alexa Wade
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
42
|
Moon JS, Riopel M, Seo JB, Herrero-Aguayo V, Isaac R, Lee YS. HIF-2α Preserves Mitochondrial Activity and Glucose Sensing in Compensating β-Cells in Obesity. Diabetes 2022; 71:1508-1524. [PMID: 35472707 PMCID: PMC9233300 DOI: 10.2337/db21-0736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022]
Abstract
In obesity, increased mitochondrial metabolism with the accumulation of oxidative stress leads to mitochondrial damage and β-cell dysfunction. In particular, β-cells express antioxidant enzymes at relatively low levels and are highly vulnerable to oxidative stress. Early in the development of obesity, β-cells exhibit increased glucose-stimulated insulin secretion in order to compensate for insulin resistance. This increase in β-cell function under the condition of enhanced metabolic stress suggests that β-cells possess a defense mechanism against increased oxidative damage, which may become insufficient or decline at the onset of type 2 diabetes. Here, we show that metabolic stress induces β-cell hypoxia inducible factor 2α (HIF-2α), which stimulates antioxidant gene expression (e.g., Sod2 and Cat) and protects against mitochondrial reactive oxygen species (ROS) and subsequent mitochondrial damage. Knockdown of HIF-2α in Min6 cells exaggerated chronic high glucose-induced mitochondrial damage and β-cell dysfunction by increasing mitochondrial ROS levels. Moreover, inducible β-cell HIF-2α knockout mice developed more severe β-cell dysfunction and glucose intolerance on a high-fat diet, along with increased ROS levels and decreased islet mitochondrial mass. Our results provide a previously unknown mechanism through which β-cells defend against increased metabolic stress to promote β-cell compensation in obesity.
Collapse
Affiliation(s)
- Jae-Su Moon
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Matthew Riopel
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jong Bae Seo
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Vicente Herrero-Aguayo
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
| | - Roi Isaac
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Yun Sok Lee
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
- Corresponding author: Yun Sok Lee,
| |
Collapse
|
43
|
Bhagchandani P, Chang CA, Zhao W, Ghila L, Herrera PL, Chera S, Kim SK. Islet cell replacement and transplantation immunology in a mouse strain with inducible diabetes. Sci Rep 2022; 12:9033. [PMID: 35641781 PMCID: PMC9156753 DOI: 10.1038/s41598-022-13087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
Improved models of experimental diabetes are needed to develop cell therapies for diabetes. Here, we introduce the B6 RIP-DTR mouse, a model of experimental diabetes in fully immunocompetent animals. These inbred mice harbor the H2b major histocompatibility complex (MHC), selectively express high affinity human diphtheria toxin receptor (DTR) in islet β-cells, and are homozygous for the Ptprca (CD45.1) allele rather than wild-type Ptprcb (CD45.2). 100% of B6 RIP-DTR mice rapidly became diabetic after a single dose of diphtheria toxin, and this was reversed indefinitely after transplantation with islets from congenic C57BL/6 mice. By contrast, MHC-mismatched islets were rapidly rejected, and this allotransplant response was readily monitored via blood glucose and graft histology. In peripheral blood of B6 RIP-DTR with mixed hematopoietic chimerism, CD45.2 BALB/c donor blood immune cells were readily distinguished from host CD45.1 cells by flow cytometry. Reliable diabetes induction and other properties in B6 RIP-DTR mice provide an important new tool to advance transplant-based studies of islet replacement and immunomodulation to treat diabetes.
Collapse
Affiliation(s)
- Preksha Bhagchandani
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Charles A Chang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Weichen Zhao
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Luiza Ghila
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Simona Chera
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Department of Medicine (Endocrinology Division), Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Department of Pediatrics (Endocrinology Division), Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,JDRF Center of Excellence, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
44
|
Ding L, Roeck K, Zhang C, Zidek B, Rodman E, Hernandez-Barco Y, Zhang JS, Bamlet W, Oberg A, Zhang L, Bardeesy N, Li H, Billadeau D. Nuclear GSK-3β and Oncogenic KRas Lead to the Retention of Pancreatic Ductal Progenitor Cells Phenotypically Similar to Those Seen in IPMN. Front Cell Dev Biol 2022; 10:853003. [PMID: 35646902 PMCID: PMC9136019 DOI: 10.3389/fcell.2022.853003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a downstream target of oncogenic KRas and can accumulate in the nucleus in pancreatic ductal adenocarcinoma (PDA). To determine the interplay between oncogenic KRas and nuclear GSK-3β in PDA development, we generated Lox-STOP-Lox (LSL) nuclear-targeted GSK-3β animals and crossed them with LSL-KRasG12D mice under the control of the Pdx1-cre transgene—referred to as KNGC. Interestingly, 4-week-old KNGC animals show a profound loss of acinar cells, the expansion of ductal cells, and the rapid development of cystic-like lesions reminiscent of intraductal papillary mucinous neoplasm (IPMN). RNA-sequencing identified the expression of several ductal cell lineage genes including AQP5. Significantly, the Aqp5+ ductal cell pool was proliferative, phenotypically distinct from quiescent pancreatic ductal cells, and deletion of AQP5 limited expansion of the ductal pool. Aqp5 is also highly expressed in human IPMN along with GSK-3β highlighting the putative role of Aqp5+ ductal cells in human preneoplastic lesion development. Altogether, these data identify nGSK-3β and KRasG12D as an important signaling node promoting the retention of pancreatic ductal progenitor cells, which could be used to further characterize pancreatic ductal development as well as lineage biomarkers related to IPMN and PDA.
Collapse
Affiliation(s)
- Li Ding
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Li Ding, ; Daniel Billadeau,
| | - Kaely Roeck
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Cheng Zhang
- Department of Molecular and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Brooke Zidek
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Esther Rodman
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Jin-San Zhang
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - William Bamlet
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ann Oberg
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Lizhi Zhang
- Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Nabeel Bardeesy
- Center for Cancer Research, Harvard Medical School, Boston, MA, United States
| | - Hu Li
- Department of Molecular and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Daniel Billadeau
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Li Ding, ; Daniel Billadeau,
| |
Collapse
|
45
|
Transgenic mouse models to study the physiological and pathophysiological roles of human Siglecs. Biochem Soc Trans 2022; 50:935-950. [PMID: 35383825 DOI: 10.1042/bst20211203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are important immunomodulatory receptors. Due to differences between human and mouse Siglecs, defining the in vivo roles for human Siglecs (hSiglecs) can be challenging. One solution is the development and use of hSiglec transgenic mice to assess the physiological roles of hSiglecs in health and disease. These transgenic mice can also serve as important models for the pre-clinical testing of immunomodulatory approaches that are based on targeting hSiglecs. Four general methods have been used to create hSiglec-expressing transgenic mice, each with associated advantages and disadvantages. To date, transgenic mouse models expressing hSiglec-2 (CD22), -3 (CD33), -7, -8, -9, -11, and -16 have been created. This review focuses on both the generation of these hSiglec transgenic mice, along with the important findings that have been made through their study. Cumulatively, hSiglec transgenic mouse models are providing a deeper understanding of the differences between human and mice orthologs/paralogs, mechanisms by which Siglecs regulate immune cell signaling, physiological roles of Siglecs in disease, and different paradigms where targeting Siglecs may be therapeutically advantageous.
Collapse
|
46
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
47
|
Cheng J, Yang Z, Ge XY, Gao MX, Meng R, Xu X, Zhang YQ, Li RZ, Lin JY, Tian ZM, Wang J, Ning SL, Xu YF, Yang F, Gu JK, Sun JP, Yu X. Autonomous sensing of the insulin peptide by an olfactory G protein-coupled receptor modulates glucose metabolism. Cell Metab 2022; 34:240-255.e10. [PMID: 35108512 DOI: 10.1016/j.cmet.2021.12.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022]
Abstract
Along with functionally intact insulin, diabetes-associated insulin peptides are secreted by β cells. By screening the expression and functional characterization of olfactory receptors (ORs) in pancreatic islets, we identified Olfr109 as the receptor that detects insulin peptides. The engagement of one insulin peptide, insB:9-23, with Olfr109 diminished insulin secretion through Gi-cAMP signaling and promoted islet-resident macrophage proliferation through a β cell-macrophage circuit and a β-arrestin-1-mediated CCL2 pathway, as evidenced by β-arrestin-1-/- mouse models. Systemic Olfr109 deficiency or deficiency induced by Pdx1-Cre+/-Olfr109fl/fl specifically alleviated intra-islet inflammatory responses and improved glucose homeostasis in Akita- and high-fat diet (HFD)-fed mice. We further determined the binding mode between insB:9-23 and Olfr109. A pepducin-based Olfr109 antagonist improved glucose homeostasis in diabetic and obese mouse models. Collectively, we found that pancreatic β cells use Olfr109 to autonomously detect self-secreted insulin peptides, and this detection arrests insulin secretion and crosstalks with macrophages to increase intra-islet inflammation.
Collapse
Affiliation(s)
- Jie Cheng
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Xiao-Yan Ge
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Ming-Xin Gao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Ran Meng
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xin Xu
- Research Center for Drug Metabolism, College of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yu-Qi Zhang
- Research Center for Drug Metabolism, College of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Rui-Zhe Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Jing-Yu Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Zhao-Mei Tian
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Jin Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Shang-Lei Ning
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yun-Fei Xu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Jing-Kai Gu
- Research Center for Drug Metabolism, College of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Jin-Peng Sun
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China.
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
48
|
Jouvet N, Bouyakdan K, Campbell SA, Baldwin C, Townsend SE, Gannon MA, Poitout V, Alquier T, Estall JL. The Tetracycline-Controlled Transactivator (Tet-On/Off) System in β-Cells Reduces Insulin Expression and Secretion in Mice. Diabetes 2021; 70:2850-2859. [PMID: 34610983 PMCID: PMC8660978 DOI: 10.2337/db21-0147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022]
Abstract
Controllable genetic manipulation is an indispensable tool in research, greatly advancing our understanding of cell biology and physiology. However in β-cells, transgene silencing, low inducibility, ectopic expression, and off-targets effects are persistent challenges. In this study, we investigated whether an inducible Tetracycline (Tet)-Off system with β-cell-specific mouse insulin promoter (MIP)-itTA-driven expression of tetracycline operon (TetO)-CreJaw/J could circumvent previous issues of specificity and efficacy. Following assessment of tissue-specific gene recombination, β-cell architecture, in vitro and in vivo glucose-stimulated insulin secretion, and whole-body glucose homeostasis, we discovered that expression of any tetracycline-controlled transactivator (e.g., improved itTA, reverse rtTA, or tTA) in β-cells significantly reduced Insulin gene expression and decreased insulin content. This translated into lower pancreatic insulin levels and reduced insulin secretion in mice carrying any tTA transgene, independent of Cre recombinase expression or doxycycline exposure. Our study echoes ongoing challenges faced by fundamental researchers working with β-cells and highlights the need for consistent and comprehensive controls when using the tetracycline-controlled transactivator systems (Tet-On or Tet-Off) for genome editing.
Collapse
Affiliation(s)
- Nathalie Jouvet
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
| | - Khalil Bouyakdan
- Montreal Diabetes Research Centre, Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Scott A Campbell
- Montreal Diabetes Research Centre, Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Cindy Baldwin
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
| | - Shannon E Townsend
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Maureen A Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Vincent Poitout
- Montreal Diabetes Research Centre, Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Thierry Alquier
- Montreal Diabetes Research Centre, Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Jennifer L Estall
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Montreal Diabetes Research Centre, Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
49
|
Böni-Schnetzler M, Méreau H, Rachid L, Wiedemann SJ, Schulze F, Trimigliozzi K, Meier DT, Donath MY. IL-1beta promotes the age-associated decline of beta cell function. iScience 2021; 24:103250. [PMID: 34746709 PMCID: PMC8554531 DOI: 10.1016/j.isci.2021.103250] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/03/2021] [Accepted: 10/07/2021] [Indexed: 11/08/2022] Open
Abstract
Aging is the prime risk factor for the development of type 2 diabetes. We investigated the role of the interleukin-1 (IL-1) system on insulin secretion in aged mice. During aging, expression of the protective IL-1 receptor antagonist decreased in islets, whereas IL-1beta gene expression increased specifically in the CD45 + islet immune cell fraction. One-year-old mice with a whole-body knockout of IL-1beta had higher insulin secretion in vivo and in isolated islets, along with enhanced proliferation marker Ki67 and elevated size and number of islets. Myeloid cell-specific IL-1beta knockout preserved glucose-stimulated insulin secretion during aging, whereas it declined in control mice. Isolated islets from aged myeloIL-1beta ko mice secreted more insulin along with increased expression of Ins2, Kir6.2, and of the cell-cycle gene E2f1. IL-1beta treatment of isolated islets reduced E2f1, Ins2, and Kir6.2 expression in beta cells. We conclude that IL-1beta contributes the age-associated decline of beta cell function. Islets from aged mice have increased IL-1beta and decreased IL-1Ra expression Islet immune cells are the source of increased IL-1beta expression during aging Myeloid-cell-specific IL-1beta knockout preserves insulin secretion in aged mice IL-1beta targets genes regulating insulin secretion and proliferation during aging
Collapse
Affiliation(s)
- Marianne Böni-Schnetzler
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Hélène Méreau
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Leila Rachid
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Sophia J Wiedemann
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Friederike Schulze
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Kelly Trimigliozzi
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Daniel T Meier
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Marc Y Donath
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
50
|
Lin H, Smith N, Spigelman AF, Suzuki K, Ferdaoussi M, Alghamdi TA, Lewandowski SL, Jin Y, Bautista A, Wang YW, Manning Fox JE, Merrins MJ, Buteau J, MacDonald PE. β-Cell Knockout of SENP1 Reduces Responses to Incretins and Worsens Oral Glucose Tolerance in High-Fat Diet-Fed Mice. Diabetes 2021; 70:2626-2638. [PMID: 34462260 PMCID: PMC8564408 DOI: 10.2337/db20-1235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/19/2021] [Indexed: 01/17/2023]
Abstract
SUMOylation reduces oxidative stress and preserves islet mass at the expense of robust insulin secretion. To investigate a role for the deSUMOylating enzyme sentrin-specific protease 1 (SENP1) following metabolic stress, we put pancreas/gut-specific SENP1 knockout (pSENP1-KO) mice on a high-fat diet (HFD). Male pSENP1-KO mice were more glucose intolerant following HFD than littermate controls but only in response to oral glucose. A similar phenotype was observed in females. Plasma glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) responses were identical in pSENP1-KO and wild-type littermates, including the HFD-induced upregulation of GIP responses. Islet mass was not different, but insulin secretion and β-cell exocytotic responses to the GLP-1 receptor agonist exendin-4 (Ex4) and GIP were impaired in islets lacking SENP1. Glucagon secretion from pSENP1-KO islets was also reduced, so we generated β-cell-specific SENP1 KO mice. These phenocopied the pSENP1-KO mice with selective impairment in oral glucose tolerance following HFD, preserved islet mass expansion, and impaired β-cell exocytosis and insulin secretion to Ex4 and GIP without changes in cAMP or Ca2+ levels. Thus, β-cell SENP1 limits oral glucose intolerance following HFD by ensuring robust insulin secretion at a point downstream of incretin signaling.
Collapse
Affiliation(s)
- Haopeng Lin
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Nancy Smith
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kunimasa Suzuki
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mourad Ferdaoussi
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Tamadher A Alghamdi
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Sophie L Lewandowski
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison
| | - Yaxing Jin
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Bautista
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ying Wayne Wang
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jocelyn E Manning Fox
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison
| | - Jean Buteau
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|